
N93-11946

AN APPROACH TO INTEGRATING AND CREATING

FLEXIBLE SOFTWARE ENVIRONMENTS

Kirstie L. Bellman, Ph.D.
Computer Science and Technology Subdivision

The Aerospace Corporation
El Segundo, California

Engineers and scientists are attempting to
represent, analyze, and reason about increasingly
complex systems. Because of the complexity of
these systems, no single analysis, model,
approach, or viewpoint is sufficient. Such complex
systems require not only the availability of a
variety of analysis tools, knowledge bases,
databases, and programs of all sorts, but also a
framework within which these different programs,
types of information, and viewpoints can be
brought together. Software developers have
responded to these needs by introducing the
concept of a software "environment." In an

environment, the user has access not only to a
large number of different "tools" (e.g. analyses,
editors, other programs), models, and databases,
but often a number of "utilities" and features in the

environment that make it easier to go from one
tool or model to another. Often these

environments have a diversity of knowledge
representations (procedural code, equations, text,
rules) and languages. Many environments are
extendable in at least a limited manner to the

languages and information styles already available
in the system. However, new languages and
representations are being developed continuously
for very good reasons: as with mathematical
formalisms, a good language can make certain
problems easy to do.

Many researchers have been developing new
ways of creating increasingly open environments
(See Purtilo et al., 1985; Erman et al., 1986; Bond

and Gasser, 1988 for examples). In our research
on VEHICLES, a conceptual design environment
for space systems, we have been developing an
approach (called wrapping) to flexibility and
integration based on the collection and then
processing of explicit qualitative descriptions of all

the software resources in the environment

(Bellman and Gillam, 1990; Landauer, 1990). The
detailed descriptions (or metaknowledge) of the
resources are used by the system to help partially
automate the combination, selection, and
adaptation of tools and models to the particular
requirements of the user and the type of problem
being solved. This approach also allows for a
great diversity of information types and languages.
At the current time, we have a simulation, VSIM,
used to study both the types of wrapping

descriptions and the processes necessary to use
the metaknowledge to combine, select, adapt, and
explain some of the software resources used in
VEHICLES. Below, we briefly describe what we
have learned about the types of knowledge

necessary for our wrapping approach and the
implications of wrapping for several key software
engineering issues.

The VEHICLES environment is composed of

both conventional and artificial intelligence
methods and programs. It is a distributed,
multilingual environment that is largely written in
Prolog, C and C++, but also supports external
programs written in a diversity of languages. It

supports a variety of information and knowledge
types, multiple models, and a broad toolchest of
analyses, graphics, and other types of software
programs. Although it is a prototype environment,
in its four years of development it has been used
to provide some of the analyses supporting
several space programs. As noted above,
supporting the design and analysis of complex
systems requires a diversity of models and tools;
the result is often a software environment that
becomes itself a complex system. Hence, we feel

it is important to provide Intelligent user support
f_mctions; that is some means of supporting the

174



user (be it human or another computer program)
in the selection, assemblage, integration,

adaptation, and explanation of the software
resources.

By selection, we mean that the system helps
the user to select which software resources are

appropriate given the current problem or task. For
example, in VSIM, we have experimented with two
simple scenarios involving selection: in the first
case, a human user has selected optimize from a
menu containing a number of analyses in
VEHICLES and the system uses the wrappings of
three optimization programs and the wrapping for
the set of equations to be optimized to determine
which optimization program is most appropriate;
when the system finds no basis for distinguishing
between two of the optimization programs, it uses
wrappings again to select an appropriate user
screen for presenting the user with the remaining
candidate optimization programs from which to
select. In the second case, a VEHICLES solver

has bombed on a set of equations and the system
itself poses the problem of selecting another
solver, which is done automatically on the basis of
the wrappings, with a record kept of the choice
and use of the selected solvers.

To us integration is more than simply allowing
tools to 'talk' (we prefer to use the term
assemblage for this permissive hooking-together
of tools ); rather, it is providing some means for
deciding when tools should talk. For example,
when should a given model send its output to
another model; when should a given database
provide the information for a given analysis. In the
wrappings, we have conditionals (implemented as
rules, but there could be other implementations)
which help define the context for integrating tools
and models.

By adaptation, we mean the modification of the
software resource depending upon the problem or
task and the information currently available. This
adaptation could be changing the input file or
control parameters to a simulation or changing the
queries to a database or changing the default
values in a model and so forth. The last critical

intelligent user support function is explanation,
that is, at a minimum, providing the means to
record and document how the software resources

were selected, integrated, and modified during the
use of the software environment. Eventually, we

would like a more interesting form of explanation,

where the explanation is adjusted depending upon

the user and the problem or task.

Using VSIM, we have learned a number of
things about the knowledge necessary in
wrapping, which we summarize below. First, in
order to perform the five intelligent user support
functions listed above, we need to represent and
utilize three types of knowledge: metaknowledge
(e.g. knowledge about a given method or tool or
about the use of knowledge in a knowledge base),
user models (knowledge about the types and
activities of the user), and domain knowledge
(especially knowledge about the types of problems
in that domain and the types of contexts that
constrain the choice and use of given methods
and information.) In VSIM, we have been

experimenting on how to utilize each type of
knowledge; currently VSIM is composed of a

planner knowledge base (PKB), a wrapping
database (WDB), and a set of wrapping

processors and other software resources, which
are all wrapped. The PKB contains triplets of the
form:

{Problem Definition
Information Available

Resource Name}

The "problem definition" has been simplified to
be a list of keywords corresponding to the

activities that the system can provide to the user,
such as "optimize", "solve", "parametric study"; or
at a higher level, they could be such activities as
"design a new satellite" or "tailor an existing
satellite". Eventually, we can incorporate more
interesting problem decomposition methods; we
have simplified the problem definition in order to
study how to relate the problem descriptions to the
software resources, and how to specify the
minimal information required by the software
resource to be used for a given problem. In the
WDB, each wrapping contains a name of a
software resource, input and output requirements
and restrictions, and then we have been

experimenting with many different ways of
expressing additional information about the
appropriate use of the resource under different
conditions. One important point to note is that in
VSIM all the software resources are wrapped,

including all programs processing the wrappings.
Hence, VSIM selects the "matcher" program used

175



to matchthe wrappingsof the modelandthe
optimizationprograms,in theexamplescenario
describedabove.

In the PKB,the problemdefinitionreflects
knowledgeabout:theresourcesprovidedbythe
software environment(metaknowledge);the
desiredactivitiesof theuser(usermodels);and
the methodsand requirementsof solving
problemsin a givendomain. In theWDB,the
knowledgeis largelymetaknowledgeaboutthe
useandtypeof softwareresource,butit crosses
anyneatlinesandincludesin anyconditionals,
referencestodomainknowledgeandusermodels.

Oneoftheproblemsweencounteredwhenwe
startedto writethewrappingswaswhatwecall
the"libraryproblem."Thatis,wetriedtoformulate
adescriptionofasoftwareresourcethatwouldbe
suitableforallwrappingpurposesforalltime.We
soonlearnedthat,at leastfor thepurposesof
formulatingthesedescriptions,we needto start
withfivedifferentdescriptions,eachcontainingthe
semanticscorrespondingto the five different
intelligentusersupportfunctionsdescribedabove.
Inaddition,fora largesoftwareresource(suchas
thelargesimulationswedealwithin VEHICLES),
we need to develop several wrappings, each
corresponding to a major mode of use for that
resource. Lastly, an issue we have not yet
addressed in VSIM, we can not consider the

wrappings as a static description. Rather, we
need to devise wrapping processes such that the
descriptions continue to build, as the resources
are used. Similarly, a human user must be able to
browse, edit, and add to the descriptions.

Although we have focussed on the flexibility and
integration provided by utilizing wrappings, it is
important to emphasize that flexibility and
integration in a software environment occur at
several different levels. Hence, in addition to the
use of wrappings, we have also experimented with
how best to use network services and message-
passing kernels to take advantage of different
programming languages and platforms.

The wrapping approach also advances software
engineering in several significant ways: 1) it
provides explicit descriptions (and documentation)
about each software resource, including what is in
essence both a specification for that resource and

practical advice on its acceptable and appropriate
use; 2) it provides traceability during dynamic

testing, and an easy way to insert probes; 3) it
allows standard structural testing of the
wrappings, when these are stored as a knowledge
base/database; 4) it allows the possibility of
incorporating on-line software checkers.

The wrappings are descriptions in a
database/knowledge base. Hence, a number of

standard static testing and analysis strategies that
have been applied to knowledge bases (see
Landauer, 1990; Bellman, 1990), can be applied
to the wrapping database. For example, static
analyses can check to see if a given resource is
used by any other resource; standard type
checking can pick up not only lower-level
information about data types, but also new higher-
level information about the type of resource and
uses that were made explicit in the wrappings.
With a simulation such as VSIM, one can

dynamically test the interactions among different
software resources. Wrappings can provide an
interesting means of seeding errors, adding
special programs to provide intermediary values or
other types of debugging information, or altering
the combination of resources. When combined

with 'user log'(in VSIM) and self-documentation (in
VEHICLES) programs, this approach offers the
ability to perform and record a large variety of
software engineering experiments.

Lastly, the wrappings represent a self-
description of a software environment that is
processible by that environment. In Maes'
terminology (1987), such a system is

"computationally reflective" and her everyday
examples of reflection range from the now

commonplace, e.g. keeping performance
statistics and debugging information to the exciting
possibilities for autonomous systems and
programs with self-optimization, self-modification,
and self-activation. We are excited by the recent

realization that VSIM can eventually be
considered just another resource in the
VEHICLES environment; one with the rather
special property of being a simulation of itself.
Hence when we add a new resource to

VEHICLES, we would eventually be able to
immediately simulate its integration into the
system. With wrappings, we hope to make
software architectures more testable,

maintainable, and open. The hope is that
eventually we will have computer systems in
which the means to test and evaluate the system
are not peripheral, but rather an integral part of the

176



softwaresystem.
References

Bellman, Kirstie L. The Modeling Issues Inherent
in Testing and Evaluating Knowledge-Based
Systems. Expert Systems With Applications, Vol.
1, 1990. (Pergamon Press)

Bellman, Kirstie L. and A. Gillam. Achieving
Openess and Flexibility in Vehicles. In AI and
SIMULATION Theory and Applications.
Proceedings of the SCS Eastern Multiconference,
23-26 April, 1990, Nashville, Tennessee.

Simulation Series Vol. 22(3), April 1990. pp 255
-260.

Bond, A.H. and L. Gasser, editors. Readings in
Distributed Artificial Intelligence. Los Altos, Ca:
Morgan Kaufmann, 1988.

Erman, Lee D., Jay S. Lark, Frederick Hayes-
Roth. Engineering Intelligent Systems: Progress
Report on ABE. Teknowledge Inc TTR-
ISE-86-102. In Proceedings: Expert System
Workshop, April 1986. SAIC Report Number
SAIC-86/1701.

Landauer, Christopher. Correctness Principles
for Rule-Based Expert Systems. Expert Systems
With Applications, Vol. 1, 1990. (Pergamon Press)

Landauer, Christopher. Wrapping Mathematical
Tools. In AI and SIMULATION Theory and
Applications. Proceedings of the SCS Eastern
Muiticonference, 23-26 April, 1990, Nashville,
Tennessee. Simulation Series Vol. 22(3), April
1990. pp 261 -266.

Maes, Pattie. Concepts and Experiments in
Computational Reflection. OOPSLA '87
Proceedings, 1987. pp 147- 155.

Purtilo, James. "POLYLITH: An Environment to

Support Management of Tool Interfaces", ACM
0-89791-165-2/85/006/0012. 1985.

Purtilo, James M. "POLYLITH and

Environments for Mathematical Computation",
University of Illinois Dept of Computer Science,
Report No. UIUCDCS-R-84-1135. 1984.

177


