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Abstract

Due to various kinds of uncertainties, a robot

motion may fail and result in some unintended con-

tact between the object held by the robot and the

environment, which greatly hampers robotics appli-

cations on tasks with high-precision requirement,

such as assembly tasks. Aiming at automatically

recovering a robotic task from such a failure, this

paper discus_._es, in the presence of uncertainties,
contact detection based on contact motion for re-

covery. It presents a framework for on-line recog-

nizing contacts using multiple sensor modalities in

the presence of sensing uncertainties and means for

ensuring successful compliant motions in the pres-

ence of sensing and control uncertainties.

1 Introduction

The issue of detecting and recovering errors of robot ac-

tions due to uncertainties (e.g., mechanical, control, model-

ing, manufacturing, and sensing uncertainties) is crucial for

robotics applications on tasks with hlgh-precision require-

ment, such as assembly tasks. Since errors of a robot action

almost always lead to some unintended collisions between

the object moved by the robot and some other objects, on-

line recognition of those collisions or contacts is extremely

important to recovery strategies. On the other hand, re-

covery motions are usually preferred to be contact motions,

i.e., compliant motions, in order to reduce the effect of un-

certainties via the physical constraints among objects.

The contact detection problem not only requires sens-

ing and sensor-based reasoning but also demands them in

greater precision with sensing uncertainties being taken into

account. Fig. 1 shows an example to illustrate this. A

robot is used to perform the peg-in-hole task as depicted in

Fig. la. Due to uncertainties, the peg may hit somewhere

other than the desired goal, as in the two cases shown in

Fig. lb and c, respectively. If the peg in Fig. lc only leans

very slightly towards the wall, then the contact may not

be distinguishable from the one in Fig. lb due to sensing

uncertainties (e.g., position/orientation sensing uncertain-

ties). Nevertheless, the recovery strategies for the two cases

should be different. The recovery motion for the case in

Fig. lb can simply be a compliant translation, while for the

case in Fig. lc, the recovery motion should also involve ro-

tation. Thus, the two cases have to be distinguished. On

the other hand, not all the details about a contact are im-

portant to recovery motions. For example, the cases shown

in Fig. lb, Fig. ld, and Fig. le are different in terms of

the relative locations of the objects in contact and the pre-

cise topological relationships among the surface elements of

those objects. Nevertheless, the recovery motions of those

contacts may follow the same strategy -- a compliant trans-

lation along the surface of contact towards the hole.

The research directly targeted to contact detection in

the presence of uncertainties can be found in the work by

Desai etc.[3, 4] and by Spreng[6]. Both approaches are of

hypotheses-and-tests kind, i.e., testing the validity of cer-

tain contact hypotheses to obtain the correct contact in-

formation. Desai's method, in particular, first assumed a

set of possible contact formations (between two objects),

and then used force/moment equilibrium conditions with

the force/moment sensory data to eliminate certain contact

formations. However, the key problem of how to obtain the

contact hypotheses (i.e., initial contact formations) remains

intact. Spreng's method used positlon/orientation sensing

data to hypothesize about a contact in terms of motion free-

dorns and test motions for verification. The method, how-

ever, seems to be limited to 2D cases. Moreover, the use of

test motions may cause new failures and further complicate
the situation.

Although recovery motions are apt to be compliant to

be less sensitive to uncertainties, the effect of uncertainties

must still be taken into account in order to ensure success-

ful implementations of the desired compliant motions. For

example, in order to push the object in Fig. 2a along the

surface successfully, the applied force must be in proper di-

rection (w.r.t. the normal N of the surface) and magnitude

to overcome the friction as well as to keep the object al-

ways in contact with the surface. This, however, has to be

achieved in the presence of the orientation sensing uncer-

tainty in N, the force/moment sensing uncertainty, and the

modeling/control uncertainty in the force controller. So far

the problem has not been addressed in the literature.
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Figure 1: A Peg-in-Hole Example

Figure 2: Compliant Translations

This paper will first discuss what kind of contact in-

formation is enough for planning recovery motions, an is-

sue that has not been addressed in previous research, and

define recovery-oriented concepts of contact. Then it will

present a framework of using different sensors, especially

position/orientation and vision sensors, to compensate each
other in order to obtain the contact information of desired

precision in spite of sensing uncertainties. It will also ex-

plain how to ensure the success of compliant motions by im-

posing proper force/moment constraints on the commanded

force/moment applied to the held object (by the robot) and

certain design constraints on the nominal and uncertainty

parameters of the system.

2 Contacts and Assumptions

Since the contact detection problem mainly deals with un-

expected interactions between the object held by a robot

and the environment which, in most cases, is known ap-

proximately, we can assume that the environment is fixed in

the sense that all parts or fixtures in the environment are

pre-known; only the collisions between the held part and

other parts can be unexpected. Thus, the prob]em can take

advantage of a relatively stable and known environment in

contrast to a robot navigation problem. We can also assume

that the objects involved in an unexpected collision (i.e.,

the held object and some fixed objects in the environment)

are in a static state, provided that there are force/moment

guards to stop a robot motion once a collision occurs.
Now the concern is what kind of contact information will

be needed in providing enough aid to the planning of recov-

ery motions. From the example shown in Fig. 1, one can

see that the detection of contact surfaces is surely impor-

tant since they constitute the constraining surfaces for the

compliant recovery motion. In addition, the basic topologi-

cal formation of contact also matters since different forma-

tions may require different courses of recovery motion even

if the contact surfaces are the same (as shown by the two

contact cases in Fig. lb and Fig. lc). ttowever, not nil the

details in the formation of a contact are important to rccov-

ery motions (e.g., the cases shown in Fig. lb, Fig. ld, and

Fig. le share the same kind of recovery motion). Tilus, we

will introduce the concepts of contact which both facilitate

detection and meet the need of recovery planning.

We will use the following topological exterior-elements

of objects: faces, edges, and vertices in our descriptions. We

define a face as a closed surface, i.e., a surface and its bound-

aries, and an edge as a closed edge line, i.e., an edge line and

its boundary points 1. Clearly, the exterior of a finite solid

consists of finite faces with shared boundaries (among two

or more faces). The boundaries of a face consist of edges,

and the boundaries of an edge consist of (two) vertices. We

say two topological elements touch iff the interior region of

the two elements touch. Thus, we don't think that an edge

touches a face if only a boundary point of the edge (i.e., a

vertex) touches the face, and instead, we say that a vertex

touches a face.

We now define a principal contact (PC) between two

faces as one of the following: face-face (t-f), face-edge or

edge-face (f-e or e-f), face-vertex or vertex-face (f-v or v-

f), edge-cross (e-cross), edge-touch (e-touch), edge-vertex or

vertex-edge (e-v or v-e), vertex-vertex (v-v) (Fig. 3), such

that if there are more than one pair of topological elements

(from the two faces respectively) that touch each other, the

PC is determined by the pair in which the two topological

elements are not the boundaries of the topological elements

(of their respective faces) in the other pairs in touch. Now a

contact formation (CF) can be introduced to define a con-

tact between two objects, as a set of PC's involved (e.g.,

{< fl,f_ >,< e_, J'x2 >,...})2.

1Formal definitions of surfaces, edge lines, and vertex points can be

found in[10].

2This definition is quite different from that in[4, 3].
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Figure 3: Principal Contacts between Two Faces

It is not difficult to observe that, for polyhedral objects,

a PC of type f-f, f-e (or e-f), f-v (or v-f), or e-cross, involves

only one contact plane (CP) -- the tangent plane through

the contact points determined by the principal contact. For

non-polyhedral objects, a PC of type f-f, f-e (or e-f), f-v (or

v-f), or e-cross, involves either a contact surface determined

by the principal contact points or a contact plane tangent

to the principal contact point(s).

It is, on the other hand, not generally proper to talk

about a contact plane or surface for a PC of e-touch, e-v

(or v-e), or v-v type, since there exists an infinite number

of such contact planes or surfaces. However, PC's of types e-

touch, e-v (or v-e), and v-v are rather purely mathematical

concepts and rarely occur in reality due to their extremely

unstable nature. Thus, we will not consider those types

in this paper, assuming that they have zero probability of

occurring. For simplicity, we will also restrict our discussion

to polyhedral objects; thus surfaces are reduced to planes

only, edge lines are reduced to straight-lines, and there is a

contact plane associated with each PC.

3 Contact Detection

Let's consider an unexpected collision result in a contact

between the object held by the robot objh and one fixed

object. In principle, if the location of the held object can

be sensed, then the contact formation can be deduced or

derived from that sensed location, the boundary represen-

tations of both objects in the CAD model-base, and the

pre-known location of the fixed object. However, in prac-

tice, the sensed location is often different from the actual

location due to sensing uncertainty; thus, the contact for-

mation derived can be wrong, or the derivation yields no

contact at all. To solve the problem, our proposed strategy

is to first obtain all possible contact formations based on
the current locations sensed about the two objects, taking

into account position/orientation sensing uncertainties, and

then to use vision sensing to reduce the set of contact for-

mations and to obtain satisfactory information about the

contact. Force/moment or other sensing metimds can also

be included in the system.

3.1 Position/Orientation Sensing

First, the fixed object can be identified fairly accurately

based on the sensed location of objh, since the contact was

due to the motion deviation ofobjh from a preplanned path 3,

and the deviation is generally small. Suppose the fixed ob-

ject identified is objf. Then, the location of objl can be

obtained from the pre-stored database. Let fl, el, and vl

denote the face, edge, and vertex items of objl respectively,

which are described with respect to the coordinate system

of objy. Given the location of objt in tile reference coor-

dinate system of the workspace, i.e., the world coordinate

system, those descriptions can then be easily transformed to

bc with respect to tile world coordinate system. Similarly,

let fh, eh, and vh indicate the face, edge, and vertex items of

objh, described in the coordinate system of objh. Based on

the sensed location of objh in the world coordinate system,

those descriptions can be transformed to be with respect to

the world coordinate system.
Now we need to examine how the information of the

given location of obj! and the sensed location of objh can

contribute to the detection of the contact formation be-

tween obj] and objh. Let % denote the position sensing

uncertainty, such that for any point P, liP _ - PSll < ep,

where Pa and P_ are the actual and the sensed positions of

P. Let the angle eo denote the orientation sensing uncer-

tainty, such that for any vector N, /(N_,N _) < Co, where

N _ and N s are the actual and the sensed vectors. Obvi-

ously, the uncertainties ep and eo in the location of objh

affect the descriptions of fh, eh, and vh items in the world

coordinate system and thus the determination of the spatial

relationships between those surface elements of objh and the

surface elements of objf. Fig. 4 gives an example showing

the ambiguity in determining a PC due to ep and Co. It

is not difficult to observe that while there are many possi-

ble PC's, the possible contact planes involved are fewer. In

other words, contact planes are relatively robust and insen-

sitive to position/orientation sensing uncertainties. There-

fore, we use position/orientation sensing to reason about

contact planes first. The objective is to determine all pos-

sible contact planes, and for each contact plane, all pos-

sible PC's that may contribute to it, based on the given

location of objl, the sensed location of objh, and the posi-

tion/orientation sensing uncertainties % and Co.

The detection of possible contact planes can be done by

checking the relationship between a face of objh and a face

of objl for all possible pairs of such faces between the two

objects. Consider a face f_ of objh and a face f} of objl ,

3Therefore, the sequence of the objects adjacent to the path is

known.
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Figure 4: The Uncertainties in PC due to Cp and _o

which lie on planes p_ and/_/respectively. If the projection

of f_ on p} possibly intersects f], taking into account % and

co, then we can check if the minimum distance dr_i,_ between

the sensed f_. and f} is greater than ep or not. Fig. 5 shows

examples of different spatial relationships between f_ and

f} and the corresponding dml, for each case. If drain > _p,

we can conclude that there is no contact between f_ and f}.

Otherwise, there exists the possibility of a contact between

f_ and fJ. The next step is to determine all the possible

contact planes and PC's between the two faces. Our strat-

egy is to construct models of all possible PC's by virtually

(not physically) conducting the following operations on f]

and f_:

• TOUCH -- translate f_ (or f}) along dm,n a distance

dmi_ to make f_ (or f}) touch ]} (or f_),

• TILT -- tilt f_ (or f}) about some axis on p} coincid-

ing an edge or vertex of f_ (or f]).

S/
case I case 2

case 3

/dm 
case 4

Figure 5: d,_i_ between f_ and f}

Specifically, if din,, < %, TOUCH will be conducted to

make f_ contact f], and a PC can be determined by the

orientations of f_ and f]. The relationships between f_ and

f} can be distinguished in the following ways (Fig, 5):

1. f_ Jl Jr};

2. case 1 does not hold, and some edge e of one face is

on the plane of another face;

3. both 1 and 2 do not hold, and all vertices of one face

are on the same side of the plane of the the other face;

4. none of 1, 2 and 3 hold.

Based on which case holds, the PC can be of types f-f, e-f

or f-e, f-v or v-f, and e-cross respectively.

Based on the result of TOUCH, which gives a contact

plane and a PC, TILT can be applied to vary the orienta-

tions of f_ and fj within the orientation sensing uncertainty

bound eo so that other possible PC's and contact planes can

be obtained. Fig. 6 shows some examples. Note that the

fundamental issue about TILT is how to tilt in order to get

all possible PC's. There are generally an infinite number

of ways of tilting f_ or f] with the variations of orientation

maintained within the range of co. However, since the vari-

ations can only result in a finite number of PC's, just such

number of tiltings will be sufficient. The definition of TILT

above reflects this observation. For example, if the initial

PC is < f_, f] >, we can tilt f_ or f} along all its edges and

each line through one of its vertices on the contact plane

which is not collinear to the two edges forming the vertex;

then we will obtain all possible e-f (or f-e) and v-f (or f-v)

types of PCs. Based on each e-f (or f-e) PC, if the edge

intersects an edge of the other face, then by tilting about

the latter edge, a possible e-cross PC can be obtained.

By considering all possible face pairs between objh and

oh j! in the way described, while trying to avoid or eliminate

redundancy, the possible contact formations between objh

and objj can be obtained. The final result would contain a

set of possible contact planes (CP), and for each CP, a set

of possible PC's that may result in the CP.
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Figure 6: Possible PC's obtained by TILT

Front View Picture

Figure 8: A Picture to Show if f] and f_ Are in Contact

3.2 Vision Sensing

Using vision sensing to identify contacts is attractive in

that the image information of a contact can convey most

directly the topological meaning of the contact, i.e., the con-

tact formation. As introduced previously, due to the posi-

tion/orientation sensing uncertainties, it is difficult to deter-

mine whether a basic contact formation between objh and

obj! really exists given the location of objl and the sensed

location of objh. For example, in Fig. 7, it is impossible to

know which contact formation the contact is really in from

position/orientation sensing only, if the horizontal distance

between oh j! and objh is smaller than ep. By vision sensing,

however, the problem could be solved if certain picture(s)

could be taken properly and reasoned effectively. For exam-

ple, if a picture can be taken from the direction opposite to

the normal of f}, then whether f] and f_ are in contact can

be determined by checking whether f] touches fh_ in the im-

age (Fig. 8). Obviously, the following issues are important

in using vision:

• how to view the contact, i.e., how to place the camera

and take a picture;

• how to separate the features of interest from the rest

of the things in an image;

• how many different views should be taken in order to

obtain sufficient information about a contact.

JJJ

Figure 7: The Ambiguity in Contact Formation

The information obtained from position/orientation sens-

ing is essential for dealing with the above issues. Recall

that from position/orientation sensing, all possible contact

planes can be obtained and for each contact plane, all possi-

ble PC's that may contribute to the contact plane can also

be obtained. This information not only defines the goal of

vision sensing: to eliminate non-existing contact planes and

the non-existing PC's, but also provides clues on how to do

it.

To view a contact, pictures can be taken based on each

contact plane and the associated PC's which are the result

of processing position/orientation sensing data. We can as-

sume that a camera is held by another robot hand so that

it can be placed in different locations easily. Then the topo-

logical surface elements that appear in a picture and con-

tribute to a PC (and the contact plane) can be extracted
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from the picture by combining image segmentation/labeling

techniques with the 3D modeling information and the sensed

position/orientation of those elements. Since the processed

image will only contain simple surface elements in the forms

of 2D edges and vertices, it will be easy to reason about

their relationship. With several images taken from different

views, one can expect to obtain sufficient information about

a PC. In the following paragraphs, we will describe a strat-

egy to detect a PC using vision. By this strategy, what we

want to know from an image will be a simple fact such as

whether the concerned surface elements of two objects are

in a llne contact, in a point conl_act, or in no contact, and

that information can be quite reliable in spite of noise (or

uncertainties) in the image. We assume that proper thresh-

olds can be easily found based on the size of the objects

and the (bounded) noise to determine whether a contact is

a line or a point.

To check if a given contact plane really exists, one can _

place the camera in a way such that the image plane is

perpendicular to the contact plane (see Fig. 8, where the

contact plane is determined by f_ and f_). By processing

the image so that it contains only the edges of f] and f_,

whether the contact plane really exists can be determined

easily.

To eliminate the wrong types of PC's from a given set

of possible PC's of a contact plane, one can take pictures

for each possible PC and check if the result is as predicted.

If not, the PC can be eliminated. Specifically, to confirm a

f-f PC < f_, f} >, four pictures can be sufficient (Fig. 9):

• p/el -- taken along the contact plane in a direction

orthogonal to an edge of f_;

• p/e2 -- taken along the contact plane in the direction

orthogonal to the direction of picture 1;

pic 4

,_- - -_ - - ;contact plane
i ..,:pie3

Figure 9: Four Pictures to Confirm a f-f Type PC

pill , , , " contact plane

Figure 10: Two Pictures to Confirm a f-e or e-f Type PC

• /n'e3 -- taken along the contact plane in a direction

orthogonal to an edge of f};

• p/c4 -- taken along the contact plane in the direction

orthogonal to the direction of picture 3.

If all the pictures (which should be segmented and labeled as

described previously) show that the contact region between

the face elements of f_ and f} forms a line,the'n < f_, f} >

is confirmed. In some cases two pictures can be sufficient.

For example, if there is no f-e (or e-f) type of PC's for the

given contact plane, then we only need pie1 and pic2 to

confirm the PC < f_,fj >. To confirm a f-e (or e-f) PC

< f_,e > (or < e,f} >), the following two pictures can be

sufficient (Fig. 10):

• p/c1 -- taken along the edge e on the contact plane;

• p,/c2 -- taken along the direction perpendicular to e

along the contact plane.

If pic2 shows a line contact region between the relevaT_t face

elements of the two objects, while p/c1 shows an approxi-

mate point contact (or a much shorter line contact as the

....picl , , contact plane

pic2

Figure Ii: Two Pictures to Confirm a f-v or v-f Type PC

"effect of orientation sensing uncertainty in e), then < f_, e >

(or < e,f] >) is confirmed. Similarly, two pictures are suf-

ficient to confirm a f-v (or v-f) PC < f_, v > (or < v, f} >).

If two pictures are taken along the contact plane in orthog-

onal directions towards the vertex v (Fig. 11), and the con-

tact regions shown on both pictures are points, then the PC

< f_, v > (or < v, f} >) is confirmed. As for an e-cross PC,

since it will not share a contact plane with other type of

PC's, if the contact plane exists, the PC is confirmed.
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4 Integration of Other Sensors

We have shown that by using vision to eliminate the non-

existing contact planes and the non-existing PC's, the ex-

act contact forrflation can be determined from the set of

possible contact formations initially obtained from posi-

tion/orientation sensing. However, the major limitation of

vision sensing lies in the possible occlusion of certain PC's,

especially when the objects are non-convex. Thus, other

sensing means, such as force/moment and tactile sensing[3,

4][1, 2] may also be needed, which can be readily added in

this stage.

5 Compliant Motions for Error Re-

covery

A compliant recovery motion of the held object from an un-

expected contact can be automatically planned[11] with the

detection of the contact formation and the contact planes

involved, as well as other information, such as the desired

path of the held object and its current (sensed) location.

For polyhedral objects (as assumed in Section 2), there

are the following basic types of compliant motions:

• translations constrained by one plane or two planes

(Fig. 2),

• frictional rotations (Fig. 12a),

• non-frictional point-constrained and line-constrained

rotations (Fig. 12b),

• combined frictional/non-frlctional rotation (Fig. 13a),
and

• combined translation/frictional-rotations (Fig. 13b and

c).

It is necessary to determine then, in the presence of un-

certainties (as introduced in Section 1), proper forces and

moments to be applied to the held object by the robot, so

that, based on the contact information (contact formation

and contact planes), each type of the above motions can be

implemented successfully in spite of uncertainties.

For pure compliant translations and rotations (as listed

above), detailed analysis can be found in[9, 8] in which the

proper forces and moments are determined in terms of force

and moment constraints involving uncertainty bounds and

under certain design constraints of system parameters. Note

that tile orientation sensing uncertainty is modeled as eo in

Section 3.1. of this paper. The imperfections associated

with force/moment sensing, modeling, and control are mod-

eled simply as force/moment control uncertainties, ejl and

emm, which are defined as the maximum possible difference

in magnitude between a desired or commanded force and the

actual force applied and the maximum possible difference in

magnitude between a desired or commanded moment and

the actual moment applied respectively.

4#
a

b

Figure 12: Compliant Rotations

b c

Figure 13: Combined Compliant Motions

fl

_k,. Plane I Front View

a b

Figure 14: Force/Moment for a Combined

Translation/Frictlonal-Rotation

Motion of
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In the same fashion, constraints can be derived for com-

bined compliant motions, for example, a combined motion

of translation and frictional rotation (as depicted in Fig. 13b).

Such a motion can be implemented by applying a force F

and a moment Me on the center of the object as shown in

Fig. 14a. The combination ofF and Me wilI result in com-

pliant translations of the contact points of the held object

against frictions 4, where t"1 and t"2 are the equivalent forces

generating the compliant translations. However, due to co

in the sensed normal n_ of plane 1 and elf , the actual ap-

plied force F _ may not be parallel to the actual normal n_.

Similarly, duc to eo and era,,, the actual applied moment

M¢_ may not be exactly parallel to the actual intersection

line of plane 1 and plane 2. It is thus necessary to dis-

tinguish the force/moment components that will generate

the desired translation/frictional-rotation from the compo-

nents that may cause undesirable motions of the held ob-

ject. Upon the force/moment components for generating

the translation/frictional-rotation, constraints can be de-

rived involving Co, ell , e,_m, and the friction coefficient p,

which when satisfied, guarantee that no sticking will occur

_nd that the motion will always be compliant (i.e., contacts

will always be maintained). On the other hand upon the

force/moment components that may cause undesired mo-

tions, constraints (also involving eo, elf , e,nrn, and p) can be

derived so that when they are satisfied, the effect of friction

will prevent the undesirable motions frcm occurring. By

synthesizing the two sets of constraints obtained, proper

constraints on the magnitudes of the commanded F and M

can be obtained, as well as possible design constraints on co,

ell, em_, _, and other object-related pa:ameters (such as

those characterizing the shape and size of the held object).

Upon the satisfaction of the design constraints, and by chos-

ing proper F and M based on the force/moment constraints,

the desired translation/frictional-rotation can be achieved

in spite of uncertainties. As for the force/moment control

to implement a desired force/moment (which is determined

by our force/moment constraints), many approaches can be

found in the literature, as have been surveyed and Compared

by Hollerbach[5] and Whitney[7].

6 Conclusions

References

[1]

/el

[a]

[11]This paper studied the effect of uncertainties in recogniz-

ing failures of robot motion in the forms of contacts and in

impIementing contact-based recovery motions. It proposed

recovery-oriented contact detection using multiple sensing

modalities and outlined means to ensure st_ccessful contact

motions in spite of uncertainties. The research, however, is

in its early stage. Further development and testing of the

idea are necessary in the future. Subjects of special im-

portance includes studying how accurate vision information

will be and uncertainties in vision, investigating further in-

tegrations of different sensors in the system, and testing tl_e

existing and new results.

4Let/J be the friction coefficient of the materials, and assume the
Coulomb friction cone model.

237

de'

P. K. Allen. Robotic Object Recognition Using IS"sion

and Touch. Kluwer Academic Publishers, 1987.

Paolo Dario. Contact sensing for robot active touch.

I n M. Brady, editor, Robotics Science, pages 138-163.

MIT Press, 1989.

R. Desai. On Fine Motion in Mechanical Assembly in

Presence of Uncertainty. PhD thesis, Department of

Mechanical Engineering, the University of Michigan,
1989.

[4] R. Desai, J. Xiao, and R. Volz. Contact formations

and design constraints: A new basis for the automatic

generation of robot programs. In B. Ravani, editor,

NATO ARW: CAD Based Programming for Sensor

Based Robots. Springer-Verlag, July 1988.

[5] J.M. Hollerbach. Kinematics and dynamics for control.

In M. Brady, editor, Robotics Science, pages 378-431.

MIT Press, 1989.

[6] M. Spreng. Dealing with unexpected situations during

the execution of robot motions. In Proc. IEEE Interna-

tional Conference on Robotics and Automation, 1991.

[7] D. E. Whitney. Itistorical perspective and state of the

art in robot force control. In IEEE Int. Conf Robotics

and Automation, 1985.

[8] J. Xiao. On Uncertainty Handling in Robot Part-

Mating Planning. PhD thesis, Department of EECS,

the University of Michigan, 1990.

[9] J. Xiao. Force/moment constraints for robot compliant

motions in the presence of uncertainties. In IEEE Int.

Symposium on Intelligent Control, August 1991.

[10] J. Xiao. On recognition of contacts between objects in

the presence of uncertainties. In SPIE's International

Symposium on Optical Engineering and Photonics in

Aerospace Sensing, April 1991.

J. Xiao and R. Volz. On replanning for assembly tasks

using robots in the presence of uncertainties. In IEEE

Int. Conf. Robotics and Automation, 1989.


