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Abstract

Software metrics provide an effective method for characterizing

software. Metrics have traditionally been composed through the def-

inition of an equation. This approach is limited by the fact that all the

interrelationships among all the parameters be fully understood.

This paper explores an alternative, neural network approach to mod-

eling metrics. Experiments performed on two widely accepted met-

rics, McCabe and Halstead, indicate that the approach is sound, thus

serving as the groundwork for further exploration into the analysis

and design of software metrics.
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! - Introduction V

As software engineering matur_s_ht6 a_rtie engineeHrt_g discipline, there is an increasing need

for a corresponding maturity in repeatability, assessment, and measurement m of both the process-

es and the artifacts associated with software, Repeatability of artifact takes natural form in the no-

tion of software reuse, whether of code or of some other artifact resulting from a development or

maintenance process

Accurate assessment of a component's quality and reusability arc critical to a successful reuse

effort. Components must be easily comprehendible, easily incorporated into new systems, and be-

have as anticipated in those new systems. Unfortunately, no consensus currently exists on how to

go about measuring a component's reusability. One reason for this is our less than complete under-

standing of software reuse, yet obviously it is useful to measure something that is not completely

understood.

This paper describes a preiiminary set of experiments to determine whether neural networks

can model known software metrics. If they can, then neural networks can also serve as a tool to

create new metrics. Establishing a set of measures raises questions of coverage (whether the metric

covers all features), weightings of the measures, accuracy of the measures, and applicability over

various application domains. The appeal of a neural approach lies in a neural network's ability to

model a function without the need to have knowledge of that function, thereby providing an oppor-

tunity to provide an assessment in some form, even if it is as simple as this component is reusable,

and that component is not.

We begin in section 2 by describing two of the more widely accepted software metrics and then

in section 3 briefly discuss various neural network architectures and their applicability. Section 4

presents the actual experiment. We draw conclusions in section 5, and present prospects for future

work in section 6.
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2 - Software metrics

There are currently many different metrics for assessing software. Metrics may focus on lines

of code, complexity [7, 8], volume[5], or cohesion [2, 3] to name a few. Among the many metrics

(and their variants) that exist, the McCabe and Halstead metrics are probably the most widely rec-

ognized.

The McCabe metric measures the number of controi paths through a program [7]. Also referred

to as cyclomatic complexity, it is defined for a program G as [8]:

v(G) = number of decision statements + 1

assuming a single entry and exit for the program, or more generally as

v(G) = Edges -Nodes + 2. Units

where Edges, Nodes, and Units correspond respectively to the number of edges in the program

flow graph, the number of nodes in the program flow graph, and the number of units (procedures

and functions) in the program.

The Halstead metric measures a program's volume. There ate actually several equations asso-

ciated with Halstead metrics. Each of these equations is directly Or indirectly derived from the fol-

lowing measures:

nl the number of unique operators within a program (operators for this experiment in-

clude decision, math, and boolean symbols);

N l the total number of operators within a program;

n2 the number of unique operands in a program (including procedure names, function

names, variables (local and global), constants and data types); and

N 2 the total number of operands in a program.

The measurements for a program are equal to the sum of the measurements for the individual rood-

ules.

Based on these four parameters, Halstead derived a set of equations, which include the follow-
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ing (in whichwe aremostinterested):

ActualLength: N = NI + N2

ProgramVolume: "' V = N. log2(n)

ProgramEffort: E = V / (2. n 2)

m
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Traditionally, software metrics are generated by extracting values from a program and substi-

tuting them into an equation. In certain instances, equations may be merged together using some

weighted average scheme. This approach works well for simple metrics, but as our models become

more sophisticated, modeling metrics with equations becomes harder. The traditional process re-

quires the developer to completely understand the relationship among all the variables in the pro-

posed metric. This demand on a designer' s understanding of a problem limits metric sophistication

(i.e., complexity). For example, one reason why it is so hard to develop reuse metrics is that no one

completely understands "design for reuse" issues.

The goal then is to f'md alternative methods for generating software metrics. Modeling a metric

using a neural network has several advantages. The developer need only to determine the endpoints

(inputs and output) and can disregard (to an extent) the path taken. Unlike the traditional approach,

where the developer is saddled with the burden of relating terms, a neural network automatically

creates relationships among metric terms. Traditionalists might argue that you must fully under-

stand the nuances among terms, but full understanding frequently takes a long time, particularly

when there are numerous variables involved.

We establish neural networks as a method for modeling software metrics by showing that we

can model two widely accepted metrics, the McCabe and the Halstead metrics.

3 - Neural Networks

Neural networks by their very nature support modeling. In particular, there are many applica-

tions of neural network algorithms in solving classification problems, even where the classification
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boundaries are not clearly defined and where multiple boundaries exist and we desire the best. It

seems only natural then to use a neural network in classifying software.

There were two principle criteria determining which neural network to use for this experiment.

First, we needed a supervised neural network, since for this experiment the answers are known.

Second, the network needed to be able to classify.
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The back-propagation algorithm meets both of these criteria [911 it works by calculating a par-

tial first derivative of the overall error with respect to each weight. The back-propagation ends up

taking infinitesimal steps down the gradient [4]. However, a major problem with the back-propa-

gation algorithm is that it is exceedingly slow to converge [7]. Fahlman developed the quick-prop

algorithm as a way of using the higher-order derivatives in order to take advantage of the curvature

[4]. The quick'prop algorithm uses second order derivatives in a fashion similar to Newton's meth-

od. From previous experiments we found the quick-prop algorithm to clearly outperform a standard

back-propagation neural network.

While an argument could be made for employing other types of neural models, due to the line.at

nature of several metrics, we chose quickprop to ensure stability and continuity in our experiments

when we moved to more complex domains in future work.

4 - Modeling Metrics with Neural Networks

As mentioned earlier, the goal of the experiment is to determine whether a neural network

could be used as a tool to generate a software metric. In order to determine whether this is possible,

the first step is to determine whether a neural network can model existing metrics, in this ease Mc-

Cabe and Halstead. These two were chosen not from a belief that they are particularly good mea-

sures, but rather because they are widely accepted, public domain programs exist to generate the

metric values, and the fact that the McC.abe and l-Ialstead metrics are representative of major metric

domains (complexity and volume, respectively).
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Sinceour long termgoalof theexperimentis to determinewhetheraneuralnetworkcanbe

usedto modelsoftwarereusabilitymetrics,Ada, with its support for reuse (generics, unconstrained

arrays, etc.) seemed a reasonable choice for our domain language. Furthermore, the ample supply

of public domain Ada software available from repositories (e.g., [1]) provides a rich testbed from

which to draw programs for analysis.

Finally, programs from several distinct application domains (e.g., abstract data types, program

editors, numeric utilities, system oriented programs, etc.) were included in the test suite to ensure

variety.

We ran three distinct experiments. The first experiment modeled the McCabe metric on single

procedures, effectively f'udng the unit variable at 1. The second experiment exterided _the f'trst to

the full McC_.abe metric, including the unit count in the inl_ut Vector, and using complete packages

as test data. The third experiment used theme test data in modeI_g the Halstead metric, but a

different set of training vectors.

4.1 - Experiment A: A Neural McC_be metric for Procedures

In this experiment all vectors had a unit value of one, so the unit column was omitted. In build-

ing both the training and test sets all duplicate vectors and stub vectors (i.e., statements of the form

"PROCEDURE XYZ IS SEPARATE") _ve_ removed. The input for all trials in this experiment

contained 26 training vectors and g test vectors (the sets were disjoint). Each training vector cor-

responded to an Ada procedure and contained three numbers, the number of edges, the number of

nodes, and the eyclomatic complexity value.

The goals of this first experiment were to establish whether a neural network can be used to

model a very simple metric function (the McCabe metric on a procedure basis) and to examine the

influence neural network architecture has on the results. The in_ut_ under 6 differentarchitec-

tures: 2-1 (two input layers, no hidden layers, and one output layer), 2-1'1 (two input layers, one
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Figure 1: McCabe Results for Single Procedures

hidden layer, and one output layer), 2-2-1,2-3-1, 2-4-1, and 2-2-2-1. In order to examine the impact

of architecture, other parameters remained constant. Alpha, the learning rate, was set to 0.55

throughout the trials. An asymsigmoid squashing function (with a range of 0 to +1) was used to

measure error. Finally, each trial was examined during epochs 1000, 5000, and 25,000. Figure 1

presents the results of these trials. In the graph, the neural calculated values are plotted against the

actual values for the metric at 25,000 epochs*. In an ideal situation, all lines would converge to x

= y, indicating an exact match between the actual McCabe metric (calculated using the _aditional

equation) on the x-axis, and the neural calculated McCabe metric on the y-axis.

This experiment provides good results considering the minimal architectures used. Most points

tend to cluster towards the actual-calculated line regardless of architecture selection. This suggests

that more complex architectures would not provide dramatic improvements in the results.

Considering that only 26 training vectors were used, the results were quite favorable, and we

moved on to the next experiment.

i .

In fact, all figures in the paper correspond to the results following 25,000 epochs.
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4.2 - Experiment B: A Neural McCabe Metric for Packages

The second experiment;modeled the McCabe metrics on a package body basis. Changes in data

involved the addition of another input column corresponding to the number of units (the number

of procedures in an Ada package) and the selection of a slightly different set of training vectors,

chosen to ensure coverage of the added input dimension.

The experiment ranged over five different architectures (3-3-1, 3-5-1, 3-10-1, 3-5-5-1, and

3+5-5-1 (hidden layers are connected to all previous layers)) and four training sets (16, 32, 48, and

64 vectors). Each smaller training set is a subset of the larger training set, and training and test sets

were always disjoint. Alpha remained constant at 0.55 throughout the trials. Once again, we used

an asymsigmoid squashing function in every trial. Data was gathered at epochs 1000, 5000, and

25,000.

We selected vectors for the test suite to ensure variety both in the number of uni_e pro-

gram and in tl_e nature of the l_/'o_ (number _chingprogr_:tend to provide higher cycio-

marie complexity values than I/O-bound progi_ms). For a given package body, its cyclomatic

complexity is equal to the sum of the cyclomatic complexities for all its procedures.

Some packages contained stub procedures. These stub procedures generate an edge value of

zero and a node value of one and thus produce a cyclomatic complexity of 1. Stub procedures did

not seem to adversely affect the training set.

The four figures below depict the results first when neural network architectures remain con-

stant and training set size varies and second when training set size remains constant and neural net-

work architectures vary.

As the training set inca'eases, the results converge towards the x = y line, indicating a strong

correspondence to the actual McCabe metric. This behavior occurs in all architectures; we show

the 3-3-1 architecture in Figure 2, and the 3+5-5-1 architecture in Hgure 3. Except for the initial
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Figure 3: The 3+5-5-1 Architecture

improvement after 16 vectors, there is no significant improvement of results in the other three tri-

als. This suggests that relatively low numbers of training vectors are required for good perfor-

mance.

Furthermore, as shown in Figure 4 for 16 training vectors and Figure 5 for 64 training vectors,

network architecture had virtually no effect on the results. These strong results axe not surprising,

given the linear nature of the McCabe metric.
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4.3-'Experiment C: A Neural Halstead Metric for Packages _

Based upon the results of the fast two experiments, we assumed for this experiment that if the

experiment worked for packages, then it also worked for procedures, and further, that the increas-

hag the number Of training set vectors improves upon the results. Therefore, the focus of this ex-

periment was on varying neural network architectures over a fixed-size training set.
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The experiment ranged over seven different neural network architectures broken into three

groups: broad, shallow architectures (4-5-3, 4-7-3, and 4-10-3), narrow, deep architectures (4-7-7-

3 and 4-7-7-7-3), and narrow, deep architectures with hidden layers that connected to all previous

layers (4+7-7-3 and 4+7+7-7-3). We formed these three groups in order to discover whether there

was any connection between the complexity of an architecture and its ability to model a metric.

Figures 6, 7, and 8 present the results for the Halstead volume for broad, deep, and connected

L •
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architectures, respectively. Note that both the broad and deep architectures do moderately well at

matching the actual Halstead volume metric, but the connected architecture performs significantly

better. Furthermore, there is no significant advantage for a five versus four layer connected archi-

tecture, indicating that connecting multiple layers may be a sufficient condition for adequately

modeling the metric.

This pattern of performance also held for the Haistead length metric and the Halstead effort

metric, so we show only the results for the connected architecture in Figure 9 and Figure 10, re-

spectively.

5 - Conclusions

The expcrit_ntal results clearly indicate that a neural network approach for modeling metrics

is feasible. In all experiments the results corresponded well with the actual values calculated by

traditional methods. Both the data set and the neural network architecture reached performance sat-

uration points ifi the Me.be metric_In the Halstea_ic_ent, _e fact that the results Osciilated

over the actual-calculated line indicate that the neural network was attempting to model the desired

values. Adding more training vectors, especially ones containing larger valueg, Would smoofi_out
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6 - Future work

Applying thiswork tootherexistingmetricsisan obvious extension,but we fcclthatthede-

velopment of new metricsby applying neuralapproaches ismuch more significant.Inparticular,

expanding thiswork to thedevelopment of a reusabilitymetricoffersgreatpromise. Effectivere-
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use is only possible with effective assessment and classification. Since no easy algorithmic solu-

tions currently exist, we've turned to neural networks to support the derivation of reusability

metrics. Unsupervisediear_ing provides interesting possibilities for this domain, letting the algo-

rithm create its own clusters and avoiding the need for significant human intervention.

Coverage and accuracy are important aspects of developing a neural network to model a soft-

ware reuse metric. McCabe and Halstead metrics are interesting and useful, but they do not provide

coverage regarding reusability. We need to expand the number of parameters in the data set in or-

der to provide adequate coverage with respect to reusability of a component. We also would like

to improve the accuracy of answers by enlarging our data sets to include possibly hundreds of train-

ing set vectors. This will need to be a requirement when exploring more complex metric scenarios,

and the cost of such extended training is easily borne over the expected usage of the metric.

Finally, it is possible to explore alternative neural network models. For example, the cascade

correlation model [5] dynamically builds the neural network architecture, automating much of the

process described here.
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