NASA Technical Memorandum 105890

Conductor-Backed Coplanar Waveguide Resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO₃

IN-76 12626.5 P.6

Cleveland, Ohio	n na sen en la companya de la compan La companya de la comp	
		· · · · · · · · · · · · · · · · · ·
M A Stan		
Vant State University		· -
Kent Stute University	- · · · · · · · · · · · · · · · · · · ·	
Kent, Ohio		
K.S. Kong		
FRW		
Redondo Reach Califo	rmia	
Regonuo Degen, Canjo		·····
and		-
T . Itoh		
University of California	a at Los Angeles	
University of California	<i> </i>	
Los Angeles, California		······
Los Angeles, California	1 1 1 1 1 1 1 1 1 1 1	
Los Angeles, California		
Los Angeles, California		
Los Angeles, California		
Los Angeles, California Prepared for the		
Prepared for the 1992 Applied Supercon	nductivity Conference	
Prepared for the 1992 Applied Supercon	nductivity Conference ute of Electrical and Electronics Engineers	
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago Illinois Augu	nductivity Conference ute of Electrical and Electronics Engineers	
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ust 23–28, 1992	
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ast 23–28, 1992	
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ist 23–28, 1992 (NASA-TM-105890) CONDUCTOR-BACKED	N93-123
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ist 23–28, 1992 (NASA-TM-105890) CONDUCTOR-BACKED COPLANAR WAVEGUIDE RESONATORS OF	N93-123
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ist 23-28, 1992 (NASA-TM-105890) CONDUCTOR-BACKED COPLANAR WAVEGUIDE RESONATORS OF Y-BB-CU-O AND T1-BB-CB-CU-O ON	N93-123
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ist 23–28, 1992 (NASA-TM-105890) CONDUCTOR-BACKED COPLANAR WAVEGUIDE RESONATORS OF Y-BB-CU-O AND TI-BB-CB-CU-O ON LBAID3 (NASA) 6 p	N93-123 Unclas
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ist 23-28, 1992 (NASA-TM-105890) CONDUCTOR-BACKED COPLANAR WAVEGUIDE RESONATORS OF Y-B3-Cu-O AND T1-Ba-Ca-Cu-O ON L3A103 (NASA) 6 p	N93-123 Unclas
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ist 23-28, 1992 (NASA-TM-105890) CONDUCTOR-BACKED COPLANAR WAVEGUIDE RESONATORS OF Y-BB-CU-O AND TI-BB-CB-CU-O ON LBA103 (NASA) 6 p	N93-123 Unclas
Prepared for the 1992 Applied Supercon sponsored by the Institu Chicago, Illinois, Augu	nductivity Conference ute of Electrical and Electronics Engineers ist 23-28, 1992 (NASA-TM-105890) CONDUCTOR-BACKED COPLANAR WAVEGUIDE RESONATORS OF Y-B3-Cu-O AND T1-B3-C3-Cu-O ON L3A103 (NASA) 6 p G3/76	N93-123 Unclas 0126265

. Al **a distantes de la secona de la secon**tes de la seconda de la s

CONDUCTOR-BACKED COPLANAR WAVEGUIDE RESONATORS OF Y-Ba-Cu-O AND TI-Ba-Ca-Cu-O ON LaAlO₃

F.A. Miranda and K.B. Bhasin National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

> M.A. Stan Kent State University Department of Physics Kent, Ohio 44242

K.S. Kong TRW Redondo Beach, California 90278

T. Itoh University of California at Los Angeles Department of Electrical Engineering Los Angeles, California 90024

Abstract--Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from TI-Ba-Ca-Cu-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO₃. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO₃ substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Q_e) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Q_n's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

I. INTRODUCTION

Since their discovery in 1986, high transition temperature superconducting (HTS) compounds have been employed in the development of passive microwave transmission structures such as resonators, filters, and delay lines [1-3]. Ease of fabrication and performance reliability are two requirements that these HTS compounds should meet in order to be used in microwave circuits. Because of its geometrical attribute of having the ground planes on the same surface as the signal transmission line, coplanar waveguide (CPW) structures are advantageous for HTS-based microwave integrated circuits. When a good conducting layer is deposited on the opposite side of the CPW supporting substrate the structure is known as a conductor-backed coplanar waveguide (CBCPW).

Recently, reports on YBCO-based CPW and CBCPW resonators have been published [4-7]. Until now, a comparative study to determine which type of HTS compound is more appropriate for the optimization of these structures for microwave applications has not been done. In this paper we present our results on the performance of CBCPW resonators fabricated from TBCCO and YBCO thin films on LaAlO₃.

II. EXPERIMENTAL

Figure 1 shows a schematic representation of the CBCPW resonators analyzed in this study. The TBCCO resonators were custom made by Superconductor Technologies Inc. from laser ablated films (~800 nm thick) deposited onto 1.0x1.0x0.05 cm (100) LaAlO, substrates. The YBCO resonators were patterned by us on laser ablated (NASA-Lewis) and magnetron sputtered (Conductus Inc.) thin films (~350 nm) on LaAlO, substrates of the aforementioned dimensions and crystallographic orientation. The pattern shown in Fig. I was transferred to the HTS films using standard photolithography techniques followed by a "backetching" process using a 1% phosphoric acid (H₃PO₄) solution. The ground plane on the opposite side of the substrate was formed by successive evaporations of a 150 Å thick chromium layer and a ~2.5 µm thick gold layer. A similar all-gold CBCPW resonator, with its CPW layer ~ 1.2 µm thick, was also fabricated for comparison purposes. The testing of the resonators was done by mounting them on a brass test fixture bolted to the cold finger of a closed-cycle-helium-gas refrigerator and enclosed inside a vacuum can with feedthroughs to allow coupling between the resonator and a coaxial waveguide. The coupling between the coaxial line and the resonators was achieved through an SMA launcher. The center pin of the connector was placed in direct contact with the feed line that tapered from 0.559 mm to the width of the center conductor over a length (L1) of 1.000 mm. Coupling to the resonator was achieved across a gap (G1) 0.050 mm wide. The reflection coefficient of the resonators was measured using an HP-8510C network analyzer, and was used

Fig. 1 Top view of the conductor-backed coplanar waveguide resonator (9.230x9.230 nm). P1=0.533 nm, P2=0.559 mm, L1=1.000 nm, L2=7.020 nm. W=0.530 nm, S=0.200 nm, G1=0.050 nm, G2=0.530 nm, and G3=0.630 nm. The relative dielectric constant (ε_r) of the substrate is 22. The crosshatched sections represent the HTS material.

to determine the unloaded quality factor (Q_n) of the resonator according to the procedure described in [8]. Before the beginning of each measurement cycle the network analyzer was calibrated with short, open, and load standards.

In order to improve the contact between the launcher and the feed line, silver contacts (~250-300 nm thick) were evaporated onto the end of the feed line and the coplanar ground planes. Immediately after the evaporation the resonators were annealed in flowing oxygen (~1 SLM). The YBCO resonators were annealed at 450°C for 1 hr, and cooled afterwards at a rate of 2°C/min to room temperature. The TBCCO resonators were annealed at 450°C for 10 min, followed by a rapid cooling on a fire brick. The contact resistivity was measured by a three-point probe method, and was found to be ~ $2.7x10^{-6}$, $9.0x10^{-8}$, and $4.5x10^{-9} \ \Omega \text{ cm}^2$ for the laser ablated YBCO, the magnetron sputtered YBCO, and the TBCCO films, respectively. The transition temperature (T_c(R=0)) of the resonators was measured before and after silver contacts deposition and annealing using a standard four-point probe technique.

III. RESULTS

Table 1 shows a summary of the results of the characterization of the CBCPW resonators. The T_c values and film thicknesses correspond to measurements performed after patterning and annealing of the films. The Q_o 's versus temperature of the resonators analyzed in this work are shown in Fig.2.

Table 1. Properties of Conductor-Backed Coplanar Waveguide Resonators at 77 K.

Sample	Film Thickness (nm)	Т,(К)"	Q,*	R₅(mΩ)ˁ	f _« (GHz) ^d
Au	1200		110	24.0	10.803
I (YBCO)	310	84.0	159	16.6	10.662
2 (YBCO)	350	91.1	412	6.4	10.805
3 (YBCO)	350	89.9	470	5.6	10.755
4 (TBCCO)	800	103.5	471	5.6	10.742
5 (TBCCO)	800	103.0	577	4.6	10.750
6 (TBCCO)	800	104.2	823	3.2	10.680

* dc transition temperature after patterning and annealing.

^b Unloaded quality factor.

^e Effective surface resistance,

^d Resonance frequency.

Fig. 2 Unloaded quality factor (Q_n) versus temperature for CBCPW resonators on LaAlO₂. Sample 1(LA YBCO, +), sample 2 (LA YBCO, △), sample 3 (MS YBCO, ◊), sample 4 (LA TBCCO, △), sample 5 (LA TBCCO, ∇), and sample 6 (LA TBCCO, d_{1}^{+}). A Au resonator (□) is also shown for comparison.

These data were found to be independent of applied power within the range of -5.0 to -26.0 dBm. The lowest Q_n observed in this study for any of the HTS resonator corresponded to a laser ablated (LA) YBCO film (sample 1, Tab. 1). This film exhibited a T_c=84 K after annealing, and although Scanning Electron Microscopy (SEM) micrographs showed a smooth surface, some porosity was noticeable on one of the coplanar ground planes which gave it a hazy appearance. A very smooth surface was also observed for YBCO sample 2, also laser ablated, but not for YBCO sample 3 (magnetron sputtered. MS) which exhibits outgrowths on its surface ranging in size from 1-3 µm. Note that in spite of their different surface morphologies, the Q_n's of these

two resonators were comparable which shows that surface roughness does not necessarily equate to a poorer microwave performance, at least for YBCO thin films deposited by the two techniques considered here. This is consistent with microwave results obtained by power transmission measurements in the same type of YBCO thin films [9]. The highest Qa's amongst the YBCO resonators were exhibited by sample 3. Its Q_n at 77 K was 470 which is ~ 4.3 times better than that of the gold resonator at the same frequency and temperature. This value is lower than reported Qa's for YBCO-based CPW resonator at the same temperature and at frequencies close to 10 GHz [6]. The lower Q_n may be due to the effect of adding a back conductor to the CPW structure. However, direct comparison between different resonant structures should be done cautiously due to the differences in their geometrical configuration. X-ray diffraction (XRD) analysis showed that the YBCO films considered here have a crystallographic orientation where the c-axis is predominantly oriented perpendicular to the substrate plane. No evidence of change in the XRD patterns was observed for these films after the annealing process.

The TBCCO resonators shown in Table 1. are representative of two different deposition batches, with samples 4 and 5 originating from the same batch and sample 6 from a separate batch. From Fig. 2 it can be seen that the Q_o's for the TBCCO resonators were larger than those obtained for their YBCO counterparts. For the best TBCCO resonator (sample 6, Fig. 2) a Q_a of 823 was obtained at 77 K. This value is ~ 7.4 times that of the gold resonator and is ~1.75 times larger than the Q₀ of our best YBCO resonator. It was observed that after the annealing the Q_a's of the resonators increased (almost by a factor of 2 for sample 6) with respect to those obtained before the annealing. The enhanced Q₀'s can be correlated with an increase in oxygen content in the films as reflected by the rise in T_e with respect to that measured before the annealing process. For the YBCO films this increase was ~1.0-1.3 K while for the TBCCO films it was ~ 2.0-3.0 K. Observe that for the YBCO resonators (especially for the two laser ablated ones) the discrepancies in Q_a's are well correlated with their T_e values. However, for the TBCCO resonators, although the difference between their T_e values after the annealing was less than 1.3 K, and the temperature at which a measurable resonance was first observed was almost the same (~105 K), still there was a large discrepancy between their respective Q_o's. This difference can be associated with the morphology of the films. The XRD patterns contain only the (00) reflections for both the 2212 and the 2223 phases. Based upon the relative peak intensities it appears that the films are similar in composition and composed primarily of the 2212 phase. However, SEM analysis revealed that samples 4 and 5 are characterized by a "terrace-like" surface morphology which is absent in sample 6. As such, we believe that the effective thickness of sample 4 and 5 is less than that of sample 6 and thus is responsible for their lower Q_a's.

The effective surface resistance (R) for the YBCO and TBCCO HTS films was determined from the unloaded quality factor [10]. The surface resistance of the all-gold resonator was determined from measurements of the dc resistivity (p) and using the expression $R_{n,n} = (\mu_0 \omega \rho/2)^{4}$, where μ_0 is the permeability of free space and $\omega = 2\pi f$, where f is the frequency. Values of R, at 77 K for the HTS-based and all-Au based CBCPW resonators are shown in Tab. 1. Note that the lowest R, for YBCO is ~0.25 of that for Au, and compares well with those reported by others [6,10] if we assume that the R, of the superconductor is proportional to the square of the frequency. For TBCCO, our lowest R, is ~0.13 of that for Au. However, the R, values obtained in this study for our best TBCCO resonator is ~6 times larger than the value obtained by others from ring resonators fabricated on films from the same source as ours (R₂~6 m Ω at 35 GHz and 77 K; R,~0.5 mΩ at 10 GHz and 77 K, assuming a $R_s \alpha f'$ [1]. This may be explained in terms of the current distribution in the conductors of the resonator. In the CPW section of the CBCPW resonator the currents are concentrated near the edges of both the center conductor and the ground planes. Therefore this structure is more sensitive to defects at the edges of the conductors that may arise during the patterning process, resulting in an increase in R, [11].

IV. CONCLUSIONS

Conductor-backed coplanar waveguide resonators have been patterned on YBCO and TBCCO HTS thin films on LaAIO, These resonators were tested in the temperature range from 14 to 106 K. Unloaded quality factors Q, as high as 823 and 470 were obtained at 77 K and 10.8 GHz for TBCCO and YBCO resonators, respectively. The highest Q_0 's at 77 K for the TBCCO and YBCO resonators were nearly a factor of 7 and 4, respectively, better than that of an all-gold resonator of the same geometry at the same temperature and frequency. In this study, the Q_a's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range. Our results support the observation that a high T_c does not always correlate with a good microwave performance. In addition, they suggest that the TBCCO films may be the material of choice for cryogenic microwave applications given the fact that there is still room for improvement of aspects such as the porosity of the films. However, more work is necessary to correlate Q₀ with porosity for films having similar T_c's.

ACKNOWLEDGEMENT

The authors wish to thank Mr. G. Subramanyam, of the University of Cincinnati, for silver contact deposition onto the TBCCO resonators. The authors also acknowledge Mr. J. Olsavsky and Mr. J. Meola for technical assistance. Our thanks to Mr. R. Garlick and Ms. R. Cipcic for XRD measurements. Helpful discussions with Mr. C. M. Chorey and Dr. V. O. Heinen are gratefully acknowledged.

REFERENCES

- M. S. Schmidt, R. J. Forse, R. B. Hammond, M. M. Eddy, and W. L. Olson, "Measured Performance at 77 K of Superconducting Microstrip Resonators and Filters," *IEEE Trans. Microwave Theory Tech.*, Vol. 39, pp. 1475-1479, Sept. 1991.
- [2] S. H. Talisa, M. A. Janocko, C. Moskowitz, J. Talvacchio, J. F. Billing, R. Brown, D. C. Buck, C. K. Jones, B. R. McAvoy, G. R. Wagner, and D. H. Watt, "Low-and High-Temperature Superconducting Microwave Filters," *IEEE Trans. Microwave Theory Tech.*, Vol. 39, pp. 1448-1454, Sept. 1991.
- [3] W. G. Lyons, R. S. Withers, J. M. Hamm, A. C. Anderson, P. M. Mankiewich, M. L. O'Malley, and R. E. Howard, " High-T, Superconductive Delay Line Structures and Signal Conditioning Networks," *IEEE Trans. Magn.*, Vol. 27, pp. 2932-2935, March 1991.
- [4] A. A. Valenzuela and P. Russer, "High-Q Coplanar Transmission Line Resonator of YBa₂Cu₃O_{7.7} on MgO," *Appl. Phys. Lett.*, Vol. 55, pp. 1029-1031, Sept. 1989.
- [5] R. Klieber, R. Ramisch, A. A. Valenzuela, R. Weigel, and P. Russer, "A Coplanar Transmission Line High-T_c Superconductive Oscillator at 6.5 GHz on a Single Substrate," *IEEE Microwave Guided Wave Lett.*, Vol. 2, pp. 22-24, Jan. 1992.

- [6] G. J. Valco, A. R. Blemker, and K. B. Bhasin, "Laser Ablated YBa₂Cu₃O₇, High-Temperature Superconductor Coplanar Waveguide Resonator," *Microwave Opt. Technol. Lett.*, Vol. 5, pp. 234-236, May 1992.
- [7] F. A. Miranda, K. B. Bhasin, K. S. Kong, T. Itoh, and M. S. Stan, "Conductor-Backed Coplanar Waveguide Resonators of YBa₂Cu₃O_{7,3} on LaAlO₃," *IEEE Microwave Guided Wave Lett.*, Vol. 2, pp. 287-288, July 1992.
- [8] C. M. Chorey, K. S. Kong, K. B. Bhasin, J. D. Warner, and T. Itoh, "YBCO Superconducting Ring Resonators at Millimeter-Wave Frequencies," *IEEE Trans. Microwave Theory Tech.*, Vol. 39, pp. 1480-1487, Sept. 1991.
- [9] F. A. Miranda, W. L. Gordon, K. B. Bhasin, V. O. Heinen, and J. D. Warner, "Microwave Properties of YBa₂Cu₃O_{7.5}, High-Transition-Temperature Superconducting Thin Films Measured by the Power Transmission Method," J. Appl. Phys., Vol. 70, pp. 5450-5462, Nov. 1991.
- [10] M. R. Namordi, A. Mogro Campero, L. G. Turner, and D. W. Hogue, "Comparison of High-Temperature-Superconductor and Metal Based Resonators," *IEEE Trans. Microwave Theory Tech.*, Vol. 39, pp. 1468-1474, sept. 1991.
- [11] K. S. Kong, K. B. Bhasin, and T. Itoh, "Design Aspects and Comparison Between High T_c Superconducting Coplanar Waveguide and Microstrip Line," SPIE Proc. 1477, city, state, month 1991, pp. 57-65.

 \sim

•

	CUMENTATION PA	GE	
	nation is estimated to average 1 hour per re	sponse, including the time for re-	viewing instructions, searching existing data sources.
athering and maintaining the data needed, and c allection of information, including suggestions for Davis Highway, Suite 1204, Arlington, VA 22202-	completing and reviewing the collection of int reducing this burden, to Washington Heado 4302, and to the Office of Management and	ormation. Send comments regal uarters Services, Directorate for Budget, Paperwork Reduction F	rding this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson Project (0704-0188), Washington, DC 20503.
AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	October 1992		
TITLE AND SUBTITLE			5. FUNDING NUMBERS
Conductor-Backed Coplanar V Y-Ba-Cu-O and Tl-Ba-Ca-Cu-	Waveguide Resonators of O on LaAIO ₃		NEL 606 73 1D
AUTHOR(S)			WU-506-/2-1B
F.A. Miranda, K.B. Bhasin, M	I.A. Stan, K.S. Kong, and T. Ito	bh	
PERFORMING ORGANIZATION NAM	E(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
National Aeronautics and Spa	ce Administration		
Lewis Research Center			E-7356
Cleveland, Ohio 44135-319	1		
SPONSORING/MONITORING AGENC	CY NAMES(S) AND ADDRESS(ES)		AGENCY REPORT NUMBER
National Aeronautics and Spa	ce Administration		
Washington, D.C. 20546–00	01		NASA TM-105890
-			
Prepared for the 1992 Applied Superc August 23–28, 1992. F.A. Miranda an Physics, Kent, Ohio 44242, K.S. Kon Angeles, Department of Electrical Er ta. DISTRIBUTION/AVAILABILITY ST	conductivity Conference sponsored by nd K.B. Bhasin, Lewis Research Cento 19, TRW, One Space Park, Redondo B Igineering, Los Angeles, California 90 ATEMENT	the Institute of Electrical an r, Cleveland, Ohio; M.A. St each, California 90278; and 024–1594. Responsible pers	an, Kent State University, Department of T. Itoh, University of California at Los on, F.A. Miranda. (216) 433–6589.
Prepared for the 1992 Applied Superc August 23–28, 1992. F.A. Miranda an Physics, Kent, Ohio 44242, K.S. Kon Angeles, Department of Electrical Er 2a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 76	conductivity Conference sponsored by nd K.B. Bhasin, Lewis Research Cento 19, TRW, One Space Park, Redondo B Igineering, Los Angeles, California 90 ATEMENT	the Institute of Electrical an r, Cleveland, Ohio; M.A. St each, California 90278; and 024–1594. Responsible pers	an, Kent State University, Department of T. Itoh, University of California at Los on, F.A. Miranda. (216) 433–6589.
Prepared for the 1992 Applied Superc August 23–28, 1992. F.A. Miranda at Physics, Kent, Ohio 44242, K.S. Kon Angeles, Department of Electrical Er Za. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 76 3. ABSTRACT (Maximum 200 words)	conductivity Conference sponsored by nd K.B. Bhasin, Lewis Research Cento 19, TRW, One Space Park, Redondo B Igineering, Los Angeles, California 90 ATEMENT	the Institute of Electrical an r, Cleveland, Ohio; M.A. St each, California 90278; and 024–1594. Responsible pers	an, Kent State University, Department of T. Itoh, University of California at Los on, F.A. Miranda. (216) 433–6589.
 Prepared for the 1992 Applied Superc August 23–28, 1992. F.A. Miranda an Physics, Kent, Ohio 44242, K.S. Kon Angeles, Department of Electrical Er INSTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 76 ABSTRACT (Maximum 200 words) Conductor-backed coplanar w TI-Ba-Ca-Cu-O (TBCCO) an waveguide (CPW) patterned of coated on the opposite side. T best of our TBCCO and YBC than that of a similar all-gold their YBCO counterparts thro 	conductivity Conference sponsored by nd K.B. Bhasin, Lewis Research Centro og, TRW, One Space Park, Redondo B <u>ogineering, Los Angeles, California 90</u> ATEMENT ATEMENT vaveguide (CBCPW) resonator d Y-Ba-Cu-O (YBCO) thin film on the superconducting film sic These resonators were tested in to resonators have an unloaded resonator. In this study, the Q ₀ bughout the aforementioned ter	the Institute of Electrical an r, Cleveland, Ohio; M.A. Sta- each, California 90278; and 024-1594. Responsible persons and the second second second s operating at 10.8 GH ns on LaAlO ₃ . The result le of the LaAlO ₃ substant the temperature range quality factor (Q ₀) 7 and 's of the TBCCO resons nperature range.	z have been fabricated from onators consist of a coplanar rate with a gold ground plane from 14 to 106 K. At 77 K, the and 4 times, respectively, larger hators were larger than those of
 Prepared for the 1992 Applied Superc August 23–28, 1992. F.A. Miranda an Physics, Kent, Ohio 44242, K.S. Kon Angeles, Department of Electrical Er 2a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 76 3. ABSTRACT (Maximum 200 words) Conductor-backed coplanar w Tl-Ba-Ca-Cu-O (TBCCO) an waveguide (CPW) patterned of coated on the opposite side. T best of our TBCCO and YBC than that of a similar all-gold their YBCO counterparts throp 	conductivity Conference sponsored by nd K.B. Bhasin, Lewis Research Centro og, TRW, One Space Park, Redondo B <u>igineering, Los Angeles, California 90</u> ATEMENT ATEMENT vaveguide (CBCPW) resonator d Y-Ba-Cu-O (YBCO) thin filt on the superconducting film sid These resonators were tested in CO resonators have an unloaded resonator. In this study, the Q _o oughout the aforementioned ter	the Institute of Electrical an r, Cleveland, Ohio; M.A. St each, California 90278; and <u>1024–1594</u> . Responsible pers s operating at 10.8 GH ns on LaAlO ₃ . The result is of the LaAlO ₃ subst the temperature range quality factor (Q ₀) 7 a 's of the TBCCO resonne nperature range.	z have been fabricated from onators consist of a coplanar rate with a gold ground plane from 14 to 106 K. At 77 K, the and 4 times, respectively, larger hators were larger than those of
 Prepared for the 1992 Applied Superc August 23–28, 1992. F.A. Miranda an Physics, Kent, Ohio 44242, K.S. Kon Angeles, Department of Electrical Er 2a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 76 3. ABSTRACT (Maximum 200 worda) Conductor-backed coplanar W TI-Ba-Ca-Cu-O (TBCCO) an waveguide (CPW) patterned of coated on the opposite side. T best of our TBCCO and YBC than that of a similar all-gold their YBCO counterparts throe 14. SUBJECT TERMS 	conductivity Conference sponsored by nd K.B. Bhasin, Lewis Research Centro og, TRW, One Space Park, Redondo B <u>ogineering, Los Angeles, California 90</u> ATEMENT ATEMENT vaveguide (CBCPW) resonator d Y-Ba-Cu-O (YBCO) thin film on the superconducting film sic These resonators were tested in O resonators have an unloaded resonator. In this study, the Q ₀ bughout the aforementioned ter	the Institute of Electrical an r, Cleveland, Ohio; M.A. St each, California 90278; and <u>024-1594</u> . Responsible pers s operating at 10.8 GH ns on LaAlO ₃ . The reside of the LaAlO ₃ subst the temperature range i quality factor (Q ₀) 7 a 's of the TBCCO reson nperature range.	an, Kent State University, Department of T. Itoh, University of California at Los on, F.A. Miranda. (216) 433-6589. 12b. DISTRIBUTION CODE z have been fabricated from onators consist of a coplanar rate with a gold ground plane from 14 to 106 K. At 77 K, the and 4 times, respectively, larger batters were larger than those of
 Prepared for the 1992 Applied Superc August 23–28, 1992. F.A. Miranda an Physics, Kent, Ohio 44242, K.S. Kon Angeles, Department of Electrical Er 2a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 76 3. ABSTRACT (Maximum 200 words) Conductor-backed coplanar w TI-Ba-Ca-Cu-O (TBCCO) an waveguide (CPW) patterned of coated on the opposite side. T best of our TBCCO and YBC than that of a similar all-gold their YBCO counterparts throe 14. SUBJECT TERMS Conductor-backed coplanar w Superconducting films; Qual 	conductivity Conference sponsored by nd K.B. Bhasin, Lewis Research Centro og, TRW, One Space Park, Redondo B <u>ogineering, Los Angeles, California 90</u> ATEMENT ATEMENT vaveguide (CBCPW) resonator d Y-Ba-Cu-O (YBCO) thin film on the superconducting film sid These resonators were tested in O resonators have an unloaded resonator. In this study, the Q ₀ bughout the aforementioned ter waveguide resonators; YBCO; ity factor; Surface resistance	the Institute of Electrical an r, Cleveland, Ohio; M.A. St each, California 90278; and <u>1024-1594</u> . Responsible pers s operating at 10.8 GH ns on LaAlO ₃ . The reside of the LaAlO ₃ subst the temperature range i quality factor (Q ₀) 7 a 's of the TBCCO reson nperature range. TI-Ba-Ca-Au-O;	a Electronics Engineers, Chicago, minors, an, Kent State University, Department of T. Itoh, University of California at Los on, F.A. Miranda. (216) 433–6589. 12b. DISTRIBUTION CODE z have been fabricated from onators consist of a coplanar rate with a gold ground plane from 14 to 106 K. At 77 K, the and 4 times, respectively, larger nators were larger than those of 15. NUMBER OF PAGES 6 16. PRICE CODE
 Prepared for the 1992 Applied Superc August 23–28, 1992. F.A. Miranda an Physics, Kent, Ohio 44242, K.S. Kon Angeles, Department of Electrical Er 2a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 76 3. ABSTRACT (Maximum 200 words) Conductor-backed coplanar w TI-Ba-Ca-Cu-O (TBCCO) an waveguide (CPW) patterned of coated on the opposite side. T best of our TBCCO and YBC than that of a similar all-gold their YBCO counterparts thro Superconducting films; Qual 14. SUBJECT TERMS Conductor-backed coplanar v Superconducting films; Qual 15. SECURITY CLASSIFICATION OF REPORT 	conductivity Conference sponsored by nd K.B. Bhasin, Lewis Research Centro og, TRW, One Space Park, Redondo B. Igineering, Los Angeles, California 90) ATEMENT vaveguide (CBCPW) resonator d Y-Ba-Cu-O (YBCO) thin filt on the superconducting film sid These resonators were tested in to resonators have an unloaded resonator. In this study, the Qo bughout the aforementioned ter waveguide resonators; YBCO; ity factor; Surface resistance SECURITY CLASSIFICATION OF THIS PAGE	the Institute of Electrical an r, Cleveland, Ohio; M.A. St each, California 90278; and <u>1024-1594</u> . Responsible pers s operating at 10.8 GH ns on LaAlO ₃ . The res- le of the LaAlO ₃ subst the temperature range quality factor (Q ₀) 7 a 's of the TBCCO reson nperature range. TI-Ba-Ca-Au-O; 19. SECURITY CLASSIFIC OF ABSTRACT Linclossified	a Electronics Engineers, Chicago, Innois, aan, Kent State University, Department of T. Itoh, University of California at Los on, F.A. Miranda. (216) 433–6589. 12b. DISTRIBUTION CODE z have been fabricated from onators consist of a coplanar rate with a gold ground plane from 14 to 106 K. At 77 K, the and 4 times, respectively, larger hators were larger than those of 15. NUMBER OF PAGES 6 16. PRICE CODE AO2 CALLIMITATION OF ABSTRAC

.

ć

Prescribed by 298-102