
w

N93-1!955

Model-Based Vision for Space Applications

Karen Chaconas

Marilyn Nashman
Ronald Lumia

National Institute of Standards and Technology

Robot Systems Division

Gaithersburg, MD 20899

Abstract

This paper describes a method for tracking moving image
features by combining spatial and temporal edge information

with model based feature information. The algorithm updates
the two-dimensional position of object features by correlating

predicted model features with current image data. The results
of the correlation process are used to compute an updated

model. The algorithm makes use of a high temporal sampling

rate with respect to spatial changes of the image features and

operates in a real-time multi-processing environment. Prelim-

inary results demonstrate successful tracking for image fea-
ture velocities between 1.1 and 4.5 pixels every image frame.

This work has applications for docking, assembly, retrieval of

floating objects and a host of other space-related tasks.

1, Introduction

The ability to visually track an object during arbitrary mo-

tion is an important part of interacting with the environment.

Humans adeptly recover three-dimensional structure of an ob-
ject from its rigid-body motion in order to accomplish manip-

ulation, locomotion, and object recognition [6]. Motion and
edge information are known to be important cues to the recov-

ery of object structure. Understanding the relative motion be-

tween an object and an observer aids not only in the recovery
of object structure but also provides useful information re-

quired to interact with the objects. In order to visually track an

object, the object's orientation and position must be rapidly
updated. In six degree-of-freedom robotic applications, real-

time camera images can provide a dense stream of data from
which to extract object features and recover rigid body mo-
tion.

An object's three-dimensional structure can be recon-

structed from the projection of its motion onto a sequence of

two-dimensional images [22]. Two methods for measuring vi-

sual motion are detection of spatio-temporal intensity changes

and feature tracking [18]. The measurement of spatio-tempo-

ral intensity changes can be accomplished using correlation

models, energy filters [1] [4], or gradient techniques [21

[13].These algorithms provide a description of two-dimen-

sional image motion as a result of changes in intensity in the

image. They cannot differentiate between intensity differenc-

es due to changes in viewer motion and intensity changes pro-

duced by object motion with respect to a light source. Thus,

they are not suited to the task of tracking a moving object. The

class of algorithms that measure visual motion by tracking

features provides a means to directly measure physical motion

in the world. These algorithms, however, have the disadvan-

tage of requiring feature correspondence between images,

By combining the feature tracking approach with model-

driven techniques, the feature tracking process is constrained

and the correlation of features between frames is simplified.

This results in a computationally inexpensive and accurate

system. This paper describes an approach designed to achieve

these goals and the implementation of this approach in the In-

telligent Controls Group (ICG) laboratory at the National In-

stitute of Standards and Technology. The next section discuss-

es model-based feature tracking methods and, in particular,

the two-dimensional tracking method we use. Section 3 details

the implementation of the algorithm in our lab. The fourth sec-

tion quantifies the accuracy and speed of this algorithm in pre-

liminary experiments by tracking a planar target, and the final

section discusses the implications of these results.

2. Model-based Feature Tracking

Model-based feature tracking correlates image features

with object model features to take advantage of model infor-

mation. Correlation between extracted features and an object

model can be performed in either a two-dimensional [9] or

three-dimensional [12] [19] frame-of-reference. A useful sur-

vey of work done using these methods can be found in [20],

Three-dimensional tracking involves comparing a set of two

dimensional features extracted from an image to a three-di-

mensional model. In the most general case, this means solving

the three-dimensional recognition problem for each succes-

sive image frame. The three-dimensional position and orienta-

tion of the feature are computed by analyzing images taken at

different positions. Correspondence of features between im-

age frames is determined, and the three-dimensional feature

position is computed and matched to the model. This process

is time consuming computationally expensive.

A more efficient way of using a three-dimensional frame

of reference for model matching involves computing only the

changes in structure position and orientation between image

220

frames [20]. The set of extracted two-dimensional features

that must be matched with a three-dimensional model is thus

reduced. By projecting the model into image frame coordi-

nates, the search space is further reduced since the approxi-

mate location of each model feature in the two-dimensional

image frame is known. The information extracted and used to

update the model is usually quite accurate, and since all sur-

faces of the object model are available, problems of changing

viewpoints or occlusion are handled. However, the computa-

tional complexity of these algorithms prevent their use in real-

time applications.

The model-based feature tracking approach where the

matching occurs in two-dimensions is a less complex alterna-

tive to the tracking problem. It assumes the ability to process

a continuous sequence of two-dimensional images in real-time

[9]. Zero or one-dimensional features such as vertices, cen-

troids, or edge segments are extracted and matched to a two-

dimensional projection of the model. Analogous to the three-

dimensional case, the process is simplified by computing mo-

tion features which represent the changes in position and ori-

entation between image frames. Since the temporal sampling

rate is high, there is little change in position and orientation
between successive frames and the correlation between obser-

vation and model is simplified. The two-dimensional model is

continually updated based upon the most recent observation.

Tracking in two dimensions continues exclusive of additional

information as long as the object motion is continuous. A

model update obtained from three-dimensional information is

required if there is occlusion or a change of direction causing

loss of two-dimensional information. In gene:,-al, two-dimen-

sional feature tracking is an inexpensive method of correlating

observations with model information and is well-suited for

real-time applications [20].

The approach in our lab is based on model-based feature

tracking in two dimensions. There are two phases to the meth-

od that are used: initialization and tracking. During initializa-

tion, an operator defines the position of the object features in

the image at the point where tracking is to begin. In our pre-

liminary experiment, a planar object is attached to a pendulum

that is constrained to two-dimensional motion and tracked

while it is swinging. A sequence of camera images that dem-

onstrates this motion is digitized and stored. This sequence is

used as input to our algorithm and provides us with repeatable

motion for our experiments. Since the path is repeatable, the

operator can select the feature points, which are the object cor-
ners, from any one of the images in the sequence. Tracking be-

gins when all features selected by the operator are within an

acceptable distance from the extracted image corners. Suc-

cessful tracking continues while the extracted image features

remain within a predefined distance from the predicted cor-

ners. Tracking is lost when this distance is exceeded.

Figure 1 depicts an overview of the algorithm during the

tracking phase. In this figure, I(x,y) t refers to the intensity

function at a pixel located at position (x,y) at time t. Motion

and edge features from a sequence of images are correlated
with model information. Model-based tracking involves seg-

mentation and correlation of observed data with model data

and the prediction of the model position at the next time inter-

val.

221

During the segmentation phase, optical flow and edge ori-

entation are extracted from an incoming sequence of images.

This information represents the temporal and spatial edge in-

formation respectively. The image flow results from changes

in intensity between frames and a temporal differencing algo-

rithm is used to measure these changes. Incoming images are

smoothed using a Gaussian convolution, G*, to diminish the

effects of spurious noise in the image. Two temporally-con-

secutive, smoothed images are subtracted from each other in

order to detect any change in intensity due to motion between

the frames (Equation 1).

_tI (x,y) = G* (x,Y)t-G* (x,Y)t+ 1 [1]

All non-moving features in the image disappear in this differ-

ence image since the grayscale value of a pixel in the second

frame is being subtracted from the identical grayscale value in

the first frame. The resulting optical flow image is thresholded

to produce a binary image. This operation results in a seg-

mented scene reflecting changing intensity values between

successive images. However, motion segmentation occurs

whether the changing intensity is due to relative motion be-

tween the camera and the object or between the object and a

light source and can therefore be an ambiguous basis for seg-
mentation.

By requiring object features in an image to adhere to con-

sistent spatial as well as temporal properties, the segmentation

of features is more robust. Edges are also extracted durin_ the

segmentation process to provide additional information. Spa-

tial orientations of edge points are computed directly from the

sequence of input images. This information is used to deter-

mine the spatial orientations of the image motion points. Since

the positions of the edge points on the object change between

frames, a dense set of edge points is extracted from the sum of

two temporally-consecutive, smoothed images. A two-dimen-

sional spatial gradient operator is applied to all points (x,y) in

the image. The actual direction, 0, of each point in the image

is defined to be perpendicular to the direction of the gradient

of the intensity function fix,y) at that point:

(Vyf) (x, y)
0 = atan v [2]

(Vxf) (x, y) 2

Since the edge extraction and the motion extraction operations

are performed in parallel on the same input images, this pro-

vides the advantage of having edge orientation information for

most motion pixels.

The next step, correlation of the extracted motion points

with the model edges, makes use of the segmentation informa-

tion. Each motion pixel is either labelled or discarded depend-

ing on its similarity to the model. The labelling process is

based on two criteria. The first criterion is the two-dimension-

al spatial proximity of a motion point to the model lines.The

second criterion is the similarity of direction of the edge at the

location of this motion with the angular direction of the model

line.

Thedescriptionof eachlinein themodelincludesthe
slope-interceptformoftheline,thecoordinatesoftheend-
pointsofeachlinesegment,andtheangulardirectionofthe
line.Thefirststepinthecorrelationprocesscomparesthean-
gulardirectionofthemodellinewiththeedgedirectionofthe
candidatemotionpointtodetermineif theangulardisparityis
withinanacceptablerange:

]0modeI--0data]<8 [3]

If thisconditionissatisfied,thedistanced is computed be-

tween the point at image coordinate (x i, Yi) and each of k

lines used to define the object model using equation [4]:

The minimum distance between the image motion point and

each of k model lines is used to determine if that point is less

than a distance threshold, _, from the line. The point is la-

AkX i +BkYi +C k

d = (A_ +B2k) 1/2 [4]

where (A k x + B kY + Ck) is thegeneral form

for the k th line in the model.

belled as belonging to the model line segment it best matches

when both the spatial proximity and orientation conditions

are satisfied.

After the motion points are segmented, a line-fitting tech-

nique is used to update the two-dimensional position of each

model line. The line-fitting technique uses a least-squares lin-

ear regression which minimizes the squared error in either the

x or y direction. The equations that compute slope, m, and the

y intercept, b, of the best fitting line through the n points (xi,y i)

when minimizing the x direction error are:

n(i_(xiYi))- (i_xi) (2Yi)
m = ' [5]

b _

(2Yi) (2xi 2)- ('_xi)2xiYi
i , i i

2 [6]
n(2x2)-(i_xi),

Minimizing the least square error in the x direction pre-

sents a problem as the line being fit approaches vertical. As

this happens, the denominator in equation [5] approaches

zero, and the fit becomes less accurate. A more accurate fit

takes this into account and minimizes errors in both x and y.

Comparison of the standard deviation of the x coordinates to

that of the y coordinates gives a measure as to whether the line

is more horizontal or more vertical. A larger standard devia-

tion in x means the line tends toward the horizontal. When the

standard deviation of the y coordinates is larger, a linear re-

gression of x on y is used since the line is more vertical. In this

case, the equation for the slope and intercept of the fitted line

is given by

n (2Yi2)-_ (Yi)2 [7]
1

m =

n(_xiYi)-(_xi) (_Yi)

-((2xi) (2Y2)-(_Yi)(i_xiYi)) • [81b = 1 ,

(n(2xiYi)-(Exi) (EYi))
I 1 I

If the standard deviation of x coordinates is less than a pre-

defined threshold value, the line is considered to be vertical,

and therefore the slope is undefined.

The computed lines are intersected to determine the two-

dimensional comer positions of the object model. Each comer

point (x c, Yc) is computed by solving for the intersection of the

two fitted lines which contain the comer as an endpoint. The

distance between the computed comers and the model comers

is used to determine the proximity of the results with the pre-

diction. If the resulting distance is within an acceptable limit,

e, then a successful match has been detected (Equation [9]):

)2ff(Xc -- Xmodelk)2+ (Yc -- Ymodelk <g [9]

When the distance exceeds E, tracking is lost; distances less

than e indicate tracking. When tracking is successful, the cor-

ners are filtered using an exponential smoothing filter [17] to

predict the comer positions at the next time interval. Each

comer is filtered independently of the others since the object

motion isn't necessarily parallel to the image plane and the

comers will move at different rates in the image plane. The

filtering of each comer is done using a weighted average of

the current and all past positions of that comer with exponen-

tially decreasing weights (Equation 10).

= _ [10](x,y)i oz(x,Y)t+ (1 _) (x,Y)t

In this equation, (x, y), is the filtered comer position and (x,

y),is the unfiltered corner position. The value of (x, y), be-

fore any previous iterations is set to the position of the comer

when tracking is initially be-nn. The _moothing constant, 0t,

is in the range 0 < o_ < 1 and, in our case, is chosen to be 0.2.

The corner is filtered again using equation 11.

[ill
(x,y)_ = ot(x,y)i+ (I -Or) (x,y)_

The value of (x,y)",beforeany previousiterationsisalsoset

to the posit,on of the comer when tracking is initially begun.

After the filtered values are determined, the predicted comer

position (x,y)t+ l is computed using equation [12].

ot (x,y)i(x,Y)1+ l = (2+-[-U--_)

222

a (x,y)[) [12](-(1 + T-z---_)

The predicted model information is used to segment the

extracted image flow information at time t+l. Predictions are

computed each execution cycle regardless of whether updated

observed corners are available. This allows predicted posi-

tions to be sent to the correlation process continually, though

the spacing between successive positions decreases while no

new data are being observed. Figure 2 shows the relative fre-

quency with which predicted data are generated as compared

to data extracted from incoming images over a period of about

1 second. Since the results of the tracking algorithm are used

as feedback in a real-time system, the implementation of this

algorithm must be fast enough to be stable. Section 3 describes

the approach we use.

3. Implementation

Processing in the integrated vision testbed in the ICG l'ab-

oratory is accomplished using a programmable real-time im-

age processor, the Pipelined Image Processing Engine (PIPE) 1

[5] and a multiprocessor system as shown in Figure 3. In this

figure, the large grey rectangles represent how the software

processes are distributed on this hardware. The incoming im:

ages from a CCD camera are digitized by PIPE to provide 8-

bit grayscale images that are 242x256 pixels in size. The im-

ages are processed by lookup tables, neighborhood operators,

and arithmetic logic units that are defined in the PIPE applica-

tion program. Smoothing, temporal integration, and edge and

motion detection are performed on the grayscale images as de-

scribed in equations [1] and [2]. The Iconic-to-Symbolic Map-

per (ISMAP) stage of PIPE converts information from an im-

age format to a symbolic list and is used to store the binary

motion image as a list of pixel positions. In addition, the cor-

responding edge direction values are stored in the ISMAP

iconic buffer where they are mapped onto the memory of one

of the microprocessors via a specialized PIPE-VME interface

board. Figure 3 displays these pipelined processes as black

parallelograms.

The remaining software processes operate in real-time in

the multiprocessing environment. They are implemented

within the hierarchical sensory-interactive robot control sys-

tem in our lab [7] [10] [15] [16] [21] that is defined in the

NASA/NBS Standard Reference Model for Telerobot Control

System Architecture (NASREM) [3]. The control system is

composed of three parallel systems that cooperate to perform

telerobot control (Figure 4). The task decomposition system

breaks down objectives into simpler subtasks to control phys-

ical devices. The world model supplies information and ana-

lyzes data using support modules. It also maintains an internal

model of the state of the environment in the global data sys-

tem. The sensory processing system monitors and analyzes

sensory information from multiple sources in order to recog-

I. Commercial equipment and materials are identihed in this paper in

order to adequately specify the experimental procedure. Such identifica-

tion does not imply recommendation or endorsement by NIST, nor does

it imply that the materials or equipment identified are necessarily the

best for the pm'po_.

nize objects, detect events and filter and integrate information.

The world model uses this information to maintain the sys-

tem's best estimate of the past, current, and possible future

states of the world. The processes are labeled according to

their functional role in the NASREM architecture as sensory

processing (SP), world modeling (WM), or task decomposi-

tion (TD) modules. Each device or sensor of the telerobot has

a support process in each of the three columns of the control

system. For example, the task decomposition functions asso-

ciated with planning the actions for processing camera data re-

side in the task decomposition hierarchy; the world modeling

functions for supporting those plans reside in the world model

hierarchy, and the image processing techniques required for

executing those plans reside in the sensory processing hierar-

chy. The world modeling support modules communicate

asynchronously with the task decomposition and sensory pro-

cessing systems. Data flows bidirectionally between adjacent

levels within any given hierarchy. The interfaces to the sen-

sory processing system allow it to operate in a combination of

bottorn-uo (data driven) and a top-down (model driven)

modes. Bottom-up processing involves the extraction of

knowledge from sensory data, and top-down processing is

used to correlate predicted information from the world model
with extracted information from the environment. The inter-

faces between the sensory processing system and the world

model allow updated information to be sent to the world mod-

el and predicted information or sensory processing parameters

to be sent to the sensory processing system.

The implementation is based on the concept of cyclically

executing modules which serve as the computational units for

the NASREM architecture [11]. After initialization, all com-

putations are performed by cyclically executing processes that

communicate via global read-write interfaces. Each unit acts

as a process which reads inputs, performs computations, and

then writes output. Such a process always reads and executes

on the most current data; it does not wait for new data to arrive

since reliable cyclic execution requires that a module be able

to read or write data with minimal delay. Reading and writing
involve the transfer of data between local buffers and buffers

in global memory. System software has been written to pre-

vent data corruption during these transfers.

Three cyclically-executing software processes execute

the model-based feature tracking algorithm. These reside on

two of the three microprocessor boards. The remaining soft-

ware process performs communication with PIPE. The PIPE

communication process is a cyclically" executing process

which polls PIPE status, reads the ISMAP output produced by

PIPE, and writes it to the appropriate common memory loca-

tions that it shares with the segmentation process. Though the

amount of data transferred is large, on the order of hundreds to

thousands of pixels every cycle of 60 Hz, the direct memory

accessingprovides a high rate of accessibility to the symbolic

data. The execution time for this process takes an average of

90 ms on a 68020 processor for about 1400 motion pixels, an

average sample for our tests described in the following sec-

tions. The correlation steps described in equations [3] - [4] and

the line-fitting described in equations [5] - [8] are computa-

tionally intensive. The processing times for these operations

depend on the number of motion points. This process requires

223

high bandwidth, and for this reason, the correlation and line-

fitting process executes on a dedicated 68030 microprocessor

at an average rate of 110 ms per execution cycle. Since the ex-

ecution time is greater than that of the PIPE communications

process, it always has new data at the beginning of its execu-

tion cycle. The resulting lines are written to a common mem-

ory buffer shared with the process which computes the comers

of the observed object. This process computes all of the object

comers in 2.1 ms and then updates the buffer shared with the

filtering and prediction process. The filtering and prediction in

equations [10] - [12] are used to obtain all of the comers in the

predicted model, and this process executes in 3.1 ms. These

processes are combined on one board, a 68020 processor since

their total execution time is small compared to the other pro-

cesses.

4. Results

A preliminary set of experiments to determine how accu-

rately this model-based feature tracking algorithm can track

an object was run for the case of simple translational velocity.

In these experiments, a planar, rectangular object was mount-

ed on a pendulum as shown in Figure 5. The pendulum is re-

leased at different heights to provide image motion at differing

velocities. The only a priori knowledge about the object is the

image positions of the four comers at an arbitrary point during

the path of the pendulum that are used as a starting point for

tracking as described in section 2. These points establish a

crude model and are necessary to establish when the object has

initially been matched. Once the observed data matches the

initial model, the object is tracked by the single-camera vision

system in the manner previously described.

In order to quantify the accuracy with which the model

predicts the position of the observed data, the distance be-

tween the model comers and the actual comers is computed.

This difference is used to determine the accuracy of the fit be-

tween the predicted and the observed data at varying object

velocities. The accuracy of the tracking algorithm is also af-

fected by the threshold parameters used. The threshold used in

equation [4] controls the labelling of motion pixels and deter-

mines how closely the data can be correlated to the model.The

threshold used to match the model comers to the observed cor-

ners in equation [9] determines how closely the model must

match the observed data before tracking is lost. Our experi-

ments consisted of three cases of varying object velocity. Ve-

locity is measured in the image plane as the distance that an

object feature moves between camera frames. The velocities

tested are 1.1 pixels per frame, 3.9 pixels per frame, and 4.5

pixels per frame. For each velocity, the correlation threshold

is tested at four values, 3 pixels, 5 pixels, 10 pixels and 15 pix-

els. In addition, the corner matching threshold is tested at 32

pixels, 26 pixels and 20 pixels. In all, twelve sets of data were

collected for each velocity. Each set of data consists of 200 er-
ror measurements.

The threshold parameters were varied for three differe_nt

object velocities measured in the image plane. Table 1 sum-

marizes the results of experiments for the three velocities at

varying correlation thresholds. The comer threshold remains

constant at 20 pixels. Tables 2 and 3 are similarly organized

except that the comer thresholds are set to 26 pixels and 32

pixels, respectively. Continuous tracking was performed suc-

cessfully for all cases over a period of 200 iterations. By com-

paring the tables, it can be seen that the threshold used to de-

termine successful tracking described in equation [9] does not

play a significant role. Table I shows that for each object ve-

locity, the mean error increases as the correlation threshold in-

creases. This is a result of the fact that as the distance thresh-

old is relaxed, there is a greater chance of misclassifying mo-

tion pixels. This effect is noticeable at faster velocities since

there are more motion pixels available for processing. Also it

can be seen that at distance thresholds of 3 and 5 pixels, the

tracking error decreases with increasing velocity. This can be

attributed to the value chosen for the smoothing constant c¢de-

scribed in equations [10] - [12] which provides predictions

more closely matching the observed data at a velocity of 4.5

pixels per 60 Hz. It is not clear that this trend would continue

for higher velocities using the same smoothing constant. At

distance thresholds of 10 and 15 pixels the tracking error in-

creases as the velocity increases. This is caused by a greater

number of motion pixels being present at higher velocities

compounding the effect of the relaxed threshold. Similar con-

clusions can be drawn by analyzing Tables 2 and 3.

5. Conclusions

The method described in this paper successfully tracks

moving image features by correlating a combination of ex-

tracted spatial and temporal edge information with an object

model. The use of spatial information in the form of edge point

orientations constrains the correlation process since motion

points whose orientation is outside the orientation tolerance

are discarded. This provides the advantage of being able to

track an object in an unconstrained environment. Since a fea-

ture point has to be moving and in the correct orientation and

position to be matched to the object model, other features can

be in the field of view without being considered as part of the

object. Another advantage of this algorithm is that the predict-

ed model information can vary from the extracted image fea-

tures up to 15 pixels and still track successfully. This is an im-

provement over algorithms that base correlation only on local

properties. Preliminary results demonstrate successful track-

ing for image feature velocities between 1.1 and 4.5 pixels be-

tween image frames.

In the future, we plan to expand the modelling capability

of our system to handle the appearance and disappearance of

object features. By using a three-dimensional model we will

be able to predict the most stable set of features to track for a

given object pose. Modelling the motion of the object will en-

able us to provide pose predictions in the absence of sensory

data. We also plan to continue the experiments on model-

based feature tracking and to extend the scope of our algo-

rithms to include processing on a stereo set of cameras [8].
Knowledge of the two-dimensional position of the same fea-

ture as viewed from two cameras will enable us to determine

the position and orientation of the object in world-space using

range from triangulation. This capability will allow, us to sup-

ply feedback information to a manipulator system to aid in

tasks involving tracking or grasping a moving part.

224

6. References

[1] Adelson, E. H., J. R. Bergen, "Spatio-temporal Energy
Models for the Perception of Motion," Journal of the Op-

ticalsociety of America A, Vol. 2, No. 2, February, 1985,

pp. 284-299.

[2] Albus, James S., Tsai-Hong Hong, "Motion, Depth, and

Image Flow," IEEE Robotics and Automation Confer-

ence, Cincinnati, OH, May 13-18, 1990.

[3] Albus, J. S., H. (3. McCain, R. Lumia.,"NASA/NBS Stan-

dard Reference Model for Telerobot Control System Ar-

chitecture (NASREM)," NIST Technical Note 1235,

Gaithersburg, MD, July, 1987.

[4] Allen, Peter K., "Real-time Motion Tracking Using Spa-

tio-Temporal Filters," Proceedings of the DARPA Image

Understanding Workshop, Palo Alto, TX, May 23-26,
1989.

[5] Aspex, Inc., "PIPE--An Introduction to the PIPE System,"

New York, 1987.

[6] Bolles, Robert C., H. Harlyn Baker, David H. Marimont,

"Epipolar-Plane Image Analysis: An Approach to Deter-

mining Structure from Motion," International Journal of

Computer Vision, Vol. 1, 1987, pp. 7-55.

[7] Chaconas, K., M. Nashman, "Visual Perception Process-
ing in a Hierarchical Control System", NIST Technical

Note 1260, Gaithersburg, MD, March, 1989.

[8] Chaconas, K., "Range from Triangulation Using An In-

verse Perspective Method to Determine Relative Camera

Pose," NIST Internal Report 4385, Gaithersburg, MD,

August, 1990.

[9] Crowley, James L., Patrick Stelmaszyk, Christopher Dis-

cours, "Measuring Image Flow by Tracking Edge-Lines,"

Proceedings of the 2nd International' Conference on

Computer Vision, 1988, pp. 658-664.

[10] Fiala, J., "Manipulator Servo Level Task Decomposi-

tion," NIST Technical Note 1255, NIST, Gaithersburg,

MD, October, 1988.

[11] Fiala, J. "Note on NASREM Implementation," NIST In-

ternal Report 89-4215, Gaithersburg, MD, December,
1989.

[12] Gennery, Donald B., "Tracking Known Three-Dimen-

sional Objects," Proceedings of the National Conference

on Artificial Intelligence, Pittsburgh, PA, August 18-20,

1982, pp. 13-17.

[13] Horn, B. K. P., B. Schunk, "Determining Optical Flow,"

Artificial Intelligence, Vol. 17, 1983, pp. 185-203.

[14] Jenkin, M., J. K. Tsotsos, "Applying Temporal Con-

straints to the Dynamic Stereo Problem," CVGIP, 33,

1986, pp. 16-32.

[15] Kelmar, L. "Manipulator Servo Level World Modeling,"

NIST Technical Note 1258, NIST, Gaithersburg, MD,

March, 1989.

[16] Lumia, R., Fiala, J., Wavering, A., "The NASREM Ro-

bot Control System and Testbed," 2nd Intl. Symp. on Ro-

botics & Automated Manufacturing, Albuquerque, NM,

November, 1988.

[17] Montgomery, D. C., L. A. Johnson, and J. S. Gardiner,

"Forecasting & Time Series Analysis," Second Edition,

McGraw-Hill, New York, 1990.

[18] Spetsakis, Minas E., John Aloimonos, "Closed Form So-

lution to the Structure from Motion Problem from Line

Correspondences," Proceedings of the National Confer-

ence on Artificial Intelligence, 1987, pp 738-743.

[19] Thompson, D. W., J. L. Mundy, "Model-based Motion

Analysis - Motion from Motion," Robotics Research: The

Fourth International Symposium, R. C. Bolles and B.

Roth, eds., The MIT Press, Cambridge, MA, 1988, pp.
229 - 235.

[20] Verghese, Gilbert, Charles R. Dyer, "Real-time Model-

Based Tracking of Three-Dimensional Objects," Com-

puter Sciences Technical Report #806, University of
Wisconsin - Madison, November, 1988.

[21] Wavering, A., "Manipulator Primitive Level Task De-

composition," NIST Technical Note 1256, NIST, Gaith-
ersburg, MD, October, 1988.

[22] Waxman, Allen M., Kwangyoen Wohn, "Image Flow
Theory: A Framework for 3-D Inference from Time-

Varying Imagery," LSR-TR-1, Boston University, Janu-
ary, 1986.

[23] Waxman, Allen M., Jian Wu, F. Bergholm, "Convected

Activation Profiles: Receptive Fields for Real-Time Mea-

surement of Short-Range Visual Motion," International

Conference on Computer Vision, April, 1988.

225

Corner
Extraction

/IX

I Filtering
&

Prediction

Correlation [& Line Fitting i<

/ "-<

Figure 1. Model-based Feature Tracking Algorithm

Figure 2. (a) Observed Object Positions (b) Predicted Object Positions

226

68020 microprocessor

68030 microprocessor

68020 microprocessor
PIPE Communication]

PIPE

S SP Iconic-to /

ymbolic Conversion/

+
SP Motion / SP EdgeSegmentation Segmentation

Figure 3. Implementation of Model-Based Feature Tracking Algorithm

227

DATA
S_STEM

SENSORY
PROCESSING

%

WORLD TASK
MODELING DECOMPOSITION

OPERATOR
CONTROL

SERVICE
M 6 H 6 MISSION

G5 M 5 H 5 SERVICE
BAY

G4 M 4 H 4 TASK

G3 M 3 H 3 E-MOVE

G2 M 2 H PRIM
2

G 1 M 1
H SERVO

1

SENSE ACTION

Figure 4. The NASREM Architecture

Figure 5. Experimental Scenario

228

Distance Threshold for Correlation

Velocity _ = 3.0 _ = 5.0 _ = 10.0 _ = 15.0

1.1

3.9

4.5

0.302

0.045

0.009

0.338

0.096

0.024

0.335

0.096

1.174

0.407

1.151

1.368

Table 1. Mean Data Error Using Comer Threshold e = 20

Distance Threshold for Correlation

Velocity _ = 3.0 _ = 5.0 _ = 10.0 _ = 15.0

1.1

3.9

4.5

0.301

0.110

0.009

0.313

0.108

0.005

0.357

0.052

1.177

0.407

0.052

1.368

Table 2. Mean Data Error Using Comer Threshold e = 26

Velocity

1.1

3.9

4.5

Distance Threshold for Correlation

_=3.0

0.302

0.031

0.001

-- 5.0

0.313

0.109

0.003

= 10.0

0.348

0.097

1.174

= 15.0

0.407

1.160

1.273

Table 3. Mean Data Error Using Comer Threshold e = 32

229

