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Abstract: Domain analysis typically results in the construction of a domain—
specific repository. Such a repository imposes artificial boundaries on the shar-
ing of similar assets between related domains. A lattice—based approach to re-
pository modeling can preserve a reuser’s domain specific view of the reposi-
tory, while avoiding replication of commonly used assets and supporting a more
general perspective on domain interrelationships.
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1. Introduction

There is an emerging consensus on the importance of domain analysis in the success of a

software reuse program [9]. We find it particularly significant that the construction of domain-
specific repositories is a natural consequence of domain—specific analysis of various software
system assets. These domain—specific repositories provide yet another guise for the NIH (not-
invented-here) syndrome, and hence fail to capitalize on possible reuse scenarios that lie in re-

lated, but distinct domains.

We propose here that repositories should not be domain—specific, but rather that a particular
view of the repository should be domain—specific, and that this view should be user—adjustable.
We use our lattice~based approach to classification [4] to demonstrate how this can be accom-
plished. Section 2 briefly reviews issues in domain analysis, faceted classification, and the con-
cepts of typing and lattices. Section 3 reviews our lattice—based repository model, followed by a
demonstration of domain-specific support in section 4. The paper closes with a discussion and

suggestions for future work with section 3.

* This work was supported in part by NASA under cooperative agreement NCC-9-16, and in part by
MountainNet, Inc.



2. Baékgiaﬁnd
Our work draws its motivation equally from the areas of domain analysis and type theory.

Recent advances in the app')lication of’i}p’é lamccs to database models and knowledge represen-

tation provide an excellent formal framework for repository structure.

2.1. Domain Analysis

“Domain analysis is the process of identifying and organizing knowledge
about some class of problems — the problem domain — to support the descrip-

tion and solution of those problems.” [1]

The interest in domain analysis reflects its importance to the effective population and use of
reuse repositories. There are substantial arguments m f;vér of the rcas»oncdr éoverage of a par-
ticular software system problem domain, rather than a grab-bag approach to populating the re-
pository. Reusers frustrated with gaps in the coverage of the rcpositbry frequently fail to return
to the repository. We refer the reader to the excellent collection edxtcd by Prieto—Diaz and
Arango for a deeper presentation of dbmain analysis [9].

However, we do have reservations concerning the exclusiveness of domain—specific reposi-
tories. Particular classes of assets are best considered domain—independent — or perhaps more
aptly — useful in a broad class of domains; the most obvious asset class of this nature is that of
the simple abstract data types. These “trans—domain” assets effectively form their own domain,
which numerous, more restrictive domains draw upon for representational infrastructure. Do-
main analysts are thereby presented a dilemma, to replicate the trans—domain assets into the do-
main-specific repositories (along with the inherent maintenance headaches), or to factor the
trans—domain assets into their own domain — resulting in a multi-domain environment. The

work presented here attempts to resolve this dilemma.

F lassification
Faceted claSsiﬁcation begins by using domain analysis to identify and examine a coﬂécﬁdn

of work perceived to be related [12]. This process relies on a library notion known as literary
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warrant, where a classifier collects a representative sample of titles which are to be classified,
and extracts descriptive terms to serve as a grouping mechanism for the titles. From this process,
the classifier not only derives terms for grouping but also identifies a vocabulary that serves as
values within the groups. A facet then is the encapsulation of a set of related concepts, ex-

pressed in the vocabulary of the domain.

From the software perspective, the groupings or facets become a taxonomy for the software.
Using Literary Warrant, Prieto—Diaz and Freeman identified six facets that can be used as a tax-
onomy [10]: Function, Object, Medium, System Type, Functional Area and Setting. Every
software component is classified by assigning a value for each facet for that component. For ex-
ample, a software component in a Relational Database Management System that parses expres-
sions might be classified with the tuple

(parse, expression, stack, interpreter, DBMS, ).
Thus, the Function facet value for this component is “parse”, the Object facet value is “expres-
sion”, etc. Note that no value has been assigned for the Setting facet as this software component
does not seem to have an appropriate value for the Setting facet. The taxonomy formed is “flat”
in that there is no nesting of facets within facets, as is the case with other popular classification

schemes (e.g., the Dewey decimal system, the ACM Computing Reviews system, etc.).

2.3. Lattices

Our principle concept for structuring the repository is a lattice. Lattices handily support in-
stances that are pairwise incomparable (e.g., a tuple characterizing a design document and a
tuple characterizing a conference paper), but that are both comparable to some third instancg
(e.g., the more general notion of a document, which is an upper bound in lattice terminology).
The remainder of this section provides a brief review of lattice theory, section 3 presents the ap-

plication of lattices to faceted classification.



The object classes in an object-oriented system are organized into a partial ordering. Object

classes (subtypes) inherit ;itﬁ;iﬁﬁtés"zina%ﬁﬁthbds from their ancestors (supertypes) in the order-
ing. Single inheritance schemes restrict a given object class to at most one immediate ancestor
in the partial ordering. Multiple inheritance schemes allow a given object class to have any

number of immediate ancestors in the partial ordering. Cardelli formalized some of the seman-

tics of multiple inheritance in [2].

Conformance allows one typc instahée to be u'eated as if it wére an instance of another type
[8]. Any type a conforms to any type b if the subtype relation holds between a and b, i.e., a$ b.
In a limited sense, this is what happens with inheritance, but conformance is more general. In-
heritance requires that this treatment only be allowed when moving up the type hicrarchy or lat-
tice. Inheritance uses a partial ordering of types (by subtype), plus an implicit definition of exis-
tence dependencies between a given type and its ancestors. Conformance can hold for arbitrary
types, independent of any type ordering scheme. Such a notion is clearly superior to inheritance
based upon hierarchies orr lattices for type—relatedrqﬁcxtymlﬂarnéuagcs, where intermediate results
(derived from existing types, but not part of the database schcma)‘need to be manipulated.

Our classification scheme requires the notion of subtype to be defined between instances of
facet set types and between instances of record types. Let a be a facet set type containing m fac-
et instances and b be a facet set type containing n instances. Then a is a subtype of b, written a

b, if foreach biin b (1 Si<n), biis also in a. Similarly, letR= (i, : t, ..., i : .} be a record type

containing n components and § = (i, : t’,, ..., i. : t'a} be a record type containing m components, 1 <

m < n (we can reorder component entries as necessary). Then R is a subtype of S, written R ¥ S, if

foreachi, (1$j<m), 43 ¢,

3. Lattice-Based Faceted Classification’ *~ =~
Inheritance-based systems are, in some sense, navigational. A user querying an object—ori-

ented database must be aware of the inheritance structure of that specific database, just as a user
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querying a network database must be aware of database structure. Becausc of their non—naviga-
tional characteristics, conformance—based models promise to gain prominence over inheritance—
based models, just as relational models have over network models. Our approach uses confor-

mance to identify components using their position in a type lattice. One particularly useful con-
sequence of this choice is the ability to dynamically evolve the repository structure, adding new

vertices to the lattice as analysts examine new domains.

he T i

Figure 1 shows the general structure of the reuse type lattice. Atthe topis T, the special
universal type. Any value conforms to the universal type. At the bottom is L, the void type.
These two special types ensure that any two types in the lattice have both an upper bound and a
lower bound. Between the universal and void types appear the upper and lower bounds for the
two type constructors facet and tuple. Facety characterizes the notion of the cmﬁty facet type; it
contains no values, but is still a facet. Likewise, Facet characterizes the notion of the set of all
possible facet values. The dotted line between them indicates that an arbitrary number of types
may appear here in the lattice. For example, figure 2 shows the sublattice for facet sets for the

examples in section 2.2.

The tuple sublattice has a similar structure. At the top is the empty tuple type {}, character-

izing a tuple with no facets. At the bottom is tuple, the tuple type with all possible facets.

T

Facety ()

Faict\/méle
s

Figure 1. The reuse type lattice



Traditional retrieval of individual facet values relies upon maximal conjunction of boolean
terms for retrieval of matchcs on all faccts and maxxmal dxs_;uncnon of boolean terms for
look at sets of facets. A set of facets corresponds to a conjunction on all of the facets comprising
the set. Each set occupies a unique position in the type lattice. We handle disjunction by allow-
ing a given component to occupy multiple lattice pdéitidnsr.ﬁMatching occurs on ahy of the posi-

tions, providing the same semantics as disjunction.

Facet values are equivalent to enumeration values. We attach no particular connotation

within the type system to a parncular facet value. Values are bound to some semantic concept in

the problcm domain.

The subset relation is our partial order for facets. The least value of this portion of the lattice
is the set of all facet values from all facets in the problem domain, denoted by the distinguished
name Facet. The greatest value of this portion of the lattice is the empty set, denoted by the dis-
tinguished name Facet;. The union operator generates the greatest lower bound. The intersec-

tion operator generates the least upper bound.

Facetp

Functiony Objecty Mediumy SystemTypeo FunctionalAreay Setting,

-~------
-“—-wmm--a -
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Function  Object  Medium  SystemType FunctionalArea Setting

Facet

Figure 2. A Sublattice of Facet Sets
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The Inferen |

A formal mechanism for the specification of the query semantics is clearly of use. In this
case, type inference directly gppiics to the problem. We begin with a brief remark concerning
notation. In the inference rules that follow, the symbol A represents an existing set of assump-
tions. A always contains the type information generated by the database schema which imple-
ments the repository. It is occasionally necessary to extend the set of assumptions with some
additional information. A . x denotes the set of assumptions extended with the factx. AF x
states that given a set of assumptions A, x can be inferred. Inferences above the horizontal line
act as premises for the conclusions, the inferences below the horizontal linc. An expression is
well-typed if a type for the expression can be deduced using the available inference rules, other-
wise it is ill-typed. We give in this section only a minimal set inference rules to provide a flavor

of the complete set, which may be found in [3, 4].

3.2.1. Domain Interval Subtyping

Typically, a subtype is “smaller” than its supertype, for example, the range of employee ages
is a subtype of the integers. Here the reverse is true, a subtype is a larger collection of values
than its supertype — some entry containing at least all the facet values of interest is thereby an

instance of a subtype of the query instance’s type.

A domain interval is a type qualification that explicitly denotes the valid subrange(s) for a
base type. Rule (1) extends subtyping to domain intervals, where each subinterval in the sub-
A' F Ymy...mp) b tUmy'..mp?)

A,F tm...n )3 tmy...n) (1)

At Ym0y o mieen)d tmy'eny, o mln)
type is a subtype of some interval in the supertype. Assume that zis a base type ordered by <

(the ordering may be arbitrary). A domain that is (inclusively) delimited by two values, g and b,
is denoted t...+. Intervals made up of more than a single continuous value range are denoted by
a set of ranges, for example, Y..»,c..4, ¢ denotes the interval that includes the subinterval @

through b inclusive, the subinterval c through d inclusive, and the singleton value e. The single-



ton range e is equivalent to e...e. When we use such notation we intend that a < b and ¢ < 4, byt

not necessarily that b < c ord <e. An empty pair of brackets, to, denotes an empty interval, i.e.,

one which contains no elements. In our particular application, the base types are finite sets of

enumeration (facet) values.

3.2.2. Tuple Subtyping o ,

This collection of inference rules errpiicirl; types the tapies that classify components. The
unlabelled record attributes used by Prieto-Diaz in tuples can be amblguous when a given facet
value is used in more than one domam Rather than requlre that facet values be dxstmct across

facets, we view a tuple r to be of type record ( L t;, vy la t.,) Type 1; for attribute i; must be a
facet type. The empty tuplc (i.e., the tuplc contammg no faccts) is of type {}, the tuple type with

no components. The order in whlch components appear is arbitrary, since attribute name is used

to distinguish facets.

Rule (2) characterizes record subtypmg, handlmg srtuauons whcre a componcnt of the sub-

AFISmSn
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type is a subtype of the correspondmg component in the supertype.

4. Modeling Multiple Domains ln a Slngle Reposltory

The reposxtory model prescmcd in section 3 is well-suited to supportmg muluple domains
simultaneously, while allowing for the appcarancc of domam—specxficxty where necessary. Our

model further supports thc notion of a complctc lee cycle reposxtory, as many of the issues ap-

plicable for component assets from multhlc domams apply equally well to the characterization

of life cycle assets.

Consider the the cffect of domam analyses on thc dcfinmon of the resulnng reposrtcncs If we

assume that each domain analysw is carried out in 1solauon (in order to focus solcly upon the
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requirements of that particular domain), it naturally follows that the collection of facets used to
characterize that domain (and the values that make up each of those facets) will also be inde-
pendent. Realistically though, no domain is totally independent from all others, and there will

be facets (or subsets of facet values) that two related domains will have in common.

A maximal upper bound for a domain is the distinguished vertex in the lattice that contains
exactly those facets used in classifying the domain, but that contains no facet values. A maximal
lower bound for a domain is that distinguished vertex in the lattice that contains exactly those

facets used in cléssifying the domain, and for each of those facets, the n—tuple contains all values

'ﬁscd by that facet. All instances in the domain fall somewhere between the maximal lower

bound and the maximal upper bound for that domain. There are three possible relationships be-

tween domains in the unified lattice.

First, domains that share one or more complctc facets, but differ by at least one facet, have
facet n—~tuples that are siblings in the lattice. Their only commonality is the n—tuple correspond-
ing to the least upper bound of the two n—tuples involved; i.c., neither is a subtype of the other,
but they do share a common supertype. By inference rule (2), this is the n—tuple comprised ex-
actly of those facets which the two domains share. Domain interval subtyping does not come

into play, since all facet instances contain all values in their respective facets.

Next, domains that share the same set of facets, but only partially share facet values for one
or more facets, and differ by at least one facet value in some facet, are likewise siblings in the
lattice. They share a single maximal upper bound, since they are classified by the same facets,
and they have a greatest lower bound that is comprised of the union of each of the respective

facet value sets.

Finally, domains that share some, but not all, facets, but only partially share facet values for

one or more facets, are likewise siblings in the lattice. Both this and the second relationship be-



tween domams rcquue inference ruIc (2) plus the entire set of mfcrcnce rulcs for domain inter-

val subtyping.

4. blatti i View

Reusers wishing to focus on a specific domain in our model nced only concentrate on the
sublattice defined by the maximal uppcr and lower bounds for that domain. Restricting queries
to mentioning only those facets present in those n—tuples effectively rcduccs the repository data

model to a flat tuple space in the tradition of Prieto—Diaz. The restriction is easily accomplished

by providing repository views similar in nature to the relational definition of a view.

A repository view is defined by a pair of n—tuples: the first characterizing the upper extent of
the lattice that the view may reference, and the second characterizing the lower extent of the lat-
tice that the view may reference. By varying the placement of these view extents in the lattice, a
variety of fepository structures may be presented to the reuser. The upper extent specifies those
facets which the user query must specify, and the lower extent specifies those facets which the

user query may specify. Defining multiple repository views supports the presentation of arbi-

trary domains in a single composite view,

The most general example of this is an upper extent of {} and a lower extent of tuple opens

the entire repository to the reuser.

An upper extent of the maximal uppcr bound for a dommn and a lowcr extent of the maximal
lower bound for that same domain restricts the reuser to specxfymg at most and at least those fac-
ets used in classifying that particular domain, i.e., a flat tuple space with a slight variation (sets

of facet values may be specified, but need not rbc).

An upper extent compnsed of two cmpty faccts and a lowcr extent of tuple supports thc no-

mcludes at lcast those faccts
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Specifying a lower extent with a facet containing only a subset of the complete facet restricts
reusers employing that view from accessing any asset not classified using values from that sub-

set.

43R i ner

As mentioned previously, few domains are truly independent from all others. A domain-—-
specific repository with good coverage of that domain must necessarily duplicate at some level
assets that are very similar to, if not duplicates of, assets found in repositories for closely related
domains. Repositories supporting a collection of related domains avoid this unneeded replica-

tion of assets.

Many of the assets comprising these repositories will be adaptable to a variety of domains
beyond the one for which they were initially designed. This synergy of assets promises a deeper
understanding of the software process, but an understanding more difficult to achieve with the
artificial boundaries of domains impeding acccss Presenting a seamless intégration of a diverse

universe of assets is critical to the success of software reuse.

If the user interface for the reuse system supports the possibility of multiple repository back—
ends, each specific to a given domain, it is possible to avoid asset replication. However, this im-
plies cooperation between repository administrators that may not be convenient, or even feasi-
ble. In a mature reuse industry, repositories will be geographically distributed and span work
groups, organizations, and even industries. Here again, scamless integration of multiple reposi-

tories is important, and not readily handled by a flat, static classification structure.

4 4 The Relationship to Life Cycle Asset Te lari
As we previously mentioned, we are interested in a complete life cycle repository model, in-

cluding requirements assets, design assets, and so on, as well as the traditional component assets.

Granularity issues are particularly interesting in such a model, as reusers attempt to track par-

ticular concepts through requirements and design and on into maintenance.

11~



* Such a data model adds facets particular to aSpCleiC life cycle ph;lsﬁé,ﬁbr parﬁcular to a spe-
cific level of granularity, JUSt as independent domain analysis adds facets to a particular domam
In effect, the resulting rcposxtory model contains three dimensions: domain, life cycle phasc and
granularity. The definition of facet values and the corresponding set of lattice vertices handles

domains and life cycle phases. Multiple vertex instances handle granularity issues under our

current approach.

5. Conclusions and Future Work

We described here an approach unifying the specificity of dbmain—speciﬁc repositories With
the flexibility of domain—independent repositories. The primary drawback we see in Prieto—
Diaz’ approach to classification is the flatness and homﬁoggqéi’t_y of the classification structure. A
general reuse system might have not only reusable components, but also design documents, for-
mal specifications, and perhaps vendor production information, to name a few possibilities, and
have all of these things for multiple problem domains. Prieto-Diaz’ scheme creates a sin gle
tuple space for all entries, resulting in numerous facets, tuples with many “not/applicable” en-
tries for those facets, and frequent wildcarding in user queries. Our model supports precise char-

acterization of assets, and lattice-based queries may be as restrictive or as broad as necessary to

suit a reuser’s needs.

Conceptual closencss is a very appealmg concept in our framework, but offers its own col-
lection of dxfﬁcultms particularly the establishment of distances for terms in a given domain,
and the resolution of conflicting distances for terms occurring in multiple domains. We are cur-
rently exploring the use of neural ncﬁmb to support adaptive distances, based upon user esti-

mations of the relevance of query matches to the intended semantics. An carly report on this
work appears in [5].

~ Related to conceptual closeness is the idea of conceptual neighborhoods around n—tuples.
Conceptual closeness addresses the semantic distance between two facet values, while concep-

tual neighborhoods address the semantic distance between two n—tuples in the lattice. The re-
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pository model described here is one mechanism for constructing a conceptual neighborhood,

based upon subtype relationships. We plan to consider alternative neighbérhood definition

mechanisms, including composing distances for n—tuples from the distances for facet values in-

volved in those n—tuples. We are also considering the inclusion of signatures [7] and semantics

[6, 11] into the repository model to imprové query effectiveness.
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