
v

N93-11945

KNOWLEDGE-BASED SYSTEM V&V IN THE

SPACE STATION FREEDOM PROGRAM

Keith Kelley & David Hamilton

IBM Federal Sector Division

MC 6402

3700 Bay Area Boulevard

Houston, Texas 77058

Chris Culbert

NASA/Johnson Space Center

Software Technology Branch/PT4

Houston, Texas 77058

ABSTRACT

Knowledge Based Systems (KBSs) are expected to be

heavily used in the Space Station Freedom Program

(SSFP). Although SSFP Verification and Validation

(V&V) requirements are based on the latest state-of-the-

practice in software engineering technology, they may be

insufficient for Knowledge Based Systems (KBSs); it is

widely stated that there are differences in both approach

and execution between KBS V&V and conventional soft-

ware V&V. In order to better understand this issue, we

have surveyed and/or interviewed developers from sixty

expert system projects in order to understand tile differ-
ences and difficulties in KBS V&V. We have used this

survey results to analyze the SSFP V&V requirements

for conventional software in order to determine which

specific requiremeqts are inappropriate for KBS V&V

and why they are inappropriate. Further work will
result in a set of recommendations that can be used

either as guidelines for applying conventional software

V&V requirements to KBSs or as modifications to

extend the existing SSFP conventional software V&V

requirements to include KBS requirements. The results

of this work are significant to many projects, in addition

to SSFP, which will involve KBSs.

INTRODUCTION

Knowledge-based systems, or expert systems, are in

general use in a wide variety of domains. (Although

there is a growing acceptance of different definitions for

knowledge-based systems and expert systems, we will

use the terms interchangeably in this paper. The differ-

ences between KBS and expert systems do not signif-

icantly affect the V&V process.) As reliance on these

types of systems grows, the need to assess their quality

and validity reaches critical importance. As with any

software, the reliability of a KBS can be directly attri-

buted to the application of disciplined programming and

testing practices throughout the life-cycle. However,

there are essential differences between conventional soft-

ware and knowledge-based systems, both in construction
and use. The identification of how these differences

affect the verification and validation (V&V) process and

the development of techniques to handle them is the
basis of work in this field.

Much of the work in KBS V&V has focused on devel-

oping conceptual approaches and postulating different

techniques for performing some or all aspects of V&V

on various types of KBSs or expert systems (ESs) [5].

Very little work in this field has demonstrated the useful-

ness of proposed techniques on operational KBS. Even

more importantly, since effective V&V must be applied

throughout the life-cycle, there has been almost no case

study work in applying disciplined software V&V princi-

ples throughout the development of an operational KBS.

The long term goal of our work is to develop guidelines,

standards, tools, and techniques for V&V of all KBS

applications which many be used in the Space Station

Freedom Program (SSFP). As a precursor to deter-

mining the applicability or usefulness of many of the

proposed KBS V&V techniques, it is important to

develop an understanding of what V&V practices are

commonly in use today and how proposed techniques

can improve upon those practices.

It has been widely claimed that few expert systems are

subjected to the same level of V&V that conventional

168

software routinely undergoes [4]. ttowever, this prac-

tice has not been well documented. More important for

our purposes, little documentation exists (an exception is

documented in [8]) which describe the problems associ-

ated with KBS V&V from the developer or user's point

of view. The specific purpose of our survey was to

begin documenting the experiences and problems KBS

developers have encountered in performing V&V on

their systems and relate those problems to the kinds of

issues KBS V&V researchers consider important. The

overall strategy for determining the state-of-the-practice

was to determine how well each of the potential expert

system V&V issues are being addressed and to what

extent they have impacted the development of expert

systems. Our approach was to develop a set of survey

questions for both KBS developers and users and then

to follow that survey with selected interviews.

Because our ultimate goal is to develop guidelines, etc.

for SSFP, we compared the results of our survey to the

existing SSFP V&V requirements. We also analyzed all

the SSFP V&V requirements to determine their general

applicability to KBS V&V.

In this paper, we first summarize the results of this

survey (a more complete discussion of the survey results

appears in [9]) and then we summarize the results of

analyzing SSFP V&V requirements.

SURVEY RESULTS

A total of 70 people, 93°3 of which were developers,

responded to the survey concerning a variety of

knowledge-based systems. Seventy percent of these

systems were operational and the remainder were con-

sidered prototypes (although some of these "prototypes"

had users). These systems covered a range of

criticalities and sizes, requiring as little as one person-

month of development effort to as much as two hundred

person-months of development. Most (750%) of the

systems were concerned with diagnosis, primarily in the

aerospace field (73%).

Questionnaire Results

Much of tile results can be derived by simply calculating

the fraction of respondents that answered a question in a

certain way. The following is a short summary of each

type of information gathered. Unless otherwise noted,

the percentages shown are the percentage for all the

responses, both developer and user combined.

Performance Criteria

Thirty-nine percent estimated that the expert system per-

formed with an actual accuracy of less than 90°3 and

54°,/o estimated an accuracy of less than 95%. Most

(50%) estimated the problem space coverage between

60°,% and 95%. In comparing the accuracy of the

expert and the expert system, most (79%) expected the

expert system to at least as accurate as the expert. Yet,

the actual systems were often (75%) estimated to be less

accurate than expected and also (620%) less accurate

than the expert. Users, more often than developers, esti-

mated the expert system as being less accurate than

expected and less accurate than the expert.

Requirements Definition

Seventy-five percent indicated that expert consultation

was a basis for determining the behavior of the system.

More revealing is that for 52% of the systems surveyed,

there were no documented requirements. Forty-three

percent indicated that prototypes or similar tools were

used for requirements. Forty percent had medium diffi-

cuIty in generating requirements, 35% said the require-

ments were hard to develop, 25% said the requirements

were easy to develop. Fifty-eight percent of developers

had a high level of contact with experts during develop-

ment.

Development Information

The most frequent (40%) life-cycle model used is the

Cyclic Model (repetition of Requirements, Design, Rule

Generation, and Prototyping until done), ttowever,

22% of the respondents stated that no model was fol-

lowed. Most development was done with an expert

system shell (CLIPS and others), and the predominant

Interface Code was C and LISP. Applications were rea-

sonably large, requiring an average of 23 person-months

to develop. Developed systems were not reported to be

particularly sensitive to change (77% said changes only

occasionally caused an unexpected behavior).

V&V Activities Performed

Most V&V activities relied on comparison with expected

results and checking by the expert. Sixty-six percent

used functional testing and 44% used structural testing.

Fifty-nine percent had the domain expert check the

knowledge base. On average, 24°'0 of the development

was spent on V&V. While all (10003) of the users rated

V&V of expert systems as hard, the response from

developers varied. Thirty-four percent of the developers

said the V&V effort was of medium difficulty while 27°,3

said it was hard and 33% said it was easy, 5°,% said it

was impossible. Significantly, each V&V technique was

used as the sole V&V technique in at least one project.

Also, in general, there were wide ranging uses of V&V

techniques; each technique was used by many projects.

V&V Issues Encountered

The known issues most often cited as problems were:

test coverage determination (63%), knowledge validation

(60%), real-time performance analysis (33%), and

169

problem complexity (40%). Other problems cited were:

modularity (27%), configuration management (20%),

certification (11%), and understandability (10%). The

least cited problem was analysis of certainty factors

(only seven respondents indicated that certainty factors

were used). Every known issue was cited by at least one

respondent. The expected system use varied widely

(3-2000), while actual system use was relatively good.

However, less than half of the respondents provided

information, suggesting that actual use was much lower

than reported. Of those who responded with an

opinion, 96% felt that their expert system was at least as

reliable as a typical conventional software system, and
51% felt it was more reliable.

Interview Results

In addition to acquiring written responses to the survey

questions, interviews were performed to gather addi-

tional data and to clarify questions concerning the

written responses. Additional information from these

interviews are summarized in this section.

Structural Testing

Based on the survey results, a commonly used evalu-

ation approach was the use of structural testing. This

was surprising because the common perception among

KBS researchers is that many common forms of struc-

tural testing are relatively difficult to apply to expert

systems. From the interviews, we learned that although

some projects did attempt to measure the actual test

coverage (i.e., percentage of rules executed during

testing) many others did not actually measure the cov-

erage. Instead, they attempted to develop test cases that

would cover all of the knowledge base (or at least the

important parts) but made no attempt to measure how

well the knowledge base was actually covered. Also,

there appeared to be no attempt to cover interactions

between knowledge base elements (e.g., rule inter-

actions). Generally, each element was tested as if it

were an independent piece of the knowledge base.

Some knowledge base developers felt that more formal

structural testing would be too much effort and would

hinder the development process too much. The inter-

view results suggest that although structural testing was

used, it was a very weak form of structural testing (at

least compared to, say, branch coverage in procedural

software testing).

Experts Developing Expert Systems

It appeared that the expert was heavily relied upon to

aid in evaluation of the knowledge base; this subject was

probed more deeply during the interviews. The devel-

opers felt that a close interaction between the expert and

the knowledge base developer was mandatory to suc-

cessfully develop an expert system. This is not a sur-

prising result and it has been discussed at length in the

literature [1]. Many KBS developers feel this inter-

action is so important that they think the best approach

is simply to have the expert develop the system. Though

it is important for a knowledge engineer to understand

the problem domain and to thoroughly represent that

domain [6], it is generally accepted that the domain

expert should not be the sole developer of an expert

system: this is described in more detail in ['7], p.154 as

the Knowledge Engineering Paradox: "The more com-

petent domain experts become, the less able they are to

describe the knowledge the use to solve problems."

There are many problems associated with the develop-

ment of an expert system by a domain expert. Experts
often use knowledge that is so highly compiled and

implicit that they have difficulty defining that knowledge

explicitly (so a machine can use it). Furthermore, col-

lection of domain knowledge from "introspection" is

generally held in doubt by psychologists [3]; that is,
experts often don't solve a problem the way that they

think they do. Finally, building expert systems often

involves building highly complex software systems,

systems that require skills and training that domain

experts seldom have. Some of these issues were recog-

nized by at least one interviewee who felt that when his

group begins to tackle more sophisticated problems, they

would need developers with better-developed software

and knowledge engineering skills.

Requirements Writing and the Conventional Software
Life-Cycle

We anticipated that expert systems were being developed

using a much more iterative and less structured life-cycle

than the conventional waterfall model. Although the

subject of life-cycle models was not intentionally

addressed during the interviews, it often came up when

discussing requirements. It seems that several respond-

ents associated "requirements" with the conventional

waterfall model. They felt very strongly that the conven-

tional approaches to software development, such as the

waterfall model, were much too formal and structured

for expert systems development. Some even suggested it

would be disastrous to apply them to expert systems.

For many, this feeling extended to documenting require-

ments, others simply used a different approach to

requirements. For example, in some cases, require-

ments were not written because it was felt that a require-

ments document was a formally written paper document

that needed to be "approved" before development could

proceed. In other cases, an iterative prototyping devel-

opment effort took place and was followed by docu-

menting system requirements. These requirements were

then used to test the system to ensure that it worked as

everyone thought it should.

Prototypes vs. Operational Systems

Although we asked respondents to state that their system

was either "a prototype" or "operational," we received

170

indications that this distinction was often difficult to

make. For example, responses included "it is both a

prototype and operational," or "it is an operational

prototype," or "it is just a prototype but we have many

users." It seems that some systems are originally

intended to be a prototype but are used operationally.

Some intentionally approach the development of an

operational system by first developing a "prototype" and

once tile prototype is "certified," it is considered "opera-

tional." Others acknowledge there is a danger that a

prototype will be used as if it were operational. They

have taken steps to ensure that a prototype system that

is not accidentally relied upon in an operational setting.

Real-Time Performance Analysis

In our survey, we intended "real-time performance anal-

ysis" to refcr to the ability to predict the response time

For an expert system. That is, the ability to analyze the

time performance of the system, l lowever, from the

interviews we learned that many interpreted "real-time

performance analysis" to mean the ability to get the

system to run as fast as desiredlnecessary. While this is

important, it is unclear from the survey and the inter-

views just how many (if any) of the respondents had

quantifiable, rigid needs for expert systems which could

generate a response in a guaranteed time frame. Cer-

tainly few of the system developers had formally ana-

lyzed or documented any "hard" real-time constraints.

Issues Independent of A System Being an Expert
System

An important, but difficult, aspect of analyzing expert

system development methodology is distinguishing prop-

ertics of expert systems that are significandy different

from properties of conventional software [2]. This is

also an important aspect of the analysis of this survey of

V&V issues. Several comments appeared to be due

more to factors other than the fact that the system being

developed was an "expert system."]'he interviews

helped clarify this issue, and the important ones are dis-

cussed in this section.

Extensive Use of Prototyping and Rapid Development

The conventional waterfall life-cycle model has proven

to be ineffective for conventional software development.

Therefore, it is no surprise that developers do not want

to use it for expert system development. A more itera-

live model (e.g., the spiral model) that includes the use

of rapid prototyping is being perceived as a better alter-

native to the waterfall model. "Conventional" software

development projects often include the use of proto-

typing for activities like developing better user interfaces

and having developers better understand the problem

domain. These kind of issues are not unique to expert

system development, but did come up often in the

survey, particularly during the interviews.

Small/Simple vs, LargelComplex Systems

Although some of the systems surveyed are fairly large

(e.g., 200 person-months), they are generally much

smaller than dedicated software development projects

(e.g., Shuttle mission control center (MCC), Shuttle flight

software, etc.). The systems surveyed seem to be iso-

lated efforts to develop off-line applications for niches

for which expert system technology was felt to be very

suitable. They were generally systems that were not part

of a larger software system, though they are often used

in conjunction with a large data processing system (e.g.,

they receive real-time data from a large data processing

system). This allowed the expert system developers to

work without many of the constraints imposed on larger

systems (e.g., tighdy controlled configuration manage-

ment).

Addressing a Knowledge Engineer Instead of a
Programmer

Although we did not intend to gather information on the

experience and background of individual expert system

developers, we did learn that several respondents

involved in developing expert systems are experts in a

problem domain without significant programming expe-

rience. This fact was important when formulating the

detailed recommendations (discussed in 1"9]).

Issue Summary

It may be the case that the above issues are indeed

typical of expert system development projects and that

they should be addressed when addressing V&V of

expert system problems, However, it should be recog-

nized that they are somewhat different than the other

issues that are true of all expert systems regardless of

their size and who is developing them. This may point

to a need to tailor suggestions for V&V of expert

systems to considerations such as the size of the expert

system, the experience of the developer, whether the

system is embedded in a much larger software system,

etc.

Recommendations Based on the Survey

The major goal of this survey was to discover and docu-

ment the current state of the practice in V&V of expert

systems. Based on the survey results, it appears that

much can be done to improve the practice. As a

starting point, recommendations for improving KBS

V&V were drawn from the survey and interview results.

These recommendations are separated into two catego-

ries: direct recommendations which are directly sup-

ported by the survey results and inferred

recommendations which can be inferred from the survey

results by analyzing relationships among the responses.

171

Direct recommendations include:

• Develop requirements for expert system verification
and validation

• Address most often encountered issues

• Recommend a life-cycle for expert systems develop-
ment

Inferred recommendations include:

• Address readability and modularity issues

• Address configuration management issue

• Develop criteria to classify expert systems by
intended use

• Investigate applicability of analysis tools

Survey Conclusions

The original goal of our survey was to gather data and

document the current state-of-the-practice in KBS V&V.

The survey and follow-up interviews have given us con-

siderable insight into the kinds of problems that devel-

opers have really encountered in developing and

verifying expert systems. Many of these problems will

require additional work before solutions will be readily

available. The analysis of the survey and interviews and

the subsequent recommendations can serve as valuable

reference for directing future KBS V&V research into

those areas which are of the most value to KBS devel-

opers and users. In addition, managers of KBS devel-

opment projects can learn from these results to structure

life-cycle approaches for KBS development which are

more likely to lead to high quality application software.

SPACE STATION FREEDOM PROGRAM V&V
REQUIREMENTS ANALYSIS

There are several software V&V requirements for the

Space Station Freedom Program (SSFP) that are con-

tained in SSFP documents. KBS V&V issues were not

considered when these requirements were defined so it

was felt that they might not be appropriate for the V&V

of KBSs. To understand the scope of this problem and

how it might be resolved, we defined a task to:

• Identify all SSFP V&V requirements

• Analyze the applicability of the requirements to
KBSs

• Make recommendations so that all V&V require-

ments would apply to KBSs. A recommendation

could be to change an existing V&V requirement or

to develop a KBS V&V technique that could be

used to satisfy a requirement.

(A more detailed discussion of this work is discussed in

[10].)

Analysis

From several SSFP documents, we initially identified 93

SSFP V&V requirements which were specific to the

technical work of software V&V. That is, we did not

consider hardware requirements, general documentation

requirements, or logistical requirements such as

reporting procedures. Grouping similar requirements

together and climinatlng some minor duplication

resulted in 50 distinct requirements.

We analyzed each of the 50 requirements to answer the

following questions:

• What is the intent of this requirement ?

• Does this requirement make sense for a KBS ?

• Is this requirement currently satisfied in the current

state-of-the-practice ?

• if it is not in the current state-of-the-practice, is

there any inherent reason it could not be satisfied ?

• If there is no inherent reason it can not be satisfied,

what is it about KBS development that makes this

requirement difficult to satisfy ?

Results

Twenty-seven of the requirements are defined either at a

level of generality or at a point in the life-cycle where

specific software attributes are indistinguishable and can

be applied equally to both KB and conventional soft-

ware systems. Seven of these requirements can be

applied to KBSs using existing processes. Thus, 16

requirements remained that were uniquely difficult or

impossible to satisfy for KBSs.

We learned that many requirements that would be diffi-

cult to satisfy for KBSs were due to two major factors:

"life-cycle model" (four requirements) and "system

requirements" (five requirements). The "life-cycle

model" factor existed because a general waterfall-type of

life-cycle model was assumed to be used for system

development. For example, the SSFP configuration

management requirements would be difficult to apply to

an highly iterative life-cycle by having a high overhead

to document and release changes to the system. The

"system requirements" issue existed because many of the

requirements relied on the existence of a detailed set of

requirements that identified many considerations; the

general state-of-the-practice definitely does not include

the generation of such detailed requirements. For

example, there is an SSFP requirement to verify quality

requirements yet there is no well-understood way of

measuring the quality of a KBS.

The remaining V&V requirements that would be a

problem for KBSs are:

• Identification of modules (There is no clear way of

identifying "chunks" of knowledge as a module,

e.g., a rule grouping.)

172

• Verifying maintainability (It is not clear what makes

an expert system maintainable.)

• Requirements to code mapping (Can not be

mapped to modules unless modules can be identi-

fied; mapping to individual rules/frames is too diffi-

cult.)

• Performance analysis (It is difficult to analyze the

response time of non-procedural programs.)

• Path coverage (Paths in the conventional sense do

not apply to non-procedural programs, paths in a

broader sense are much more difficult to identify in

non-procedural programs.)

• IV&V (Because of the heavy reliance on experts to

aid in verification, independent verification [without

the expert or using a different expert] may not be

feasible.)

• Verifying off-the-shelf-components (There are not

standards in KBS languages as there is in the

standard procedural language, Ada.)

Implication to Other Programs

Most existing programs have V&V standards and guide-

lines that are similar to the SSFP V&V requirements

and were generated with conventional procedural soft-

ware in mind. An analysis similar to the one summa-

rized here would be necessary to adapt tile existing

program standards and guidelines so they could be

applied to KBSs. This approach would be preferable to

generating a separate set of standards and guidelines for

KBSs. As with SSFP, it is likely that the majority of

standards and guidelines could be applied to KBSs

without any difficulty so there would not be much dupli-

cation. Also, in practice, it may not be clear where in

the system a KBS ends and conventional software

begins. It may even be the case that a system that starts

out being a KBS might end up being implemented as

conventional software or visa versa. So having separate

KBS and conventional software V&V standards and

guidelines would create many difficulties

SUMMARY

From the survey that we have performed, we have deter-

mined that there are some issues with respect to the

state-of-the-practice in V&V of KBSs. We have also

learned about common practice as well as problems.

From the analysis of SSFP V&V requirements, we have

learned that conventional V&V standards and guidelines

are not completely applicable to V&V of KIISs. We

have also learned that the state-of-the practice in con-

ventional software V&V (as represented by standards

and' guidelines) is significantly different than the state-of-

the-practice in KBS V&V.

REFERENCES

1. Bell, M.Z., "Why Expert Systems Fail,"
JOURNAL OF TIIE OPERATIONS

RESEARCtl SOCIETY, Vol. 36, No. 7, 1985, pp.
613-619.

2. Culbert, C., Riley, G., & Savely, R.T., "An Expert

System Development Methodology Which Supports

Verification and Validation," In PROCEEDINGS

OF ISA 88, Instrument Society of America,

Ilouston TX, 1987.

3. Ericson, K.A., & Simon, H.A., PROTOCOL

ANAI.YSIS, ,X,llT Press, Cambridge ,MA, 1984.

4. O'Keefe, R.M., & Lee, S., "An Integrative ._lodel of

Expert System Veri/icadon and Validation,"
EXPERT SYSTE.MS WITII APPLICATIONS:

AN INTERNATIONAL JOURNAL Vol. 1, No.

3, 1990, pp. 231-236.

5. Rushby, J., "Quality Measures and Assurance for

AI Software," NASA Contractor Report No. 4187,

Ilouston TX, 1988.

6. Slagle, J.R., & Gardiner, D.A., "Knowledge Specifi-

cation of an Expert System," IEEE EXPERT, Vol.

5, No. 5, 1990, pp. 29-33.

7. Waterman, D.A., A GUIDE TO EXPERT

SYSTEMS, Addison-Wesley, Reading, MA, 1986.

8. Constantine, M.M, & Ulvila. J.W., "Testing

Knowledge-Based Systems: The State of the Prac-

tice and SuggcslJons for Improvement," EXPERT
SYSTEMS WITII APPLICATIONS: AN INTER-

NATIONAL JOURNAl, Vol. I, No. 3, 1990, pp.

237-248.

9. Ilamilton, D., Kelley, K., & Culbert, C., "State-of-

the-Practice in Knowledge-Based System Verifica-

tion and Validation," To appear in EXPERT

SYSTEMS WITIi APPLICATIONS: AN INTER-

NATIONAL JOURNAl., 199I.

10. "Expert System Verification and Validation Study,"

RICIS Contract #069, Phase 2 - Requirements

Identification, Delivery 2 - Current Requirements

Applicability, University of tlouston ,_ Clear l.ake,
1991.

173

