
N93-11948

AUTONOMOUS POWER SYSTEM:
INTEGRATED SCHEDULING

Mark J. Ringer
Sverdrup Technology Inc.

NASA Lewis Research Center Group
Brook Park, Ohio 44142

ABSTRACT 1. INTRODUCTION

The Autonomous Power System (APS) project
at NASA Lewis Research Center is designed to
demonstrate the abilities of integrated intelligent
diagnosis, control and scheduling techniques to space
power distribution hardware. The project consists of
three elements: the Autonomous Power Expert System
(APEX) for fault diagnosis, isolation, and recovery
(FDIR), the Autonomous Intelligent Power Scheduler
(AIPS) to determine system configuration, and power

hardware (Brassboard) to simulate a space-based
power system. Faults can be introduced into the
Brassboard and in turn, be diagnosed and corrected
by APEX and AIPS.

The Autonomous Intelligent Power Scheduler
controls the execution of loads attached to the
Brassboard. Each load must be executed in a manner

that efficiently utilizes available power and satisfies
all load, resource, and temporal constraints. In the
case of a fault situation on the Brassboard, AIPS

dynamically modifies the existing schedule in order to
resume efficient operating conditions.

A database is kept of the power demand,
temporal modifiers, priority of each load, and the
power level of each source. AIPS uses a set of
heuristic rules to assign start times and resources to
each load based on load and resource constraints. A

simple improvement engine based upon these
heuristics is also available to improve the schedule
efficiency.

This paper describes the operation of the
Autonomous Intelligent Power Scheduler as a single

entity, as well as its integration with APEX and the
Brassboard. Future plans are discussed for the
growth of the Autonomous Intelligent Power

Scheduler.

Many of the obstacles in the implementation of
an on-board integrated scheduling and FDIR system
with actual hardware have yet to be investigated.
The APS project is meant to research these problems
with a set of increasingly complex software and
hardware systems. Details of the scheduling aspect
of the APS project will be discussed in this paper.
A brief graphic of the APS system, each unit's
functionality, and communicated information can be

seen in Figure 1.

1.1 The Need For Scheduling

Aboard a complex space-based system, many
activities must be performed, each competing for a
multitude of temporal positions and resources. A

scheduler must assign start times to each activity
without violating any resource or temporal constraints.
Many of the resources aboard such a spacecraft will
be vastly oversubscribed, having many times more
resource requests than available resources. This
makes it a paramount objective to efficiently utilize
the available resources in order to complete as many
activities as possible.

An automated scheduler can be included within
a spacecraft, schedule data can be transmitted from a

ground base to the spacecraft, or a combination of
the two can be employed to accomplish the task of
spacecraft scheduling. On-board automated
schedulers are still in the research stage and are the
topic of this paper. Current Space Station Freedom
designs dictate that the schedule be generated on the
ground and sent up to the Space Station. All
scheduling and rescheduling will be done on the

ground [Hagopian 1990]. It may also be possible to
have two schedulers, one on the ground, and one in
space. The ground-based scheduler will be able

180

generate very efficient schedules with detailed domain
knowledge and large host computers. The on-board
scheduler will be able to work on the same problem

in "real-time", but do so less effectively because of

time and processing constraints.

The problem of scheduling is complex in the
areas of computation, domain knowledge, and

quantity of data. Computationally, scheduling can be
classified as an NP- Hard problem. It is very easy
to give a common problem, such as scheduling one
day of Space Station experiments, that cannot be
implicitly solved in a time comparable to the lifetime
of the universe, even on a supercomputer! Building
a scheduling engine with enough domain knowledge
to be capable of complex reasoning in the area of
scheduling is a difficult task. It is also a large
bookkeeping task maintaining sufficient information
on activity and resource attributes.

1.2 The Need For Automated Scheduling

Future large spacecraft will require larger and
more sophisticated infrastructure systems and living
environments. Such spacecraft will consist of

system is evident. Automated scheduling here means
not only automated schedule generation, but also
automated schedule implementation. The more
responsibilities that an automated system assumes will
increase the speed of critical decisions. The use of
on-board scheduling for control of such a system will
significantly decrease operating costs, increase
efficiency, and provide for safer operation [Ringer
1991].

2. AIPS IMPLEMENTATION

The AIPS scheduling problem can easily be
broken down into three main areas: schedule

representation, schedule generation, and interaction
with the other subsystems of APS. Schedule

representation is the internal description of the
schedule as well as description of the activities and
resources modelled in AIPS. Schedule generation

describes the scheduling engines used to build the
schedules. Interaction describes the interface to

APEX and the Brassboard as well as the graphical
user interface. Figure 2 shows the main AIPS

dozens of resources and hundreds

The electrical power system on a platform such as

the Space Station Freedom, Lunar base, or Mars base
represents a critical portion of such a system. The
APS project explores intelligent hardware and
software architectures for efficient system operation
and scheduling on a representative electrical power
system [Ringer 1990, Ringer 1991].

of attached loads, interface and will be referred to in the next three
- sections. The remainder of the paper will give an in-

depth discussion of each of these three areas.

Standard scheduling concerns are beyond the
capabilities of humans onboard the spacecraft as well
as counter-productive to the science activities planned _
for the crew of such a vehicle. Ground-based

systems are another possibility for generating and
implementing schedules. The scheduling computers
and humans on the ground would be responsible for
schedule generation, while on-board non-scheduling
processors would be responsible for the minute-by-
minute implementation of the schedule. If the
scheduling expertise and computers are kept on the
ground, every anomaly that occurs aboard the
spacecraft that incurs a schedule change would cause

significant time delays and efficiency losses. The
relevant information will have to be sent from the

spacecraft to the ground, a solution generated, and the

information transmitted back to the spacecraft. This
will cause a lengthy problem solution time caused by
communication and processing delays. This
communication delay is compounded for systems such
as a Mars base or deep space probes [Dolce 1990].

Since the control of such a large system is
difficult to accomplish with the use of ground-based
systems, the importance of an automated on-board

2.1 Representation

APEX keeps system configuration information,
basically representing which loads (activities) are
attached to which power sources. Resource

availability and activity descriptions are sent to AIPS,
which assigns start times to each activity.

The usual method for scheduling continuous-
time problems is to break the problem down into
multiple subproblems, or planning horizons. These
planning horizons represent customary units of time,
like one day. Problems of this size are easier to
tackle than scheduling all activities for the lifetime of
the spacecraft. Once the problem is broken down
though, it is necessary to put the pieces back together
to create a time-coherent sequence of events. In the
AIPS scheduler, it is possible for activities to cross
over different planning horizons. It would be
unreasonable to assume that at the planning horizon
break, all activities would also have a natural break

point.

2.1.1 Resources

Capacity type resources are the only type
modelled since electric power is the only resource
currently available on the Brassboard. Each activity

181

can only be connected to one power source at a time.
There is no representation of power sharing among
different power buses, but this case can be
represented by combining two sources into one. This
connection information is forced by the Brassboard
configuration.

Each resource consists of a time-varying
profile of available power for the current planning
horizon. It is also necessary to include some
information about the power availability in the next
planning horizon, as discussed in the previous
paragraph.

2.1.2 Activities

Each activity is an entity that requests a certain
resource (power), from the power sources. (Note: in
the scheduling domain this entity is called an
"activity", while in the Brassboard domain it is
referred to as a "load"). Each activity consists of
certain attributes including duration and a list of time
variant resource requests. An activity's priority is a
relative measure of the activities importance to the
user of the activity completing. The activity must
also specify to which resource that it is attached.
This is actually the job of APEX, which keeps
system configuration information. Based upon switch
positions within the Brassboard, different paths can
be implemented between sources and loads.

Each activity can also have temporal modifiers
which specify a time window in which the activity
needs to finish. It can also request a general position
preference on the timeline, be it early, late, or in the
middle of the scheduling horizon or specified time
window.

rescheduling domains, "much less" time is available,
any time spent rescheduling the problem is wasted
time, i.e. a loss in resource-usage efficiency. For this
reason, different scheduling engines are used for the
two cases. There is, of course, a tradeoff between
the two scheduling methods, faster schedule
generation time is traded for less schedule
"goodness", but this is made up in the reclamation of
the lost time between the anomaly and the "slow"
schedule re-implementation (rescheduling).

The rescheduling engine is a heuristic non-
backtracking (to re-visit either unscheduled activities,
or unchecked time periods) engine that produces a
reasonably efficient schedule in a short time. The
improvement engine is based on the previously stated
engine, but is able to improve the schedule
iteratively. Other scheduling engines implement the
same concept by using more or less knowledge
and/or scheduling methods in the decision-making
processes during schedule generation depending on
the amount of time allowed [Britt 1990]. Other work
in multiple scheduling engines has been focused in

constraint-based simulated annealing repair techniques
[Zweben 1990a].

The AIPS scheduler and rescheduler use a set

of schedule building heuristics based on global
knowledge of the resource-based scheduling problem.
In this way, a reasonably efficient schedule can be
created. The same set of heuristics can also be used
in the case that activities need to be removed from

the timeline or repositioned on the timeline. The
heuristics used in the AIPS scheduling engine can be
divided into two categories: those used to select
which activity to schedule and those to determine

what temporal placement to assign each activity
[Sadeh 1989].

2.2 Generation 2.2.1 Activity selection heuristics

Schedule generation is the process of assigning
resources and temporal positions to activities. Many
types of scheduling engines can be used, with each
one having various strengths and weaknesses. TWO
main factors that can be used to judge a scheduling
engine are time to generate a schedule and the
schedule's "goodness". These two factors can be
compared if the both engines represent the same
problem fully.

Some may argue that scheduling and
rescheduling are the same problem, with scheduling
represented as rescheduling with no activities
currently on the timeline. This may be true, but it
may still be advantageous to separate the two. In
most scheduling domains, a "reasonable" amount of
time exists to generate a schedule. In most

Since the scheduler does not backtrack it is

necessary to determine in which order to place
activities on the schedule. An ordering of activities
is created based on predicted importance to place on
the schedule. Once this list is compiled, each
activity is then placed on the schedule, if it does not
fit, it is ignored and not scheduled. In a non-
backtracking engine, an activity is more likely to be
scheduled and scheduled in its desired position if it is
placed on the schedule as early as possible in the
scheduling process. It should be stated that each of
the next three classes of heuristics are not used on
their own, but a combination of the three is used to
generate the ordered list of activities.

Priority: It is more important to include the
higher priority activities on the schedule,

therefore, higher priority activities are placed
on the schedule first.

182

Amount of Power Requested: Placing larger
resource amount requesting activities on the
schedule first usually result in schedules that
will consume more of the capacity type
resources. If one places smaller resource

requests on the schedule first, it is possible
that the larger activities will be unable to fit
on the schedule. This would result in less

capacity type resource usage. 2.2.3

activity is being accomplished in the current
horizon. In real life terms, one can always do
today's work tomorrow, but then tomorrow's
work will be delayed until the next day and so
on. For this reason, it is more desirable to

complete the activity within the present
planning horizon.

Improvement Engine

Duration Of Requested Time Window: If an
activity has requested that it be placed in a
small time window, it is important that this
activity be placed on the schedule before
others that may take resources within this time
window needed by the current activity.

2.2.2 Temporal Placement Heuristics

It should again be stated that the next three
classes of heuristics do not stand alone, but all three

are used to determine the final position of an activity
on the timeline. Each feasible start time for an

activity is judged based on the following heuristics.
The best of these possible start times is then chosen,
and the activity is placed on the schedule.

Projected Resource Demand: This is a conflict
avoidance strategy, as opposed to a reactive
conflict resolution strategy [McLean 1990].
Bottleneck areas (areas of resource

oversubscription) are projected before the
schedule is generated therefore they are
avoided during schedule generation. Resource

bottleneck projection is affected by specified
time windows as well as temporal loading
preferences. A projected demand for each
resource is calculated before any actual
scheduling is done. This bottleneck

information is used to affect the placement of
each activity on the schedule. As each activity
is placed on the timeline, the bottleneck areas
are updated. This strategy allows the scheduler
to move some activities away from bottleneck
regions, thus allowing more activities to be
scheduled that would have been unscheduled
because of resource conflicts.

Closeness to loading preference: This is a
relative measure of how close an activity is to
it's requested position on the timeline. If an

activity has requested front loading, it would
be preferrable to place the activity at the
beginning of the timeline as opposed to the
end.

Front Loading: In the representation of the

schedule, it is possible to have an activity
continue into the next planning horizon. This
is possible but not desirable, since less of the

A very simple iterative improver has been
constructed based on the heuristic rules explained
above. The word "improver" is used here to signify
a better schedule, as opposed to "optimize" which
implies an optimum schedule. Since the scheduler's
heuristics are using incomplete knowledge of the
problem, it is not "true" that the schedulers' decisions
are always "optimal". In other words, even though
the heuristics produce a reasonable schedule, they are
by no means producing the optimum schedule. For
this reason, some noise added into the decision

making processes can actually produce a better
overall schedule. The schedule generation process
can be repeated, each time the schedule is generated,
a bit of randomness is added to the decision making
process. By keeping the last best schedule in
memory, the scheduler can "search" for a better
schedule, until the time that the schedule must be

implemented.

This is somewhat similar (but opposite) to the
simulated annealing approach to scheduling. In an
annealer, the actual activity placement makes for a
currently worse schedule but in the long run, a better

schedule is produced. In the AIPS heuristics, the
decision knowledge is incomplete, therefore, a worse
heuristic decision may actually produce a better
overall schedule when the entire scheduling process is
complete.

The first time the heuristics produce a
schedule, a feasible schedule is generated in a short
period of time. Since the last best schedule is saved,
this engine can still be considered an "anytime"
scheduling engine, because at anytime in the
scheduling process (after the first schedule is
generated), a feasible schedule exists [Zweben 1990b].
As a counter-example, some schedulers may use so
much knowledge in constructing a schedule, that they
make take a significant amount of time to construct a

schedule and can not be stopped in the middle of the
process if a schedule is needed.

2.2.4 Non-nervous rescheduling

The same set of heuristics are also used in the

process of rescheduling. The idea of non-nervous
(small perturbation to the existing schedule)
rescheduling is meant to save time in the outside
world as well as within the spacecraft. Many other

183

activities, and maybe even humans on the ground 2.3 Interaction

may be waiting for the execution of a certain
activity. If, during rescheduling, the scheduler makes
large changes to the current schedule, many activities There are two types of interaction; between
or even humans will be affected by the changes. APEX and AIPS, and between AIPS and the user.

In some cases, the AIPS rescheduler only finds

it necessary to shed a certain number of loads. This
shedding is the effect of source reductions and is
heavily influenced by activity priority. In other
cases, certain activities may need to be deleted from
the schedule, and other activities may be available to
take the resources abandoned by the deleted activity.

The interface between the user and AIPS is meant for

testing of the scheduler, displaying information to the
user, and human interaction for semi-autonomous
control of the scheduler. The interface to APEX is
used to implement the schedule that is generated, and
to transmit rescheduling information to APEX.

2.3.1 Graphical Interface

2.2.5 Judgement of "Goodness"

Schedule judgement is needed in the iterative

improver, for comparing two schedules to see which
one is better, or for the user as a relative measure of

"goodness". Judging a schedule is a not an exact
science with many ways of looking at the problem.
Of course, in a software environment, more concrete
measures of schedule "goodness" are necessary.
Many possibilities of judging a schedule exist, the
AIPS schedule judge uses three main attributes of a
completed schedule to serve as a judgment of a
"good" schedule. The three attributes are power use,
priority weighted number of activities scheduled, and
activity position.

Power use is the amount of available power
consumed by the scheduled activities. This is kept as
a ratio of power used to power available. The

number of loads scheduled factor is weighted by the
priority of each load scheduled. It is possible to
have activities continue into the next planning
horizon, if this happens, the number of loads
scheduled factor is penalized because the activity is
not being completed in the current planning horizon.
The load position factor is a measure of how close
each load is to it's preferred temporal loading
position.

The bottom portion of Figure 2 shows some of
the schedule judgment criteria (all normalized from 0
to 1). "Time", "Counter", and "Best" have no

meaning in this example. "Current" represents an
overall schedule goodness rating, "Energy Used"
represents the ratio of energy used in the current
schedule to the energy available, "WNOL scheduled"
stands for Weighted Number Of Loads scheduled,

"Closeness" is a measure of how close each activity

is to it's specified loading preference, and "Demand"
represents the ratio of energy requested to energy
available.

The graphical user interface can be broken

down into three major sub-views: resource, timeline,
and activity displays. The resource displays are
shown at the top of the screen as line graphs. The
timeline is shown in the middle of the screen as a
Gantt chart. The activity is shown at the bottom of

the screen representing resource requests and activity
information.

The scheduler has an interactive graphical user
interface that can be used to test the scheduler as

shown in Figure 3. This interface is fully mouse
controlled and allows the user to edit activity
information, resource information, as well as making
changes to the schedule after the scheduling engine
has given its solution. The user may test to see if
they can manipulate the schedule in such a way to
build a "better" schedule than the scheduling engine
itself. This user interface also shows more clearly
how the scheduling engine functions and makes it

easier to test the scheduler. Figure 3 shows a
schedule consisting of 30 activities, 2 resources, and

is calculated with a time granularity of five minutes.

The upper two graphs show two sources of
electrical power, with the power on the y-axis and
time on the x-axis. Available power is shown as a
dotted line, while scheduled power is shown as a

solid line. This difference between available power
and scheduled power is the unused (unscheduled)
power which is shown as the dotted fill area between
the available and scheduled power.

The Gantt chart in the middle of the screen
shows each activity that was scheduled as a solid line

or a dotted line if unscheduled. The length of the
line corresponds to the length of the activity and the
scale is shown on the x-axis of the Gantt chart. The

earliest start and latest end points (if they are
specified) are shown by brackets at each side of the

activity. On the color screen, each activity is color
coded by its priority. If an activity continues into
the next planning horizon, this is shown as an arrow
at the end of the activity.

184

The edit window at the bottom of the screen

shows a more specific description of the activity that
the mouse is currently pointing to. Values such as

power demand, length, start and end constraints,
priority, source, and loading preference can be
specified within this window. This information is
available for each activity on the schedule. In Figure
3 the mouse is pointing to the activity entitled
"health", and the information for this activity is
shown in the edit window.

2.3.2 APEX Interface

In order to adequately model the interaction
between APEX and AIPS, a set of protocols was

developed to communicate different scheduling and
rescheduling procedures. Protocols were developed to

generate an initial schedule and modify existing
schedules. The initial schedule generation takes a set
of resources and activities and generates a schedule
for APEX to follow.

4. CONCLUSION

The AIPS scheduler has shown the ability to
function in a dynamic real-world environment.
Functions such as schedule generation within a time-
limited environment, dynamic rescheduling, and

integration with FDIR and hardware systems have
been implemented in the AIPS software. Scheduler
interaction with other intelligent agents has been
demonstrated. These accomplishments along with

the functionality of APEX and the Brassboard display
automation strategies applicable to larger and more
complex systems. Work will continue on APS to
prove the feasibility of on-board automation with
increasingly complex software systems and
demonstrations.

ACKNOWLEDGEMENTS

Five modification protocols exist: activity
change, resource change, activity add, activity delete,
and resource delete. During the execution of a

schedule, the priority of an activity may change, the
power demand of an activity may change, the activity
may need to be dropped from the schedule, or an
activity may need to be added. This change
information is caused by faults in the Brassboard.
Resources also may be changed during the execution
of a schedule, or deleted altogether. These protocols
enable APEX and AIPS to communicate system

configuration information as well as reconfigure the
system in the case of a fault.

APEX holds a database of activity information,
as well as information on resource availability. This

would probably be the job of another higher level
computer in a real application, but was a suitable
place for the APS project. APEX sends this activity
and resource information to AIPS, and AIPS in turn

generates a schedule, assigning activities start times,
and subscribes to the available power.

3. FUTURE WORK

Thanks to Todd Quinn, Tony Merolla, Walt
Krawczonek, and Gene Lieberman for implementing
the other portions of the APS project. Thanks to Jim
Kish for his work in managing and coordinating the
APS project. This work was performed under
contract NAS3-25266 with Jim Kish as Coordinator.

REFERENCES

[Biefeld 1990] Biefeld, E., Cooper, L.,
"Operation Mission Planner: Final Report", JPL
Publication 90-16, March 15, 1990.

[Britt 1990] Britt, D.L., Geoffroy, A.L.,
Gohring, J.R., "Managing Temporal Relations",
Proceedings of the Goddard Conference on Space

Applications of Artificial Intelligence, 1990, NASA
CP 3068.

[Dolce 1990]Dolce, J.L., Kish, J.A., and Mellor, P.A.

"Automated Electric Power Management and Control
for Space Station Freedom", In Proceedings 25th
IECEC, AIChE 1990.

Work is currently underway in many aspects of
the AIPS scheduler. The underlying representation of
available resources is being changed from simple

arrays to a list of start time, end time, value objects.
Representation of consumable resources is being
developed with a special emphasis on batteries.
Work will continue on improving the heuristics used
to generate the schedule and some type of reactive
scheduling engine will be developed. Dynamic
activity priorities and uncertainty in an activity's
resource requirements will be included.

[Hagopian 1990] Hagopian, J., "Short Term Plan
Contents", Space Station User Operations Working
Group, Mission Planning Workshop, NASA Marshall

Space Flight Center, May 1990.

[McClean 1990] McLean, D.R., et al.,

"Emphasizing Conflict Resolution Versus Conflict
Avoidance During Schedule Generation", World
Congress on Expert Systems, Orlando, Florida, Dec.,
1991.

185

[Ringer 1990] Ringer, M.J., and Quinn,
T.M., "Autonomous Power Expert System", In
Proceedings 25th Intersociety Energy Conversion
Engineering Conference IECEC, AIChE 1990.

[Ringer 1991] Ringer, M.J., Quinn, T.M.,

and Merolla, T., "Autonomous Power System:
Intelligent Diagnosis and Control", Proceedings of the
NASA Goddard Conference on Space Applications of
Artificial Intelligence, 1991.

[Sadeh 1989] Sadeh, N., and Fox, M.S., "Focus
of Attention in an Activity-Based Scheduler",

Proceedings of the NASA Conference on Space
Telerobotics, Pasadena, California, 1989.

[Zweben 1990a] Zweben, M., "A Framework for

Iterative Improvement Search Algorithms Suited for
Constraint Satisfaction Problems", NASA Ames
Artificial Intelligence Research Branch Technical
Report, February, 1990.

[Zweben 1990b] Zweben, M., Deale, M., and

Eskey, M., "Anytime Rescheduling", NASA Ames
Artificial Intelligence Research Branch Technical
Report, February, 1990.

186

AIPS

Scheduling Knowledge

Schedule Generation

User Interface

Rescheduling Info

Activity Start Times

Activity and
Resource Data

APEX

FDIR Rules

= Schedule
Implementation Rules

Brassboard State

Activity/Resource
Database

Switch l Switch
Control /States and
Messagesl / P°wer ..

{ / IntOrmatlOn

Brassboard
Power sources

Switchgear

Current/Voltage
Sensors

Loads

Figure 1. APS Component Functionality and Description

[INPUT I StqUE lop*imizel PUNl mBOUTIR NDoMI#Em'/EJEXIT I

_.000 I _ H _ T,,7_o_:_.-_-,:.---_._d_I_!_i_4-!..........................1 o,e_

250 t- -- j

L. 500 :: ;::" i ! ! _ 1 IJn,Jse"-_d

_25 hO0 2,00 3:00 4:00 =J:O0

Figure 2. Generated Schedule With "Goodness" Information.

187

INPUT I SF_UE _ptimize I PUN_] _BOUT #_NDOrl I SEPUE I EXIT I

_.000, . _, La._7_ok-::"::r_.-_-,: ----:_-_l:IL; _.u......Ij_izil,:..........................1 °"_
I ----_:.----_..............-x-............"__..........................I _-<_-d

: ! i I Used

1:O0 2:O0 3:O0 4:O0 5:O0

7501

t_
13
,I

o

|

eYperimenl _2

. exper l_)ent-3 _ _ It-_ di nn_r--------_

Preboost-_

m_l nt enen_e i

re.=istojel _ l-heal t h_"_ousekeep|ng m--_

l_-_ecr eat ibr_

}--'--'-t exc_lze electro! _i_

,. _rhrouer
, =_=" - : h--------'----f

_---dish_ash _r--_---I -" p.r linen) 4 :

_×per imeot-5

Iaundr g _-_

recr e_tion _
II " _×per/ment-_; I(

E _ per J men)-7-
, ------ev_

experim_nt-g _ h-_----e_per imen_- O _-

e×per iment-lO
e×per iment-| __

e×perim_,' nt-12 _

O: O0 I:O0 2:O0 3:O0 'I: O0 5:O0

health I Earliest _k_i_t I:Q_ I LatestJEl_L 4:_ I Prlorit 9 Norl_l_L_r__l._ldil:___LE_.td

Figure 3. Generated Schedule With Activity Information.

188

