

PERFORMANCE EVALUATION AND MODELING
TECHNIQUES FOR PARALLEL PROCESSORS

BY

ROBERT TOO DIMPSEY

B.S., University of Dlinois, 1986
M.S., University of Dlinois, 1988

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University ofDlinois at Urbana-Champaign, 1992

Urbana, illinois

PERFORMANCE EVALUATION AND MODELING
TEC~QUESFORPARALLELPROCESSORS

Robert Tod Dimpsey, Ph.D.
Department of Electrical and Computer Engineering

University of Dlinois at Urbana-Champaign, 1992
R Iyer, Advisor

iii

This thesis addresses the issue of application performance under real operational conditions. A

technique is introduced which accurately models the behavior of an application in real workloads.

The methodology can evaluate the performance of the application as well as predict the effects on

performance of certain system design changes. The constructed model is based on measurements

obtained during normal machine operation and captures various performance issues including

multiprogramming and system ovemeads, and contentions for resources.

Methodologies to measure multiprogramming ovemead (MPO) are introduced and illustrated on

an Alliant FX/8, an Alliant FX/80, and the Cedar parallel supercomputer. The measurements

collected suggest that multiprogramming and system ovemeads can significantly impact application

performance. The mean MPO incurred by PERFECT benchmarlcs executing in real workloads on an

Alliant FX/80 is found to consume 16% of the processing power. For applications executing on

Cedar, between 10 and 60% of the application completion time is attributable to ovemead caused by

multiprogramming. Measurements also identify a Cedar FORTRAN construct (SDOALL) which is

susceptible to performance degradation due to multiprogramming.

Using the MPO measurements, the application performance model discussed above is

constructed for computationally bound, parallel jobs executing on an Alliant FX/80. It is shown that

the model can predict application completion time under real workloads. This is illustrated with

several examples from the Perfect Benchmark suite. It is also shown that the model can predict the

performance impact of system design changes. For example, the completion times of applications

under a new scheduling policy are predicted. The model-building methodology is then validated with

a number of empirical experiments.

iv

ACKNOWLEDGEMENTS

I thank my advisor, Professor Ravishankar Iyer, whose guidance and persistence made the

completion of this thesis possible. I would also like to thank the researchers at the Center for

Supercomputing Research and Development for their assistance during the course of this worle.. In

particular, thanks are due to Jay Hoefiinger and Perry Emrath for many useful discussions. Of course,

thanks are also due to my parents and family who never doubted that I would complete this worle.. I

thank the boys at 608 and 901, and the girls at 514 for making my many years at the University of

illinois enjoyable. Most importantly, this worle. would not have been accomplished without the help

and encouragement of my friends at the Center for Reliable and High-Performance Computing. I

would especially thank Bob Jannens, Paul Chen, John Fu, Paul Ryan. Mike Peercy, Kumar Goswami,

In-Hwan Lee, Johnathon Simonson, Nancy Waner, Jeff Baxter, and John Holm.

v

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION _ ___________________________________ .. ___ .. ______ .. -_ .. _ 1

2. RELATED WORK AND MOTIVATION • __________________ • __ .. __ .. _____ 6

2.1. Benchmarks _________________ .. ______________________ ... _ .. _ _ _ 7

2.2. Application Modeling and Performance ________________ .. _ .. _ _ 10

2.3. Overheads and Complexities of Multiuser Environments • ____ .. __ ___ ._ _ 11

3. EXPERIMENTAL ENVIRONMENT AND DEFINITIONS _____ ___ .. _ 16

3.1. Computer Systems Monitored __________ _ _ .. ______ __ •. _ 16

3.1.1. Alliant FXJ8 and FXJ80 _______________________ •• _____ .. _ 16

3.1.2. Cedar supercomputer • ___________________________ ____ 20

3.2. Measurement Facilities 23

3.3. Target Applications . _________________________________ . ______ ... ___ 24

3.4. Definitions ___________________________ ... _________________ .. _______ ... _.. 26

4. MULTIPROGRAMMING OVERHEAD: BASE COMPONENT _ .. _....................... 29

4.1. Lower Bound MPO: Alliant FXJ8 . _________ .. _ .. __ ____ .••.•• __ ._ •• _................. 30

4.1.1. Lower bound MPO: parallel jobs • __ _ ____ .. _ •• __ .. _ ... __ _............. 31

4.1.1.1. Completion time estimation technique ... _ _ .. _ _....................... 31

4.1.1.2. Limit technique . ____ .. ____________ .• _._ _ _ _ _.... 33

4.1.2. Lower bound MPO: parallel and serial jobs .• _ _..................... 33

4.1.2.1. Completion time estimation technique ... 34

4.1.2.2. Limit technique ____ _ _ _ _....................................... 3S

vi

4.1.3. Lower bound MPO: serial jobs ._ •• __________ .. __ ___ .••• _ _...... 36

4.1.3.1. Completion time estimation technique ... __ _ .. _ _ ••. _...... 36

4.1.3.2. Limit technique .•• __ •• __________ •• ____ . __ •••..•••• __ •• ____ •••••..••••.••••..• 37

4.2. Lower Bound MPO: Cedar Supercomputer ._ _ .. __ .. _ •• _. ____ •. _........................ 38

4.2.1. Lower bound MPO: Cedar parallel jobs (loop concurrent) __ .. _................... 39

4.2.2. Lower bound MPO: Cedar parallel jobs (task concurrent) __ _ __ 40

5. MULTIPROGRAMMING AND SYSTEM OVERHEADS: REAL WORKLOADS

ON THE ALUANT FXl80 __ .. _______ -.. -..... __ ____________ • ________ •• ___ 43

5.1. MPO Estimation Methodology: Machine Independent ___ •• _ .. _ .. _ ... _ _ •• _.......... 44

5.2. MPO Estimation: AUiant FXl8 and FXlSO ___ .. ________ .. _ _ __ 46

5.3. Alliant Workloads • _____ .. __ -... _____ .. ________________________ .•.• _.... SO

5.3.1. Experiment sumlJ18.ry • ____ ______________________________ •• __ •• SO

5.3.2. Workload characteristics ________________ .. _________ • __________ •••• 51

5.4. Multiprogramming and System Overheads .. _____ ____ _....................... 53

5.4.1. Overheads in parallel environment ___________ .. __ _ .. _ __ 54

5.4.2. System overhead components: all processors ._ _ _ _.......... 57

5.5. The Sampling Period __ ______ .. _________ .. _ .. _ _ _ __ •• _.......... 58

5.6. OverheadIWorkload Relations __ .. _ .. ___ .. __ _ .. _ _ _ _............. 64

5.6.1. Overhead - overhead correlations .. _ .. _ _ _ _ _................... 64

5.6.2. Overhead - workload characteristics correlations .. __ .. _ __ 65

6. MULTIPROGRAMMING AND SYSTEM OVERHEADS: CEDAR _..................... 68

6.1. Cedar Target Applications ______ __ _ __ _................. 69

6.1.2. TFS .•.•••...•••••••.• _ _ ____ •• _________ • ___ .• _ .••.••••• _ .•• _ •. _ .•••••.•..••. _ •••.••• _.... 69

6.1.2. ARC and MCP .•. _._ •..• _______ ._ •• ______ •••••. _ ••••. _ •• _._ •••••••. _ ••• _................... 71

vii

6.2. Multiprogramming and System Overhead .. . 73

6.3. Multiprogramming Overhead: Causes _ 79

6.3.1. Helper task contentions: the dawdle 80

6.3.2. Synchronization of CDOALL loops __ .. _ .. . 82

6.3.3. Synchronization of SDOALL loops _ 84

6.3.4. Removal of SDOALL loops from TFS _ _ 88

6.4. Conclusions: Cedar Multiprogramming _ 90

7. MODELING APPLICATION EXECUTION _ _ 91

7.1. Model Construction (Machine Independent) _ _ 92

7.2. Alliant FXl80 - Model Construction ___ .. ___ .. _ .. _ __ _ 97

7.2.1. Monitoring and measuring the system . _____ _ 97

7.2.2. Statistical clustering .-.. _____ ____ _________ _____ .. ____ _ 101

7.2.3. Di5Cr'ete-time Markov Jl]()del ____________ ... _________________ ... ____ .. 103

7.2.4. Reward and Cost Functions .. __ .. ____ .. __ .. __ __ _ 104

7.2.5. Model solution _____ .. ___ _________________________ _ __ _ 107

8. MODEL USAGE - PREDICTING EFFECTS OF SYSTEM CHANGES 110

8.1. Alliant FXl80 Scheduler __ ______________________ ... ___ _ .. __ _ 110

8.1.1. Dynamic mode __ __ ________________ ... _____ .. _ __ 111

8.1.2. Traditional complex mode .. _ _ .. __ _ _ _ 114

8.1.3. Static detached mode ___ _ _____ _______ .. _______ .. __ .. _._ _ 116

8.1.4. Dynamic detached mode _ _ _ 118

8.1.4. Scheduling summary- ___ __ _ ___ . ___ .. _ .. _. __ _ __ .. _ .. 120

8.2. Predicting Effect of Multiprogramming Overhead - Alliant FXl80 _ 121

8.3. Additional Processors: Alliant FXlSO • __ __ _ _ 122

viii

8.4. Model Usage Evaluation .. _____ •• _________ ._ •• ___ ._ .• __ •• _._ •• _ •....•.•••..••••.• _ .•.•••••.. 124

9. MODEL V ALIDA nON ___________ •. ____________ •• _ ••••.••••.••.••• _ ..•..•••••....••••...•.•••.•.. 126

9.1. Validation A: Predicting CT of Target Applications, 1 .. . 127

9.2. Validation B: Predicting CT of Target Applications, 2 _ _ _ 128

9.3. Validation C: Predicting the Effect of Fewer Processors _ 129

9.4. Validation D: Predicting a Scheduling Modification _ ... _ _ 131

9.5. Dependence on Number of Clusters .. ___ .. _ .. _ .. _ _ _ 132

10. CONCLUSIONS __________ .. -.. _______ ______ .. _______ •• _._ •••• ______ •• _ •..•••• _ •• 13S

10.1. S ummaries .• _____________ ... ___ .. __________________ ._ .• __ ._ •• _ •. _ .•.•• _ •• _ .•.• 13S

10.1.1. Multiprogramming overhead: base component _ .. _ _ 13S

10.1.2. Multiprogramming and system overheads: Alliant .. __ .. _ _ 136

10.1.3. Multiprogramming and system overheads: Cedar _ 137

10.1.4. Modeling application execution • _____ .. __ _ 138

10.1.5. System design modification predictions __ _ 139

10.2. Future Work ._. ________________________________ •• _ •• _____ .•.• _ ••..••• _ •• 140

REFERENCES ..• _______________________________ •• ___ ._ •• ____ • __ •..•.• _ ••. _ •••••• 144

'VITA _________ •• ______ .. _____ .. _______________________ ._ •• ___ ••• __ •• __ ._ •• ___ _
149

1

CHAPTER!.

INTRODUCTION

In practice, the perfonnance evaluation of supercomputers is still substantially driven by single­

point estimates of metrics (e.g., MFLOPS) obtained by running characteristic benchmarks or work­

loads. With the rapid increase in the use of time-shared multiprogramming in these systems, such

measurements are clearly inadequate, because multiprogramming and system overhead, as well as

other degradations in perfonnance due to time varying characteristics of workloads, are not taken into

account In multiprogrammed environments, multiple jobs and users can dramatically increase the

amount of system overhead and degrade the perfonnance of the machine. Performance techniques

such as benchmarldng, which characterize perfonnance on a dedicated machine, ignore this major

component of true computer perfonnance.

Due to the complexity of analysis there has been little work done in analyzing, modeling, and

predicting the perfonnance of applications in multiprogrammed environments. This is especially true

for parallel processors, in which the costs and benefits of multiuser workloads are exacerbated. While

some may claim that the issue of multiprogramming is not a viable one in the supercomputer market,

experience shows otherwise. Even in recent massively parallel machines, multiprogramming is a key

component. It has even been claimed that a partial cause of the demise of the CM2 was the fact that it

did not efficiently support time-sharing [1]. In the same paper, Gordon Bell postulates that, "Multi­

computers will evolve to multiprocessors" "to support efficient multiprogramming." Therefore, it is

clear that parallel processors of the future will be required to offer the user a time-shared environment

with reasonable response times for the applications. In this type of environment the most important

perfonnance metric is the completion or response time of a given application. However, there are few

evaluation efforts addressing this issue.

2

This thesis addresses the issue of evaluating the perfonnance of applications in real multipro­

grammed workloads on a parallel processor. One of the driving forces behind the work is the desire to

create evaluation methodologies which rely on real machine measurements. Methodologies based on

analytical methods which evaluate parallel processors have been previously proposed [2]-[6]. How­

ever, restrictive assumptions on the models weakens the applicability of the results. Real machine and

workload measurements are preferred and used in this thesis because they provide more representative

models of system behavior.

This thesis introduces a number of perfonnance evaluation methodologies based on real meas­

urements. The methods are illustrated on an Alliant FX/8, an Alliant FX/80, and the Cedar supercom­

puter but are applicable to most systems available today.

From a high-level point of view the thesis can be broken into two major (related) parts. First, the

performance degradation caused by time-shared multiprogramming is investigated. The degradation

of perfonnance due to overhead, particularly multiprogramming overhead, is an important issue in the

continuing development of parallel processing supercomputers. To understand the feasibility of mul­

tiuser. time-shared supercomputers, the degradation caused by multiprogramming in a real environ­

ment must be studied.

The second part of the thesis introduces a measurement-based methodology capable of modeling

the behavior of an application in real workloads. 'The methodology allows for the prediction of the

completion time distribution of the application. It also allows for the evaluation of system design

changes. For instance, the model can predict the completion time of an application executing in real

workloads under a new scheduling paradigm.

In general. this thesis is based on the idea that parallel processors are often required to execute

more than one application at a given time, and yet, all evaluations ignore this basic fact and assume a

dedicated machine. This thesis addresses the following questions: How will my application be

affected by other work on the computer? How long will my application take to finish in multiuser

3

workloads? With these workloads in mind, what changes can be made to the system and my applica­

tion to improve the performance?

A preview of each chapter and the contributions of the chapter will now be presented.

Chapter 2 summarizes the current state of the art in parallel processor evaluation. The chapter

places the work of this thesis in proper context with other work that has been and is currently being

done. The chapter also motivates the current work. and delineates differences between it and other stu­

dies. It is proposed that one of the most important performance indices is application completion time

in real workloads and systems should be designed with application performance in mind.

Chapter 3 introduces the experimental environment. The Alliant and Cedar architectures and

operating environments are described. Measurement facilities used in this thesis are detailed, and a

number of key terms are defined.

Chapter 4 presents two methodologies which quantify the lower bound on overhead attributable

to multiprogramming overhead. The techniques are illustrated on the Alliant FXI8 and the Cedar

supercomputer. The effect of multiprogramming overhead has on the perfonnance of parallel applica­

tions is detennined. There are two major contributions in the chapter. First, the methodologies are the

only fonnal methods known to quantify the lower bound on multiprogramming overhead. Second, the

measures obtained on the machines under investigation are intersting and may be useful for simulation

or analytical models in the future.

Chapter 5 introduces a methodology whereby multiprogramming overhead incurred in real

workloads can be measured. The methodology is illustrated through an extensive study of overheads

found in real workloads of an Alliant FX/80. In addition, statistical analysis is performed to relate the

measured overheads with the workload characteristics. It is the only study which the author knows of

which isolates and quantifies the cost of time-shared, interactive multiprogramming in real workloads

on a multiprocessor system.

4

Chapter 6 conducts a multiprogramming overhead analysis similar to that presented in Chapter 5

on the Cedar supercomputer. Because Cedar is a prototype machine and not heavily utilized, a

number of real synthetic workloads are created. The multiprogramming and system overheads

incurred in these workloads are deteIID.ined using the methods of Chapters 4 and 5. It is found that

multiprogramming overhead on the Cedar is sometimes extremely high. Further analysis presented in

the chapter determines that overhead caused by synchronization of loops spread across all processors

of Cedar is the cause of the degraded performance in multi programmed workloads. In general, the

results argue for gang scheduling on parallel processors when fine grain parallelism is being exploited.

Chapter 7 outlines a measurement-based model-building methodology capable of predicting the

completion time distribution of an application executing in real workloads. The methodology models

the behavior of a given class of applications executing in real workloads on a given machine and is

able to predict accurately the effect on perfoIID.ance of system design changes. For instance, the

model can predict performance effects of the addition/subtraction of processors, changes in schedul­

ing, and reduction of overheads. The model is constructed using both Markov and statistical cluster­

ing analysis. The methodology is illustrated by modeling the perfoIID.ance of computationally-bound,

parallel applications in real workloads on the Alliant FX/80.

Chapter 8 uses the model constructed in Chapter 7 to conduct a thorough performance evaluation

of different processor configurations and scheduling paradigms for the Alliant FX/80. The perfor­

mance effects of adding more processors to the system and reducing multiprogramming overhead are

also investigated. A number of scheduling paradigms and processor configurations which improve the

perfoIID.ance of parallel applications are identified. It is one of the few parallel processing scheduling

evaluations that is based on real workload measurements. The chapter also illustrates both the power

and the flexibility of the model.

Chapter 9 presents the results of empirical validation experiments. The accuracy of the model is

shown by predicting the performance of a new scheduling paradigm, and then collecting real workload

5

measurements to show that the prediction was correct. A similar experiment is conducted on a

machine with a processor removed. The chapter presents four empirically based validations of the

method and the model. Finally, in Chapter 10, a summary of the work is given with suggestions for

future work.

6

CHAPTER 2.

RELATED WORK AND MOTIVATION

Perfonnance evaluation techniques for uniprocessors have evolved over the years. However,

these techniques have not been able to answer fully the perfonnance questions posed by parallel pro­

cessing systems. While some techniques such as benchmarking may remain useful if certain

modifications are made, other techniques may have to be abandoned altogether when evaluating paral­

lel processors. The prodigious amount of research done in developing evaluation techniques for paral­

lel processors has propelled the development of these machines, but many questions remain

unanswered. In this section, a general overview of evaluation techniques for parallel processors is

provided. The purpose of this chapter is to place the work presented in this thesis in the context of

other current and past work.

The tight link between the architecture of a parallel machine and the performance of a parallel

application on that machine makes the evaluation of application perfonnance extremely important for

parallel systems. It has been argued that parallel processor performance evaluation should be driven

by application perfonnance [7]. In other words, parallel processors should be judged by how quickly

they execute real applications and should be designed with application perfonnance as the major goal

[8],[9]. The work summarized in this chapter, as well as the work presented in this thesis, pertains to

application perfonnance, how overheads and interactions of real workloads affect this perfonnance,

and how models can be constructed which allow design decisions to be based on application perfor­

mance.

Because they are the most common applications used for perfonnance evaluation, this chapter

will first review common benchmarks. The additional requirements placed on a parallel benchmark

(as compared to a uniprocessor benchmark) will be highlighted in the discussion. The chapter will

then review current work which evaluates and tunes applications for execution on parallel processors

7

in dedicated environments. Following this, it will be argued that due to complex overheads and multi­

job interactions, it is crucial on a parallel processor to consider also the perfonnance of the application

in multiuser workloads. Work which evaluates the overheads of multiuser machines and which inves­

tigates application perfonnance in these usage environments will then be reviewed.

The work presented in this thesis adds to or is different from all of the work which will be sum­

marized in this chapter in a number of important ways. First, no other study distinguishes, quantifies,

and analyzes the difference between total system and multiprogramming overhead. Second, no other

study investigates the effect of these overheads on application perfonnance in real workloads. Third,

the question of detennining the response time distribution of an application executing under real

workloads has not been addressed before. Fourth, the model-building technique presented in this

thesis which accounts for application perfonnance while simultaneously giving feedback to make

credible design decisions is completely original. Fmally, few of the mentioned studies use real meas­

ured data to build models, and even fewer of them use real empirical data to validate the predictions of

the models.

2.1. Benchmarks

Benchmarking has long been the most common and consequently the most controversial fonn of

computer perfonnance evaluation. The simple task of rwming a representative application or section

of code on different architectures to compare them is intuitively pleasing, but can be misleading. The

foibles and pitfalls of straightforward benchmarking are well-documented [8],[10]-[12]. First, the true

representativeness of the benchmarks is always in question. Second, benchmarks (even suites of

benchmarks) tend to boil perfonnance down to a single magical (and maybe meaningless) number

[13]. Third, benchmarks often quantify only processor speed and do not stress memory hierarchies or

I/O. Fourth, differing levels of benchmartc optimization (by the user or by the compiler) make it

difficult to compare different systems. Does a benchmark perfonn better on one system because of

hand-optimization, the compiler optimization, or is the machine actually faster? Fifth, benchmarks are

8

normally executed and measured in a dedicated environment and performance loss due to multiple job

interactions is not quantified. Finally, and maybe most importantly, benchmarking provides little

insight into the reasons behind a system's achieved performance and hence is of little value from the

perspective of system design.

The above problems aside, when used correctly, benchmarks playa prominent positive role in

computer evaluation. In addition to providing a platform to compare machines, they can be used as

workloads to compare the effects of system design enhancements [14]. The most common benchmark

suites include the Whetstone benchmark [15], the Linpack codes [16], the Drystone benchmark [17],

the Livermore FORTRAN Kernels [18], and the SPEC benchmarks [19],[20]. Of these, the SPEC

benchmarks are probably the most influential today. The SPEC benchmarks represent the current phi­

losophy that real, large applications are necessary to truly test a machine. The ten SPEC benchmarks

were chosen so they could not be easily "optimized" away, had verifiable output, stressed the cache

and memory systems, and had long enough run times to minimize timing variances [20].

This philosophy of using large, real applications to quantify a machine's performance has carried

over into the benchmarking of large, parallel super and mini-super computers. The most significant

differences between uni- and multiprocessor systems in terms of benchmarking is the sheer increase in

magnitude and complexity of the parallel system. For instance, memory hierarchies are normally

magnitudes larger on parallel processors, requiring benchmarks to be that much more extensive to test

the limits. The added intricacies of parallel machines (cache coherency, synchronization, communica­

tion. network contention) link the application and architecture close together. This makes the

quantification of performance into a single number for parallel machines impossible. The perfor­

mance achieved is as much a result of matching the algorithm to the architecture as the "speed" of the

machine.

Currently the most influential suite of benchmarks for large, parallel machines is the PERFECf

Oub benchmarks [21]-[23]. The PERFEcr club consists of 13 large, parallel, computationally inten-

9

sive scientific applications (e.g., molecular simulation, seismic migration analysis). The codes

represent present-day,large-scale scientific computing. The PERFECf club has been used to evaluate

machines such as the Alliant FX/8 and FX/80, CRAY Y-MP and X-MP, iPSC/l, NCUBE, NEC SX12

and SX-3, IBM RS6000, IBM 3090-600S, and the Encore Multimax. A number of PERFECf club

benchmarks are used in this thesis as test applications.

To evaluate a machine, the PERFECf club applications are ported and timed. Application

optimizations may then be perfonned; however, the type of optimization and amount of time spent

optimizing are recorded for future analysis. A goal of the PERFECf effort is to delineate a relation­

ship among applications, architectures, and useful optimizations. 'The major complaints against the

PERFECf club codes have been the extensive effort that is needed to port the codes and the absence

of significant memory and I/O stressing in the applications. These complaints are being addressed in

the creation of PERFECf 2.

Other recent efforts in parallel computing benchmarking are the EuroBen benchmarks [24], the

SPLASH benchmarks [8], and the Genesis project [25]. The goal of the EuroBen suite is to create a

benchmark with a hierarchical structure. 'There are four levels of the benchmark corresponding to lev­

els of complexity. The first level consists of basic functions (e.g., assignments, broadcasts); the

second level contains common numerical algorithms (e.g., matrix-vector multiply); the third level

tests the system' s I/O; the last level contains applications on the PERFECf benchmark scale. There

are plans for interactive, multiuser benchmarks. The SPLASH codes attempt to provide a set of appli­

cations that are not "toys" which can be used to guide the design of parallel systems.

The work presented in this thesis has different goals than those of benchmarking. It is concerned

with methods which make intelligent system design decisions. Instead of using benchmarks as test

cases, real uncontrolled workloads are measured and models are created which aid in the system

design decisions. While, the measures used by the technique are not repeatable like benchmarks. they

provide a more realistic representation of workloads on the system in question.

10

2.2. Application Modeling and Performance

Benchmarldng is generally most useful when comparing the performance of machines [26]-[29].

However, it does not provide insight into how an application from a given domain will execute on a

machine nor provide much feedback as to how a certain design modification will affect application

performance. However, these tasks are crucial for both application and system design. This section

will summarize research that attempts to predict or quantify the performance of applications executing

on parallel machines.

One common method used to predict application performance is to break the application into

sections for which performance is known. Koss proposed using measured, representative kernels of

code to predict the performance of a full application [12]. The execution times of the kernels have

been previously measured, and the application in question is divided into parts which are similar to the

kernels. A more detailed attempt at characterizing individual code sections and then using these to

predict the performance of an application was attempted by Saavedra-Barrera [30]. In his work, a

machine analyzer is introduced which measures the execution of FORTRAN constructs on a machine.

In addition, a program analyzer is used to deconstruct the primitive structure of the application. Com­

bining results from these two allows the completion time of an application executing on a dedicated

machine to be predicted. The methodology has been successful for applications which do not stress

the memory hierarchy and perform limited I/O.

A methodology to characterize the behavior of shared-memory hierarchies for multiprocessors

was introduced by Gallivan [31]. The technique consists of a family of parameterized kernels which

provide empirical results usable in understanding the performance of applications. Understanding

application performance through vector performance has been attempted by Fatoohi [32],[33]. Vector

performance on a NEC-SX2, Cray-2, Cray Y-MP, and ETA 10-Q was investigated. Gustafon has

methods to gauge the performance of certain applications on massively parallel hypercubes [34].

Bodin et al. investigated algorithm performance on a BBN GPlOOO [35]. Bradley et al. characterized

11

the public workload of a CRA Y X-MP/48 by the requirements of its major programs [36]. Finally,

Gallivan et al. investigated methods to predict the performance of parallel numerical applications [37].

All of the work mentioned above is concerned with the prediction and understanding of applica­

tion performance on a dedicated machine. However, such studies ignore the multiprogramming and

system overheads caused by the interactions and time-varying characteristics of real workloads. As

will be seen in this thesis, these effects can often be substantial. In the next section, the need to quan­

tify the overheads caused by real multiuser workloads and understand how these affect application

performance will be discussed. It is a fundamental tenant of this thesis that application performance in

multiuser workloads must be evaluated in addition to that in dedicated environments. Also, system

design changes should be based on information garnered from real multiuser workloads.

2.3. Overheads and Complexities otMultiuser Environments

Performance evaluation is normally conducted in a single-user dedicated environment. How­

ever, the vast majority of machines, even parallel machines, execute in multiuser environments.

While evaluating the performance of an application on a dedicated machine will definitely provide

insight into its behavior in a multiuser environment. multiple users and processes interact in complex

ways while contending for shared resources that cannot be understood in a single user setting. In addi­

tion, multiprogramming and systems overheads affect the performance of individual applications dif­

ferently [38],[39]. Therefore, it is beneficial to evaluate or predict the performance of an application

within the setting of a multiuser workload in addition to evaluating it on a dedicated machine.

The complexities introduced when moving from a single-user environment to a multiuser one

are much greater for a parallel processor than for a uniprocessor. Multiple users on a uniprocessor

introduce cache flushes, contention for main memory, and I/O overlapping. Multiple users on a paral­

lel processor often exacerbate these intricacies. In addition, problems such as preemption affecting

synchronization and migrating processes have undesirable cache effects [40]-[43].

12

However, little work has been done in quantifying the costs and effects of multiuser workloads.

Williams quantified the percentage of processing power consumed by operating system overhead for a

CRAY supercomputer under real workloads [39J. She postulated that an efficient operating system

would use less than 10% of the available processing power. In other publications, it has been stated

that the operating system may use more than 25% of the processing cycles [44J. Obviously, system

overhead is highly machine-dependent, and a variety of real machines should be studied before any

general conclusions can be drawn.

This thesis argues that, due to complex interactions among jobs, more emphasis should be placed

on the evaluation of application performance in multiuser environments and that limiting evaluation to

dedicated machines may be detrimental.

This argument can be substantiated with a slightly contrived example of application performance

on the Cedar supercomputer [45]-[47J. Cedar is an experimental supercomputer with a hierarchical

shared memory organization which will be described in detail in Section 3.1.2. For the purpose of this

example, it is important to know that Cedar is made up of clusters. Each cluster is a modified 8-

processor Alliant FX/80 [48] with a local cluster memory. A modified Omega network is used to con­

nect each cluster to a large shared global memory. The prototype Cedar machine is a 4-cluster, 32-

processor machine.

Using Cedar FORTRAN constructs, the PERFECI' club benchmark TFS [22J was ported to the

Cedar supercomputer. On a dedicated Cedar, using all 32 processors, the application completes in 75

s. The same application was also written to run on a single cluster - eight processors with all data

residing in cluster memory. This version, called TFS_SC, completes in 110 s on a dedicated machine.

Three separate multiple application experiments were then conducted to simulate multiuser

environments. In the first experiment, multiple copies of TFS (written for Cedar) were executed. In

the second experiment, multiple copies of TFS_SC were executed on the same cluster. In the third

experiment, multiple copies of TFS_SC were executed on different clusters. Figure 2.1 shows the

600 TFS_SC (one cluster)
___ TFS_SC (four clusters)
__ TFS (four clusters)

400
cr
(s)

200

.' .'
.' [3'" .. '

.' .'

G

.'

~~~----~----~------~-----. 
1 2 3 4 

Number of Jobs 

Figure 2.1 Effect of Multijob Environments (Cedar) 

13 

completion time of the each version of the application as a function of the number of applications run-

ning. 

If one application is run (as stated early), the full cluster implementation is faster. However, 

when more copies are run, the single cluster version (TFS_SC) begins to outperfonn the full machine. 

This is true even for the experiment in which all copies of TFS_SC are run on the same cluster. The 

case in which the applications are run on separate clusters shows an even larger improvement; four 

copies of TFS multiprogrammed on 32 processors (four clusters) take six times longer than four copies 

ofTFS_SC each on its own cluster. 

Now there are problems with the example but the message is clear: In a multiprocessor machine, 

ignoring the effects of multiuser workloads can lead to erroneous evaluation. The effects of multiuser 

environments are significant on an individual application's performance and these effects are not uni-

fonn across applications. 

Up until this point, multiuser environments in parallel processors have been addressed mainly 

from a scheduling point of view [49]. For instance, under realistic workloads, Leutenegger found 

through simulation that "policies that allocate an equal fraction of the processing power to each job in 



14 

the system perfonn better, on the whole, than policies that allocate processing power unequally" [50]. 

Zahorjan has found (through simulation) that dynamic scheduling policies often outperfonn their 

static counterparts [51]. Gupta detennined that the type of synchronization used within an application 

has tremendous perfonnance impact depending on the workload [43J. Innovative wolk in this area has 

also been done by Polychronopolous [52], Oustemoust [53], and Majumdar [54]. All of these studies 

have used either simulation or analytical techniques with realistic values for ovemeads caused by con­

text switching, scheduling, and general multiprogramming ovemead. However, research shows that 

overheads are workload-dependent and cannot be characterized by a single value [38]. 

This thesis presents wolk in this area using measurements from real machines. First, a 

comprehensive study of ovemeads due to interactions caused by multiple users on parallel processors 

is presented. Techniques are introduced which quantify these overheads; they are illustrated on the 

Alliant FX/8, Alliant FX/80, and Cedar supercomputers. Results from real workloads on these 

machines are also presented. Statistical analysis is then done to relate these overheads to workload 

characteristics. 

Following the overhead measurements, the thesis introduces a methodology for modeling the 

behavior of a given domain of applications executing in real workloads on a particular machine. The 

model is constructed from real measured data obtained during nonnal machine operation. A key com­

ponent of the model quantifies the ovemead caused by multiple job interaction quantified in the first 

part of the thesis. The model is capable of predicting the distribution of completion times in real 

workloads for a given application. TIle predictions are useful in gauging how quickly an application 

will execute, or in predicting the performance impact of system changes such as scheduling 

modifications. The methodology is illustrated by modeling the execution of computationally bound, 

parallel applications running in real workloads on an Alliant FX/80 and a Cedar supercomputer. The 

model is used to evaluate the effect on application perfonnance of a variety of system design changes 

including: processor reconfiguration, scheduling paradigm modifications, and overhead reductions. 



15 

The work in this thesis attempts to address a number of the perfonnance evaluation problems 

that have been referred to in the previous paragraphs. Multiuser, multijob environments are addressed, 

real workloads are measured, and feedback is provided to assist in system design changes. 



16 

CHAPTER 3. 

EXPERIMENTAL ENVIRONMENT AND DEFINITIONS 

This chapter details the three major components which make up the experimental environment 

of this study: 1) the measured machines, 2) the measurement facilities, and 3) the target applications. 

In addition, necessary vocabulary is introduced. The first section of this chapter will summarize the 

architecture and the operating environments of the machines measured- the Alliant FX/8, Alliant 

FXl80. and Cedar. Emphasis is placed on the scheduling paradigms and concurrency strategies for 

these machines. The next section details the measurement facilities used to measure the real work­

loads. The methodologies presented in this thesis require real applications with known resource 

requirements and characteristics to be executed and monitored in real workloads. The third section of 

this chapter will describe these applications which will be referred to as target applications. Finally. 

the last section will define a number of terms that are used throughout the thesis. 

This chapter should be viewed as a reference summary to be referred to throughout the reading 

of the thesis. The three components described are tools which make the research presented possible. 

The methodologies presented in the following chapters can be used in conjunction with other systems. 

measurement facilities. and target applications. 

3.1. Computer Systems Monitored 

3.1.1. AUiant FX/8 and FXI80 

The Alliant FXl8 and FXl80 are shared memory. multiprocessor mini-supercomputers (Figure 

3.1) [48]. They can best be understood as two groups of processors: Computational Elements (CEs) 

and Interactive Processors (IPs). There are eight CEs and up to twelve IPs on any given Alliant The 

Alliant FX/8 used in this study has three IPs while the FX/80 is equipped with six. The FX/80 had 96 

M of main memory and a 512 K cache. The FX/8 had a main memory of 32 M and a cache of 128 K. 



MEMORY BUS 

Figure 3.1 The Alliant FX/80 Architecture 

MAIN 
MEMORY 

96M 

17 

The FX/80 also has faster processors than the FX/B. Other than this, the basic architecture, 

configuration, and scheduler on the two machines studied are basically the same. 

The Alliants measured for this study were located at the Center for Supercomputing Research 

and Development (CSRD) at the University of TIlinois in Urbana. The machines were used as testbeds 

for Cedar applications and operating system functions. The workloads consisted largely of algorithm 

development work and general scientific computing. 

The operating system on the measured Alliants, called Xylem, was designed at CSRD for the 

Cedar supercomputer. Xylem is a modified version of Concentrix, Alliant's Unix-based operating sys-

tern. Xylem allows applications written with Cedar FORTRAN constructs to be executed on a single 

Alliant by emulating the shared global memory of Cedar. In one sense, the Alliants measured are 

actually single-cluster Cedar supercomputers. 

The CE complex executes all parallel applications, as well as most serial user programs. For this 

reason it will be the focus of this study. The IPs handle interactive jobs, I/O, and a large portion of the 



operating system. Their purpose is to give fast response times to interactive jobs and to offload system 

work from the CEs. 

The CE complex operates in one of three modes: traditional complex mode, static detached 

mode, or dynamic mode. In the traditional complex mode, all CEs are simultaneously applied (gang 

scheduled) to the execution of a single, parallel application (i.e., the CE complex is a single resource 

which multiprograms parallel jobs). In the static detached mode, a fixed number of the CEs are 

clustered and the rest of the CEs are detached Figure 3.2). The clustered CEs multiprogram parallel 

applications, while each individual detached CE concurrently executes an independent serial job. In 

the dynamic mode, all of the CEs (as a group) dynamically switch between the two configurations, 

detached and clustered (Figure 3.3). In the detached configuration, the eight CEs are used as indepen- 

dent processors and serial jobs are multiprocessed on the individual CEs. In the clustered 

configuration, all eight CEs are gang scheduled to execute single, parallel applications. 

The mode in which the CEs are configured is an operating system option set at boot time. The 

machine monitored for this study had the CEs set up in the dynamic mode at all times. Therefore, the 

eight CEs dynamically switched between detached and clustered configurations. 

Figure 3.2 Static Detached Mode 



19 

r------------------~ 

CE CE ~ ~ 
CE CE ~ G 

• ... 

CE CE ~ G 
CE CE ~ G 

Clustered Detached 

Figure 3.3 Dynamic Detached Mode 

The scheduling paradigm used by the Alliant is based on job classes. The scheduler on the Alli-

ants measured in this study is based on six classes of jobs. The class of a job specifies the resource 

needed to process the job (single CE, clustered CEs, or IP) and the priority of the job. Parallel jobs 

fall into two job classes: type A and type C cluster jobs. Type C jobs are those which have been com-

piled to execute on the Cedar supercomputer (they may use global memory or some Cedar FORTRAN 

constructs). Type A jobs are nonnal Alliant applications. To execute a cluster job (either type) eight 

CEs in the clustered configuration are required. There are four classes of serial jobs. Two of these 

require a single CE to execute and are referred to as CE jobs, type A and C (CE (A) and CE (C»). The 

remaining two serial job types are referred to as [P and [PICE jobs. An IP job require an IP to exe-

cute, while an IP/CE job can be processed by either an IP or a single CE. 

Table 3.1 summarizes the scheduling algorithm for the CEs of the Alliant FX/8 and FX/80. The 

scheduler steps down the levels of the table granting the specified time quantum to a job of the choice 

1 job type. If there is no choice 1 job in the system, a choice 2 job is scheduled. If a choice 2 job is 

unavailable, a choice 3 job is scheduled, and so on. All jobs within a class are scheduled in a fair 

round-robin fashion. When it is time for a cluster job to execute (levels 1 and 2). the CEs become 



20 

physically clustered. The CEs are in the detached configuration at levels 3, 4, and 5 (if IP/CE or CE 

jobs are available). A similar algorithm is used to schedule the IPs. 

In combination with the above algorithm, the Alliant provides an interesting scheduling optimi-

zation. If there is only one job requiring a detached CE (!PICE, CE (A), or CE (C» in the system, 

then the CEs do not detach at levels 3, 4, and 5. Instead, they remain clustered and execute the job on 

a single CE, effectively avoiding the overhead of switching CE configurations 

3.1.2. Cedar supercomputer 

The goal of Cedar supercomputer project is to demonstrate that a hierarchical shared memory 

machine can provide supercomputer performance across a wide range of applications [45]-[47]. The 

Cedar supercomputer consists of multiple clusters connected to a large global memory across a net-

work (Figure 3.4).1 Each cluster is a modified Alliant FX/8 with a local memory of 64 M. Cedar 

currently consists of four clusters and a global memory of 64 M. 

Parallel applications written for Cedar are made up of tasks [55]. Each task executes on a cluster 

and uses all eight CEs (in the clustered configuration) of that cluster. An application can be split into 

as many tasks as needed; however, normally four are chosen because there are four clusters on the 

current Cedar machine. The tasks of an application are distributed to the clusters by a program called 

the Xylem seIVer. Once the tasks of a parallel job are distributed to the appropriate clusters, they 

Table 3.1 
FX/8 and FX/80 Scheduling Algorithm (policy A) 

Level Quantum Choice 1 Choice 2 Choice 3 Choice 4 Choice 5 
1 300ms cluster (A) cluster (C) IP/t."'E t."'E (A) CE(C) 
2 400ms cluster (C) cluster (A) IP/CE CE (C) CE (A) 
3 200ms CE(C) CE(A) IP/CE cluster (C) cluster (A) 
4 200ms CE(A) CE(C) IP/CE cluster (A) cluster (C) 
5 200ms IP/CE CE(C) CE(A) cluster (C) cluster (A) 

I Notice that the tellD cluster men to a group of proceslOn (an Alliant) of Cedar, while, simultaneously, the tellD clustered refen to a 
configuration in which the CBs on an Alliant may exist. The author apologizes for the multiple meanings of the tellD. 



GM 
Module 

• 
• 

8x8 switch 

Cluster 

Alliant FX/8 

GM 
Modul 

• 
• 

8x8 switch 

Ouster 

Alliant FX/8 

• • • • 

• • • • 

• • • • 

Figure 3.4 'The Cedar Supercomputer 

GM 

Module 

• 
• 

... 
8x8 switch 

. ... 

Cluster 

Alliant FX/8 

21 

remain there and are scheduled using the Alliant scheduler. Communications among the tasks is done 

through the global memory and through synchronization variables. 

Similarly to the Alliants measured, the clusters of the Cedar supercomputer have their CEs set up 

in the dynamic mode. This means that they dynamically switch between being clustered and 

detached. There are four classes of jobs which are scheduled on each cluster (individual Alliant): clus-

ter, CEo IP. and IP/CE jobs. Ouster jobs are parallel jobs which require all eight CEs in the clustered 

configuration. They are the individual tasks of a Cedar application (generated from the Cedar com-

pilers). or they are Alliant parallel jobs (generated from the Alliant compiler). The other three job 



22 

types are serial application. Similarly to the Alliant, IP jobs execute on a single IP, CE jobs execute 

on a single CE, and IP/CE jobs can execute on either an IP or CE. 

The scheduler on each cluster is summarized in Table 3.2. The table is read in a manner identi-

cal to that of Table 3.1. Note that unlike the scheduler on the Alliants, the distinction of whether a job 

has been compiled with Cedar constructs (type C) or with the regular Alliant compiler (type A) does 

not matter when scheduling. Both job types are grouped into the same class and scheduled in a fair 

round-robin fashion. 

Cedar FORmAN provides two distinct forms of concurrency which exploit the processors of all 

clusters on the Cedar supercomputer. The first will be referred to as task concurrency, and the second 

will be called loop concurrency. 

Task concurrency is a coarse-grained parallelism in which the application forks off independent 

tasks which run separately on the different clusters. The tasks themselves may then exploit parallel-

ism at the loop level similarly to a parallel job executing on a single Alliant To busy all 32 proces-

sors requires 4 tasks each executing a loop on the eight processors of each cluster. The tasks share 

address space for communication purposes, but all synchronization is specifically handled by the user. 

The Xylem seIVer schedules the forked tasks to clusters, and, once assigned to a cluster, it remains 

there and the individual cluster handles scheduling as shown in Table 3.2. 

Loop concurrency is a finer grain of parallelism. It allows iterations ofloops to be directly spread 

across all 32 processors. Cedar FORmAN constructs are provided to specify easily loops which have 

no dependencies (DOALL) or limited dependencies (DOACROSS) [56],[57]. As of this writing, the 

DOACROSS loops may execute only on a single cluster. Facilities are in place so that DOALL loops 

Table 3.2 
Scheduling Algorithm on Cedar Clusters 

Level Quantum Choice 1 Choice 2 Choice 3 
1 300ms cluster IP/CE CE 
2 300ms CE IP/CE cluster 
3 300ms IP/CE CE cluster 



23 

spread iterations of the loop across all the processors of the machine. To do this, a CDOALL loop is 

nested in an SDOALL in the source code. Physically, helper tasks are created and scheduled to each 

cluster. The iterations of the outer loop (SDOALL) are then self-scheduled one at a time to each help­

ing task. The inner loop (CDOALL) is then spread across the eight processors of the cluster. 

The memory of Cedar is divided into four exclusive areas defined by the access pennission 

(shared or private) and the locality (local or global) [58]-[60]. Data in shared memory are accessible 

by all tasks of an application, while data in private memory are accessible only by one task. The most 

commonly used memory is shared global and private cluster. 

3.2. Measurement Facilities 

The models and methodologies presented in this thesis are all based on measurements of real 

workloads, workloads found during nonnal machine operation over which there is no control. For the 

models and results to be accurate, the facilities used to gather the results must be reliable and must not 

significantly perturb the workloads. To accomplish this, a number of monitoring tools designed 

specifically for the high resolution timing of the Cedar and Alliant supercomputers were used. This 

section briefly describes the monitoring facilities used in this study and the types of measurements 

obtained. 

Extensive work on multiprocessor monitoring tools has been done at CSRD [60]-[65]. 

Hardware, software, and hybrid tools, as well as perfonnance visualization packages have all been 

developed. Measurements of the real workloads on the Alliants were obtained with three software 

measuring facilities: Q, HRTIME, and VMSTAT. 

The Q facility monitors the utilization of each processor. The facility records the amount of time 

each processor spends idling, spinning on kernel locks, handling intenupts, executing system code, 

and executing user code. It maintains separate logs for each IP and CE while detached. but only a sin­

gle log for the CEs while clustered. Measurements of the clustered CEs are actually measurements of 



24 

the master CE while clustered (the master CE dynamically changes according to the scheduler). The 

Q facility can also take a snapshot of the workload present at a given time. When used this way. Q 

reports the number of each type of job in the system (i.e .• the number of cluster (A). cluster (C). CE 

(A). CE (C). IP. and IP/CE jobs). 

The second facility. HRTIME, measures the completion time of an application with 10 I..IS accu­

racy. The YMSTAT facility maintains counts of system activities such as context switches, CE 

configuration changes, device interrupts, and disk accesses. Nonnally. software monitoring facilities 

are not recommended for use with multiprocessors [66]. However, on the Alliant, all monitoring 

software was executed on the IPs so that the perturi>ation to the workloads on the CEs was minimal. 

Measurements of the Cedar system were obtained with a distributed version of Q. a software 

facility called gervmetc. and a hybrid monitor called P3S. Each cluster of Cedar has its own copy of 

the Q facility. The facility collects the same metrics as those collected by the Q facility on the Alli­

ants. The metrics are kept in the kernel memory of each separate cluster. The getvmetc system call 

returns virtual memory usage, paging, and memory overheads for the calling application. The facility 

is used to monitor the number of pages of each memory type (e.g., global shared, local private) that an 

application requires. The Parallel Program Performance evaluation System (P3S) allows accurate time 

stamps to be collected. The user indicates the time stamp in the user code, and it is collected with 

hardware monitors. A comprehensive history of context switch times is also maintained. The facility 

was used in this study to measure the completion time of applications accurately, as well as the com­

pletion time of loops and tasks within an application. 

3.3. Target Applications 

The methodologies presented in this thesis require the system to be monitored while a parallel 

application (the target application) executes under the real workloads. The target applications were 

chosen from the Perfect Club Benchmark Suite [55] and are summarized in Table 3.3. Dyfesm is a 



Appl. 

Oyfesm 
Fl052 
Track 

Spec77 
BONA 

FX/8 

Table 3.3 
Target Applications (Alliant) 

(NA - value not measured) 

FX/8 FX/80 
Completion Time % of clustered Completion Time 

(s) time exec (s) 
system code 

241 l.3 200 
119 3.1 88 
147 NA 94 
303 4.2 NA 
NA NA 134 

2S 

FX/80 
% of clustered 

time exec 
system code 

l.2 
3.4 
3.3 
NA 
7.7 

computationally intensive application which performs two-dimensional dynamic finite-element struc-

tural analysis. Fl052 analyzes transonic flow past an air foil; Track performs signal processing to track 

a missile's path. BONA simulates dynamic molecular behavior. These applications represent the 

current requirements of many parallel applications. All are computationally intensive and were com-

piled to execute as type A cluster jobs on the Alliants; they need all eight CEs in the clustered 

configuration to execute. 

The applications were first measured on a dedicated machine (single-user mode) so that the base 

resource requirements of each could be determined. Measurements of completion time and percentage 

of system code executed in the parallel environment for both the FX/8 and FX/80 are summarized in 

Table 3.3. The amount of system code executed when an application is run on a dedicated machine is 

a measure of the inherent system work in that application. 

The Cedar target applications are summarized in Table 3.4. The table shows the completion 

time on a dedicated Cedar, the number of clusters used by the application, and the type of concurrency 

the application exploits (loop or task). TFS is the Fl052 perfect benchmark ported to the Cedar super-

computer. It has been renamed because it is physically a different piece of code (Cedar FORTRAN 

constructs were used to write it). The application uses all four clusters and exploits loop concurrency. 

TFS_SC is actually the same piece of code as Fl052 shown in Table 3.3. It is used when a parallel 

application which executes on a single cluster is needed. It has been renamed to avoid confusion. 



26 

The applications ARC and MCP are both codes written for Cedar using task parallelism. ARC 

analyzes three-dimensional fluid flow problems by solving the Euler and Navire-Stokes equations; 

MCP is a sparse matrix solver. On a dedicated Cedar, MCP executes on a single cluster for 77.5 s and 

then forks off three tasks and completes in another 39.5 s. ARC starts by forking 3 tasks and all four 

tasks need 73 s of dedicated machine time before finishing. 

The applications LOOP_CON and TASK_CON were created as minimum overhead examples of 

the two forms of Cedar concurrency under investigation. LOOP_CON is a large parallel loop of addi-

tions which are spread across the 32 processors. T ASK_CON creates four tasks and each indepen-

dently performs concurrent additions. Both applications exploit the full concurrency of the machine 

with minimum overhead. 

3.4. Definitions 

The terms multiprogramming, multiprocessing, and parallel processing have taken many dif-

ferent meanings in computer literature. In this thesis, multiprogramming refers to multiple users 

time-sharing processing resources. Multiprogramming is resource sharing across time. 

Multiprogramming's main purpose is higher throughput for short jobs. It is commonly implemented 

on both uni- and multiprocessors. Multiprocessing will be used to describe the concurrent execution 

of independent jobs on separate processors. Parallel processing will be used to describe the execution 

of a single application across multiple processors. Parallel and multiprocessing are resource sharing 

Table 3.4 
Target Applications (Cedar) 

Appl. type of # of clusters Completion Time 
concurrency used (s) 

TFS loop 4 73.5 
TFS_SC NA I 108 

ARC task 4 73.4 
MCP task 1/4 117 

LOOP_CON loop 4 44.0 
TASK_CON task 4 53.7 



27 

across space. The Alliant and Cedar machines support multiprogramming, parallel processing, and 

multiprocessing. 

There are two factors in multiprogrammed environments that increase a job's completion time. 

The more significant factor is the time-sharing of the processing resources. With more than one appli-

cation present, any single application will receive less processor time and take longer to complete. 

The second factor is multiprogramming overhead (MPO), which is the extra work created as a result 

of the time-shared multiprogramming environment. The work can be due to increased system work 

(e.g., context switching, scheduling) or contentions among jobs (e.g., paging, spinning on locks). 

An example will clearly illustrate the difference between the MPO and the time-sharing of 

resources. Assume a simple uniprocessor using a fair, time-shared, round-robin scheduling policy 

with time quantums several orders of magnitude smaller than job lengths. Now assume that a job 

takes CTDcd. Mill:. to complete on the simple machine when multiprogramming is not in effect (dedi-

cated machine). If this job is multiprogrammed with two other copies of the job (assuming no I/O), 

the completion time may be written as: (3 x CTDM. MIII:.) + MPO, where MPO is the processor time 

spent over and above that directly used by the user jobs (Figure 3.5). 

One possible taxonomy of the MPO parameter breaks it into two components: the base com-

ponent and the reaL workload component. The base component is the least amount of processor time 

needed to maintain persistent multiprogramming. It is a lower bound on the MPO and is constant 

independent of the workload on the machine. Its main component is time spent context switching. 

The real workload component varies with the load on the machine. It is caused mainly by increased 

resource (memory, network, kernel, spin lock) contentions. 

CT CT CT MPO 
I_ Ded. ~'. Oed ~'. Ded. ~'. , 

k >i 
Job Completion Time 

Figure 3.5 Completion Time in Multiprogrammed Environment 



28 

On a parallel machine with gang scheduling (such as the Alliant). the MPO is a subset of total 

system overhead. Total system overhead consists of all system work: MPO. as well as system work 

inherent in the user applications (such as I/O). An example will clarify the distinction between mul­

tiprogramming and total system overheads. Assume that a program is executed on a dedicated 

machine and requires Y amount of paging. Now, assume it is executed in a multiprogrammed 

environment and requires Y+Z amount of paging. The overhead associated with the Z amount ofpag­

ing is counted as multiprogramming overhead. while all of the paging. Y +Z, is counted as total system 

overhead. 

On a parallel machine without gang scheduling (such as Cedar), the MPO may incur an addi­

tional component due to spinning on user synchronization locks. For instance, assume that a task exe­

cuting on cluster one is waiting on a lock held by a task on cluster two. In a multi programmed 

environment. the task holding the lock may be context switched off cluster two leaving the task on 

cluster one spinning helplessly. This extra time spent spinning is MPO. It is not normally considered 

system overhead because the processors are actually servicing the user program. On a gang scheduled 

machine, this component does not occur because all tasks are scheduled at once. 

A few other terms should be discussed. The phrase real workload is used in the current literature 

to refer to anything from a single benchmark running on a machine to a group of synthetic programs. 

In this thesis. real workload refers to the work being done on a machine during normal operation. In 

other words. there is no control over what work is submitted to the system. Kernel spin locks refer to 

synchronization locks used to protect critical sections of code in the kernel. Spinning on them is con­

sidered system overhead. User spin locks are those created and used in the user application. As previ­

ously mentioned, spinning on these is not considered system overhead. but may be multiprogramming 

overhead. 



29 

CHAPTER 4. 

MruLTIPROG~GOVERHEAD:BASECOMPONENT 

The degradation of performance due to overheads, particularly multiprogramming overhead, is 

an important issue in the continuing development of parallel processing supercomputers. This is espe­

cially true as time-shared, interactive, multiprogramming environments become more prominent on 

parallel machines. In these environments, multiple jobs and users can dramatically increase the 

amount of system overhead which degrades the performance of the machine. Measurements of this 

overhead are therefore important for performance evaluation purposes. 

Measurements of MPO are also useful from a supercomputer system design point of view. The 

practicality of a supercomputer which runs both large, parallel jobs and smaller, interactive serial jobs 

(such as editing) in a multiprogramming environment must be investigated. Would it be wiser to use a 

supercomputer as the back end of a computer hierarchy instead of as an all-purpose machine? If this 

were the case, only large, parallel jobs would be executed on the supercomputer, and a batch-oriented 

scheduler or larger time quantums could be used to reduce MPO. 

Measurements of MPO will also prove useful for simulation and analytical modeling purposes. 

Overhead parameters used in simulations are often roughly estimated. With real workload overhead 

measurements, the accuracy of these parameters need no longer be questioned. 

In this chapter and the next chapter, the question of multiprogramming, as well as system over­

head will be investigated. In this chapter, two techniques that estimate the base component (lower 

bound) of the MPO are introduced and then illustrated using the Alliant FX/8 and Cedar supercomput­

ers. The techniques are called the Completion Time Estimation Technique and the Limit Technique. 

Most scheduling paradigms divide jobs into different classes and the jobs of different domains 

will be affected differently by multiprogramming. For instance, multiprogramming serial jobs may 

cause more or less overhead than multiprogramming parallel jobs. Therefore, the lower bound on 



30 

MPO must be determined for a given job domain executing in a given workload type. For instance, 

using the Alliant FXl8 and the above techniques, the lower bound on MPO is detennined for multiple 

parallel jobs (type A cluster jobs) and for multiple parallel jobs executing with serial jobs (type A, CE 

jobs). The effect of serial jobs on parallel jobs is then isolated. 

On the Cedar supercomputer. the lower bound on MPO for executing multiple parallel jobs writ­

ten with loop concurrency and multiple jobs written with task concurrency is determined. Executing a 

loop concurrent job with multiple task concurrent jobs. and a task concurrent with multiple loop con­

current jobs is also investigated. It is found that the base component of overhead for multiprogram­

ming parallel jobs is about twice as high on the Cedar as the Alliant FXl8. The techniques presented 

in this chapter are adaptable to most computer systems available today. 

4.1. Lower Bound MPO: Alliant FXl8 

The techniques which determine MPO require total control over the workload and environment 

of the system. This is achieved by placing the Alliant FXI8 in single-user (SU). dedicated mode. 

Although the workloads are completely constructed. measuring perfonnance on real machines always 

introduces uncontrollable factors. Because of this, even the completion time of an application running 

alone on a dedicated machine will vary with different executions. Therefore, all experiments 

throughout this thesis that are done in a controlled environment are perfonned at least five times. The 

largest and smallest measures of the multiple experimental runs are discarded and the rest are then 

averaged. Therefore. although a single value is presented. it is actually an average of repeated experi­

ments. 

The techniques to determine the lower bound on MPO require a target application to be executed 

and monitored in controlled workloads consisting of dummy jobs. Measurements of target application 

completion time and the percentage of system ovemead executed in these controlled workloads are 

then used to detennine the lower bound on MPO. 



31 

The dummy jobs are constructed to contribute negligible system overhead when executed (Le., 

no system calls or paging). Their purpose is to create workloads with different degrees of multipro­

gramming. As mentioned, the techniques require a specified number of dummy jobs to execute while 

a target application is run. To limit system overhead in this situation, the dummy jobs must begin 

before and finish after the target application. In this fabricated workload, the minimum amount of 

overhead caused by multiprogramming is seen by the target application. 

The lower bound (base factor) on MPO is determined for three programming situations: mul­

tiprogramming parallel jobs, multiprogramming multiple parallel and serial jobs, and multiprogram­

ming a single parallel job with serial jobs. 

4.1.1. Lower bound MPO: parallel jobs 

This section uses the two techniques to quantify the lower bound on MPO when only parallel 

jobs are executed. Dummy jobs were constructed to be type A cluster jobs consisting of a tight loop 

of concurrent additions. Three target applications were used for this experiment Dyfesm, Spec77, and 

A052. Each target application was executed and measured in six different controlled workloads: first 

by itself, and then with from one to five dummy jobs. Using the measurements from these runs, the 

lower bound on parallel job MPO was determined to be 4% of the parallel processing time. 

4.1.1.1. Completion time estimation technique 

The Completion Time Estimation Technique consists of measuring the completion time (CI') of 

the target application while it is running in the dummy job workloads. The completion time assuming 

no MPO (CTw /o MPO) is then estimated. The amount of MPO is obtained by subtracting the estimated 

completion time from the measured completion time (CT - CTw /o MPo). The CTw /o MPO for a workload 

can be computed using the completion time of the target application on a dedicated machine 

(CTD.d. MI1C.), the number of dummy jobs in the workload, and details of the scheduler. 



32 

The CTDcd. MaJ;. was obtained from Table 3.3, and the estimation of CTwlo MPO is given by Equa-

tion (4.1). The equation is based on the fact that the target application and dummy jobs share the 

clustered CEs equally. It is accurate for applications that are computationally bound, but because of 

I/O overlapping, it is less accurate for applications with significant I/O. 

CTX •WIO MPO = (X+l) X CTDcd. MaJ;. 

CTx .wlo MPO : completion time with X dummy jobs 
assuming no MPO 

(4.1) 

Figure 4.1(a) shows the measured CT (solid lines) and CTwlo MPO (dotted lines) for each target 

application as a function of the multiprogramming level (number of dummy jobs). The MPO is the 

distance between the solid and dotted lines for each application. The average difference between the 

solid and dotted line for Dyfesm (the application with the least lID) is 4% of the corresponding meas-

ured completion time. Therefore, 4% of the parallel processing time was consumed by MPO. This is 

a lower bound because the low overhead dummy jobs guarantee that there do not exist workloads 

which can cause less MPO. 

1500 

1000 
cr 
(s) 

500 

-o~--~~--~--~----~--~ 
-0 1 2 3 4 

# Parallel Dummy Jobs 
(a) 

5 

6 

4 
% 

Total 
System 

Overhead 
2 

Q 

~ ~ ~ [3.~.~.:-. § ..... __ Q. 

, •••• • ••• t:J.,...."r .... e. ... ~.~. '8 

-Dyfesm 
..... F1052 
--- Spec77 

-O~--~~--~----r-----.-------. 

-0 1 2 3 4 
# Parallel Dummy Jobs 

(b) 

5 

Figure 4.1 Multiprogramming Parallel Jobs - Completion Times and System Ovemeads 



33 

4.1.1.2. Limit technique 

The Limit Technique does not require the target application to be computationally intensive to 

calculate the lower bound on MPO. The technique is based on the fact that dummy jobs contain little 

inherent system overhead; thus total system overhead consists of a higher percentage of MPO as the 

level of multiprogramming increases. In other words, as a target application is executed with more 

dummy jobs, the system overhead approaches the multiprogramming overhead. 

Equation (4.2) can be used to explain this phenomenon more clearly. In the equation, B is the 

base percentage of MPO executed, i is the raw amount (not percentage) of inherent system code in the 

target application, and t is the completion time of the target application when executed with the addi-

tional dummy jobs. Because the dummy jobs add little system work of their own, all system code can 

be attributed to either MPO or system code from the target application. Therefore, the percentage of 

clustered time spent executing system code, S, can be expressed by Equation (4.2). As the number of 

additional cluster jobs increases, t also increases, while i remains constant: S (the parameter meas-

ured) approaches B (the parameter desired). 

S =B + J.. t (4.2) 

The Q facility was used to measure the percentage of clustered CE time executing total system 

overhead (S). Figure 4.1(b) shows a graphs of system overhead as a function of the multiprogram-

ming level. Notice that for all three applications, system overhead approaches 4%. This result corro-

borates the result obtained with the previous technique. The base component of MPO for parallel jobs 

consumes 4% of the parallel environment processing power. 

4.1.2. Lower bound MPO: parallel and serial jobs 

The lower bound (base component) of overhead due to multiprogramming both cluster (parallel) 

and CE (serial) jobs is now quantified. The cost of reconfiguring the CEs between the clustered and 

detached configurations is an integral component of this overhead. 



34 

The experiments of the last section were repeated, except that in each case, two streams of CE 

(A) jobs were run while the target and dummy applications executed. A stream of CE (A) jobs is a 

continuous string of identical jobs CE (A) (i.e., when one job finishes an identical one is staned) 

which have been constructed to minimize their inherent system overhead At any given time in the 

experiments of this section, there are two CE (A) jobs, the target application, and a number of dummy 

jobs executing on the system. 

Two CE job streams (instead of one or three) were used for two reasons. First, two CE jobs are 

the minimum number needed to cause the CEs to physically reconfigure. Second, it was found that 

additional CE jobs after the first two did not affect the MPO. Therefore, the results obtained using two 

streams of CE jobs are valid for any environment with two or more CE jobs running. 

4.1.2.1. Completion time estimation technique 

The Completion Time Estimation Technique was used to determine the lower bound on MPO 

for the case of both parallel (cluster) and serial (CE) jobs by modifying the equation for CTw10 MPO to 

account for the CEs being clustered only 54% of the time (Equation (4.3». The CEs were clustered 

only 54% of the time because the other 46% was used to execute the CE serial job streams (see Alliant 

scheduler, Table 3.1). 

1 
CTX.CE = 'U34 x (X +1) X CTD..t Mat:. 

CTx .CE : completion time with X dummy jobs, 
CE job streams, and no MPO 

(4.3) 

Figure 4.2(a) shows the measured completion times of the target applications (solid lines) and 

the approximations of completion times assuming no MPO (dotted lines). As before, the difference 

between a solid-dotted pair is the amount of time spent executing MPO on the cluster. For Dyfesm, 

the average difference between the two values made up 5.5% of the measured completion time. 



3S 

Therefore. when both parallel and serial jobs are executed on the Alliant. at least 5.5% of clustered 

time is consumed by multiprogramming overhead. 

4.1.2.2. Limit technique 

The lower bound on MPO due to parallel and serial jobs was also estimated using the Limit 

Technique. No changes had to be made in this case to use the methodology. With serial jobs present. 

the percentage of clustered time spent executing system code still approaches the MPO as additional 

parallel dummy jobs are added to the system. This can easily be seen by reexamining Equation (4.2). 

In fact. the completion time. t increases even more quickly due to the serial jobs. 

Figure 4.2(b) summarizes the results of this experimenL For both applications. the percentage of 

clustered time spent executing system code approaches 5.3% as more parallel dummy jobs are exe-

cuted. Therefore. this method estimates the base cost for multiprogramming continuous CE and c1us-

ter jobs to be 5.3%. This corroborates the value obtained with the Completion Time Estimation Tech-

nique. 

3000 

2000 

CT 
(s) 

1000 

- Measured Values 
.... ·No MPO (app.) 

-O~--~,---.---~----~---, 

-0 2 3 4 
# of Parallel Dummy Jobs 

(a) 

5 

8 

G· .. 
6 .... . ... (3 ••••••• (3 

.... . ..... . 

% 
Total 4 

System 
Overhead 

_Dyfesm 
2 ·····Flo52 

-O~---.----r---.----.--~ 
-0 1 2 3 4 

# Parallel Dummy Jobs 
(b) 

5 

Figure 4.2 Multiprogramming Parallel and Serial Jobs - Completion Times and System Overhead 



36 

4.1.3. Lower bound MPO: serial jobs 

The last section quantified the lower bound on MPO in the parallel environment (clustered CE 

time) when there were both parallel and serial jobs executing. In this section. multiprogramming 

overhead degrading the perfonnance of parallel jobs caused entirely by serial jobs will be isolated and 

quantified. Instead of multiprogramming multiple parallel and multiple serial jobs, a single parallel 

job is multiprogrammed with many serial jobs. The experiments will show that, similarly to cluster 

jobs, extra CE jobs, after two, do not increase the base factor of MPO. 

The experiments consisted of executing and measuring a single target application (Dyfesm or 

A052) with single and multiple (2, 3, and 4) CE job streams. With a single CE job stream in the sys­

tem, the CEs remained clustered the entire time (recall from Section 3.1.1); with two or more CE job 

streams, the CEs were clustered 54% of the time. 

4.1.3.1. Completion time estimation technique 

The Completion Time Estimation Technique translated directly to this situation by setting X 

equal to zero in Equation (4.3). In other words, no matter how many streams of CE jobs are added to 

the system, the completion time of a parallel job will remain constant if there is no MPO. 

Figure 4.3(a) shows the completion time of the target applications in the multiple CE job stream 

environments. The projected CT w/o MPO is not shown because it is so close to the actual completion 

time. However, the calculation showed that, for these experiments, 2% of the CE clustered time was 

consumed by MPO. Therefore, in a worlcload with multiple CE jobs and a single cluster job, at least 

2% of the clustered time will be consumed by MPO. 

Notice that the completion time of an application executing with two or more CE job streams is 

more than that when it is executing. with only one stream. Recall that if there is only one CE job in the 

system, the CEs may remain clustered and execute it. Therefore, the added completion time in the 

environments with two or more streams is largely due to overhead caused by repeatedly reconfiguring 



37 

the CEs between detached to clustered configurations. Notice also that the completion times of appli-

cations executing with two or more detached job streams are nearly identical. This indicates that the 

base factor of MPO remains unchanged when there are two or more CE jobs in the system. 

4.1.3.2. Limit technique 

Figure 4.3(b) shows the percentage of clustered time spent executing system overhead for these 

experiments. The Limit Technique could not be directly used to determine the MPO because dummy 

jobs were not added to the system for these experiments. Therefore, the target applications' comple-

tion times did not increase, and the system overhead inherent in the target application could not be 

eliminated. In other words, the t of Equation (4.2) remained relatively constant, allowing i to remain 

significant. 

However, the MPO has been detennined by subtracting the percentage of system overhead exe-

cuted by the clustered CEs when the application ran alone from the percentage executed when the 

application was run with the CE job streams. This difference is the increase in system overhead 

caused by the CE job streams. The results of this test confirm the 2% measurement obtained by the 

500 

400 

300 
cr 
(s) 
200 

100 

Dyfesm 

... G··· ...... (3 ••••••••• (3 

G······ Flo52 

-O~----~----~-----r----~ 

-0 1 2 3 
Number of CE (A) Job Streams 

(a) 

4 

6 

4 
% 

Total 
System 

Overhead 
2 

••• [3 ••••••••• (3 

!3'fio52 

Dyfesm 

-O~----~-----r-----r-------.. 

-0 1 2 3 
Number of CE (A) Job Streams 

(b) 

4 

Multiprogramming Serial Jobs - Completion Times and System Overhead 



38 

previous technique. It should be noted that a large portion of this 2% is due to exploding and coalesc­

ing the CEs. 

4.2. Lower Bound MPO: Cedar Supercomputer 

The lower bound on overhead for multiprogramming the various types of jobs on the Alliant 

FX/80 can be assumed to be close to that found for the Alliant FX/8 in the last sections. This is 

because the architectures of the machines are identical, the scheduling paradigms and job classes are 

the same, and the operating systems are similar. However, the lower bound on overhead for multipro­

gramming on Cedar cannot be predicted from studying the numbers on individual Alliants. 

It can be fairly assumed that multiprogramming parallel jobs on the four clusters of Cedar will 

create more overhead than multiprogramming on an Alliant FX/8 (single cluster). After all, the Cedar 

operating system (Xylem) is built on top of Concentrix. Therefore, scheduling on Cedar adds an extra 

software layer (the Xylem Server) on top of Alliant's scheduler. The effect on the base component of 

multiprogramming overhead though is less clear. 

In this section, the base component of overhead caused by multiprogramming parallel jobs 

which use all processors of Cedar is quantified. The Completion Time Estimation Technique will be 

used to study both loop concurrent and task concurrent parallel jobs. Two modes of Cedar operation 

will be investigated: single-user mode (such as that on the Alliant) and batch mode. It will be seen 

that the base component found in the single-user (SU) mode is similar to that found for parallel jobs 

on the Alliant: approximately 4%. The base component in the batch mode is significantly higher at 

approximately 11 %. It will also be found that loop concurrent jobs tend to have a slightly larger base 

component than task concurrent jobs. 

To control the level of multiprogramming, two types of dummy jobs were constructed: loop 

dummy and task dummy jobs. As in the case with the Alliants, the dummy jobs were constructed to 

cause a minimum of system overhead and paging. The loop dummy jobs consisted of a never ending 



39 

SDOALL loop. Each iteration of the SDOALL loop was a CDOALL loop which did nothing but add 

the same two numbers together repeatedly. The task dummy jobs consisted of 4 separate tasks, each a 

loop of concurrent additions. Therefore, both dummy jobs kept all 32 processors consistently busy 

with additions. 

4.2.1. Lower bound MPO: Cedar parallel jobs (loop concurrent) 

The LOOP_CON program (Table 3.4) was used as the target application to detennine the lower 

bound on :MPO when a loop concurrent application is multi programmed with other parallel applica­

tions. Two different typeS of parallel workloads were investigated. One consisted of the target appli­

cation and varying numbers of loop dummy jobs. The other was made up of the target application and 

varying numbers of task dummy jobs. Each experiment was conducted both in single-user mode and 

in the batch mode. 

Detennining CTwiD MPO was accomplished using Equation (4.1). The equation holds because all 

parallel jobs executing on Cedar have the same priority and are scheduled in a round-robin fashion. 

Conceptually, for these experiments, Cedar can be viewed as a single resource being shared by multi­

ple consumers (target application and dummy jobs) all with the same access privileges. The parameter 

CTD~tl..Mac. is found in Table 3.4. 

The solid line of Figure 4.4(a) shows the completion time of LOOP_CON as a function of the 

number of loop dummy jobs executing (in the batch mode). The solid line of Figure 4.4(b) shows the 

completion time as a function of task dummy job multiprogramming level (in the batch mode). The 

dashed line in each figure show the completion time of LOOP_CON in the different environments 

with Cedar in single-user mode. The dotted line in each figure shows the approximated completion 

time of LOOP_CON with no :MPO. For both cases the average difference between the dotted (ideal) 

and solid (real batch) line was about 11.5% of the real completion time. The corresponding value 

found in single-user mode was 4.7%. 



300 

200 
cr 
(s) 

100 

- Measured Values (batch) 
- - - Measured Values (SU) 
.... ·No :MPO (app.) 

-O~--~----~---r--~--~ 

-0 1 2 3 4 
# Loop Dummy Jobs 

(a) 

5 

300 

200 
cr 
(s) 

100 

- Measured Values (batch) 
l<J 

" ".(3 
- - - Measured Values (SU) 
·····No:MPO (app.) 

"Ef~"" 
".' , .' 

,,[i:"" 
" .' " .' .,,: .. -

-O-t-----,r----,-----y--"T"""----, 

-0 1 2 3 
# Task Dummy Jobs 

(b) 

4 5 

Figure 4.4 Multiprogramming Cedar Loop Parallel Jobs 

40 

It is interesting to note that the type of background workload (loop or task concurrent) does not 

greatly affect the lower bound on multiprogramming overhead. Therefore, if a parallel job written 

with the loop concurrency constructs is executed with other parallel jobs (either loop or task) on Cedar 

then at least 4.7% of the processing power will be consumed by MPO. 

4.2.2. Lower bound MPO: Cedar parallel jobs (task concurrent) 

The TASK_CON program (Table 3.4) was used as the target application to quantify the lower 

bound on MPO created when multiprogramming a task concurrent application with other parallel jobs. 

Identically to the previous section, the TASK_CON program was executed in both loop and task. 

dummy job environments. The experiments were also conducted in both single-user and batch modes. 

Equation (4.1) could again be used to determine CTw/o MPO for TASK_CON in the multiple dummy 

job environments. The reasoning behind the use of the equation is identical to that given in the last 

section. 

Figures 4.5(a) and b show the results. The solid lines shows the actual measured completion 

time found in batch mode while the dashed line shows the completion time found in single-user mode. 



41 

The dotted lines show the approximation of CTw /tJ MPO from Equation (4.1) and the numbers of Table 

3.4. In the batch mode, for both the multiple task dummy and multiple loop dummy environments, 

approximately 10.5% of the processing power is consumed by MPO. In single-user mode this number 

is much less at 3.8%. Notice that the single-user number is close to that found for parallel jobs on the 

Alliant. 

Note that both situations (batch and single-user) give slightly lower values for multiprogram-

ming the TASK_CON job than the LOOP_CON job (3.8 vs. 4.7 and 10.5 vs. 11.5). However, the 

difference is not that large. The higher value for the loop concurrent application is probably due to the 

extra synchronization needed among the helper tasks when executing the loop across 32 processors. 

Recall that T ASK_CON creates four noncommunicating tasks, while the helper tasks of LOOP _CON 

must synchronize occasionally. 

In conclusion, measurements from the batch mode place the base component of multiprogram-

ming parallel jobs on Cedar at approximately 11 %. Single-user mode does much better with the base 

component of multiprogramming parallel jobs placed at 4.2%. The difference is most likely due to 

extra daemons executing while the machine is in the batch mode. For both cases, the type of parallel 

400 

300 

200 
cr 
(s) 

100 

- Measured Values (batch) 
- - - Measured Values (SU) ... S 
.. ···No MPO (app.) ....... ~ .. . 

.... 
",.~ .. 

~ .. 

121 .' , (3.-

§-~.-:-.~ .. ' 

-O-r----r---~--_,----~--_, 

-0 1 2 3 4 
# Loop Dummy Jobs 

(a) 

5 

400 

300 

200 
cr 
(s) 

100 

- Measured Values (batch) 
- - - Measured Values (SU) 
. ... ·NO MPO (app.) 

-O-r---,r-----r-----r-----,-----, 
-0 1 2 3 

# Task Dummy Jobs 
(b) 

4 5 

Figure 4.5 Multiprogramming Cedar Task Parallel Jobs 



42 

job- loop or task- does not seem to make a large difference in the base component of MPO. How­

ever, this does not mean that in real workloads using real applications, the MPO incurred by task 

parallel and loop parallel jobs will be the same. The next chapter will deal with this issue in more 

detail. 



43 

CHAPTERS. 

MULTIPROGRAMMING AND SYSTEM OVERHEADS: 
REAL WORKLOADS ON THE ALLIANT FX/80 

Lower bound measurements of MPO are valuable because they are constant, single numbers that 

provide insight into the best-case behavior. They can be easily used to compare the perfonnances of 

different machine environments. Unfortunately, the MPO found in real workloads usually exceeds the 

lower bound. In addition, the MPO incurred in real workloads is highly dependent on the characteris-

tics of the workload. Therefore, it would be beneficial to estimate MPO for a large number of real 

workloads to understand the range of values that MPO may take for a given machine. Also, to under-

stand better the causes of MPO and system overheads, it would useful to correlate the multiprogram-

ming and system overheads found in real workloads to the characteristics of the workloads. 

In this chapter, a technique to estimate MPO in real workloads (workloads found during the nor-

mal operation of the machine) is presented. The method is similar to the Completion Time Estimation 

Technique introduced in the last chapter. However, instead of executing a target application in a con-

trolled workload, it is executed during the nonnal operation of the machine. Pertinent aspects of the 

real workload are periodically sampled as the target application executes. From the collected data, the 

CTw10 MPO and correspondingly the percentage of MPO incurred under that workload are estimated. 

The technique is adaptable to most computer systems available today. In this chapter the methodol-

ogy is illustrated with real workloads found on the Alliant FX/80. 

Real workload measurements of other overheads such as total system overhead and kernel lock 

spinning are also collected. These measurements are then used in a comprehensive case study of per-

fonnance degradation due to overheads. Results from the Alliant workloads show that MPO makes up 

well over half of the total system work. done by the machine. Most of the real workload MPO esti-

mates fall between 10% and 23% of the processing power, with the mean being 16%. This is well 

above the lower bound on MPO which was estimated to be 5.5%. Measurements also show that 



44 

degradation caused by handling interrupts is small, while the time spent spinning on kernel locks is 

substantial (5%-10%). Correlation analysis suggests that for the workloads studied, MPO is not 

dependent on the number of parallel jobs being multiprogrammed. In addition, it is found that through 

increased kernel lock spinning. serial jobs, even those executing on peripheral processors, contribute 

greatly to MPO. 

This chapter is organized as follows. Section 5.1 introduces the machine-independent methodol­

ogy which estimates the MPO in workloads (real or synthetic). Section 5.2 then presents details 

necessary to use the methodology on the Alliant FXl80. Section 5.3 summarizes the types of work­

loads measured and presents a number of preliminary measurements which characterize them. Section 

5.4 contains real workload multiprogramming and system overhead measurements. The system over­

head measurements are measured directly with the Q facility, while the multiprogramming overhead 

measurements are estimated using the methodology. Section 5.5 investigates the relationship between 

the workload sampling period and the accuracy of the MPO estimate. Finally, in Section 5.6, correla­

tion analysis is used to investigate the relationships between overheads and workload characteristics. 

5.1. MPO Estimation Methodology: Machine Independent 

This section introduces the methodology which estimates the :MFO in real workloads. Concep­

tually, the machine-independent methodology is extremely simple. However, as will be seen in the 

other sections of this chapter, the actual use of the methodology becomes complex when real work­

loads over which there is no control are encountered. 

To estimate the MPO of a workload, a modified version of the Completion Time Estimation 

Technique is used. A target application is executed in the workload under investigation, and its com­

pletion time is measured. The completion time of the application in the same workload, assuming no 

MPO (CTw'o MPO), is then estimated. The percentage of processor time spent executing MPO (%MPO) 

can then be estimated using Equation (5.1). 



45 

%MPO = CI' - gWlo MPO X 100 (5.1) 

At this point the reader may be aware of an inconsistency in the use of the term overhead and the 

calculation of such. Admittedly. overhead is normally determined by dividing by the completion time 

without the overhead instead of the actual completion time. In other words. the true definition of over­

head requires the denominator of Equation (5.1) to be CI'wlo MPO and not cr. As the equation stands. 

%MPO is the percentage of the completion time of the target application that is consumed by MPO. It 

will be seen that this number is what is needed for the construction of our application execution model 

(Chapter 7). Therefore. the reader is cautioned to bear in mind the definition of overhead as used in 

this thesis. 

Equation (5.1) is machine independent; however. the determination of CI'wlo MPO is not. To com­

pute CI'w/o MPO. complete information about the other jobs in the worldoad (e.g .• types of jobs. priority 

of jobs. lengths of jobs). the scheduling paradigm. and the base resource requirements of the target 

application are needed. With this information. the execution of the job in the worldoad. assuming no 

MPO. can be analytically simulated and CI'wlo MPO can be estimated. 

For example. assume a uniprocessor with a fair. time-shared. round-robin scheduling policy with 

time quantums several orders of magnitude smaller than the job lengths. Assume that a target applica­

tion is submitted to this system and the worldoad for the entire execution of the application consists of 

three other jobs (all jobs have the same priority). If there were no MPO then the completion time of 

the target application would be four times its completion time on a dedicated machine. Of course. this 

is a simple example. but the philosophy is used to determine CI'wlO MPO for more complicated schedul­

ing paradigms and changing worldoads. 

In real situatoins. the scheduler and base resource requirements for the target application are usu­

ally not difficult to obtain. However. a constantly changing workload is hard to monitor because jobs 

of different classes and priorities enter and leave the system at undetermined times. The workload 

information needed. however. can be approximated by frequently sampling the parameters pertinent to 



46 

scheduling. If the sampling period is small enough. the sampled data will accurately reflect the actual 

workload. 

Figure 5.1 illustrates the sampling technique. The solid line in the figure shows the number of 

class X jobs in an imaginary system as a function of time. The queue length of this job class is sam-

pled at the instances indicated by the arrows. The dotted line in the figure shows the workload recon-

structed from the samples. Obviously. if the sampling period is small enough. the reconstructed work.-

load will accurately represent the actual workload. 

In the following section the methodology and sampling technique are illustrated with details for 

workloads on the Alliant FX/80. 

5.2. MPO Estimation: Alliant FXI8 and FXl80 

To estimate the MPO for a given workload. a target application from Table 3.3 is executed in the 

workload and the completion time is measured. The CI'w/o MPO is then estimated. and Equation (5.1) is 

used to detennine the percentage of the parallel environment which was spent executing MPO. 

10 
___ Actual Workload 

8 .............. Approximated Workload 

#of 6 

Jobs 

4 

2 

TIME 

Figure 5.1 Sampling Single Job Queue 



47 

As mentioned in the previous section, CI' w/o MPO is estimated using scheduling related informa-

tion about the jobs in the workload, the scheduling paradigm, and the base resource requirements of 

the target application. The Alliant scheduler (Table 3.1) and base resource requirements of the target 

applications (Table 3.3) have already been discussed. TIle workload parameters crucial to scheduling 

and therefore sampled were the numbers of each type of job on the system. The sampling procedure is 

illustrated by Figure 5.2. 

Using the sampled workload data and the scheduling information, CI'w/o MPO is analytically 

estimated. For the Alliant, the goal is to determine the percentage of CE clustered time (time when 

the CEs are clustered) that is consumed by MPO. This requires two numbers, to be estimated. The 

first number is the percentage of time the CEs were clustered and executing cluster jobs (type A or C) 

while the target application executed. This will be referred to as the Percentage of Available 

Clustered Time (%ACT). The second number is the percentage of the %ACf that would be granted to 

the target application if there was no MPO. From these two numbers CTw/o MPO is estimated using 

Equation (5.2). The equation takes the rate of processing power ideally given to the target application 

(no MPO) and divides it into the needed processing power (CTDetL MtIt:.). 

CI'DetL MIIC. X 100 x 100 CTw/o MPO = -----=:::=-::=-------
%ACI' x (%ACI' granted application) 

(5.2) 

For instance, assume the target application requires 100 s of clustered CE time to complete, 

eTD_a. MIIC. = 100 s. Also assume that the application is executing in a workload which would grant 5% 

of the clustered CE time to that application if there were no MPO (denominator of Equation (5.2». 

100 Then, the CTw/o MPO would be 1[0) = 2000 s. 

Determining %ACf will be discussed first. The Q facility can directly measure the percentage 

of time the CEs were clustered (%CLUSTERED). However, all of this time was not necessarily 

granted to cluster jobs. If there was a single CE or IP/CE job on the system (in addition to the cluster 

jobs), then the CEs would remain clustered when executing it. To determine %ACf, the percentage 



Target 
Application 
~ tarts 

time .. 
• • • • 

iii i i 
Sample 

~----------~---------. 

S. - Sample i 
1 

Contents 

#Type A Cluster Jobs: CLA i 

# Type C Cluster Jobs: CLC . 
1 

# IP/CE Jobs: IPCE 

# Type A CE Jobs: ciA i 

#Type C CE Jobs: CEC i 

~ 

Target 
Application 
Finishe 

Sample 
Period 

Figure 5.2 Alliant Worldoad Sampling Technique 

48 

of time the CEs were clustered but executing a single CE or IP/CE job is subtracted from 

% CLUSTERED. 

The percentage of clustered time spent executing a single CE or IP/CE job is estimated from the 

sampled data. Let %CE 1 be the percentage of samples containing one CE job and no IP/CE jobs. For 

this case, the CEs would remain clustered and execute the single CE job 6/13 of the time (see Alliant 

scheduler, Table 3.1). Similarly, let %IP ICE 1 be the percentage of samples containing one IP/CE job 

and no CE jobs. For this case, the IP/CE job would be executed by either the clustered CEs or an IP. 

Assume that an IP executes the IP/CE job half of the time and the clustered CEs the other half; there-

fore, on average, 3/13 (1/2 of 6/13) of the clustered CE time would be spent executing the job. Equa-

tion (5.3) combines all of this information to estimate %ACT. 

%ACT = %CLUSTERED - (%CE 1 x 6/13) - (%CE lIP 1 x 3/13) (5.3) 

The parameter %ACT is literally the percentage oftime in which the target application is execut-

ing that the CE complex was clustered and executing cluster jobs. There are no assumptions made 



49 

about MPO in the estimate of Equation (S.3). The parameter %Acr can also be viewed as the aver-

age percentage of processing power granted to cluster jobs (including the target application). The per-

centage of this processor power granted to the target application assuming no MPO must now be 

determined. This is done by estimating this value for each sampling period and averaging all samples 

taken during the execution of the target application. 

If sample i contains CLAj type A cluster jobs (including the target application) and no type C 

cluster jobs (CLCi = 0). then the percentage of %Acr granted to the target application for that sam-

piing period is estimated by (S.4a). Basically. the equation states that all cluster A jobs share the 

available cluster time equally. If. however. there were one or more type C cluster jobs in the sample, 

(CLCi > 0) then (3.4b) provides the estimate. For simplicity. Equation (S.4b) assumes that there were 

one or more serial jobs present. The t accounts for level 2 in the scheduling algorithm (Table 3.1). 

The parameter %Acr is determined by averaging %ACTi over all samples (Equation (S.4c». 

1 
%ACTi = 1 + GLAi X 100 CLCj =0 

%ACTi = 1 + tLAi X t x 100 CLCi > 0 

];'j%ACTi 

%ACT = NumberofSamples 

(S.4a) 

(S.4b) 

(S.4c) 

Equations (S.3). (S.4a), and (S.4b) are derived from the scheduling information (Table 3.1). It 

should be noted that time gained by I/O cycle stealing is accounted for in this estimate. If there was 

significant I/O overlapping, the estimated CTw10 MPO will tend to be higher, and hence the MPO esti-

mate will be lower. This is fine because I/O cycle stealing is a benefit of multiprogramming and 

should be credited in its overhead measurement. 

Once CT...,ID MPO is estimated using the above equations. Equation (S.l) is used to determine 

%MPO. The final %MPO will be the percentage of clustered CE time (not total CE time) consumed 

by MPO. This is acceptable because it quantifies the MPO that degrades the performance of solely 



50 

parallel jobs. The MPO executed on detached CBs or IPs will not degrade the performance of parallel 

joQs. 

5.3. Alliant Workloads 

The techniques introduced above were used to determine the MPO for multiple workloads on an 

Alliant FXl8 and Alliant FXl80 at CSRD. The Alliant machines are used heavily at CSRD for algo­

rithm development and general scientific computing. The workloads studied on the Alliants were 

chosen randomly during the normal operation of the Alliant machines. There was no control over 

what type of work was being done while the study was conducted. This section summarizes the work­

loads measured and presents some general characteristics of the workloads under investigation (e.g., 

paging, queue lengths). 

5.3.1. Experiment summary 

The MPO is determined by executing a target application in the workload under investigation. 

To illustrate that the methodology can work. with a number of target applications (as long as the appli­

cation is from the correct domain), three different target applications were used in the study: Dyfesm, 

Fl052, and Track. Another variable in the methodology not yet addressed is the frequency in which 

the samples are taken- the sampling period. TIle choice of the sampling period must balance the 

opposing goals of reducing intrusiveness (long sampling period) while accurately capturing the work­

load (short sampling period). Three sampling periods were experimented with: 30 s, 10 s, and 1.3 s. 

The effect of the sampling period on accuracy will be investigated in Section 5.5. 

With these three target applications and three sampling periods, the MPO was determined for a 

large number of randomly selected times during the normal operation of an Alliant FX/8 and FXl80. 

Each independent determination of MPO is referred to as an observation. Each observation was 

classified into an experiment according to the target application, sampling period, and machine used in 



51 

collecting it. Each experiment contains all observations collected using the same target application. 

sampling period. and machine. Table 5.1 summarizes the experiments conducted and gives the 

number of observations in each. For instance, experiment Flo_30 is the results obtained by executing 

and measuring, with a sampling period of 30 s, Fl052 49 times in real workloads found on the Alliant 

FXl80. 

The collection of observations for an experiment took from 2 to 4 weeks. The measurements for 

the entire study, 330 observations, cover an 8 month period. 

The Alliant FX/8 was used for only one experiment, Dyfe_30jx8, because access to the 

machine was lost and replaced by an FX/80 during the course of the study. Nonetheless, the forty-two 

observations were of value in comparing the two machines. 

5.3.2. Workload characteristics 

In this section, general characteristics of each experiment's workload are identified. In a later 

section the relationships between these characteristics and multiprogramming and system overheads 

will be investigated. 

Table 5.2 summarizes job queue length measurements for the observations in each experiment 

Mean job queue lengths are found by averaging the mean queue lengths for each observation in an 

experiment. An observation's mean queue lengths are the average number of each type of job in the 

Experiment 
ID 

Dyfe_30jx8 
Dyfe_30 
Dyfe_O 
Flo_30 
Flo_1O 
Flo_O 

Track_30 
Track_O 

Table 5.1 
Experiment Summary 

Target Machine Sampling 
Appl. Period 

Dyfesm FX/8 30s 
Dyfesm FX/80 30 s 
Oyfesm FX/80 -1.1 s 
Fl052 FXl80 30 s 
Fl052 FXl80 lOs 
Fl052 FX/80 -1.4 s 
Track FXl80 30 s 
Track FXl80 -1.3 s 

# 
Observations 

42 
61 
35 
49 
41 
37 
35 
30 



52 

system while the target application is executed. The standard deviation reported in the table quantifies 

the deviation among the observation means of an experiment A large standard deviation indicates 

that the workload fluctuated greatly over the collection of the experiment. 

The most common job was the type A cluster job. There were usually two or three of these jobs 

in the system while a target application executed. Type C cluster jobs were much less prevalent 

(except in the observations of Track_30). The CE and IP/CE jobs tended to be shorter in duration than 

cluster jobs, and, at a given time, there were usually only one or two in the system. 

Table 5.3 summarizes additional system measurements which characterize the worldoad for each 

experiment. The values shown are averages for all observations of an experiment. The CE utilization 

is the average utilization of all eight CEs and IP utilization is the average utilization of all IPs. The 

O/OCLUSTERED is the percentage of time the CEs were physically clustered. Paging rate is the 

number of disk accesses per second and reconfiguration (Reconfig) rate is the number of times the CEs 

switched configurations each second. 

Notice that there is, on average, little paging being done. The observations which contain the 

most paging were those taken on the Alliant FX/8. This is probably due to the smaller memory size of 

the machine. For the FX/80 experiments, observations in Fl052_30 contained the most paging, 

Table 5.2 
Job Queue Lengths (#) 

Experiment Clustered Clustered CE IP/CE 
Type (A) Type (C) Type (A,C) 

Job Q length Job Q length Job Q length Job Q length 
ID 

Mean Std. Mean Std. Mean Std. Mean Std. 
Dev. Dev. Dev. Dev. 

Dyfe_30_fx8 2.51 0.98 0.18 0.29 0.41 0.39 2.33 1.27 
Dyfe_30 2.57 1.46 0.52 0.68 0.84 0.71 0.91 0.63 
Dyfe_O 3.47 1.07 0.57 0.76 0.73 0.37 1.41 0.58 
Flo_30 3.38 1.72 1.14 1.27 0.78 0.64 0.96 0.78 
Flo_tO 3.05 1.22 0.06 0.20 1.35 0.92 0.63 0.55 
Flo_O 3.67 1.98 0.30 0.47 1.02 0.86 1.23 1.06 

Track_30 3.63 1.21 1.32 1.22 0.90 0.56 1.37 0.75 
Track_O 3.20 0.90 0.24 0.34 0.64 0.51 1.11 0.84 



Experiment CE 
ID Util. 

(%) 
Dyfe_30_fx8 0.83 

Dyfe_30 0.86 
Dyfe_O 0.78 
Ao_30 0.86 
Ao_tO 0.81 
Ao_O 0.79 

Track_30 0.82 
Track 0 0.79 

Table 5.3 
Workload Characteristics 

IP % 
Util. CLUSTERED 
(%) (%) 
0.07 71.9 
0.15 78.9 
0.31 61.1 
0.15 77.9 
0.27 71.5 
0.34 61.4 
0.20 70.7 
0.33 63.3 

S3 

Paging Reconfig. 
Rate Rate 

(page/s) (recon./s) 
0.959 0.441 
0.088 1.006 
0.027 1.660 
0.322 1.039 
0.011 1.360 
0.211 1.712 
0.185 1.44 
0.172 1.66 

averaging one disk access every three seconds. Some individual obseIVations contained a good deal 

of paging, but the majority of obseIVations had no paging. For instance, for one obseIVation in 

Track_30, the disk was accessed 11,143 times, for an average of 3.7 accesses a second, while 27 other 

obseIVations in the experiment contained no paging. The data also show that the CEs were highly 

utilized throughout the experiments, while the IPs were uniformly under-utilized. This is probably 

due to the large proportion of parallel jobs- which can run only on the CEs- in the workload. 

Figure 5.3 shows the frequency distributions of the completion times for the target applications 

in the real workloads. The graphs illustrate the large range of time spanned by the completion time of 

an application in real workloads. The completion time of Flo_52 was as long as 3229 s; this is more 

than 36 times longer than the application takes on a dedicated machine. The large variances are due to 

the two degrading components in multiprogramming environments: multiprogramming overhead and 

resource timesharing. 

5.4. Multiprogramming and System Overheads 

Measurements of system and multiprogramming ovemeads are presented in this section. System 

overhead is measured with the Q facility and is available for all processing resources (clustered CEs, 

detached CEs, and IPs). Multiprogramming overhead is estimated using the statistical sampling tech-

nique. It is detennined only in the parallel environment (the CEs while clustered). Section 5.4.1 will 



30 

20 

Freq. 

10 

(a) Dyfesm 

Cf(dedicated machine) = 200 s. 

-o~~~~~~~~~~~~ 

20 

15 

10 
Freq. 

5 

300 900 1500 2100 2700 3300 3900 

Completion Time (s) 

(c) Track 

CT(ded. mac.) = 94 s. 

300 900 1500 2100 2700 3300 3900 

Completion Time (s) 

40 

30 

20 
Freq. 

10 

20 

15 

10 
Freq. 

5 

54 

(b) Flo_52 
Cf(ded. machine) = 88 s. 

300 900 1500 2100 2700 3300 3900 

Completion Time (s) 

(d) Dyfesm (Alliant FX/8) 

Cf(dedicated machine) = 241 s. 

300 900 1500 2100 2700 3300 3900 

Completion Time (s) 

Figure 5.3 Completion Times of Target Applications 

look in depth at the overheads in the parallel environment (both multiprogramming and system). Sec-

tion 5.4.2 presents system overhead measurements for all processors and decomposes it into three 

exclusive categories: spin lock, interrupt handling, and general system work. 

5.4.1. Overheads in parallel environment 

Table 5.4 shows the mean and standard deviation of MPO, total system ovemead, and applica-

tion completion time for each experiment. The measurements quantify the percentage of parallel pro-

cessing time (clustered CE time) consumed by the specified overhead. The last row of the table shows 



ss 

the averaged results for the FX/80. As expected, the mean MPO is less than the mean system over-

head for all experiments, because on a gang scheduled machine such as the Alliant, MPO is a subset of 

total system overhead. The MPO standard deviation is slightly greater than that of the total system 

overhead. This is attributable to both inherent variance in real workload the MPO and variance caused 

by estimation noise. The error in estimating MPO will be discussed in detail in Section 5.5. 

The table shows that well over half of the total system work. executed by clustered CEs is due to 

MPO. More specifically, on average, 16% of the processing power available to parallel applications is 

consumed by MPO. This is a substantial amount of processing power, much larger than the desired 

10% [39]. 

The standard deviation is fairly large for both multiprogramming and system overheads (13.04% 

and 12.92%. respectively). This indicates that both of these measurements can take a wide range of 

values. For instance. one observation had a system overhead measurement of 82.1 %, while another 

had a measurement of just 5.5%. These are extremes; the 5th and 95th percentiles for this value are 

7.8% and 49.8%. respectively. The 25th and 75th percentiles are 12.8% and 30.5%. 

The MPO was estimated to be as high as 63.9%, but this estimate was probably skewed by noise. 

Noise also caused some MPO estimates to be less than zero (this never occurred while sampling as 

Table 5.4 
Overhead Measurements (% of Parallel Processor Time) 

Experiment MP System Completion 
Overhead Overhead Time 

ID 
Mean Std. Mean Std. Mean Std. 

Dev. Dev. Dev. 
Dyte_30_fx8 17.92 14.18 26.~3 14.24 1313.24 804.04 

Dyfe_30 13.68 14.76 17.47 12.02 1122.53 635.37 
Dyfe_O 18.32 8.25 29.38 9.12 2103.52 877.13 
Flo_30 16.38 16.35 27.17 13.45 933.6 672.51 
Flo_1O 12.27 10.89 12.85 4.07 528.80 246.53 
Flo_O 21.77 9.74 27.18 10.01 933.34 720.62 

Track_30 14.17 16.15 26.03 17.42 1222.38 549.08 
Track_O 17.06 8.36 30.43 8.78 788.13 345.48 
Totals 16.05 13.04 23.55 12.92 



S6 

often as possible). This is to be expected though, given the size of the noise tenns (Section 5.5). The 

25th and 75th percentiles for the MPO measurement are 10.69% and 22.14%, respectively. In other 

words, the majority of workloads lose 10 to 23% of their processing power to multiprogramming over-

head. 

For the observations of the experiments Flo_O, Oyfe_O, and Track_O, the combined frequency 

distributions for both multiprogramming and system overheads are given in Figure 5.4. Notice that 

the tails on both distributions extend well past the 33% mark. For system overhead, one-third of the 

observations were greater than 33%, and for MPO, one-fifth of the observations were greater than 

33%. This further illustrates the substantial perfonnance degradation caused by multiprogramming 

and system overheads in real workloads. 

The mean MPO found on the Alliant FXl8 (17.9%) was close to that found on the Alliant FXl80 

(16.1 %). Assuming the workloads to be similar, it can be inferred that the cost of multiprogramming 

is similar for the two machines. 

30 

20 
Freq. 

10 

-o~~~~~~~~~~--~ 
10 20 30 40 50 60 70 

30 

20 
Freq. 

10 

-0 

-

-

-

-
-

-r--

r-
r--

t-
r-

hili 
10 20 30 40 50 60 70 

% MP Overhead % System Overhead 

Figure 5.4 Multiprogramming and System Overheads: Distributions 



57 

5.4.2. System overhead components: aU processors 

System and multiprogramming measurements presented thus far pertain to overheads incurred 

while the CES were clustered or to overheads directly affecting parallel job execution. In this subsec-

tion, system overhead executed on the other processors is quantified (measured with the Q facility). 

The MPO is not available on these processors. In addition, for each processing resource (clustered 

CEs, detached CEs, and IPs), the total system overhead is divided into three mutually exclusive sub-

categories: kernel lock spins (SPIN), interrupt handling (INT), and general system wode (SYS). Fig-

ure 5.5 illustrates this taxonomy for a single resource on the FX/80. 

The SPIN parameter quantifies the time a processor spends waiting for one of the numerous ker-

nel mutual exclusion locks to be released. The locks are implemented to share data or protect critical 

sections in the single copy of the operating system. The INT category clocks the time the processor 

spends handling interrupts (such as DMA or device interrupts). The SYS parameter is a catch-all 

category made up of all the other system wode such as system calls. 

Figure 5.6 summarizes the results for the 288 observations collected on the Alliant FX!80. The 

figure shows the 25th percentile, the 75th percentile, and the mean for each of the overhead sub-

categories (SPIN, INT, and SYS) on each of the processing resources (clustered CEs, detached CEs, 

and IPs). For instance, the mean percentage of time spent by IP 6 spinning on locks (SPIN) was 9.7%. 

Interrupt 
Handling 
(!NT) 

Total System Overhead 

KemelSpinLocks 
(SPIN) 

General 
System Work 

(SYS) 

Figure 5.5 Alliant Overhead Venn Diagram 



58 

In addition, half of the observations of IP 6 SPIN time consumed between 2.5% and 13.7% (the 25th 

and 75th percentile) of the total IP 6 processing time. Note that the measurements for overhead exe­

cuted on the clustered CEs are given as a percentage of clustered time (not total time), and, 

correspondingly, overheads for the detached CEs are presented as a percentage of detached time. 

Figure 5.6 shows that for all processing resources (except IP 1) INT was a minor component of 

total system overhead. In addition, the range (shaded region) of the INT parameter was small. These 

two facts suggest that interrupt handling was not a major cause of performance degradation and was 

fairly predictable. 

On the other hand, the figure shows that kernel lock spinning was a major component of system 

overhead for all processing resources. For instance, well over one-third of the total system overhead 

executed on the clustered CEs was attributable to kernel lock spinning. Kernel lock spinning is of par­

ticular interest to this study because contention for the kernel is clearly a manifestation of multipro­

gramming. When the target applications were executed alone on a dedicated machine, kernel lock 

spinning was minimal. Because kernel lock spinning is such a major component of system overhead 

in real workloads, and because it completely degrades the processor, kernel lock spinning is a clear 

target for improving system performance. 

5.5. The Sampling Period 

The real workload MPO estimation technique introduced in Section 5.2 requires pertinent work­

load parameters to be periodically sampled. The choice of the sampling period must balance the 

opposing goals of reducing the intrusiveness of the sampling software while accurately capturing the 

workload on the system (Figure 5.1). For the Alliant study three different sampling periods were 

used: -1.3 s, 10 s, and 30 s. In this section, the effect of the sampling period length on the accuracy of 

the estimation of CTw ,o MPO is investigated by determining the noise term associated with each sam­

pling period. 



30 

%PT25 
R I 
o M 20 
C E 
E 
S 
S 
o 
R 

% P T 
R I 
OM 
C E 
E 
S 
S 
0 
R 

% P T 
R I 
OM 
C E 

15 

10 

5 

20 

15 

10 

5 

10 

5 

CE 1 - CE 8 show % of 

detached time executing 

overheads. 

!NT SYS SPIN 

CLUSTER 
!NT SYS SPIN 

CE 1 

25th 
Percentile 

!NT SYS SPIN 

CE3 

!NT SYS SPIN 

CE6 

!NT SYS SPIN 

CE4 

Percentile 

!NT SYS SPIN 

CE7 

75th Percentile 

MEAN 

25th 
Percentile 

!NT 

75th 

!NT 

MEAN 

SYS 

CE2 

SYS 

CE5 

SPIN 

SPIN 

!NT SYS SPIN 

CE8 

Figure 5.6 CE System Overhead Components 

59 



30 

% P T 25 
R I 
OM 
C E 20 

E 
S 
S 
o 
R 

% P T 
R I 
OM 
C E 
E 
S 
S 
0 
R 

15 

10 

5 

30 

25 

20 

15 

10 

5 

60 

--- 75th Percentile 

''----MEAN 

INT SYS SPIN INT SYS SPIN INT SYS SPIN 

IPI IP2 IP3 

75th 
Percentile 

25th 

INT SYS SPIN INT SYS SPIN !NT SYS SPIN 

IP4 IP5 IP6 

Figure 5.6 IP System Overhead Components 



61 

The 30 s sampling period reflects the workload least accurately, but is also least likely to affect 

the workload. Conversely, sampling frequently may represent the workload well but also perturb it 

Due to physical limitations, the smallest sampling period possible was approximately 1.3 s. This was 

achieved by requeueing the measuring facility as soon as a sample was collected. To reduce the 

interference with other CE jobs, the sampling facility was executed on the IPs. Unfortunately, the 

shell program which managed the sampling facility could not be completely regulated to the IPs. 

Therefore, whenever the workload was not being sampled, there was an extra IPICE job queued in the 

system. The overall effect was that the workload was slightly modified by the measuring facility. To 

account for this, Equation (5.3) was slightly modified to ensure that the MPO estimate remains correct. 

To determine the accuracy of the estimate of completion time without the multiprogramming 

overhead, CT"'lo MPO, obtained with each sampling period, the estimate is modeled as the true but 

unobtainable measure, CFwlo MPO, plus a Gaussian white noise error term, Z, (Equation (5.5».2 The 

noise term accounts for differences between the true workload and the one represented by the samples. 

This difference is illustrated by the solid and dotted lines of Figure 5.1. The variance of the noise term 

(the mean is zero) is a direct reflection of the accuracy of the sampling period. The higher the vari-

ance, the larger the possible error in estimating CFwlo MPO. 

cT",lo MPO = CI'",lo MPO + Z (5.5) 

This problem of estimating a signal from a signal with noise is a classic problem in signal pro­

cessing. For the current problem though, difficulties arise in the construction of the filters because the 

signal and the noise may have the same frequencies. In addition, even if the noise attributed to each 

queue signal could be accurately obtained, determining the noise in cT wlo MPO is not straightforward. 

Because of these difficulties, signal processing methods were abandoned and two statistical techniques 

were developed to estimate the standard deviation of the noise term, and hence the accuracy of the 

estimation. 

2For simplicity, all OIher sections have and will referlo the estimate cT wlo MPO U CF",lo MPO. 



62 

The first technique consists of determining cT",'o MPO a number of times in a slowly changing 

workload (Le., a workload in which the number and types of jobs remain fairly constant). In other 

words, for a workload which did not change drastically, a target application was executed a number of 

times sequentially. Each execution of the target application produced a value for CT ... 1o MPO. It is 

assumed that the CI ... 1o MPO (not the estimate) over the entire period of the workload is constant 

because the workload itself is nearly constant Therefore, the deviation in the multiple estimates of 

CTwlO MPO can be completely attributed to the noise term, and the standard deviation of the multiple 

estimates of CI ... 1o MPO can be used as an estimate of the standard deviation of Z. 

The above procedure was performed using a number of slowly changing workloads for each of 

the three sampling periods. Each different slowly changing workload produced multiple estimates of 

CIwlO MPO and a single estimate of Z. The standard deviation for the noise term of a particular sam-

pIing period was then determined using Equation (5.6). In the equation, 11; is the number of times 

CTw' o MPO was determined for the i llt workload. #WL is the number of workloads used, and crr is the 

estimate ofZ's variance determined from the i llt workload. 

(5.6) 

Table 5.5 shows. for each sampling period, the number of workloads used. the number of times 

CTw ,o MPO was determined, and the estimate of the noise term standard deviation. Notice that the 

larger sampling periods have larger noise standard deviations. 

Table 5.5 
Noise Term Variances: Technique One 

Sampling #WoIk # Samples Noise 
Period Loads Taken Term 

(s) Used Std. Dev. (s) 
-1.3 4 15 4.82 
10 4 14 18.80 
30 4 20 28.22 



63 

The second technique used to estimate the standard deviation of the noise term assumed that 

CTwlo MPO determined from the data collected while sampling as fast as possible was the actual 

CTwlo MPO (Le., there was no noise with the fastest sampling). These data were then pruned to reflect 

the data that would be collected if a 10 or 30 s sampling were used. For instance, if sampling as fast 

as possible actually resulted in sampling every 2 s, then every fifth sample would be kept to approxi­

mate sampling with a 10 s interval. The cT wlo MPO was then calculated with the pruned data. The 

difference between the CTw/o MPO determined from all of the data and the cTw/o MPO determined from 

the pruned data is a single measurement of the noise term. Using this technique, a large number of 

individual noise terms were determined and used to estimate the distribution of the noise term for each 

sampling period. 

Table 5.6 provides the number of samples analyzed, the estimated mean value of Z, and the 

estimated standard deviation of Z for the two sampling periods. 

The estimates of noise term standard deviation using technique two confirm the estimates using 

the first technique. The estimates of the noise term means are not statistically different from zero. 

This complies with the model proposed in Equation (5.5). How the noise term is reflected in the MPO 

estimate is dependent on the actual completion time of the target application (Equation (5.1)). 

Note that the noise term associated with 30 s sampling may at times be large and thus cTw,o MPO 

and the MPO estimate may be highly skewed. However, This does not mean that results obtained 

with a 30 s sampling period are useless. The noise term has a mean of zero (substantiated by the data), 

so that if the MPO estimate is computed for a number of runs, the mean of these will converge to the 

Table 5.6 
Noise Term Variances: Technique Two 

Sampling # Samples Noise Noise 
Period Used Term Term 

(s) Mean Std. Dev." 
10 102 U.25 15.42 
30 102 6.94 27.66 



64 

actual MPO mean. Therefore, the means provided in Table 5.4 for sampling periods of 30 s are reli­

able. The individual measurements may be suspect though. 

To summarize, for large sampling periods, many test runs must be collected and averaged before 

the results are meaningful. For small sampling periods, estimates from single test runs have meaning. 

5.6. OverbeadIWorkload Relations 

The previous results show that both multiprogramming and system overhead are dependent on 

the workload. In this section, statistical techniques will identify underlying relations between over­

head and workload characteristics. The relation among overhead measurements will be investigated 

first. The goal is to understand the causes of overhead and how the overhead affects the completion 

time of parallel applications. 

5.6.1. Over bead - over bead correlations 

The fraction of total system overhead which is attributable to kernel lock spinning and interrupt 

handling has been directly measured (Figure 5.5). The fraction of the MPO attributable to these over­

head components cannot be measured. To gauge the impact of these components on MPO, as well as 

the relationships among the ovethead components, correlation analysis was conducted with the real 

workload overhead measurements. 

Correlation coefficients between all pairs of overhead measurements (for example, IP 2 SPIN 

time and CE 4 !NT time) were calculated. The relationships between multiprogramming overhead 

and other system overheads are discussed first. The MPO was moderately correlated with cluster total 

system overhead (0.45), IP I !NT time (0.51), and cluster SPIN time (0.47). All other correlations 

between MPO and overhead parameters were negligible. The correlation with total system overhead 

is expected because MPO is one of its major components. The correlation with IP 1 !NT time is due 

to general increases in system activity and not suggestive of anything crucial. The correlation between 



65 

cluster SPIN time and MPO is suggestive. It indicates that kernel lock spinning (which is not found 

on a uniprocessor) is a major component of MPO on a multiprocessor. Due to the prominence of ker­

nellock spinning (Figure 5.5), it is easily deduced that multiprogramming is more costly to implement 

on a multiprocessor than a uniprocessor. This indicates that measurements of uniprocessor multipro­

gramming overhead will not provide sufficient understanding of multiprogramming on a multiproces­

sor. Also, measurements of the individual components of MPO (such as context switch time) do not 

provide adequate understanding of MPO. Real workload measurements are the only means to acquire 

the whole picture of multiprogramming overhead on a multiprocessor. 

Correlation analysis of kernel lock spinning among the processing resources reveals another 

interesting fact. The amount of time each processor spends spinning is highly correlated with each 

other (0.65 - 0.95). This suggests that there are times at which access to critical sections of the kernel 

degrades not just one, but most processors of the machine. Oearly kernel lock spinning is a major, 

unique culprit of MPO on a multiprocessor. 

5.6.2. Overhead - workload characteristics correlations 

A representative sample of correlation coefficients between overhead measurements and work­

load parameters is given in Table 5.7. The table shows workload correlations with overheads from the 

clustered CEs, two detached CEs (one heavily and one normally loaded), and an IP. 

Moderate correlations were found between processor utilizations and cluster MPO, and between 

processor utilizations and cluster system overhead. This suggests that when the system is heavily 

loaded, a larger percentage of parallel processing time is consumed by overhead. Paging shows little 

correlation with overhead since little is captured by the experiments. The CE jobs were also not pre­

valent, and, correspondingly, their correlations with overhead were small. 

More interesting are the correlations between the overheads and the number of IP/CE jobs in the 

system. It was found that an increase in the number of IP/CE jobs was generally accompanied by an 



Parameters 

MPO 
Ouster System Overhead 

Ouster SPIN 
OusterSYS 
OusterINT 
CE 1 SPIN 
CE 1 SYS 
CE 1 INT 
CE 5 SPIN 
CE5 SYS 
CE5 INT 
IP 5 SPIN 
IP5 SYS 
IP5 INT 

Table 5.7 
Correlation Coefficients 

Cluster CE IP/CE 
Job Job Job 

Queue Queue Queue 
Length Length Length 

0.10 0.22 0.43 
0.33 -0.13 0.46 
0.29 -0.01 0.57 
0.30 -0.23 0.04 
0.17 0.29 0.20 
0.06 -0.13 0.53 
-0.11 -0.44 -0.02 
-0.10 0.02 0.04 
0.12 0.09 0.63 
0.14 0.08 0.64 
0.14 0.76 0.43 
0.10 0.02 0.60 
0.09 -0.08 0.54 
0.02 0.13 0.25 

66 

CE IP Paging 
UtiI. UtiI. 

0.48 0.37 0.31 
0.62 0.47 0.44 
-0.20 0.80 0.22 
0.21 0.09 0.11 
-0.13 0.24 0.35 
0.08 0.76 0.19 
0.14 0.28 -0.09 
0.35 -0.16 0.16 
-0.03 0.76 0.20 
-0.17 0.80 0.09 
-0.25 0.34 0.24 
-0.21 0.92 0.20 
-0.40 0.86 0.10 
-0.13 0.36 0.05 

increase in processor overheads. While this may be expected for the IPs or detached CEs, it is discon-

certing to see the correlation between the number of IP/CE jobs and clustered CE overhead (both mul-

tiprogramming and system). A quick survey of the table indicates that the overhead component most 

responsible for this correlation was kernel lock spinning. It is postulated that through increased kernel 

contention, IP/CE jobs increase overhead on the clustered CEs and degrade the performance of paral-

leI applications. 

Surprisingly, the correlation between the number of parallel (cluster) jobs and MPO present in 

the parallel environment is negligible. This implies that when more parallel jobs are multipro-

grammed, the MPO does not necessarily increase. 

To investigate this relationship further, the Hoeffding test of independence was conducted on 

these parameters. The Hoeffding independence test is a nonparametric test which uses observations 

from two random variables to test the hypothesis that the two random variables are independent. 

Equation (5.7) illustrates the hypothesis for the random variables X and Y. 



67 

H 0 : P (X S x and Y S y) = p (X S x) x P (Y S y) (5.7) 

Using this test, the hypothesis that the MPO and the number of parallel jobs in the system are indepen­

dent could not be rejected at any reasonable level (p-value = 0.2). On the other hand, the same test 

soundly rejected (a = 0.01) the hypothesis that total system ovemead is independent of the number of 

parallel jobs in the system. To summarize, while the number of parallel jobs may increase total sys­

tem overhead, there is no statistical evidence to indicate that MPO is dependent on the number of 

parallel jobs in the system. 

This result is probably due to the nature of MPO and the types of jobs in the workloads studied. 

A major component of multiprogramming ovemead is context switching which consumes nearly the 

same amount of time regardless of the number of jobs in the queue. In addition, for most of the work­

loads tested, the number of parallel jobs on the system ranged from two to four. Given this limited 

number and the memory requirements of the applications, the memory was large enough to effectively 

eliminate paging. For these reasons, MPO was less sensitive than total system overhead to the number 

of parallel jobs in the system. 

To summarize, correlation analysis determined that for the workloads studied, the number of 

parallel jobs multi programmed does not greatly affect the amount of MPO in the parallel environment 

However, through increased kernel contention, serial jobs executing on peripheral processors have a 

great effect on the MPO. 



68 

CHAPTER 6. 

MULTIPROGRAMMING AND SYSTEM OVERHEADS: CEDAR 

Workloads encountered during Cedar's nOl1llal operation are quite different from those found on 

the Alliant. There are two reasons for this. First, the purpose of each machine is different Cedar is 

concerned mainly with executing parallel programs efficiently, while the Alliant tries to provide speed 

up for parallel applications and high throughput for serial and interactive jobs. In real Cedar work­

loads there will be few (if any) serial jobs, while, as seen, there are many in Alliant workloads. The 

second reason for the different workload characteristics is that Cedar is a new experimental prototype, 

while Alliant is a reliable, established mini-supercomputer. Workloads on Cedar are more experimen­

tal. Because of this, users tend to avoid using Cedar in multiuser mode, opting for single-user mode in 

which they can monitor the execution of their application without outside contentions and interactions. 

For the reasons listed above, multiuser workloads encountered during nOl1llal Cedar operation 

were not interesting for monitoring or modeling purposes. For the purposes of this study a number of 

multiuser workloads were constructed. The workloads were constructed using the target applications 

introduced in Chapter 3 (Table 3.4); they are real in the sense that they consist of actual applications. 

No serial jobs were included in the workloads because it was felt that Cedar was not constructed for 

this type of work. 

The workloads were constructed to study the perfol1llance effects of multiuser workloads execut­

ing on Cedar. In the first section of this chapter, characteristics of the target applications used to con­

struct the workloads are detailed. Section 6.2 presents system overhead measurements for the con­

structed workloads. The multiprogramming overhead incurred by certain target applications in these 

workloads is also given. It is found that multiprogramming greatly degrades the perfonnance of some 

applications, while for others, multiprogramming actually benefits total system throughput by I/O 

overlapping. Section 6.3 presents empirical experiments which highlight these effects and identifies 



69 

application characteristics which cause them. It is found that synchronization overhead for SDOALL 

loops is exacerbated in multiprogrammed workloads which can lead to highly degraded performance. 

6.1. Cedar Target Applications 

The test applications used to construct the workloads were introduced in Section 3.3. In this sec-

tion their basic characteristics will be studied in greater detail. For each application. the resident page 

size as a function of time and the processor utilization will be presented. 

6.1.1. TFS 

The 1FS application is the Perfect benchmark. Fl052 written for Cedar using loop concurrency 

(SDOALL) constructs. The application alternately switches between sections of code that are run on a 

single cluster and loops that are executed on all four clusters through the use of helper tasks. The 

resident page set size for each type of memory as a function of application execution is shown in Fig-

ure 6.1. These results were obtained by periodically interrupting the execution of the program and 

using the getvmetc system call. The size of each page is 4 K. In the figure. the measurements of 

1000-

#of 
Pages 

SOO-

-0 

-0 

private cluster 

shared £Iobal 

, , , , 
t I / 

I 

) / 

shared cluster 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~~~~'-nt.:::::::::::::::: 
I 

20 
I 

40 
Time (s) 

I 

60 

Figure 6.1 Resident Page Set Sizes: 1FS 



70 

cluster memory usage are for all four cluster memories combined. Shared backing and private back-

ing pages both reside in global memory. They are copies of certain pages in shared and private 

memory, respectively. 

The figure shows that the most extensively used memory is private cluster memory, with shared 

global memory being used second most frequently. Private global memory is never used by this appli-

cation. The figure shows that memory usage occurs in three waves, at the beginning of the program, at 

15 s, and at 35 s. Correspondingly, examination of the application's algorithm, reveals that the appli-

cation itself consists of three phases of execution. 

Cluster utilization as a function of application execution is pictured in Figure 6.2. Only the first 

5 s of execution are shown. The Y-axis shows the number of clusters employed to execute the appli-

cation. Notice that only two situations exist The application uses either just one cluster or all four 

clusters. The one-cluster situation corresponds to serial code or loops with dependency which must be 

executed on a single cluster. The four-cluster situation corresponds to SDOALL loops. For instance, 

from program inception until approximately 1 s, TFS executes on a single cluster. At this point an 

SDOALL loop of approximately 10 ms is executed. 

4 

3 

#of 
Clusters2 

Employed 

l-r----------A-------------~ 

-O-r---------r---------r--------~--------~ 
-0 1 2 

Time (s) 
3 

Figure 6.2 TFS Cluster Utilization 

4 



6000 

4000 
Freq. 

2000 

-0 
-0 2 4 6 8 

SDOALL lengths (ms) 
(a) 

10 

1000-

Freq. 

500-

-0 

-0 

n I~ I I I 
2 4 6 8 

CDOACROSS lengths (ms) 
(b) 

Figure 6.3 Length of SDOALL and CDOACROSS Loops: TFS 

71 

I 
10 

Figure 6.3(a) shows the frequency distribution of execution times for SDOALL loops of TFS on 

a dedicated machine. For the sake of clarity, the figure shows only those loops which execute in under 

10 ms. In general, TFS is made up of very shott SDOALL loops. The average length is only 1.44 ms, 

and there is a large mass of SDOALL execution times between 0.5 and 1 ms. However, even with the 

shott lengths, SDOALL loops account for 75.5% of the execution time of TFS on a dedicated 

machine. 

Figure 6.3(b) shows the frequency distribution of execution times for CDOACROSS loops. 

Again, only those loops which execute in less than 10 ms are shown. The CDOACROSS loops con-

tain dependencies and are executed on eight processors of a single cluster. There are fewer 

CDOACROSS loops in TFS than there are SDOALLs, but the average length is slightly longer at 1.86 

ms. 

6.1.2. ARC and MCP 

Applications ARC and MCP are written with coarse-grained task parallelism. The ARC applica-

tion begins execution by spawning three tasks and remains a four-task application throughout its entire 



72 

execution. The MCP application executes on a single cluster for 77.5 s and then spawns three tasks 

which execute with the main task until completion approximately 40 slater. 

The resident page set sizes for ARC and MCP are given in Figures 6.4 and 6.5, respectively. 

Both applications use private cluster memory more extensively than shared global or shared cluster. 

Like TFS, neither application uses private global. The sharp rise in private cluster memory usage seen 

at approximately 80 s for MCP corresponds to the spawning of the three tasks. At this point, the 

private cluster pages of the main task are copied to the other cluster memories. In this way, each task 

has its own copy of private cluster data Notice that ARC's sharp rise in private cluster usage also 

corresponds to the spawning of tasks. 

The figures show that of the three applications, ARC uses the least of all types of memory. 

Focusing solely on Figure 6.4, it is seen that ARC uses private cluster memory almost exclusively. 

The most memory intensive application is MCP. Shared global memory is heavily used with a notice-

able increase at 80 s when the tasks are spawned. This increase cannot be explained by the mechanics 

of the task spawning as was the case for the private cluster memory. 

2500 T---;::============================::;' 

2000-

1500-
#of 

Pages 
1000-

I 

private cluster 

shared global. __ 
shared cluster __ 

shared backing ...... . 
private backing ..... . 500- I 

-r-----------------------------------------I 
-0 k ....................... _ .... _ ............................................. . 

, , , I 

~ W 40 00 W 
Time (s) 

Figure 6.4 Resident Page Set Sizes: ARC 



5000 

4000 

;~ 
Pages 

2000 

1000 

-0 

private cluster 

shared cluster __ 
shared backing ...... . 
private backing ..... . 

50 
Time (s) 

Figure 6.5 Resident Page Set Sizes: MCP 

6.2. Multiprogramming and System Overhead 

73 

100 

Multiuser workloads were created by executing different combinations of the above programs. 

The workloads were real in the sense that real applications were used. Detached (serial) jobs were not 

included because Cedar is not the proper machine to run such jobs. The loop and task dummy jobs 

introduced in Section 4.2 were used in some of the workloads to control the level (number of jobs at a 

given time) of multiprogramming. Recall that a loop dummy job is an endless job consisting of a 

large SDOALL loop. The loop spreads CDOALL iterations across all clusters of Cedar. The task 

dummy job is an endless job which spawns a task for each cluster. Each task performs a CDOALL 

which uses all eight processors of the cluster. Therefore, both dummy jobs continuously utilize all 32 

processors of Cedar. Also, both dummy jobs use a minimum of memory and create a minimum of 

system overhead. 

This section will summarize the workloads created and present measured system overheads for 

each. The multiprogramming overhead incurred by a target application executing in each of the work-

loads will also be presented. Unlike the previous chapters, the MPO presented is not necessarily a 

measure of processor time consumed. This is because the target applications are not computationally 



74 

bound (as they were in the Alliant case). Benefits of multiprogramming such as I/O overlapping are 

expressed in the MPO measurements. Also, MPO in this section is not a subset of system overhead. 

This is because gang scheduling is not used, and multiprogramming effects may be incurred by user­

level spinning. The workloads used to quantify the lower bound on multiprogramming overhead are 

included in this section for a point of reference. 

Table 6.1 summarizes the worldoads created and the measurements taken. The first column of 

the table provides an identification number for easy reference. The second column lists the target 

application, the application for which the effects of multiprogramming are gauged. The third column 

lists the applications (in addition to the target application) that make up the specific workload. The 

fourth column lists the completion time of the target application in the given workload. Following 

this the percentage of time each cluster is executing system overhead on each cluster is given. The 

final column is the important one; it lists the multiprogramming overhead incurred by the target appli­

cation. For instance, Experiment 7c consists of executing TFS on a system with three other copies of 

TFS executing simultaneously. The completion time of TFS in this environment was 673 s, yielding 

an MPO of 56.3%. The table also shows that 12% of the processor time of cluster three was spent 

executing system overhead, while 11 % of the other cluster's time was spent executing system over­

head. As in all controlled experiments of this thesis, the measurements presented are an average of 

multiple runs. 

Because the worldoads were constructed solely from parallel jobs, the CEs on all clusters 

remained in the clustered configuration at all times. The system overhead for each cluster was meas­

ured using the Q facility. A separate log is kept in the kernel memory of each cluster and accessed 

with a local, independent version of Q. Synchronization of the Q facilities was roughly accomplished 

using UNIX remote shells. The completion time of the target application executing in the real work­

loads was measured using the hybrid P3S monitor. 



7S 

Table 6.1 
Multiprogramming and System Overheads of Multijob Workloads 

Exp. Target Workload cr System Overhead MPO 
ID. Appl. Description (s) (%) (%) 

Cl C2 C3 C4 
la LOOP_CON 1 loop dummy 98.6 9 9 10 9 10.7 
Ib LOOP_CON 2 loop dummy 148.5 9 9 10 9 11.1 
Ic LOOP_CON 3 loop dummy 199.4 10 10 10 10 11.7 
ld LOOP_CON 4 loop dummy 249.5 10 10 10 10 11.8 
Ie LOOP CON 5 loop dummy 300.0 9 9 10 9 12.2 
2a LOOP_CON 1 task. dummy 98.9 9 9 10 9 10.7 
2b LOOP_CON 2 task. dummy 148.4 9 9 9 9 11.1 
2c LOOP_CON 3 task. dummy 199.5 9 9 10 9 11.7 
2d LOOP_CON 4 task. dummy 249.3 10 10 10 10 11.8 
2e LOOP CON 5 task. dummy 300.8 10 10 10 9 12.2 
3a TASK_CON 1 loop dummy 119.3 9 9 9 9 9.9 
3b TASK_CON 2 loop dummy 179.0 9 9 9 9 10.2 
3c TASK_CON 3 loop dummy 239.2 10 10 11 11 10.3 
3d TASK_CON 4 loop dummy 300.5 10 9 10 10 10.6 
3e TASK CON 5 loop dummy 363.7 10 9 10 9 11.6 
4a TASK_CON I task. dummy 119.7 9 9 9 9 9.9 
4b TASK_CON 2 task. dummy 180.0 9 9 9 9 10.2 
4c TASK_CON 3 task. dummy 240.8 9 9 9 9 10.3 
4d TASK_CON 4 task. dummy 302.1 9 9 10 9 10.6 
4e TASK CON 5 task dummy 365.1 9 9 9 9 11.6 
Sa TFS 1 loop dummy 301 9 9 9 9 51.2 
5b TFS 2 loop dummy 450 9 9 9 9 51.0 
5c TFS 3 loop dummy 627 9 9 9 9 53.1 
5d TFS 4 loop dummy 804 10 10 10 10 54.3 
5e TFS 5 loop dummy 973 9 10 10 10 54.7 
6a TFS 1 task. dummy 320 9 9 9 9 54.1 
6b TFS 2 task. dummy 472 9 9 9 9 53.3 
6c TFS 3 task dummy 636 9 9 9 9 53.8 
6d TFS 4 task dummy 822 9 9 10 9 55.3 
6e TFS 5 task dummy 1008 9 9 10 9 56.2 
7a TFS 1 TFS 335 12 12 13 11 56.1 
7b TFS 2TFS 501 11 10 14 10 56.0 
7c TFS 3TFS 673 11 11 12 10 56.3 
7d TFS 4TFS 846 11 11 12 11 56.6 
8a ARC 1 loop dummy 232 9 9 10 9 36.7 
8b ARC 2 loop dummy 396 9 9 9 10 44.4 
8c ARC 3 loop dummy 549 9 9 9 9 46.6 
8d ARC 4 loop dummy 711 11 11 11 11 48.4 
8e ARC 5 loop dummy 870 11 11 11 11 49.3 



76 

Table 6.1 (continued) 

Exp. Target Worlcload cr System Overhead MPO 
ID. Appl. Description (s) (%) (%) 

Cl C2 C3 C4 
9a ARC 1 taskdummy 222 9 9 9 9 33.H 
9b ARC 2 task dummy 396 9 9 9 9 44.4 
9c ARC 3 task dummy 548 9 9 9 9 46.6 
9d ARC 4 task dummy 706 9 9 9 9 48.0 
ge ARC 5 task dummy 869 9 9 9 9 49.3 
lOa ARC 1 ARC 235 10 10 13 10 37.4 
lOb ARC 2 ARC 419 10 10 13 9 47.4 
lOc ARC 3 ARC 593 10 10 11 10 49.6 
IOd ARC 4 ARC 758 10 10 11 10 51.6 
lIa TFS_SC 1 loop dummy 249 4 4 9 4 13.H 
lIb TFS_SC 2100pdummy 372 8 8 9 8 13.4 
lIc TFS SC 3100pdummy 499 8 8 9 8 14.1 
12a TFS_SC 1 task dummy 247 4 4 9 4 12.9 
12b TFS_SC 2 task dummy 376 8 8 9 8 14.5 
12c TFS SC 3 task dummy 509 9 8 9 8 15.7 
13a TFS_SC 1 TFS_SC 258 NA NA 9 NA 17.0 
13b TFS_SC 2TFS_SC 393 NA NA 13 NA 18.2 
13c TFS SC 3TFS SC 530 NA NA 15 NA 19.0 
14a MCP 1 loop dummy 238 5 7 14 12 1.5 
14b MCP 2100pdummy 337 9 10 12 12 -3.8 
14c MCP 3100pdummy 448 9 10 12 12 -4.5 
14d MCP 4100pdummy 555 9 9 10 9 -5.4 
15a MCP 1 task dummy 236 10 10 13 10 0.1 
15b MCP 2 task dummy 342 10 9 13 9 -2.6 
15c MCP 3 task dummy 449 10 10 14 10 -4.2 
15d MCP 4taskdummv 552 9 9 10 9 -6.0 
16a MCP IMCP 252 9 9 14 9 7.1 
16b MCP 2MCP 374 9 10 15 10 6.1 
16c MCP 3MCP 498 9 10 15 10 6.0 

The MPO for each case is estimated using the techniques introduced in the last chapters. For 

instance, in the case of Experiment 7, the completion time of TFS executing in worlcloads with multi-

pIe versions ofTFS assuming no MPO CCTw /o MPO) was found using Equation (6.1). 

CTw /o MPO = (X + 1) * CTll:1. MtM:. (6.1) 

X: number of extra versions ofTFS executing 

With CTw /o MPO and CT (the actual completion time) determined, Equation (5.1) was used to determine 

the MPO incurred by the target application. Note that MPO is most accurately understood as being 

incurred by the target application and not as the percentage of processor time consumed. 



77 

The prodigious amount of data of Table 6.1 may at first seem daunting, but there are only a few 

major conclusions which will be highlighted. The most important observation to be drawn from the 

experiments is that multiprogramming affects different applications in widely different ways. Some 

applications execute poorly in a multiprogrammed environment, while others are not adversely 

affected. This is illustrated by comparing the TFS results (Experiments 5, 6, and 7) with the MCP 

results (Experiments 14, 15, and 16). 

For TFS, MPO is a major performance problem ranging from 51 to 57%. In other words, over 

half of the execution time for TFS when executed with other applications is dedicated to overhead 

caused by multiprogramming. When executed alone, TFS takes 73.5 s (Table 3.4); when executed 

with just one other copy of TFS, the completion time jumps to 335 s. Viewed another way, if mul­

tiprogramming were eliminated and the two copies of TFS were executed in a batch mode (one after 

the other), they would both complete in 146 s instead of 335 s. 

In contrast, for MCP the MPO incurred is either very small or negative. Negative values for 

MPO are not errors. They indicate that some functionality (maybe I/O) is being overlapped in the 

multiprogrammed workloads. For instance, when a page fault occurs, the processors need not remain 

idle waiting for it to be serviced, but can execute another application increasing throughput. Further 

analysis of MCP execution in multijob workloads shows that the MPO incurred for the serial part of 

the program (first 77 s before the tasks are spawned) is similar to that incurred by TFS_SC. Therefore, 

the overlapping is not occurring here. However, MPO incurred after the tasks are spawned is negative. 

Figure 6.5 shows that this period also corresponds to increased global memory use. Therefore, it is 

postulated that the good performance of MCP in multiple job workloads is due to the overlapping of 

processing and page faults (global and disk). 

The ARC application incurs multiprogramming overheads almost as disconcerting as those of 

TFS. Measurements of MPO ranged from 33 to 52%. Therefore, high overheads can be incurred by 

applications written with either task (ARC) or loop (TFS) concurrency. Notice, though, that the type 



78 

of workload in which the target application is executed (loop or task dummy jobs) does not affect the 

MPO measurement significantly. Whether TFS is executed with 3 task dummy or 3 loop dummy jobs 

does not matter. the MPO incurred is still about 53%. 

The MPO tends to be a little higher when the real target applications (TFS. ARC. and MCP) are 

executed with multiple copies of themselves. This is most likely due to increased memory conten­

tions. The slow increase in MPO as the multiprogramming level grows (more applications are exe­

cuted) is probably also partially due to increased memory contentions. An interesting case of MPO 

rising significantly with a higher degree of multiprogramming is Experiment 10. With one extra copy 

of ARC executing the MPO is 37.4%. while four extra copies of ARC cause the MPO to jump to 51.6. 

This is possibly due to increased synchronization conflicts when more applications are executing. 

Also. with more applications executing. there is a longer wait between time quanta assigned to a task. 

Therefore. if a task is context-switched off a cluster while it is in the middle of a critical section. it will 

hold the locking variable longer (increasing con1licts) with more applications present. 

Note that the MPO incurred by TFS_SC (the single cluster version ofTFS) is not as high as that 

for TFS which uses all four clusters. The MPO for the TFS_SC experiments ranged from 13 to 19%. 

These values are more in line with those found for the real workloads on the Alliant FX/SO and FX/S. 

The differences between TFS and TFS_SC point to areas which may be the cause of the high MPO: 

SDOALL loops and global memory. These will be investigated in more detail in the next section. 

The table also shows that system overhead is fairly low and constant across the clusters. The 

fact that system overhead is much less than multiprogramming overhead for the real applications indi­

cates that MPO is manifesting itself in the fonn of extra user time. This may be synchronization over­

head (user spin locks) exacerbated by the multiprogramming. Again. this may be partially due to the 

fact that gang scheduling is not being used. This assumption is strengthened by the experiments with 

target applications that have little inherent synchronization (Exp. 1 - 4). For these experiments. the 

system and multiprogramming overheads are similar (approximately 10 - 11 %). 



79 

A point which is not apparent from the table should be made. Like all controlled experiments of 

this thesis, the measurements are actually the results of multiple tests. For instance, experiment 5c 

was run five times, the high and low observations were discarded, and the middle three were averaged 

for the results. For all experiments except the ones with lFS there was not a large variance in the 

results obtained from the multiple executions. However, for lFS there was a noticeable variation in 

the completion times. This indicates some indetenninism in the execution of lFS. In parallel pro­

grams, a major contributor to indetenninism is synchronization points. 

To summarize, the lower bound on MPO (approximately 10%), while not terrible, is still sub­

stantial. When real applications are executed, MPO can become a significant perfonnance problem. 

However, for some applications, multiprogramming can overlap operations providing increased 

throughput. In the next section, experiments will be conducted to identify characteristics of programs 

which cause large overhead and those which perfonn well in multiprogrammed workloads. 

6.3. Multiprogramming Overhead: Causes 

Because TFS incurred the largest MPO measures, this section will concentrate on this applica­

tion and applications written with loop concurrent constructs (SOOALLs). Each subsection will pos­

tulate an effect of multiprogramming and then conduct an experiment to test the hypotheses. Some 

hypotheses are proven correct, while others are shown to be false. The effects of the following in mul­

tiple job workloads will be investigated: 

1) Helper tasks contentions. 

2) Synchronization overhead in spreading loop iterations across the processors of a cluster. 

3) Synchronization overhead in spreading iterations across clusters. 

4) Global memory accesses. 

It is found that a major cause of the observed multiprogramming overhead is the synchronization 

of helper tasks so that they can execute iterations of loops across all clusters. It is postulated that the 



80 

synchronization found in task concurrent jobs (e.g., ARC) also degrades performance in multipro-

gramming workloads. This may be avoided if a gang scheduling paradigm were used. However, the 

independent nature of the clusters on Cedar preclude such an arrangement. On the positive side, it is 

postulated that page faults can often be overlapped in multiprogrammed workloads to increase 

throughput. 

6.3.1. Helper task contentions: the dawdle 

As explained earlier, an SDOALL loop is physically implemented with the use of helper tasks. 

A helper task is bound to a cluster and does nothing except execute the iterations of the SDOALL 

loops. The iterations are assigned to the helper tasks in a self-scheduled manner. Normally, a 

CDOALL is nested in an SDOALL so that each iteration uses all eight processors of a cluster. Figure 

6.6 shows the typical source code of an SDOALL loop. 

Once created by the main task. the helper tasks constantly execute on the separate clusters. If 

there is no useful work (SDOALL iteration) for the helper task to do, it spins on the cluster checking 

the queue for incoming iterations. On a dedicated machine this is not a problem. If the main task 

does not have work for the helper task (it is not in an SDOALL), the cluster is idle so it may as well 

spin. However, in a multi application environment, the time spent by the "helper tasks" spinning could 

be used to execute a different application and increase throughput. 

SDOALL 12 1= 1, N 
CDOALL 12 J = 1, M 

<WORK> 

12 CONTINUE 

Figure 6.6 Typical Nested SDOALL-CDOALL Loop 



81 

The dawdle function and the microtasking run-time library have been implemented to address 

this problem. If the application is compiled with a -M flag, the executable code will maintain software 

queues on the main task and the dawdle function on the helper tasks. In addition, the microtasking 

run-time library will be used instead of the nano-tasking library. The software queues allow for the 

execution of nested SDOALLs. A nested SDOALL can occur if an iteration of an SDOALL calls a 

subroutine with an SDOALL. As will be seen, the overhead for this functionality is high. 

The dawdle function allows the helper tasks to abandon their time quantum and wait for work. so 

that they will not spin on the processor needlessly. Actually, the processor spins for a short time 

checking the queue for work. If after the preallotted time there is no work present, the cluster is 

released. The goal is to create a more benign environment for multiapplication execution. 

Hypothesis: 

The MPO incurred by TFS when executed in workloads with other real applications (Experiment 

7, Section 6.2) is partially attributable to helper task contentions. 

Experiment and Analysis: 

The TFS application was compiled with the -M flag so that the executable will use the micro-

tasking run-time library and the dawdle function. This version of TFS will be called TFSM. TFSM 

was then executed with multiple versions of itself as TFS was executed with copies of itself in Experi-

ment 7. The completion time ofTFSM with multiple versions ofTFSM and the corresponding results 

for TFS (reprinted from Table 6.1) are shown in Table 6.2. 

Table 6.2 
MPO Incurred by TFS and TFSM 

#I of extra copies of application executing 

Appl. 0 1 2 3 

cr MPO cr MPO cr MPO cr MPO 
TFS 74 0 335 56% 501 56% 673 56% 

TFSM 235 0 656 28% 911 23% 1173 20% 



82 

The first column shows that the overhead of implementing the additional functionality and the 

dawdle function is high. The TFS code running with the nano-tasking library finishes in 73.5 s. 

TFSM (micro-tasking library) takes an average of 235 s on a dedicated machine. 

The dawdle function appears to be successful. The MPO incurred by TFSM is significantly less 

than that seen by TFS. It is less than half for all cases. In addition, as more applications are executed 

(possibly increasing helper task contentions), the MPO drops. This reduction is probably due to a 

number of interrelated causes, though a major factor is surely the use of the dawdle function to reduce 

helper task contentions. It is interesting to note that even though the MPO is greatly reduced, the 

completion time of the TFSM workloads is still greater than that of TFS. The original overhead 

incurred by the micro-tasking library is not overcome by the reduction in the MPO for the case stu­

died. The micro-tasking library is recommended for applications written with loop concurrency that 

have large sections of single cluster code. 

Conclusion: 

The hypothesis is accepted. MPO is increased due to contentions of helper tasks that do not have 

useful work. The situation can be avoided by maintaining queues and having the helper tasks release 

processors when there is no work. However, the overhead to allow this functionality may be 

significant. 

6.3.2. Synchronization of CDOALL loops 

When a task (helper or main) finishes the execution of one iteration of a CDOALL loop in a 

SDOALL-CDOALL nested loop (Figure 6.6) it checks the queue and grabs the next iteration to exe­

cute. This requires accessing a critical section of code guarded by mutual exclusion variables. In 

addition, at the end of the CDOALL loop there is some synchronization which must be done among 

the eight processors of the cluster. This is handled by Alliant's synchronization bus. To complicate 

matters, each iteration of the SDOALL loop (CDOALL) may not be of the same length. Each of these 



83 

items has the capacity to add overhead which can be heightened in a multiprogrammed environment 

This section will investigate the effects of multiprogramming on these issues. 

Hypothesis: 

Overhead in synchronization of the CDOALL loops is exacerbated by multiprogramming. 

Experiment and Analysis: 

Three synthetic loops were constructed to test the above hypothesis. The loops were created to 

use a minimum of memory so that memory contentions do not add to MPO. The loops-- LOOP _A, 

LOOP _B, and LOOP _C- are pictured in Figure 6.7. LOOP _A and LOOP _B do the same number of 

iterations of the body. However, the number of times the inner CDOALL loop has to synchronize is 

much greater for LOOP_B. LOOP _C was created to test the effect of different iteration lengths. 

Each of the synthetic loops was executed and monitored in workloads consisting of multiple 

copies of the dummy loop jobs. The completion times and corresponding MPO incurred by the syn-

thetic loops are shown in Table 6.3. The table shows that there is a slight overhead involved when the 

iterations of the SDOALL loop is spread. LOOP_A, which consists of 4 large iterations, takes 44 s on 

a dedicated machine, while LOOP _B, which has many more iterations, takes 100 s. Because both 

<LOOP_A> 

SDOALL 12 J = 1,4 
CDOALL 12 K = 1, 250000000 
X=X+Y 

SOOALL 12 J = 1, 10000000 
CDOALL 12 K = 1, 100 
X=X+Y 

12 CONTINUE 12 CONTINUE 

<LOOP_C> 

SDOALL 12 1=1, 5000000, 10000 
CDOALL 12 J = 1, I 
X=X+Y 

12 CONTINUE 

Figure 6.7 Synthetic Loops: LOOP_A, LOOP _B, and LOOP_C 



84 

Table 6.3 
MPO Incurred by LOOP_A, LOOP _B, and LOOP _C 

# of dummy loop jobs executing 

Appl. 0 1 2 3 

CT MPO CT MPO CT MPO CT MPO 
LOOP_A 44.0 0 91.5 3.8% 138.0 4.3% 184.9 4.8% 
LOOP_B 100.3 0 209.6 4.3% 313.4 4.0% 418.3 4.1% 
LOOP C 62.6 0 130.7 4.2% 195.9 4.1% 264.2 5.2% 

loops execute the same number of iterations, the extra time is attributable to the assigning of iterations 

to the tasks (the overhead of a sprading an SDOALL). 

This overhead, though, is not adversely affected by multiprogramming. When multiple jobs are 

executed with the synthetic loops, the MPO incurred is negligible. This is true also for the case in 

which the iterations are of different lengths. 

Conclusion: 

The hypothesis is rejected. There is overhead in distributing the iterations of the SDOALL loop 

and synchronizing the CDOALL loops. However, this overhead is not exacerbated by multi program-

mingo 

6.3.3. Synchronization of SDOALL loops 

Each iteration of the SDOALL loop (usually a CDOALL loop - Figure 6.6) is self-scheduled to 

a cluster and executed by a helper task. When all of the iterations of an SDOALL loop are complete, 

the helper tasks must "check-in" with the main task before execution resumes. In other words, at the 

end of the SDOALL loop, a barrier synchronization must be performed. Once all helper tasks are 

have checked in, the main task can resume with serial execution. 

The overhead of barrier synchronizations on parallel applications in multiuser environments has 

been studied through simulation [43]. Hot spots in memory and the context switching of a task while 

executing a critical section are both adverse effects of multiprogramming on synchronization. In this 



8S 

subsection, it will be detennined if the synchronization of the SDOALL construct on Cedar is detri­

mentally affected by multiprogramming. 

Hypothesis: 

Overhead caused by synchronizing SDOALL loops across clusters is exacerbated in a multi pro­

grammed environment 

Experiment and Analysis: 

Two separate experiments were conducted to test the hypothesis. First. the execution time of the 

SDOALL loops in TFS were measured for all of the workloads of Experiment 5. The distribution of 

SDOALL lengths for the experiments of Experiment Sa and Sd are shown in Figure 6.8(a) and 6.8(b), 

respectively. To allow for comparison with Figure 6.3(a), only those values under 10 ms are shown. 

Therefore, there are many instances missing from both distributions. 

The average length of an SDOALL in TFS when executing with one dummy loop job on the sys­

tem is 8.11 ms; with four dummy loop jobs executing the average is 18.84 ms. Comparing these aver­

ages and distributions with each other and those found on a dedicated machine (Figure 6.3, 1.44 ms) 

indicates that. as expected. the SDOALL loop takes longer as the multiprogramming level increases. 

A more telling metric is the percentage of the execution time in which the application was inside 

an SDOALL loop. On a dedicated machine. the SDOALLs account for 75.5% of the execution time. 

However, for experiment Sa this parameter jumps to 92.2%; and for Experiment Sd the percentage of 

completion time in which the application was either executing code in an SDOALL or context­

switched off the machine in the SDOALL loop was 94.5%. As more jobs are added, a larger percen­

tage of time is spent executing the SDOALLs. Therefore, the observed perfonnance degradation of 

TFS in multi application workloads has its root somewhere in the SDOALL loops. However, it is not 

clear if the cause is the code of the SDOALL loops (the iterations) or the implementation of the 

SDOALL itself. 



5000 

4000 

3000 
Freq. 

2000 

1000 

-0 

-0 2 4 6 8 
SDOALL lengths (ms) 

(a) 

4000 

3000 

1000 

-0 

10 -0 2 4 6 8 
SDOACROSS lengths (ms) 

(b) 

86 

10 

Figure 6.8 Length of TFS SDOALLs: Experiment Sa and Sd 

The second experiment determines if the cause of the degradation found in the previous experi-

ment is caused by the SDOALL mechanisms themselves. Two artificial loops were constructed: 

LOOP _D and LOOP _E (Figure 6.9). LOOP _D forces the mechanisms of the SDOALL to be executed 

repeatedly. LOOP _E does the same work as LOOP _D except that only one SDOALL synchronization 

must be done. It is used as the control application. Both loops were executed in worlcloads consisting 

of multiple dummy loop jobs. The completion times and MPO values are listed in Table 6.4. 

On a dedicated machine, the overltead for executing and synchronizing an SDOALL is small. 

The section of code with repeated SDOALL (LOOP _D has 10,000 loops) takes just 10 s longer than 

the loop with only one SDOALL (LOOP_E). Therefore, the actual processing power consumed to 

DO 12 1=1,10000 
SDOALL 12 J = I, 100 

CDOALL 12 K = 1, 1000 
X=X+Y 

12 CONTINUE 

00121=1,1 
SDOALL 12 J = I, 100 

CDOALL 12 K= I, 10000000 
X=X+y 

12 CONTINUE 



87 

Table 6.4 
MPO Incurred by LOOP _0 and LOOP _E 

# of dummy loop jobs executing 

Appl. 
0 I 2 3 

cr MPO cr MPO cr MPO cr MPO 
LOOP_O 54.5 0 300 64% 447 63% 626 65% 
LOOP E 44.3 0 91.5 3.2% 138 3.7% 188 5.7% 

execute the overhead associated with an SDOALL is small. However, in multiple job workloads, the 

overhead caused by the SDOALL is quite high. ForLOOP _0 executing with one dummy loop job the 

MPO is 64%. In other words, 64% of the completion for LOOP _0 is attributed to MPO. This may be 

a result of tasks being contexted switched off the machine while executing critical sections. In this 

situation, other tasks which may be trying to access the critical section or lock a mutual exclusion 

variable can only spin helplessly. The overhead may also be partially due to hot-spots in memory. 

A fact not shown in the table supports this conclusion. The completion times for the multiple 

runs of each LOOP _E experiment were fairly consistenL Each execution of LOOP _E in a given 

workload produced a similar completion time. For instance, for the case with one dummy job execut-

ing the completion times for five experimental runs were: 91.4, 91.4,91.5.91.6. and 91.6 s. LOOP_O 

was not as deterministic. The case with one dummy loop job executing produced completion times of 

263.9.237.8.284.2. 299.5. 365.3. 342.8. and 307.1 s. This indeterminism indicates chance activity in 

execution such as the locking and unlocking of queue locks. 

Conclusion: 

The hypothesis is strongly accepted. Overhead caused by synchronizing the helper tasks of an 

SOOALL loop is exacerbated in multi application workloads and significantly degrades performance. 

The problem appears to occur in the barrier synchronization at the end of the SDOALL loops. A pro-

gram containing many short SOOALL loops (such as TFS or LOOP _0) will perform poorly in a mul-

tiapplication workload. 



88 

6.3.4. Removal of SDOALL loops from TFS 

The last subsection presented strong empirical results suggesting that applications written with 

the SDOALL construct are highly susceptible to multiprogramming overhead. Because TFS is such 

an application, the obvious conclusion is that the poor performance of TFS in multiuser workloads is 

largely due to this construct This assertion was corroborated by the increase in the fraction of com­

pletion time TFS spent executing SDOALL loops when it was run in multiprogrammed environments. 

In this section this claim is further tested. TFS is modified by replacing all SDOALL loops with 

CDOALLs. The new application (called TFS_ser) is a single cluster version of TFS with the same 

memory reference patterns as TFS. 

This experiment is conducted for two purposes: First. to validate the conclusion of the last sub­

section, and second, to investigate the effect accesses to global memory may have on MPO. 

Hypotheses: 

A) SDOALL synchronization contentions is a major contributor to MPO for TFS. B) Global 

memory accesses are major contributors to MPO. 

Experiment and Analysis: 

The TFS application was rewritten (TFS_ser) with all SDOALLs converted to CDOALLs. 

Functionally, converting SDOALL-CDOALL nested loop (Figure 6.6) to a CDOALL-CDOALL 

nested loop serializes the inner CDOALL loop. The memory accesses (cluster or global) remain 

unchanged, but the application executes on a single cluster. 

The completion time ofTFS_ser on a dedicated machine is 157.4 s. The increase in completion 

time over TFS (73.5) is caused by executing all loops on a single cluster instead of four. The TFS_ser 

application was then executed and monitored in workloads consisting of multiple copies of dummy 

loop jobs. The completion times and MPO incurred by TFS_ser in the multiple dummy jobs work­

loads are summarized in Table 6.5. The same numbers for TFS and TFS_SC are also given. 



89 

Table 6.5 
MPO Incurred by TFS, TFS_SC, and TFS_ser 

# of dummy loop jobs executing 
Appl. 0 1 2 3 

CT MPO CT MPO CT MPO CT MPO 
1 51 1 

TFS_ser 157 0 390 19% 507 6.8% 659 4.5% 
TFS_SC 108 0 249 14% 372 13% 499 14% 

The MPO experienced by TFS_ser is small compared to that ofTFS and TFS_SC for the same 

workloads. This corroborates the conclusion of the last subsection: synchronization overhead of 

SDOALL loops is exacerbated by multiprogrammed workloads. It should also be noted that the com-

pletion time of TFS_ser in the multiple job workloads were more consistent than those of TFS. This 

again points to the synchronization problem. 

The difference in MPO between TFS_SC and TFS_ser is probably due to a more subtle cause. 

Functionally, the major difference between the two is that TFS_SC stores all of its data in cluster 

memory, while TFS_ser stores a good deal of data in global memory. The difference in completion 

times on a dedicated machine (TFS_SC: 107, TFS_ser: 157) can be partially attributed to this fact. 

Also, remember that the source code for the two are drastically different 

The TFS_ser application incurs much smaller MPO then TFS_SC. This could possibly be due to 

I/O overlapping similar to that found in the MCP experiments. Page faults to disk, or soft page faults 

to global memory, can be serviced in tandem with work done on other applications. Therefore, it 

appears that accesses to global memory are not adversely affected by multiprogramming. 

Conclusions: 

Hypothesis A is accepted, while hypothesis B is rejected. When executed in multiuser work-

loads, SDOALL loops cause performance degradation due to synchronization contentions. Global 

memory accesses do not appear to be a major contributor to MPO. 



90 

6.4. Conclusions: Cedar Multiprogramming 

This chapter has illustrated the importance of evaluating the perfonnance of multiuser work­

loads. On a dedicated machine, the Cedar system perfonns admirably. However, the perfonnance of 

certain applications in multiprogrammed environments is poor. The MPO estimation technique 

identified a few applications whose perfonnance was significantly degraded. Further analysis 

identified a synchronization problem with SDOALL loops. 

In general, the analysis has shown that care must be taken with fine-grained parallelism on 

cluster-based multiprocessors. The synchronization involved when coupled with multiprogramming 

may reduce perfonnance. For this type of parallelism to be successful on this architecture, large loops 

should be parallelized. Also, gang scheduling may reduce the effect of multiple applications. 



91 

CHAPTER 7. 

MODELING APPLICATION EXECUTION 

Chapter 5 introduced a methodology capable of quantifying application performance degradation 

due to multiple job interactions in real workloads. The methodology was illustrated on the Alliant 

FXl8 and FX/80. The next step is to use this information in constructing realistic, accurate models of 

application execution in real workloads. The model must capture both the resource sharing of multi­

ple real applications and the added overhead caused by this sharing. With such a model, application 

performance could be predicted and runed, and system design changes could be accurately evaluated. 

This chapter presents a methodology which uses real workload measurements to construct such a 

model. More specifically, a technique is introduced which models the behavior of an application from 

a given domain executing in real workloads on a particular machine. The model is a Markov reward 

model capable of predicting the completion time distribution for an application executing under real 

workloads. More importantly, the model can also predict the effects of system design changes. For 

instance. the model is capable of predicting the completion time distribution of an application in real 

measured workloads under different scheduling paradigms without implementing the new schedulers. 

To build the Markov reward model, applications representing the given job domain are executed 

numerous times during the normal operation of the machine. System parameters such as job queue 

lengths and multiprogramming overhead are monitored during the executions of the applications. Sta­

tistical clustering is then used on the collected data to identify a finite-state, discrete-time Markov 

model. The final step involves assigning a reward to each state to quantify the actual system resource 

available to an application in that state. 

Monte Carlo simulation is used to solve the model and predict the completion time distribution 

of a specific application under the measured workload. System design changes are modeled by modi­

fying the reward function of each state in the Markov model. 



92 

This chapter is divided into two sections. In the first section, the model building and solution 

methodology are presented in a machine-independent way. In the second section, the methodology is 

illustrated by modeling the execution of computationally bound, parallel applications executing in real 

workloads on the Alliant FXJ80. In the chapter following this, the constructed model will be used to 

investigate a large number of scheduling paradigms and machine configurations for the Alliant FX/80. 

7.1. Mode) Construction (Machine Independent) 

The objective of the methodology is to build a model of the system and workload as it would be 

seen by an application of the targeted domain. It is important to define precisely the application 

domain for which the model is constructed. Given a workload, a parallel application will view the 

available resources much differently than would a serial job. Therefore, the model built for a serial 

job must be entirely different than that for a parallel job even if the same workloads are measured. As 

would be expected, the constructed model provides reliable results only for applications of the correct 

domain. 

The five steps of model construction and solution are: 

1) Monitor system/workload parameters while a target application executes during nonnal 

machine operation. 

2) Statistically cluster measured data to identify key states of system/workload operation. 

3) Convert the identified cluster model into a Markov model. 

4) Define reward and cost functions for each state of the Marlcov model. 

5) Given base resource requirements of the application in question, solve for completion time 

distribution. 



93 

STEP ONE-

The first step is similar to the monitoring step introduced in the real workload MPO methodol­

ogy. The data necessary to build the model are obtained by monitoring the system while an applica­

tion of the targeted class (referred to as a target application) executes in a nonna! workload. The 

periods in which a target application is executed are chosen randomly over an extended period of time. 

By monitoring a large number of different types of real workloads, the model becomes robust enough 

to represent accurately the system!workload that would be seen by an application (similar to the target 

application) in many situations. 

Choosing the workload parameters to monitor while the target application executes is entirely 

dependent on the reward functions. The parameters monitored are those needed to calculate, using the 

reward function, the amount of resources an application of the specified domain will receive. For 

instance, parameters detennining the processor power or the amount of main memory available may 

be monitored. The resource or resources chosen to be used as the reward are those which are most 

crucial to an application's execution. Therefore, choosing the parameters to be monitored is a direct 

consequence of what resource or resources are used as the reward. 

The execution time of the target application is split into intervals of nearly equal length called 

observations. Each observation describes a system!workload state with the parameters measured dur­

ing that time period. The observation's length is chosen by trial and error to reflect the granularity of 

the system/workload states. The result of the monitoring step is a large number of observations each 

defined by parameters used to detennine reward and cost. 

STEP1WO-

The next step in model construction is summarizing the abundance of measured data by identify­

ing the distinct system/workload states in which the machine has operated. This is done with statisti-



94 

cal clustering,3 a common statistical technique commonly used in computer analysis [67]-[70]. Sta-

tistical clustering treats each obselVation as a point in n-dimensional space (one dimension for each 

parameter defining the obselVation) and groups the points into clusters that maximize the Euclidean 

distances between the clusters while minimizing the Euclidean distances among the observations of a 

cluster. Statistical clustering identifies groups of similar observations. Here, statistical clustering is 

used to identify common system/workload states of operation. 

There are many statistical clustering algorithms available. In this thesis, the goal is to identify 

distinct states of machine operation; thus the clustering algorithm used should delineate nonoverlap-

ping clusters. For this thesis, the K-means algorithm was chosen [71]. However, in general, any clus-

tering method which identifies distinct groups could be used to accomplish this step of the methodol-

ogy. 

Before clustering, the measured data should be standardized so that each parameter has a mean 

of zero and a standard deviation of one. This is done so that the parameters with the largest range of 

values do not dominate the clustering procedure. Choosing the correct number of clusters to capture 

the real workload behavior accurately has been previously discussed [67][69]. For the sake of stan-

dardization, it is suggested that the number of clusters used be the least number for which 90% of the 

cluster radii (maximum distance from the cluster centroid to an obselVation in the cluster) are less than 

1.5. After the original clustering, obselVations in small clusters should be absorbed into the nearest 

large cluster. This is to guard against bias due to outliers. 

At the conclusion of Step Two, there are a number of groups or clusters of observations. Each 

group identifies a unique, naturally occurring state of the observed workload. The state and the obser-

vations contained in that state can be summarized by the centroid values (geometric center) of the 

cluster. 

lFurther apologieJ for the overloading of meanings 00 the term clllSt~r. Statistical. clustering and physical clustering of the CEs are 
completely IDlrelated. just as a cluster 00 Cedar is IDlrelated to the clustering of the CEI. The context in which the term clllSt~r is used should 
make its intended meaning clear. 



9S 

STEP THREE-

The next step is to convert the cluster model to a Markov model. Here the methodology relies 

on the memoryless property of Markovian analysis-- the next workload/system state of the machine is 

totally dependent on the previous state. The validity of such an assumption depends on the parameters 

defining the states. For instance, it has been postulated that job length queues obey the Markov pro­

perty. 

The identified clusters translate directly to states in a discrete Markov model. Transitions 

between the observed states are garnered from the measured data. The probability of moving to state i 

after being in state k is estimated by dividing the observed transitions from state i to state k by the 

number of transitions out of state k. The Markov model constructed can be either discrete or continu­

ous in time. The starting state probabilities are estimated using the first observations of each target 

application execution. 

At the end of this step, there exists a Markov model with states summarizing observed 

system/workload states and transitions summarizing observed transitions between these states. 

STEP FOUR-

Now a reward and a cost is associated with each state of the Markov model. The reward 

quantifies the amount of a resource that an application of the class being modeled would be given if it 

were submitted to the system while the system was in the state defined by the Markov model state. 

The reward for each state is calculated using the centroids of the clusters. In general, the reward can 

quantify anything from CPU time to main or cache memory. However, the resource chosen should be 

the one that most directly affects the completion time of the application domain modeled. If there is 

more than one such resource, the model can be extended to associate multiple reward functions to each 

Markov state. The cost is the wall clock time needed to obtain the reward. It is monitored along with 

the parameters in Step One. 



96 

STEPFNE-

The model is capable of predicting the completion time distribution of an application from the 

modeled domain if it were to execute in worldoads such as those measured on the given machine. In 

other words, given an application, the model can determine the probability that it will finish by a given 

time if it were executed in worldoads similar to those measured. To do this, the amount of reward 

resource the application requires to complete is first determined. This can be done by monitoring the 

execution of the application on a dedicated machine or through analytical techniques. 

Let the amount of resource needed by the application to complete be represented by P. Let W,t 

be the state the Markov model is in at time k, rw the reward for Markov state W, and cw the cost for 

Markov state W. Then the accumulated reward at time i, Yj, is calculated with Equation (7.1). 

Yj = ~rw 
J~ J 

The accumulated cost at time i,~, is calculated with Equation (7.2). 

~=~cw 
J~ J 

(7.1) 

(7.2) 

The probability that an application needing P reward will finish by time x, Fp(x), is then given 

by Equation (7.3). 

Fp(x)=Prob{Z; SxIYj ::P,Yj _ 1<.Pj (7.3) 

A closed form solution to a problem similar to this one relying on double Laplace transforms has 

been proposed [72]. However, the transform solution relies on complicated numerical techniques and 

the result is difficult to simplify. For the sake of simplicity, Monte Carlo techniques can be used to 

solve the model and estimate the completion time distribution of a given application. The Monte 

Carlo method relies on multiple simulations of application execution. The states of the model are 

stepped through accumulating both reward and cost. When enough reward is collected, the cost is a 

single estimate of completion time. This technique will be presented formally when solving the model 

constructed for the Alliant (Section 7.1). 



97 

The constructed model facilitates two powerful perfonnance analysis techniques. First, it can be 

used to detennine how well a given application will run during the nonnal operation of the machine. 

Second, the model can predict the effect on perfonnance of certain system design changes. This is 

useful for tuning the machine and making future generations of the machine more responsive to actual 

work being done. 

The first goal is obtained by simply solving the model as stated in step 5 for the completion time 

distribution. To predict the effect on perfonnance of a system change, the reward function is modified 

to model the appropriate change. The completion time distribution for an application is then deter­

mined with the new reward functions. The distribution computed under the modified reward is com­

pared to that under the nonnal reward to evaluate the modification. Using the completion time of a 

test application as the metric of comparison, the model can successfully detennine which system 

changes are beneficial. 

It should also be emphasized that some of the steps in the methodology, most notably detennin­

ing the reward (step 4), are highly machine dependent and require detailed knowledge of the system 

under investigation. It should also be noted that the model allows only applications of the chosen 

class to be analyzed (e.g., computationally bound, parallel applications). This is not overly restrictive 

though, because a class of applications is generally quite broad. However, the effects of the system 

design change on other types of applications (not just those from the modeled domain) should also be 

considered before coming to any general conclusions. This can be done by building a new model to 

investigate the different classes of jobs (e.g., I/O bound jobs). 

7.2. Alliant FX/SO - Model Construction 

7.2.1. Monitoring and measuring the system 

The goal is to build a model of computationally intensive, parallel jobs executing in real work­

loads on the Alliant FX/80. The data necessary to build the model are obtained by monitoring the 



98 

system while an application of the targeted class executes in a nonnal workload. 1bree applications 

were chosen from the Perfect Club benchmark suite to be used as target applications. The three­

Dyfesm, Fl052, and Track- are listed along with their base processing requirements in Table 3.3. All 

three applications were compiled as type A cluster jobs and execute on all eight CEs in the clustered 

configuration. 

The data for the model were collected by monitoring the Alliant during 100 separate target appli­

cation executions distributed over a 3 month period. The execution times were randomly chosen dur­

ing the machine's nonnal operation. The 100 executions included 35 executions of Dyfesm, 35 of 

Fl052, and 30 of Track. 

Because the applications are computationally intensive, the most critical resource for completion 

is clustered processing time. Therefore, for this model, reward was defined as the amount of clustered 

CE time given to a Type A cluster job. Hence, parameters that allow for the calculation of deliverable 

clustered CE time were monitored. In addition to the parameters necessary to determine the reward, 

parameters which affect the amount of clustered CE time an application would receive under the sys­

tem design changes under investigation were also measured. In addition. the parameter necessary for 

the cost function was monitored. 

In the next chapter. the system design changes investigated will be detailed, and the reasoning 

behind some of the parameters monitored will become clear. From the scheduling algorithm (Table 

3.1), and past work [73], it was determined that the first five parameters of Table 7.1 were necessary to 

calculate the amount of clustered CE time (reward) which would be granted to a parallel job. The fifth 

parameter is also necessary because it will be the cost of the state. The last two parameters in the table 

are needed to model certain system design modifications. For these reasons, the seven parameters 

listed in the table were monitored while the target application was executed. 

The parameters of Table 7.1 were obtained from measurements taken using the Q and HRTIME 

facilities. The MPO was detennined using the technique of Chapter 5. 



Parameter 
1 

2 

3 

4 
5 
6 

7 

Table 7.1 
ObseIVation Parameters 

Symbol Description 
CLA avg. number of type A 

cluster jobs 

%CLC % of time at least one 
type C cluster job 

CLUSP % of time CEs execute 
cluster jobs 

MPO multiprogramming ovemead 
TIME Length of obseIVation 
CLC avg. number of type C 

cluster jobs 

%CLA % of time at least one 
type A cluster job 

99 

The monitoring procedure is illustrated by Figure 7.1. The target application is run under a nor-

mal workload. Both HRTIME and Q are invoked once at the inception and once at the completion of 

execution. In addition, the Q facility is invoked approximately once every 1.2 s to measure the job 

queue lengths (short arrows in Figure 7.1 represent Q invocations). Because the Q facility must be 

submitted as a software job, the time between measurements varied (standard deviation = 0.28 s). 

Most of the work required to execute Q was done by the IPs thus the perturbation of the workload on 

the CEs was negligible. 

Figure 7.1 also illustrates the division of target application execution into obseIVations. Each 

obseIVation is made up of five consecutive samples, resulting in an average obseIVation length of 

6.094 s (standard deviation = 1.37 s). A variety of obseIVation sizes were tested. It was determined 

that five samples was a decent granularity to reflect a single system/workload state. 

For each obseIVation, the parameters of Table 7.1 were estimated. Equations (7.4) - (7.10) use 

the nomenclature of Figure 7.1 to detail how the parameters were calculated. 



Target 
Application 

tarts 

Observation 
1 

S 
2,3 

time 

Observation 
3 

• • • • 

Target 
Application 
Finishe 

Si,j- Sample j of Observation i: 

Contents 
Sample 3 of 
Observation 2 # Type A Cluster Jobs - CLA i,j 

# Type C Cluster Jobs - CLC i,j 
# IP/CE Jobs - IPCE i,j 
# Type A CE Jobs - CEAi,j 
# Type C CE Jobs - CECi,j 

Figure 7.1 Monitoring System 

1 ..t. {I if arg is True 
%CLCi = 3'" x ,-f:1IND [CLCiJ>O] IND [arg] = 0 if arg is False 

7 ot~rwise 
1"3" 

MPOi = MPO for execution of entire program 

TIME- - Completion Time o£ Target 1/l'lication 
I - NUlnber 0/ amples T,en 

%CLAi = t x ,tIND[CLAiJ>O] 

100 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

The average number of type A cluster jobs in the system during observation i, CLAi , was 

estimated by averaging the five sampled measurements of cluster A job queue length making up the 



101 

obseIVation (Equation (7.4». Parameter 2 was estimated by the fraction of the five samples in which 

there was at least one type C cluster job (Equation (7.5».4 The percentage of obseIVation time in 

which cluster jobs were executing (CLUSPj) was estimated using the sampled queue lengths and the 

scheduling information of Table 3.1 (Equation (7.6». The equation assumes that if only cluster jobs 

were present in a sample, then the CEs executed cluster jobs the entire time. If, however, there were 

CE or IP/CE jobs present, the clustered jobs were given the CEs "* of the time. The percentage of 

time the clustered CEs were executing multiprogramming overhead (MPOj) was determined for the 

entire run of the application and this number was assigned to each obseIVation in that execution. The 

length of each observation period (TIMEj ) was estimated by dividing the completion time of the target 

application by the number of samples taken during the execution (Equation (7.S». The calculation of 

CLCj and %CLAj is shown by Equations (7.9) and (7.10). 

The entire Alliant FX/SO time monitored (100 target application executions) produced 21,046 

obseIVations over approximately 36 h of real computer time. Each of the 21,046 obseIVations is 

defined by the parameters listed above, and each can be seen to capture a certain state of 

system/workload execution. 

7.2.2. Statistical clustering 

Statistical clustering of the 21,046 observations was done in the five-dimensional space defined 

by the first five parameters of Table 7.1. The measured data were first standardized so that each 

parameter had a mean of zero and a standard deviation of one. This was done so that the parameters 

with the largest range of values did not dominate the clustering procedure. Qustering of the standard­

ized data was accomplished with the FASTCLUS procedure of the SAS software package; 

FASTCLUS is based on the K-Means algorithm [71]. 

'The equation introduces the indicator funaion IND(] which is used throughout this paper. 



102 

Using the criteria set out in Section 7.1, the observations were grouped into 80 distinct clusters 

(r2 = 0.94). Ousters of less than 10 observations were then dissolved by moving their observations 

into neighboring clusters. This operation resolved bias due to outliers and reduced the number of clus­

ters from 80 to 72. Therefore, with regard to the five parameters clustered upon, the real machine 

operation was described by 72 system/workload states. 

Choosing the number of clusters must balance the opposing goals of tractability and reduction of 

outlier bias (few clusters) with that of accuracy (many clusters). Grouping real workload machine 

operation into 72 distinct states may appear arbitrary and it is to a certain extent. However, as will be 

shown later, the methodology is not highly dependent on the number of clusters. Similar results 

would be obtained if any number of clusters near 80 were originally used. 

This question is addressed in more detail in Figures 7.2. Figure 7.2(a) shows the r2 value (a 

measure of goodness of fit) as a function of the number of clusters. Usually values above 0.9 indicate 

that the number of clusters chosen has accurately identified groups of similar data. Using this cri­

terion, at least 44 clusters should be used to summarize the data of this experiment 

Figure 7.2(b) plots the number of clusters left after absorbing outliers (clusters with less than 10 

observations) against the number of groups originally clustered into. For instance, the (x,y) pair 

(80,72) is on the line in the figure because when the data are clustered into 80 groups, there are 8 clus­

ters with less than 10 observations, leaving 72 clusters after resolving outlier bias. The figure shows 

that when too many clusters are used, there are many groups with few observations. This is a problem 

because states with only a few observations may not be identifying actual workload/system states. 

With this in mind, the number of clusters used should probably be less than 110. Fortunately, the cri­

terion proposed for choosing the correct number of clusters falls between these loose bounds (44 -

110) . 

After clustering, the data points were returned to their original values and the cluster centroids 

were calculated. Ouster centroids are the geometric centers of the clusters (Le., the average of all the 



0.95 

0.9 

0.85 

0.8 

300 

200 
#of 

clusters 
(final) 

100 

103 

0.754----..-------r------, -o~----~------._----~ 

-0 100 200 
# of clusters 

(a) 

300 -0 100 200 
# of clusters (original) 

(b) 

Figure 7.2 Varying the Number of Clusters 

300 

observations in the cluster). The superscript C will indicate a centroid value. For example, CLAP 

refers to the centroid value of cluster i corresponding to the average number of cluster A jobs present. 

Table 7.2 lists the size and centroid values of a number of representative clusters. 

7.2.3. Discrete-time Markov model 

Once the system/workload states are identified, the model is enhanced to account for observed 

temporal relations between these states. The cluster model is transfonned into a discrete-time Markov 

Table 7.2 
Centroids of Representative Clusters 

number Centroid Values 
Cluster 

of CLAc %CLCc CLUSpc MPOc TIMEc 
Number Observations (# jobs) (% time) (% time) (% time) (s) 

I 147 5.66 0.97 0.54 0.24 6.85 
7 168 7.44 0.01 0.54 0.16 6.62 

20 43 2.94 0.99 0.54 0.09 9.19 
26 803 1.15 0.99 0.56 0.15 4.97 
33 139 7.83 0.98 0.54 0.17 6.64 
49 465 1.14 0.00 0.54 0.35 5.28 
52 125 0.91 0.02 0.76 0.14 5.58 
68 1400 2.62 0.01 0.54 0.15 5.45 



104 

model whose transition probabilities represent observed transitions among system/workload states. 

The 72 states of the cluster model map directly to Markov model states. The elements of the transition 

matrix. <1>= [PiJ]. are estimated using Equation (7.11). The probability PjJ is determined by dividing 

the number of times an observation in cluster i (Cj) was followed with an observation in cluster j (Cj) 

by the number of observations in cluster i that have successors. 

l(V OB~)-l 
~ f:t IND [(01:,1 e Cj) A (01:,1+1 e Cj )] 

PjJ = ..:::=::.:.....-...:..;;;: .... I00-..,..OB .... ~.....,..~..,.I---------
~=1 f.:t IND [01:,1 e Cj] 

(7.11) 

Cj : Cluster i ; 01:,1 : Observation I of ktA target appl. execution 

OBS(k): # of Obs. in ktA target appl. execution; 1'5l,jS72. lSkSlOO 

The starting states' probabilities. 1t(0)=[1t; (0)], are estimated with Equation (7.12). The probabil-

ity of starting in state i. 1tj (0), is estimated by dividing the number of times the first observation of a 

target application execution is in state i by the total number of target application executions. 

~ IND [OI:,leCd 
1tj(O) = 100 

(7.12) 

7.2.4, Reward and cost functions 

The cluster centroids are now used to associate a reward with each state of the Markov model. 

The reward quantifies the amount of resources that a computationally intensive. parallel job would 

receive if it were submitted to the system. Because the resource with the greatest impact on the com-

pletion time of computationally bound, parallel applications is clustered processing time. this is the 

resource used for the reward. Therefore, the reward function calculates the amount of clustered time 

that would be given to a type A cluster application if it were submitted to the system while in the 

system/workload state described by that Markov model state. 

The parameters necessary to determine the reward are the five parameters on which the model 

was built. The reward for each state. Rj , is determined using Equation (7.13). The equation multiplies 



lOS 

the average time spent in the state (TlMEC) by the fraction of time the system would process a type A 

cluster job if it were submitted. 

R, = (TIMEf) x CLUSPF x ( 1 + 2LAf ) x (1- (%CLCF X NORMC,)) x (1 - MPOf) lSi 5.72 

1 7 4 c 7 2 
NORMCj = CLuspF x [( rrx,) + «CLUSP, - rr )x1")] (7.13) 

The equation is best explained one term at a time. CLUSpc is the fraction of time for which 

cluster jobs (type A or C) are executed. Of the CLUSpc fraction, a certain percentage is given to type 

A jobs and a certain percentage to type C jobs. 'The term (1 - (%CLCC x NORMC)) , which is deter­

mined from the scheduling algorithm (Table 3.1), estimates the fraction of CLUSpc given to type A 

cluster jobs. The fraction of time granted to Type A cluster jobs is shared equally among them. This 

is accounted for by the 1 + ~LA c term. The last term accounts for multiprogramming overhead. 

Figure 7.3 graphically shows the division of an observation into its components isolating the 

amount of clustered CE time available to a type A cluster job. The top line shows the total observa-

tion time divided into a clustered and detached component. Of the clustered time, a fraction is given 

to type A and a certain fraction to type C cluster jobs (second line in figure). The third line shows the 

equal sharing of the remaining time among the type A jobs. Finally, the last line accounts for MPO. 

The cost associated with each state (COSTj) is the wall clock time needed to achieve the reward 

of the state (Equation (7.14)). The rewards and costs associated with the clusters detailed in Table 7.2 

are given in Table 7.3. For instance, when the system is in the state represented by State 7, an applica-

tion will receive 0.351 s of clustered time for each 6.62 s in the system. Consulting Table 7.2 it is 

seen that this low reward is due to the abundance of type A jobs in the observations of that state. 

COSTj = TIMEF (7.14) 

Figure 7.4 shows part of the constructed model: a discrete-time, discrete-state Markov 

reward/cost model. The states correspond to observed system/workload states and the transitions 



Observation 

I I-:---CL-U-STE-RED-TIME--·-
1 
E-D-ET-A-CHE~~ 

I~ 
TYPE A JOBS 

+ ~I 
TYPEC 

JOBS 

I~ TARGET I OTIIER ~I 
APPUCA nON TYPE A JOBS 

REWARDMPO 

Figure 7.3 Reward Determination 

Table 7.3 
Rewards and Costs of Selected States 

Reward Cost 
s) 

.1 
7 0.351 6.62 

20 0.495 9.19 
26 0.471 4.97 
33 0.148 6.65 
49 0.864 5.29 
52 1.880 5.58 
68 0.686 5.45 

106 

model real, observed transitions. Each state has a reward associated with it that quantifies the process-

ing resources available to an application if it were submitted to the system while in that state. 



0.39 

0.90 

Figure 7.4 Constructed Markov Reward Model 

7.2.5. Model solution 

107 

o 
Other 

States 

The reward/cost Markov model is capable of predicting the completion time distribution of a 

cluster type A job application running in real, multiprogrammed workloads. First. the amount of 

clustered CE time an application requires is determined. This can be done by measuring the applica-

tion on a dedicated machine as was done with the target applications (Table 3.3). 



108 

With the reward determined, Monte Carlo simulation is used to solve the Markov model and 

generate completion times for the application. A random number is generated and used to select a 

starting state according to the starting state probability vector, 1t(O). Random numbers are then gen­

erated to determine a path through the Markov model according to the transition matrix, «1». The 

chosen states are stepped through accumulating both reward and cost. When the amount of reward 

accumulated is equal to or greater than that required by the application, the simulation is complete and 

the cost accumulated is an estimation of the wall clock completion time for the application. 

To present this procedure more formally, assume X = {X 0, X It X 2. ... X,.. . .. } is a path 

through the Markov model generated by Monte Carlo simulation, where X,. is the state of the Markov 

process after the n lit transition. Let Yk and Zt be the accumulated reward and cost after the process has 

visited state Xk (Equations (7.15) and (7.16». If t is the first time in which the accumulated reward is 

greater than the required reward (Equation (7.17», then Z, the completion time of the application 

(Equation (7.18». 

Yk = trx. 
Zt = t,cx. 

t: Y,-l < Resources Needed S Y, 

Completion Time = Z, 

(7.15) 

(7.16) 

(7.17) 

(1.18) 

The above procedure provides a single measure of completion time for the given application. 

The distribution of completion time is estimated by repeating the above procedure to generate a large 

number of independent measures. For instance, Figure 7.5 shows the predicted completion time distri­

bution of BONA using the constructed model and 5000 Monte Carlo simulations. Recall that BONA 

is a perfect benchmark requiring 131 s of dedicated machine time to complete (Table 3.3). 

This illustrates the use of the methodology to predict the performance of an application. To 

predict the effect on performance of a system change, the reward function is modified to model the 



300 

200 
Freq. 

100 

-0 1000 2000 

Mean = 1236 
Std. Dev. = 450 

3000 
Completion Time (s) 

Figure 7.S Predicted Completion Time: BDNA 

109 

4000 

appropriate change. TIle completion time distribution for an application is then determined with the 

new reward functions. The distribution computed under the modified reward is compared to that 

under the normal reward to evaluate the modification. The next chapter will use this procedure in an 

extensive study of Alliant schedulers and configurations. 



110 

CHAPTERS. 

MODEL USAGE - PREDICTING EFFECTS OF SYSTEM CHANGES 

The previous chapter detailed the model building methodology and solution. That chapter 

hinted at the use of the model in predicting application perfonnance and the effects of system design 

changes. In this chapter, the model constructed for the Alliant FX/80 will be used in an extensive 

study of possible scheduling paradigms; multiprogramming overhead will be revisisted; the 

perfonnance effects of adding processors to the system will be investigated; and the constructed model 

will be critically evaluated. It is found that the model is flexible enough to model all of these 

situations. In addition, the evaluation uncovers a number of paradigms and configurations that will 

perfonn better than the current system setup. 

S.l. Alliant FX/SO Scheduler 

The model built for the Alliant FX/80 is used in this section to evaluate various scheduling 

policies and CE complex modes of operation The majority of the paradigms and processor 

configurations studied are implementable on the current Alliant system. However, a few non­

supported configurations are evaluated. The results are interesting on two levels. First, the evaluation 

of a real machine's possible scheduling paradigms in real worldoads is always valuable. Second, and 

more importantly, the experiments demonstrate the power and flexibility of the model in evaluating 

and comparing different system configurations. 

In Section 8.1.1, three different scheduling policies with the CEs in the dynamic mode are 

compared. In Section 8.1.2, the traditional complex mode is investigated. Section 8.1.3 evaluates the 

static detached mode. In Section 8.1.4, a new CE complex mode of operation is introduced and 

evaluated. Finally, in the last subsection, the results of the extensive scheduling evaluation are 

summarized. In all, 18 scheduling/CE-complex-modes are investigated (Table 8.1). 



Experiment 
ID 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Table 8.1 
Scheduling/CE-Complex-Modes 

CE Complex Job Scheduling 
Mode Class Policy 

Dynanuc A A 
Dynamic C A 
Dynamic AorC B 
Dynamic A C 
Dynamic C C 

Traditional A A' 
Traditional C A' 
Traditional AorC B' 
Traditional A C' 
Traditional C C' 

7/1 Static Detached AorC B' 
6/2 Static Detached AorC B' 
5/3 Static Detached AorC B' 
4/4 Static Detached AorC B' 

7/1 Dynamic Detached AorC B,B' 
6/2 Dynamic Detached AorC B,B' 
5/3 Dynamic Detached AorC B,B' 
4/4 Dynamic Detached AorC B,B' 

111 

Fl052 Completion Time (s) 
Mean Std. Dev. 
839.7 342.8 
413.3 130.0 
716.3 234.7 
808.5 326.6 
475.8 142.5 
510.8 227.9 
259.8 88.6 
439.0 144.5 
490.8 208.8 
293.0 98.3 
478.6 156.0 
536.9 177.0 
617.4 195.3 
741.9 224.2 
459.7 152.8 
486.9 159.5 
515.4 172.7 
541.0 176.6 

Each experiment in Table 8.1 consists of modeling the given change with a new reward function 

and solving the model for the completion time distribution of Fl052. Each distribution consists of 

5,000 independent completion time simulations. The completion time distributions predicted for each 

system modification are then compared to evaluate the effects of the schedulers and complex 

configurations. The reward required by Fl052 was obtained by executing the application on a 

dedicated machine (Table 3.3). 

8.1.1. Dynamic mode 

The dynamic CE complex mode (Section 3.1.1) was evaluated under three scheduling policies: 

A, B, and C. Each policy can be easily implemented on the Alliant. Policy A (Table 3.1) was the 

scheduling policy in use while the data with which the model was built were collected. For this 

reason, it will be used as the basis for comparison. This policy gives type C jobs longer time quanta 

than type A jobs. Policy B (Table 8.2) groups type A and type C jobs into the same class, effectively 



112 

eliminating any sense of class. Policy C (Table 8.3) enforces the class structure but removes the 

priority given to class C jobs (equal time quanta). 

The reward functions used to model policies A, B, and C are given by Equations (7.13), (8.1), 

and (8.2), respectively. The superscript on the reward tenn, Rj, indicates the experiment ID number. 

The reward function for policy B uses the number of type C cluster jobs (CLef) instead of the 

percentage of time for which there is at least one type C cluster job (%CLCj), because all clusters jobs 

(type A and C) are scheduled in a round-robin fashion to the same time block. It is no longer true that 

a time block is reserved solely for type C jobs as it is under Policy A (Level 2, Table 3.1). Policy C's 

reward function modifies the evaluation of NORMC to NORMC2 to reflect the equal time quanta given 

to type A and C jobs. 

R,'zp3 = (TIME,'0 x CLUSPF x ( 1 + CJp+CLCF) x(1- MPO,'0 (8.1) 

R.'zp4 = (TIME,'0 x CLUSPF x (1 - (%CLCF x NORMC2j» x ( 1 + ~LAF ) x (1 - MPO.C) (8.2) 

Level 
1 
2 
3 
4 
5 
6 

NORMC2j = CLJSPF x [(-ftxl,f) + «CLUSPF - -&)X¥)] 

Lev. Quant. 
1 300ms 
2 400ms 
3 200ms 
4 200ms 
5 200ms 

Quantum Choice 1 
350ms cluster (A) 
350ms cluster (C) 
lS0ms CE(C) 
lS0ms CE(A) 
lS0ms IP/CE 
lS0ms IP/CE 

Table 8.2 
Scheduling Policy B 

Choice 1 Choice 2 
cluster IP/CE 
cluster IP/CE 

CE IP/CE 
CE IP/CE 

IP/CE CE 

Table 8.3 
Scheduling Policy C 

Choice 2 Choice 3 
cluster (C) IP/CE 
cluster (A) IP/CE 

CE(A) IP/CE 
CE (C) IP/CE 
CE(C) CE(A) 
CE (A) CE(C) 

Choice 3 
CE 
CE 

cluster 
cluster 
cluster 

Choice 4 
CE(A) 
CE(C) 

cluster (C) 
cluster (A) 
cluster (C) 
cluster (A) 

Choice 5 
CE(C) 
CE(A) 

cluster (A) 
cluster (C) . 
cluster (A) 
cluster (C) 



113 

Completion time distributions for AoS2 scheduled as both type A and type C cluster jobs were 

detennined for scheduling policies A and C. For policy B the type of job is irrelevant thus only one 

distribution was detennined. Type C cluster jobs were modeled by modifying the reward function 

accordingly. For instance. the reward for a type C job under scheduling policy A is shown by 

Equation (8.3). The reward function for a type C cluster job is arrived at symmetrically to the function 

for a type A job (Figure 7.4). However. in the second line of the figure, the right side of the time 

period (type Cjobs) is used instead of the left side. 

R,DP2 = (TIME,C) x CLUSP,c x (1 - (%CLA,c x NORMAj» x ( 1 + ~LCF) x (1 - MPO,C) (8.3) 

1 7 3 c 7 1 
NORMAj = CLUSPF x [( rrx,) + «CLUSP, - rr )x-r)] 

The distributions of completion times for AoS2 under the different schedulers are shown in 

Figures 8. 1 (a) - (e). Only one graph is shown for policy B because the completion time distribution 

for a type A job is identical to that of a type C job (no class system enforced). The means and 

standard deviations for the experiments are shown in Table 8.1 (Experiments 1-5). 

The results show that policy A is the worst of the three for cluster A jobs (Experiment 1) and the 

best for cluster C jobs (Experiment 2). This is due to the different size time quanta granted to the 

different job classes. Removing the slight (SO ms) time quantum difference between type A and C 

jobs (Experiments 4 - S) reduces the average completion time of type A cluster jobs by only 3.7%, 

while increasing the average completion time of type C cluster jobs by IS.1 %. Therefore. this policy 

is not recommended. Under policy B (Experiment 3), type A cluster jobs finish. on average. 14.7% 

more quickly than under Policy A; however, type C cluster jobs take an average of 73.3% longer. The 

large difference in the vicissitudes is attributable to the abundance of type A cluster jobs in the 

workloads studied. 

Consulting the distributions, it is seen that under policies A and C. a small number of 

simulations placed the completion time of FloS2- when classified as a type A cluster job 



600 1500 1000 

(a) Policy: A (b) Policy: A 800 (c) Policy: B 

400 Class: A 1000 Class:C 
600 

Class: A,C 

Freq. Freq. F~ 
200 500 

200 

-0 -0 -0 

. -0 1000 2000 3000 4000 
Completion Time (s) 

Experiment 1 

-0 1000 2000 3000 4000 
Completion Time (s) 

Experiment 2 

-0 1000 2000 3000 4000 
Completion Time (s) 

Experiment 3 

600 

400 
Freq. 

200 

-0 

(d) Policy: C 

Class: A 

-0 1000 2000 3000 4000 

1500 

1000 
Freq. 

500 

-0 

(e) Policy: C 

Class: C 

-0 1000 2000 3000 4000 
Completion Time (s) Completion Tune (s) 

Experiment 4 ExperimentS 

Figures 8.1 Completion Time: Dynamic Mode 

114 

(Experiments 1,4~ well over 2000 s (some as high as 4000 s). TIle possibility of extremely long 

completion times is a weakness of these scheduling policies - a weakness not found under policy B 

(Experiment 3). However, policies A and C have the advantage of nearly guaranteeing that Fl052 will 

finish within 1000 s if submitted as a type C job (Experiments 2,5). This type of information is 

extremely useful for real-time systems evaluation. 

As a final point, it should be noted that all three scheduling policies treat detached jobs 

identically. Therefore the perfonnance of detached jobs is assumed to be identical under the different 

policies. 

8.1.2. Traditional complex mode 

In the traditional complex mode the CEs remain clustered at all times and are used as a single 

resource to multiprogram cluster jobs (Section 3.1.1). All other jobs are executed by the IPs. Due to 



115 

the abundance of IP/CE jobs in the real workloads measured, this mode could result in a processing 

bottleneck at the IPs. Therefore, the traditional complex mode is eliminated from serious 

consideration. However, for the sake of completeness, the traditional mode is studied in this 

subsection. 

Three scheduling policies (A', B', and C'), resembling the three policies introduced in the last 

subsection, were evaluated. The policies are completely described by the top two levels of the 

corresponding dynamic scheduling policies. For instance, policy A' is simply levels I and 2 of Table 

3.1. Equation (8.4) shows the reward function for type A cluster jobs under policy A'. The CLUSpc 

term is not used in this reward function because the CE complex is always clustered in the traditional 

mode. In other words, the division shown by the first line in Figure 7.4 is not necessary. 

R.'zp6 = (TIME,!:) x (1 - (%CLCF x t)} x ( 1 + ~LAF) x (1 - MPOP) (8.4) 

The completion time frequency distributions for FloS2 executing under policies A " B', and C' 

as both type A and type C cluster jobs are shown in Figures 8.2(a) - (e). The means and standard 

deviations for the traditional mode evaluations are summarized in Table 8.1 (Experiments 6-10). 

Not surprisingly, because there is no research sharing between clustered and detached jobs, 

cluster jobs execute more quickly on a machine in traditional mode than on a machine in dynamic 

mode. On average, type A cluster jobs execute 39% faster on the traditional complex under policy A' 

than on the dynamic cluster under policy A (Experiments 1,6). The standard deviation of completion 

times is also much lower for all policies on the traditional mode complex. This indicates that cluster 

job response times are more predictable when executed on CEs in the traditional mode. 

As with the dynamic mode, the best scheduling policy for type A jobs in the traditional mode 

consists of removing the class distinction (Experiment 8); again, this is the worst policy for type C 

cluster jobs. Comparing policies A' and C' (Experiments 6,7,9,10) demonstrates that leaving the class 

distinction, but providing equal quanta to both A and C cluster jobs, does not significantly improve 

type A job performance. 



1000 

800 

Fr~ 
400 

200 

-0 

(a) Policy: A' 

Class: A 

-0 500 1000 1500 2000 
Completion Time (8) 

Experiment 6 

1000 

800 

F~ 
400 

200 

1500 
2000 

(b) Policy: A' 

1500 Class: C 1000 

(c) Policy: B' 

Class: A,C 
Freq. 

1000 

500 

-0 

-0 500 1000 1500 2000 
Completion Time (8) 

Experiment 7 

3000 
(d) Policy: C­

Class: A 
F~ 

F~ 

-0 500 1000 1500 2000 
Completion Time (s) 

Experiment 8 

(e) Policy: C' 

Class: C 

-0 -+-.UJ.LLl.jWUWif"-.,..--'t 

-0 500 1000 1500 2000 -0 500 1000 1500 2000 
Completion Time (s) Completion Time (s) 

Experiment 9 Experiment 10 

Figures 8.2 Completion Times: Traditional Mode 

8.1.3. Static detached mode 

116 

In the static detached mode a fixed number of CBs are clustered executing parallel jobs, while 

the rest of the CEs remain detached. This subsection investigates four static detached configurations 

under scheduling policy B'. Scheduling policy B' ensures that the completion time distribution will 

be unaffected by the class (A or C) of AoS2. 

A static detached complex with seven CEs clustered and one CE detached will be called a 7/1 

static detached complex. From the cluster jobs view, the machine in the 7/1 static detached mode 

appears as it does in the traditional mode, but with one less processor. Therefore, performance will be 

degraded on sections of an application that require all eight processors. To model this, the reward 

needed for sections of FloS2 requiring all eight processors was increased by a factor of t, while the 

reward needed for sections requiring seven or fewer processors was left unchanged. 



117 

Therefore, by increasing the reward required by Fl052, and using the reward function for 

scheduling policy B', the completion time distribution of Fl052 executing on a 7/1 static detached 

complex was estimated. Similar analysis was perfonned for 6(1., 5/3, and 4/4 static detached 

configurations. Selected results are shown in Figures 8.3(a) - (c) and Table 8.1 (Experiments 11-14). 

The figures show that as the number of statically clustered CEs increases, the completion time of 

clustered jobs decreases. Comparing Experiments 11 - 14 with Experiment 3, it is seen that the only 

case in which policy B in dynamic mode perfonns better than the static detached mode is for the 4/4 

static detached configuration. Because it does not outperfonn the currem system environment, the 4/4 

static detached configuration is eliminated from further consideration. 

Further analysis shows that the 7/1, 6(1., and 5/3 static detached configurations under scheduler 

B' (Experiments 11,12.13) execute clustered jobs faster than the dynamic configuration under 

scheduler B (Experiment 3). It must be remembered though that the model can only predict the 

perfonnance of clustered jobs. The perfonnance of these jobs must be considered to make the analysis 

complete. For the 7/1 static detached mode there remains only one CE (along with the 6 IPs) to 

handle all of the IP/CE and CE jobs. The response time of these jobs may suffer under this 

configuration. Preliminary analysis indicates that 2 or 3 dedicated CEs along with the 6 IPs are 

powerful enough to meet the encountered IP/CE and CE job demands. This infonnation, along with 

1500 

1000 

Freq. 

500 

7/1 

-0 500 1000 1500 
Completion Time (s) 

Experiment 11 
(a) 

1500 

1000 

Freq. 

500 

6(2 

-0 500 1000 1500 
Completion Time (s) 

Experiment 12 
(b) 

1500 

1000 

Freq. 

500 

5!3 

-0 500 1000 1500 
Completion Time (s) 

Experiment 13 
(c) 

Figures 8.3 Completion Times: Static Detached Mode 



118 

the fact that both the 6/2 and the 5/3 configurations perform better on cluster jobs than the dynamic 

mode, indicates that these configurations should be implemented or evaluated further. 

8.1.4. Dynamic detached mode 

All scheduling paradigms and processor configurations investigated in the last subsections are 

supported by the Alliant FX/80. Although prohibitively time consuming, the evaluation could have 

been accomplished by implementing each change and measuring the corresponding performance. In 

this subsection, the power of the model will be demonstrated by evaluating a CE complex mode which 

is not supported by the current Alliant operating system. The mode is called the dynamic detached 

mode. It is a straightforward mix of the dynamic and the static detached modes. 

In the dynamic detached mode, the CEs dynamically switch between two configurations: 

clustered and semi-detached. In the clustered configuration, all eight CEs are applied to the execution 

of cluster jobs identically to the clustered configuration in the dynamic mode. In the semi-detached 

configuration, the CE complex performs as it does in the static detached mode- a fixed number of 

CEs remain clustered and multiprogram parallel jobs, while the remaining CEs concurrently execute 

detached (serial) jobs. Notation similar to that introduced in the previous subsection is used to 

describe the number of CEs that remain clustered in the semi-detached configuration. Figure 8.4 

illustrates the 4/4 dynamic detached mode. 

Equation (8.5) shows the reward for cluster jobs executing in this environment. The equation 

calculates separately and then adds the reward for the CEs in the clustered configuration (CLUSpF 

fraction of the time) and the reward for the CEs in the semi-detached configuration. The term ¥ 
accounts for there being fewer than 8 processors available to the application while in the semi­

detached configuration. The term FILL; accounts for multiprogramming overhead, competing jobs, 

and the time of the observation. 



CE CE CE CE 

I 

CE CE CE CE 

------------------.. . 
~G CE CE 

Detached 

~G CE CE 

Clustered 

Figure 8.4 4/4 Dynamic Detached Mode 

R,-.l5-18 = [(1 - CLUSPP) x ¥ x FIUj] + [CLUSpF x FIUj] 

FIUj = (T1ME,C) x ( 1 + CLA~+CLCF ) x(1 - MPO,C) 

#CE = CEs executing parallel jobs while semi-detached 

119 

(8.5) 

Four dynamic detached modes were investigated: 7/1, 6(l, 5/3, and 4/4. Selected results are 

shown in Figures 8.5(a) - (c) and Table 8.1 (Experiments 15-18). 

The perfonnance of the dynamic detached mode is bounded from above by the performance of 

the traditional mode, and from below by the perfonnance of the dynamic mode. As can be seen, the 

dynamic detached mode executes cluster jobs more efficiently than the corresponding configurations 

in the static detached mode (Experiments 11 and 15; 12 and 16; 13 and 17; 14 and 18). In addition, 

preliminary analysis indicates that the 5/3 and 4/4 dynamic detached modes provide adequate 

processing power for the IP/CE and CE jobs encountered in the workloads measured; the 7/1 

configuration would lead to a bottleneck at the IPs. 

Therefore, the dynamit detached mode, while currently unavailable, can be an effective mode 

which should be investigated further. The model predicts that for the workloads measured, the 5/3 



uo 

1000 1000 1000 

Freq. 6f2 Freq. 5{3 Freq. 4/4 

500 500 500 

-0 -0 -0 

-0 500 1000 1500 -0 500 1000 1500 -0 500 1000 1500 
Completion Time (s) Completion Time (s) Completion Time (s) 

Experiment 16 Experiment 17 Experiment 18 
(a) (b) (c) 

Figures 8.5 Completion Times: Dynamic Detached Mode 

dynamic detached mode (Experiment 17) will execute cluster jobs more efficiently than both the 

dynamic mode (Experiments 1,3, and 4) and the 6(2 static detached mode (Experiment 12). 

8.1.5. Scheduling summary 

In the last subsections, available and speculative scheduling paradigms and processor 

configurations were investigated. Once the model was constructed, the cost and time required to 

evaluate all of the policies were minimal. The model allowed the policies to be evaluated not only for 

a single application (although a single completion time distribution is used) but for a class of 

applications executing in real measured worldoads. In essence, the analysis evaluates the system 

design change with respect to all of the worldoads which were measured. 

The results demonstrated that the CE configuration and scheduling policy could be modified to 

improve perfonnance for parallel jobs without degrading the perfonnance of serial jobs. First, if the 

CE complex remained in the dynamic mode, the study indicated that a new scheduling policy (policy 

B) would provide more consistent selVice to all parallel jobs. If the CE complex were operated in the 

static detached mode, the investigation suggested that a 6(2 or 5(3 configuration would provide better 

selVice to the parallel jobs. 



121 

Finally, a new mode of operation (dynamic detached mode) was introduced and shown to 

outperform the current configuration and also the static detached configuration. The investigation 

suggested further experimentation with either a 4/4 or 5/3 dynamic detached mode. 

8.2. Predicting Effect or Multiprogramming Overhead - AUiant FX/80 

In Section 5.4.1 the percentage of processing power consumed by multiprogramming overhead 

in real workloads was quantified. In this section, MPO is not approached from a processor utilization 

perspective but from an application performance degradation point of view. In other words, in this 

section, the increase in the completion time of an application due to MPO is quantified. Also, the 

effects of reducing MPO are quantified. The results are useful in determining whether the reduction of 

MPO is a cost effective goal. 

The completion time distribution of a parallel application was first predicted in the workloads 

without any system changes (full MPO). The reward function was then modified to model a 25% 

reduction in MPO (Equation (8.6», a 50% reduction in MPO (equation not shown), and the ideal case 

of complete MPO removal (Equation (8.7». 

1 MPOc 
Rj = (TIME.£:) x CLUSP,c x (1- (%CLC,c X NORMCj» x ( I + CLAP) x (1 - 4') (8.6) 

Rj = (TIME,C) x CLUSP,c x (1 - (%CLC,c x NORMCj» x ( 1 + ~LAf ) (8.7) 

The completion time distribution of Fl052 in normal workloads was previously determined and 

shown in Figure 8.1(a). The distributions with the MPO reduced 25%, 50%, and completely 

eliminated are shown in Figures 8.6(a) - (c). The figures show only completion times less than 2000 s 

because there were few times greater than 2000 s and their inclusion reduced the figures' precision. 

The means and standard deviations for the distributions are shown in Table 8.4. 

By reducing the MPO by 25%, the average completion time is reduced by 6%; reducing the 

MPO by 50%, reduces the completion time by 11 %; completely eliminating the MPO reduces the 

average completion time by 20%. Notice that the standard deviation is not substantially different 



600 

400 
Freq. 

200 

-0 500 1000 1500 2000 
Completion Time (s) 

3/4MPO 
(a) 

600 

400 
Freq. 

200 

-O~--UfWWIJ,Itw"L.IWf-"" 

-0 500 1000 1500 2000 
Completion Time (s) 

I!2MPO 
(b) 

600 

400 
Freq. 

200 

-0 500 1000 1500 2000 
Completion Time (s) 

NoMPO 
(c) 

Figures 8.6 Reduction of Multiprogramming Ovemead 

Table 8.4 
Reducing Multiprogramming Overhead 

% MPO Flo52 Completion Time 
Mean Std. Dev. 

I .7 4 . 
75 792.7 332.8 
50 746.8 291.8 
o 675.8 270.4 

122 

between the 1/2 MPO and the no MPO situations. In other words, once half of the MPO is eliminated, 

removing more will improve the mean completion time of parallel applications, but will not 

substantially reduce the wide range of completion times. 

8.3. Additional Processors: Alliant FXl80 

In this section, the performance improvement obtained by adding more CEs to the Alliant is 

investigated. It is assumed that N additional CEs are added to the Alliant FXl80 and that the CEs 

remain in the dynamic mode and the jobs are scheduled with Policy A (Table 3.1). Now, for the sake 

of variety, BONA will be used as the target application used to gauge the perfonnance improvement 

with extra processors. 

For sections of BONA where all 8 processors are employed, a linear speedup of ¥ is 

assumed. 'This assumption is valid because these section of codes consist of self-scheduled iterations 



U3 

of a loop. Sections of BONA using less than 8 processors will not be sped up when more processors 

are added to the system. For BDNA, it is found from executing on an eight-processor dedicated 

machine that 60.5% of the application's execution uses all eight processors. The reward needed was 

changed according to these assumptions and the model was used to simulate 5000 runs of BONA. 

Note that the model solves for the completion time of BONA executing with the real workloads on a 

machine with 8 + N CEs. 

Systems with N = 2, 4, and 8 extra processors were modeled. The completion time frequency 

distributions for the extra processor machines are shown in Figure 8.7(a) - (c). The completion time of 

BONA on the 8 processor machine is shown in Figure 7.6. The mean and standard deviations for the 

completion times are shown in Table 8.5. 

The results show that for BONA adding two extra processors to the system will decrease the 

average completion time by 12%. After this, adding more processors will not decrease the completion 

300 

200 
Freq. 

100 

-0 
500 1500 2500 

Completion Time (s) 
10CEs 

(a) 

# 
CEs 

8 
10 
12 
16 

300 

F 200 req. 

100 

-0 
SOO 1500 2500 

Completion Time (s) 
12CEs 

(b) 

300 

200 
Freq. 

100 

-0 

Figures 8.7 Additional Processors 

Table 8.5 
Additional Processing Elements 

BONA Completion Time % 

500 1500 2500 

Completion Time (s) 
16CEs 

(c) 

Mean Std. Dev. improvement 
1236 450 -
1091 392 12% 
1001 395 19% 
933 381 25% 



124 

time as quickly. Obviously, this is a consequence of Ahmdal's law. Also notice that the first two 

extra processors decrease the standard deviation of completion time for BDNA, but adding more than 

two does not affect it significantly. 

This indicates that adding processors may not be the best way to increase the perfonnance of 

parallel jobs on the Alliant FX/SO for the workloads studied. In fact, extra processors (past the first 

two) used in the dynamic mode show negligible perfonnance improvement for real parallel jobs. 

Instead, extra processors would be better used by changing the CE complex to a static detached mode 

and using the extra processors to handle all CE and IP/CE jobs. In this way, the origmal eight CEs 

would remain clustered at all times, and perfonnance equivalent to the traditional mode (Section 

8.1.2) would be achieved. 

8.4. Model Usage Evaluation 

As demonstrated in this chapter, a major strength of the constructed model is its flexibility. All 

scheduling/CE-complex-mode configurations encountered could be modeled. The model was capable 

of accounting for changes in multiprogramming overhead and perfonnance with an increased number 

of processors. Part of the model's flexibility stems from the different methods in which system 

modifications can be modeled. For instance, changes can be modeled by modifying the reward 

function (scheduling paradigms), or by modifying the reward requested (extra processors). If the 

execution of applications in different workloads needs to be predicted, the starting state probabilities 

can be modified to model the new workloads. This provides a function of the model which will be 

illustrated in the next chapter. 

In addition to the wide range of system modifications which can be modeled, the modeling 

technique is valuable because it provides more than a single point measurement for comparison; the 

entire distribution of completion time is provided. The probability that an application will finish by a 

given time in the workloads provides not only infonnation on the specific application that is being 



us 

modeled, but also inherently evaluates how entire workloads will execute under the system design 

change. 

The previous sections have illustrated some of the results available through the completion time 

distribution. For instance, the peaks in the frequency distributions indicate the most common 

completion time for an application. The standard deviation indicates how predictably a job will 

behave under a policy or configuration. This was used in Section 8.2 to see that reducing 

multiprogramming overhead past a certain point will not improve the predictability of an application's 

completion time. By analyzing the distribution tails, worst-case behavior can be gauged. This was 

useful when comparing scheduling paradigms while the CEs were in the dynamic mode (Section 

8.1.1). It was found that Policy A occasionally reported terrible performance, while Policy B was 

much more consistent. The distribution also allows the probability that an application will finish by a 

given deadline to be estimated. This type of information is invaluable for real-time systems. Of 

course, single point comparisons can still be made by using the distributions means. However, the 

entire completion time distribution provides significantly more detail than the means alone. 



126 

CHAPTER 9. 

MODEL V AUDATION 

It is often the case that analytical models are built. used to predict system behavior. and never 

validated with empirical data. TItis is true for a number of reasons. Frequently models predict system 

or system design changes which are not available for measurement. Other times. accurate 

measurements. while available. are hard to obtain and thus are not gathered. Frequently. the models 

built are based on such broad assumptions of worldoad. that there do not exist empirical data which 

can validate them. For instance. it is hard to find worldoads following exponential arrival times, and 

thus models based on these assumptions are difficult to validate with measurements from real 

machines. In cases in which validation is not perfonned. the predictions made by the models can be 

trusted only as far as the assumptions in the modeling technique. 

When validation is perfonned. it is nonnally a validation of an analytical model with simulation 

results. While this is beneficial. if assumptions made by the analytical model are also made by the 

simulation. the validation loses some of its persuasiveness. It is a tenet of this thesis that whenever 

possible. predictions made by models should be validated with empirical data from real workloads. 

In this section the results of four experiments that validate the model constructed for the Alliant 

FX/80 with empirical data are presented. The first two validations use the completion times of the 

target applications to validate the model. The conclusion from these tests is that the model accurately 

represents the worldoads measured. The third validation uses the model to predict correctly the effect 

of operating the system with only seven CEs. In the final experiment. the perfonnance of an 

application in new workloads under a new scheduling paradigm is successfully predicted. The last two 

experiments validate the predictive abilities of the constructed model. 

The effect of the number of clusters chosen to represent the workload on the accuracy of 

predictions is then evaluated. The criterion proposed in Chapter 7 is shown to be valid. 



127 

9.1. Validation A: Predicting CT or Target Applications, 1 

The first phase of validation tests how well the constructed Markov model represents the 

workload measured. The Markov model was slightly modified to include an absorption state 

corresponding to application completion. The Markov model was then solved for an average number 

of transitions until absorption (application completion). If the model accurately represented the 

workload, the average number of states visited before absorption multiplied by the average time spent 

in a state would be close to the mean completion time of the 100 target applications executed while 

the data were collected. In other words, the average predicted completion time of the target 

applications would be close to the actual completion time. 

The new Markov model had 73 states in its state space: the 72 system!work.load states plus an 

absorption state (state 73). The new transition matrix (~') was calculated with an additional 100 

transitions: one for each target application completion (Equation (9.1». The last observation of each 

target application (OIe,OBS(Ie» was assumed to traverse to the absorption state. 

~ OB~)-1 
po'. _ ~ ~ IND [(OleJ E Cj) A (OleJ+l E Cj)] 
'J-~--~~~;~~"O~~~)-I-N-D-[O--leJ-E--C-d------ 1 Si,j ~2 

, :: IND [OIe,OBS(Ie) E Ci] 

Pi.73 = ~ 0%) lND [OleJ E Cd 
lSi ~2 (9.1) 

, {o lSi~2 
P73~ = 1 i=73 

To solve the Markov model, the row and column corresponding to the absorption state were 

removed from the transition matrix to fonn the 72x72 matrix Q. Equation (9.2) detennines the matrix 

M which is made up of elements, 1nj J' corresponding to the expected number of visits to state j before 

absorption, given the process started in state i. Expected completion was then estimated using 

Equation (9.3). 

M = (I_Q)-l (9.2) 



128 

E [Completion Time] = 6.094 x [1tl(O) 1t2(O) 1t3(O) .... 1t:zo(O)] x : 
(9.3) 

The above evaluation determined that the expected completion time of the applications used to 

build the model was 1306 s. The actual mean of the 100 target applications was 1303 s. This 

indicates that the Markov model successfully captured the states and transitions of the workloads 

measured. 

9.2. Validation B: Predicting CT or Target Applications, 2 

The last section validated the Markov model. In this section, the Mark.ov model as well as the 

reward and cost function will be validated. 

Recall that the model was constructed from measurements obtained during the execution of 

Dyfesm and Fl052 35 times, and Track 30 times. The frequency distribution of completion time for 

these 100 executions is shown in Figure 9.1(a). If the model accurately captured the workloads 

measured, then it should be able to predict the completion time distribution of the target applications. 

Towards this end, model simulation was perfOlmed to generate completion times for 4728 executions 

each of Dyfesm and Fl052, and 4054 executions of Track (the 35:3 5:30 ratio). The frequency 

distribution of completion times for these simulations is shown in Figure 9. 1 (b). 

The figures show that the distribution of predicted completion time is extremely close to the 

actual distribution. Both distributions rise to major peaks at 600 - 750 s and then taper to a second 

plateau beginning around 1200 s. This second shelf remains fairly constant until 2100 s at which point 

it steadily diminishes until there are only sporadic occurrences after 2500 s. Using common statistical 

tests [74], the hypothesis that the means of the two distributions are equal cannot be rejected even with 



129 

15 600 
Mean = 1303 Mean = 1229 

Std. Dev. = 916 Std. Dev. = 691 
10 (Observed) F~ (Predicted) 

Freq. 

5 200 

-O~~~~~~~~~~T---~ -0 

-0 1000 2000 3000 4000 5000 -0 1000 2000 3000 4000 5000 
Completion Time (s) 

(a) 
Completion Time (s) 

(b) 

Figure 9.1 Observed and Predicted Target Application Completion Time 

a level of significance as high as 0.2. In other words, the mean of the predicted distribution, 1229 s, is 

statistically equal to the actual mean of 1303 s. The model's capability to reproduce the completion 

times of the target applications validates the Markov model and the reward function. 

9.3. Validation C: Predicting the Errect 01 Fewer Processors 

Validations A and B illustrated that the model successfully captured the workload that was 

measured. The next two experiments will show that the model can predict the perfonnance of 

applications executing in workloads similar to those measured on systems with different 

configurations. For the experiment of this subsection, a single CE on the Alliant FX/80 was removed 

leaving the cluster with only seven processors. The machine continued to handle its nonnal activities, 

but with one less CE. Fl052 was executed 48 times in random, uncontrolled workloads over a two-

week period on the seven-processor Alliant (Figure 9.2(a)). 

The model was used to predict the completion time distribution of Fl052 running on a seven-

processor machine. Recall that Fl052 requires 88 s of clustered CE time to complete. It was 

determined that 57.5 s (65%) of this time requires all eight CEs. Fl052 running on seven processors 

was modeled by increasing the reward needed for sections of code requiring all eight processors by a 



8 

6 

2 

-0 

Mean = 861 

Std. Dev. = 547 

(Observed) 

500 1000 1500 2000 2500 
Completion Time (s) 

(a) 

1000 

Freq. 

500 

-0 

-

-

-0 

r 

130 

Mean = 883 

Std. Dev. = 313 

(Predicted) 

~ 
I I I 

500 1000 1500 2000 2500 
Completion Time (s) 

(b) 

Figure 9.2 Observed and Predicted Completion Time on a Seven Processor Machine 

factor of ~ and leaving the reward needed for sections requiring seven or fewer processors 

unchanged In addition to increasing the reward required, the starting state probabilities were 

modified to model the actual 48 starting states of the application executions. With these changes, 

5000 completion times were generated. The corresponding frequency distribution is shown in Figure 

9.2(b). 

The figures show that the model was able to predict the real workload performance of Fl052 on a 

seven-processor machine. Both distributions show peaks around 750 s, with a tail disappearing 

around 2000 s. In addition, neither distribution shows values above 2500 s. 

However, the model failed to predict the completion times under 350 s. This was caused by low 

usage workloads present frequently during the test but rarely during the creation of the model. This 

highlights an important aspect of the modeling methodology; the model does not, nor should it, 

predict performance in workloads drastically different from those modeled. It should be emphasized, 

though, that the method models a variety of workloads and is robust enough to predict completion 

times accurately in workloads that are similar to those modeled. 



131 

The average predicted completion time for the seven-processor machine was 883 s. The 

obselVed empirical average was 861 s. Using common statistical techniques. the hypothesis that the 

two population means were equal could not be rejected even with high significance levels. This may 

be due to the high variances in completion time. With this in mind. the data of this experiment still 

validate both the model and the methodology used to build the model. 

9.4. Validation D: Predicting a Scheduling Modification 

The ability of the model to predict the effects of a scheduling modification is investigated in this 

section by implementing scheduling policy B (Table 8.2) on the Alliant FXl80 with the CEs in the 

dynamiC mode. The machine continued to be used by the same community of users for the same 

purposes but under the new scheduling policy. 'The Perfect benchmark BONA (Table 3.3), which is 

an application of the modeled class (computationally bound, parallel application). was executed 66 

times at randomly selected times over a 6 week period in the modified environment. The measured 

completion time frequency distribution for the 66 runs is shown in Figure 9.3(a). 

The model was used to predict the completion time distribution of the 66 executions of BONA 

under the new scheduling algorithm. The reward function for each state was modified to model the 

new scheduling policy (Equation (8.1)) In addition. the Markov model's starting probabilities were 

changed to reflect the 66 starting states of the BONA application executions. With these 

modifications. Monte Carlo simulation was used to generate 7000 completion times of BONA. The 

predicted completion time frequency distribution is shown in Figure 9.3(b). 

The figures show that the model was able to predict the real worldoad perfonnance for a 

completely new application (BONA) under the revised scheduling policy. Both frequency 

distributions show their lowest values around 500 s and climb to a peak at 1000 s; the CUlVes diminish 

to nothingness around 2000 s. The average predicted completion time under the new scheduler was 

1087 s compared to the empirical average of 1069 s. Using common statistical techniques, the 



20 

15 

10 
Freq. 

5 

-0 1000 

Mean = 1069 

Std. Dev. = 487 
(Observed) 

2000 3000 
Completion Time (s) 

(a) 

1500 

1000 

Freq. 

500 

Mean = 1087 

Std. Dev. = 263 
(Predicted) 

-O-+-_..L.L.J~f-I-L.l..1..L.L.L..L.q..--_.----

-0 1000 2000 
Completion Time (s) 

(b) 

3000 

Figure 9.3 Observed and Predicted Completion Time: Scheduling Policy B 

132 

hypothesis that the two population means were equal could not be rejected. The data of this 

experiment validate both the model and its ability to predict the performance effects of scheduling 

modifications. 

9.5. Dependence on Number of Clusters 

In Section 7.1, the procedure used to choose the number of clusters in the statistical clustering 

step of the methodology was introduced. In the Alliant example, this procedure yielded an original 

clustering into 80 groups, with 72 groups left after outlier removal. However, using 80 initial states to 

characterize workload/system behavior seems a bit arbitrary. Why not start with 20 or 2501 In this 

section, the dependence of the modeling methodology on the number of clusters is investigated. The 

results will show that the methodology is not highly sensitive to the number of clusters chosen. 

Similar results would be obtained if 70 or 90 clusters were used instead of 80. 

The data used to construct the Alliant FX/80 model were used with varying numbers of clusters 

to create multiple models. All steps of the model-building methodology were performed as in Section 

7.2 except that the number of original clusters used was varied. Models using from I to 300 initial 

clusters were constructed. Absorbing states with less than 10 observations were still performed to 



133 

remove outlier bias. The final number of states for each experiment can be detennined from Figure 

7.3. 

The 300 models were used to predict the completion time of the 100 target applications (see 

Validation B, Section 9.2). Figure 9.4(a) shows the mean predicted completion time as a function of 

number of clusters used. Figure 9.4(b) shows the corresponding standard deviations. 

Figure 9.4(a) shows that the predicted mean completion time changes slowly as a function of the 

number of clusters. In other words, a model using 40 clusters to represent the workload will make 

predictions similar to one using 43. This is encouraging because it shows that some randomness in 

construction will not have a great impact on the accuracy of the model. It is also intuitively pleasing. 

One would expect a model of 40 or 43 states to provide similar predictions. 

Figure 9.4(a) also shows that for all constructed models, the predicted mean was fairly close to 

the actual mean (1303 s.). While the mean may be accurate for all models, it is unfair to assume that 

the predicted completion time distribution will be accurate for all of the models studied. In fact, 

Figures 9.5(a) - (c) show that for a small number of clusters, the prediction becomes centered, and for 

a large number of clusters the prediction falls victim to outlier bias. The actual distribution should 

1400 

1300 

Mean 
er 
1200 

lIOO~------~----~----~ 

-0 100 200 
# of dusters 

(a) 

300 

800 

700 

Std. Dev. 
er 

600 

500~-----,------~----~ 

-0 100 200 
# of clusters 

(b) 

300 

Figure 9.4 Dependence on Number of Clusters 



2000 

1500 

1000 
Freq. 

500 

1000 3000 5000 

Completion Time (8) 
3 Clusters 

(a) 

1000 

800 

600 
F~ 

200 

-0 
1000 3000 5000 

Completion Time (8) 
70 Clusters 

(b) 

1000 

800 

600 
F~ 

200 

-0 
1000 3000 5000 

Completion Time (8) 
299 Clusters 

(c) 

Figures 9.5 Predicted Target Application Completion Times 

134 

resemble Figure 9.1(a). Figure 9.4(b) hints at the problems of using too many clusters. Notice that 

when more than 120 clusters are used, the standard deviation increases dramatically. This increased 

variability is due to small clusters dominating the analysis. 

In summary, the methodology is not highly sensitive to the number of clusters used to represent 

the workloads. However, care must be taken to choose a fairly reasonable number. 



135 

CHAPTER 10. 

CONCLUSIONS 

The contributions of this thesis can be divided conceptually into three categories. First, the 

thesis introduced evaluation methodologies capable of answering important performance questions 

which have not been previously addressed. The methodologies are unique and may be used in the 

evaluation of other computing environments. Second, through the illustrations of these techniques, 

performance indices from real workloads on parallel processors were obtained. Third, the evaluations 

themselves identified modes of operation for improved performance in both commercial and 

experimental multiprocessors. The results from these specific computers may be generalized and may 

prove useful in future multiprocessor implementations. This section summarizes the important results 

and contributions of the thesis and proposes future research. 

10.1. Summaries 

10.1.1. Multiprogramming overhead: base component 

Two techniques were introduced which quantified the base component (lower bound) on 

multiprogramming ovemead for a real machine. The techniques were used to study the Alliant FX/8, 

FX/80, and Cedar supercomputers. To date it is the only study which isolates multiprogramming 

overhead using real applications on a real machine. The results are important to understand fully the 

overheads associated with multiprogramming on a multiprocessor (which are quite different from the 

multiprogramming overheads found on uniprocessors). 

The techniques found that multiprogramming only cluster jobs on the Alliant systems consumed 

approximately 4% of the cluster time. When two or more detached jobs were introduced to the 

system, this base amount increases to 5.3%. Results also show that the number of additional cluster 

jobs does not affect the base amount of multiprogramming overhead on the Alliant systems. 



136 

Similarly, when there are two or more detached jobs in the system, the base multiprogramming 

overhead remains unchanged. Cedar studies indicate that the base component of overhead for parallel 

jobs is approximately 10.5%. This is over twice as much as that found on the Alliant. It is suspected 

that the increase is due to added synchronization overhead across the clusters. The high base 

component for MPO on Cedar hints at performance problems due to multiprogramming when real 

workloads are executed. 

10.1.2. Multiprogramming and system overheads: ADiant 

A technique capable of quantifying the MPO in real workloads (workloads found during the 

normal operation of the machine) was then introduced. The technique was illustrated on real 

workloads of the Alliant FX/8 and FX/80. System overhead, kernel spin lock overhead, and time 

spent handling interrupts, as well as workload characteristics such as paging, were also measured for 

the workloads investigated. 

It was found that MPO usually consumed between 10 and 23% of the processing power available 

to parallel programs. Total system overhead was normally measured to be between 12 and 30% of the 

processing power, but was found to be as high as 82.1%. The mean MPO was determined to be 16% 

which is well over half of the total system overhead executed on a system (the mean system overhead 

value was determined to be 24% of processing power). 

For all processors, the percentage of processing time spent handling interrupts was minimal and 

predicatably constant across workloads. Kernel lock spinning. on the other hand, was determined to 

be more of a degrading factor. It comprised over 1/3 of the total system overhead and was suspected 

of being a major component of MPO. 

To understand the causes of multiprogramming and system overheads. an extensive statistical 

study was conducted relating the workload characteristics to the overhead values. It was found that 

MPO. total system overhead. and application completion were all moderately correlated. leading to 



137 

the conclusion that the overheads significantly degrade the perfonnance of parallel applications. 

Relationships among the characteristics of a workload and the overhead measurements indicated that 

processor utilization and, to a lesser degree, paging were moderately correlated with the overhead 

present in the workload. It was also found that MPO was independent of the number of parallel jobs 

in the system, while total system overhead was not. The MPO was more dependent on the number of 

serial jobs in the system. It was postulated that, through increased kernel lock spinning, serial jobs 

executing on peripheral processors degraded the perfonnance of parallel jobs. 

10.1.3. MUltiprogramming and system overheads: Cedar 

Workloads were constructed from real applications to investigate multiuser workloads on Cedar. 

The techniques presented in Olapters 4 and 5 were used to estimate MPO in these constructed 

workloads. It was found that the multiprogramming affected applications very differently. The 

perfonnance of some applications was terribly degraded, while others were not adversely affected. 

For instance, MPO was determined to increase the completion time of some applications by over 

100%. 

Experiments were conducted to determine what application characteristics were most susceptible 

to performance degradation in multiapplication workloads. It was determined that synchronization of 

loops spread across the clusters on Cedar caused an overhead which was exacerbated by 

multiprogramming. It was postulated that tasks were being context-switched off while executing in 

critical sections, leaving other tasks spinning idly waiting for access to appropriate code or variables. 

One solution to this problem would be gang scheduling for the applications. It was also shown that, 

for the applications studied, accesses to global memory were not adversely affected by 

mUltiprogramming. 



138 

10.1.4. Modeling application execution 

The work summarized above provided a basic, thorough understanding of overheads caused by 

multiple job interactions. Using this knowledge as a springboard, a methodology was developed to 

model the behavior of applications from a given domain executing in real workloads on a specified 

machine. The methodology is general and can be used to analyze a myriad of application domains and 

machine types. For instance, the model is not restricted to multi- or uniprocessor machines. Nor is it 

limited to either serial or parallel applications. In theory, the methodology can be used to model any 

application domain on any machine. In practice, the major limiting factor in the model-building 

methodology is the measurement facilities available to the user. 

The constructed model is a measurement-based, Markov model with rewards and costs 

associated with each state. The states of the Markov model represent observed system/workload 

states, and the transitions among the states model observed transitions among the workload states. 

The rewards associated with each state quantify the amount of system resources that an application 

from the modeled domain would receive if submitted to the system while in that state. The cost 

associated with each state is the wall-clock time needed to receive the specified reward. Monte Carlo 

simulation is used to solve the model for a given application's completion time distribution in real 

workloads. 

Given the base resource requirements of an application, the model can predict the probability 

that the application will finish by a given time X (for all X) in the real workloads. The model is useful 

in gauging how well an application will execute, or in predicting the performance impact of a system 

change. For instance, the performance effects of changing the scheduling paradigm or processor 

configuration can be easily evaluated. A system design change is modeled by modifying the reward 

function appropriately. 

The methodology was illustrated by modeling the execution of computationally bound, parallel 

jobs on the Alliant FXj80. The amount of clustered CE time available to type A cluster jobs was used 



139 

as the reward. -Over 36 hours of normal machine operation were monitored, and the resulting model 

used 72 distinct states to represent the workloads. Two empirical experiments demonstrated that the 

constructed model accurately represented the workloads monitored. 

10.1.5. System design modification predictions 

The model constructed for the Alliant FX/80 was then used to evaluate different scheduling 

paradigms and processor configurations, as well as the degradation caused by MPO and the 

performance effects of adding extra processors to the machine. The study was conducted for two 

reasons: 1) to tune the Alliant to the actual workloads present and 2) to demonstrate the flexibility and 

power of the model-building methodology. 

A number of available scheduling policies which would improve the response time of parallel 

jobs (e.g .• the 6(2 or 5/3 static detached mode under Policy B) were identified. The analysis indicated 

that the proposed dynamic detached mode, if implemented, would significantly lower the response 

time of parallel applications. The model predicted that negligible performance improvement would be 

obtained by adding CEs to the system if the CEs were left in the dynamic mode. A more beneficial 

option would be to move to the static detached configuration and allow the added CEs to execute all 

serial jobs, leaving the original 8 CEs continuously clustered. The actual impact of MPO on 

completion time was then quantified using the model. 

The evaluations demonstrated both the flexibility and the power of the modeling technique. The 

flexibility stems from the different methods in which system modifications can be modeled. For 

instance, changes can be modeled by modifying the reward function, by modifying the reward 

requested, or different workloads can be modeled by modifying the starting state probabilities. The 

model is powerful because it provides more than a single-point measurement for comparison: the 

entire distribution of completion times is provided. Some of the results available through the 

completion time distribution were illustrated. For instance, the standard deviation indicated how 



140 

predictably a job will behave under a policy or configuration. By analyzing the distribution tails, 

worst-case behavior can be gauged. The model can also estimate the probability that an application 

will finish by a given deadline. This type of information is invaluable for real-time systems. 

The sensitivity of the modeling methodology to the number of clusters used in the statistical 

clustering step of the technique was also investigated. It was determined that the predictions made by 

the model changed slowly as a function of the number of clusters chosen to represent the 

workload/system states. This demonstrated the robustness of the method. 

Finally, two empirical experiments demonstrated the accuracy of the predictions made by the 

model. The model was shown to successfully predict the completion time of an application executing 

on a system with one less processor. The model was also able to predict the completion time of a new 

application executing in a new workload under a new scheduling paradigm. 

10.2. Future Work 

The need for innovative performance evaluation techniques will continue to grow as systems 

become more complex. More specifically, methods which account for real, multiprogrammed 

workloads will have to be formulated and perfected. After all, these are the types of workloads which 

are executed by systems, thus they should be the ones used to evaluate and tune the system. Someday, 

the use of simple FORTRAN loops will no longer be an acceptable way to judge a system or a system 

design modification. 

Multiprogramming Overhead Methodology-

The methodologies presented in this thesis are general enough to expand with changing systems. 

The techniques which measure the lower bound and real workload component of MPO are complete. 

No future work needs to be done refining or improving them. However, it would be interesting to use 

the techniques to measure a number of different platforms. In this way a more thorough understanding 

of the degradation caused by MPO would be obtained. 



141 

Multiprogramming on Cedar-

The problems caused by SDOALL synchronization in multiprogrammed workloads have been 

identified. It is now important to conduct a more detailed analysis to detennine exactly which critical 

sections or synchronization variables are causing the problems. The use of gang scheduling could also 

be investigated. 

Application Modeling Methodolo~ 

The application execution modeling methodology (Chapter 7) could be expanded in a number of 

ways. As it stands, the methodology creates a discrete-time Markov model. It would be interesting to 

investigate the accuracy of a continuous-time Markov or semi-Markov model in representing the 

workload. It was found by Hsueh that semi-Markov models were superior to regular Markov models 

for creating measurement-based reliability/performability models [70]. Work by Devarakonda has 

shown that continuous-time Markov models can be used to represent process resource usage in UNIX 

systems [68]. Therefore, the type of Markov model employed makes a difference in the accuracy of 

the model for measurement-based analysis. For the methodology of this thesis, continuous-time 

models could easily be created by reducing the sampling period and the observation length. 

The solution of the model for application completion time distribution is now estimated using 

Monte Carlo simulation. Trivedi has been wrestling with the difficult problem of determining the 

accumulated reward distribution for an irreducible continuous-time Markov chain [72]. If the model 

is transformed to a continuous-time Markov chain, then the double Laplace transforms proposed by 

Trivedi may be used to to obtain the closed-form solution for the probability of finishing an 

application by a given time. 

In some cases a single reward function may not be sufficient to model the execution of an 

application. For instance, an application may depend equally on processor resources and I/O for 

completion. Therefore, the use of multiple reward and cost functions for each state should be 

investigated. For instance, for the Cedar supercomputer there may be one reward function for 



142 

processing power, and one reward function for each type of memory required by applications. The 

reward function for shared global memory would quantify the amount of shared global memory 

available to the executing application. The cost associated with that reward would be a function of the 

cost for paging memory in and out of the system, the memory available, and the amount of memory 

available. The completion time of the application would then be determined by the sum of all of the 

costs at the time the required reward has been collected. 

Another interesting modification to the modeling technique would be to allow the type of reward 

required by the application to be a function of time. For instance, an application on Cedar can be 

described by the number of tasks or helper tasks that are running at a given time. For instance, Figure 

6.2 shows 1FS alternating between between using one and four tasks. If the application is running a 

single task (as in the first 77.5 s of MCP), then even if four processors are available on Cedar, only one 

can be used. To model this type of situation, the reward accumulated while stepping through the 

Markov model could be a function of the amount of reward the application can utilize at a given time. 

For instance, Figure 10.1 illustrates the number of tasks an application uses as a function of time. 

The application first requires 20 s of single-cluster time; then it uses 100 s of 4-cluster time, followed 

by 30 s of two-cluster time. The model created would have a reward function for each situation: 

applications needing 1, 2, 3, or 4 clusters. Each state in the Markov chain would have four separate 

rewards. The reward function used at a given time would expand on the part of the application that is 

being simulated. Solving for the completion time of the application depicted in Figure 10.1 could be 

accomplished by first solving for a 20 s application using reward function 1. Then, using the state that 

the 20 s application completed in as the starting state, a 100 s application with reward function 4 

would be simulated. This is followed by a 30 s application with reward function 3. The completion 

time of the application would then be the sum of the completion times of the three parts. 



4 -

3 -

-

1 

-0 

-0 
I 

50 
I 

100 
time (s) 

I 
150 

Figure 10.1 Tasks of an Application as a Function of Time 

Empirical Validation-

143 

200 

Although four empirical validations have already been conducted, there is always need to do 

more. More specifically, the model should be used to predict the completion time of an application 

executing on a system without any modifications. Also, it would be beneficial to detennine if the 

model accurately predicted the perfonnance effects of the different system configurations. 

Finally, the modeling methodology should be used to model application execution on the Cedar 

supercomputer. The methods described above could be employed to model the memory and task 

execution. The model could be used to predict the best memory configuration for the system. Of 

course, empirical validation should then be done to validate the results. 



144 

REFERENCES 

[1] G. Bell, "Ultracomputers a teraflop before its time," Communications of the ACM, vol. 35, no. 
8, pp. 26 - 47, Aug. 1992. 

[2] M. Chiang and G. Sohi, "Evaluating design choices for shared bus multiprocessors in a 
throughput-oriented environment," IEEE Transactions on Computers, vol. 41, no. 3, pp. 297 -
317, Mar. 1992. 

[3] A. Ramani, P. Chande, and P. Sharma, "A general model for performance investigations of 
priority based multiprocessor system," IEEE Transactions on Computers, vol. 41, no. 6, pp. 
747 - 754, June 1992. 

[4] P. Heidelberger and K. Trivedi, "Queueing networlc models for parallel processing with 
asynchronous tasks," IEEE Transactions on Computers, vol. 31, pp. 1099 - 1108, 1982. 

[5] U. Herzog, W. Hoffman, and W. Kleinoder, "Performance evaluation modeling and evaluation 
for hierarchically organized multiprocessor computer systems," Proceedings of 1979 
International Co11jerence on Parallel Processing, pp. 103 - 114, Aug. 1979. 

[6] J. Turek, J. Wolf, K. Pattipati, and P. Yu, "Scheduling parallelizable tasks: Putting it all on the 
shelf," Proceedings of 1992 Co11jerence on the Measurement and Modeling of Computer 
Systems, vol. 20, no. I, pp. 225 - 236, June 1992. 

[7] R. Iyer and R. Dimpsey, "Evaluation of parallel processors," Keynote for IEEE Region IO 
International Co11jerence on Computers, Communications and Automation, Nov. 1992. 

[8] J. Singh, W. Weber, and A. Gupta, "SPLASH: Stanford parallel applications for shared­
memory," Computer Architecture News, vol. 20, no. I, pp. 5 - 44, Mar. 1992. 

[9] T. Conte and W. Hwu, "Benchmark Characterization," IEEE Computer, vol. 24, no. 1, pp. 48 -
56, Jan. 1991. 

[10] R. P. Weicker, "An overview of common benchmarlcs," IEEE Computer, vol. 23, no. 12, pp. 
65 - 75, Dec. 1990. 

[11] C. Ponder, "Performance variation across benchmark suites," Performance Evaluation 
Review, vol. 18, no. 3, pp. 42 - 47, Nov. 1990. 

[12] P. F. Koss, "Application performance on supercomputers," CSRD Rpt. 847, University of 
illinois, Jan. 1989. 

[13] J. E. Smith, "Characterizing computer performance with a single number," Communications of 
the ACM, vol. 31, no. 10, pp. 1202 - 1206, Oct. 1988. 

[14] C. Hall and K. O'Brien, "Performance characteristics of architectural features of the mM 
RISC System/6000" Proceedings of Architectural Support for Programming Languages and 
Operating Systems, pp. 303 - 309, Apr. 1991. 

[15] H. J. Curnow and B. A. Wichmann, "A synthetic benchmark," The Computer Journal, vol. 19, 
no. I, pp. 43 - 49, 1976. 

[16] J. J. Dongarra, "The Linpack benchmark: An explanation," pp. 1 - 21 in Evaluating 
Supercomputers, London: Chapman and Hall, 1990. 

[17] R. P. Weicker, "Dhrystone: A synthetic systems programming benchmark," Communications 
of the ACM, vol. 27, no. 10, pp. 1013 - 1030, Oct. 1984. 



145 

[18] J. T. Feo, "An analysis of the computational and parallel complexity of the Livermore loops," 
Journal of Parallel Computing, vol. 7, no. 2, pp. 163 - 185, June 1988. 

[19] SPEC Staff, "Benchmark results," SPEC Newsletter, vol. 1, no. 1, Fa111989. 

[20] T. Keller, "SPEC benchmarks and competitive results," Performance Evaluation Review, vol. 
18, no. 3, pp. 19 - 20, Nov. 1990. 

[21] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff, A. Sameh, E. 
Oementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, 1. Schwarzmeier, 
K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Martin, "The PERFECT club 
benchmarks: Effective performance evaluation of supercomputers," International Journal qf 
Supercomputing Applications, 1989. 

[22] Lynn Pointer, Ed., "PERFECT report: I," CSRD Rpt 896, University of lllinois, July 1989. 

[23] Center for Supercomputer Research and Development Staff, "Perfect report 2: addendum 2," 
CSRD Rpt 1168, University of lllinois, Nov. 1991. 

[24] A. J. van der Steen and P. P. M. de Rijk, "Guidelines for use of the EuroBen Benchmark," 
ACCU Tech. Rpt TR-29, University of Utrecht, Oct 1990. 

(25] A. J. Hey and C. J. Scott, "Report of the state-of-the-art and evaluation work package," 
Espirit-2 project P2447, Genesis pre-study, June 1989. 

[26] O. Lubeck, J. Moore, and R. Mendez, "A benchmark comparison of three supercomputers: 
Fujitsu VP-200, Hitachi S810/20, and CRAY X-MP/2," IEEE Computer, vol. 18, pp. 10 - 29, 
1985. 

[27] H. Wasserman, M. Simmons, and O. Lubeck, "The performance of minisupercomputers: 
Alliant FX/8, Convex C-l, and SCS-40," Journal of Parallel Computing, no. 8, pp. 285 - 293, 
1988. 

[28] R. Cmelik, S. Kong, D. Ditzel, and E. Kelly, "An analysis of MIPS and SPARC instruction set 
utilization on the SPEC benchmarks," Proceedings of the Conference on Architectural 
Supportfor Programming Languages and Operating Systems, pp. 303 - 309, Apr. 1991. 

[29] M. Simmons, H. Wassermann, O. Lubeck, C. Eoyang, R. Mendez, H. Harada, and M. 
Ishiguro, "A performance comparison of four supercomputers," Communications of the ACM, 
vol. 35, no. 8, pp. 116 - 124, Aug. 1992. 

[30] R. H. Saavedra-Barrera, "Machine characterization and benchmark performance prediction," 
Tech. Rpt. UCB/CSD 88/437, University of California Berkeley, June 1988. 

[31] K. Gallivan, D. Gannon, W. Jalby, A. Malony, and H. Wijshoff, "Experimentally 
characterizing the behavior of multiprocessor memory systems," Proceedings of 1989 
Conference on Measurement and Modeling of Computer Systems, vol. 18, no, 1, June 1989. 

[32] R. Fatoohi, "Vector performance analysis of three supercomputers: Cray-2, Cray Y-MP, and 
ETA-lOQ," Proceedings of Supercomputing 89, pp. 779 -788, Nov. 1989. 

[33] R. Fatoohi, "Vector performance analysis of the NEC SX-2," Proceedings ACM International 
Conference on Supercomputing, pp. 389 - 400, June 1990. 

[34] J. L. Gustafon, G. R. Montey, and R. E. Benner, "Development of parallel methods for a 
1024-processor hypercube," SIAM journal of Scientific and Statistical Computing, vol. 9, no. 
4, pp. 609 - 638, July 1988. 

[35] F. Bodin, D. Windheiser, W. Jalby, D. Atapattu, M. Lee, and D. Gannon, "Performance 
evaluation and prediction for parallel algorithms on the BBN GPl000," Proceedings of ACM 
International Conference on Supercomputing, pp. 401 - 413, June 1990. 



146 

[36] D. Bradley, G. Cybenko, H. Gao, J. Larson, F. Ahmad, J. Golab, and M. Straka, 
"Supercomputer workload decomposition and analysis," CSRD Rpt. 1064, University of 
illinois, June 1991. 

[37] K. Gallivan, D. Gannon, W. Jalby, A. Malony, and H. Wijshoff, "Performance prediction for 
parallel numerical algorithms," International Journal of High Speed Computing, vol. 3, no. I, 
pp. 31 - 62, Feb. 1991. 

[38] R Oimpsey and R. 1yer, "Modeling and measuring multiprogramming and system overheads 
on a multiprocessor: Case study," Journal of Parallel and Distributed Computing. vol. 14, no. 
4, pp. 402 - 414, Aug. 1991. 

[39] E. Williams, "The effects of operating systems on supercomputer performance," in 
Performance Evaluation of Supercomputers. North Holland: Elsevier Science Publishers 
B.V., 1988, pp. 69 - 81. 

[40] A. Dinning and O. Zajicek, ''Efficient mublal exclusion synchronization algorithms," Tech. 
Rpt. 350, Courant Institute of Mathematical Sciences, Oct. 1988. 

[41] G. Graunke and S. Thakkar, "Synchronization algorithms for shared-memory 
multiprocessors," IEEE Computer, vol. 23, no. 6. pp. 60 - 69, June 1990. 

[42] J. Zahorjan and E. D. Lazowska. "Spinning versus blocking in parallel systems with 
uncertainty," Tech. Rpt. 88-03-01. University of Washington. Mar. 1988. 

[43] A. Gupta. A. Tucker, and S. Urushibara, "The impact of operating system scheduling policies 
and synchronization methods on the performance of parallel applications," Proceedings of 
Conference on the Measurement and Modeling of Computer Systems, vol. 19, no. I, pp. 120-
132, May 1991. 

[44] Encore Computer Corp., Multimax Technical Summary. Mar. 1987. 

[45] D. Kuck, E. Davidson, D. Lawrie, and A. Sameh. "Parallel supercomputing today and the 
Cedar approach." Science Magazine, vol. 231, pp. 967 - 974, Feb. 1987. 

[46] P. Yew, "ArchitectUre of the Cedar supercomputer," Proceedings of the IBM Institute of 
Europe, pp. 8 - 12, Aug. 1986. 

[47] P. Emrath. D. Padua. and P. Yew, "Cedar architectUre and its software," Proceedings of 22nd 
Hawaii International Conference on System Sciences. Jan. 1989. 

[48] Alliant Computer System Corp., FXISeries Product Summary. June 1985. 

[49] R Oimpsey and R 1yer, "Predicting the impact of scheduling modifications on system 
performance: Case study," Proceedings of 25th Hawaii International Conference on System 
Sciences, pp. 1559 - 1568, Jan. 1992. 

[50] S. T. Leutenegger and M. K. Vernon, "The performance of multiprogrammed multiprocessor 
scheduling policies." Proceedings of Conference on the Measurement and Modeling of 
Computer Systems. vol. 18, no. 1. pp. 226 - 236, May 1990. 

[51] J. Zahorjan and C. NcCann, "Processor scheduling in shared memory multiprocessors," 
Proceedings of Conference on the Measurement and Modeling of Computer Systems, vol. 18, 
no. I, pp. 214 - 225, May 1990. 

[52] C. D. Polychronopoulos, "Multiprocessing versus multiprogramming," Proceedings 1989 
International Conference on Parallel Processing. pp. 223 - 230, Aug. 1989. 

[53] J. K. Ousterhoust, "Scheduling techniques for concurrent systems," Proceedings of 
Distributed Computing Systems Conference, pp. 22 - 30, 1982. 



147 

[54] S. Majumdar, D. Eager, and R. Bunt, "Scheduling in multiprogrammed parallel systems," 
Proceedings 0/ Conference on the Measurement and Modeling of Computer Systems. pp. 104 -
113, May 1988. 

[55] M. Berry. H. Chen, E. Gallopoulos, U. Meier, A. Tuchman, H. Wijshoff, and G. Yang. 
"Algorithmic design on the Cedar multiprocessor," CSRD Rpt 851, University of illinois, 
Feb. 1989. 

(56] J. Hoeflinger, "Cedar FORTRAN programmer's handbook," CSRD Rpt 1157, University of 
illinois, Oct. 1991. 

[57] M. Guzzi, "Cedar FORTRAN programmer's handbook," CSRD Rpt. 601, University of 
illinois, June 1987. 

[58] R. McGrath and P. Emrath, "Using memory in the cedar system," CSRD Rpt. 655, University 
of illinois, June 1987. 

[59] R. McGrath, "Memory overheads for xylem programs," CSRD Rpt. 858, University of 
illinois, Feb. 1988. 

[60] R. McGrath, "Run-time vinual memory statistics for a cedar program," CSRD Rpt 857, 
University of illinois, May 1989. 

[61] K. Gallivan, W. Jalby, A. Malony, and P. Yew, "Perfonnance analysis of the Cedar system," 
in Performance Evaluation of Supercomputers. North Holland: Elsevier Science Publishers 
B.V., 1988. 

[62] A. Malony and J. Picken, "An environment architecture and its use in perfonnance data 
analysis," CSRD Rpt. 829, University of illinois, Oct 1988. 

[63] J. Andrews, "A hardware tracing facility for a multiprocessing supercomputer," CSRD Rpt. 
1009, University of Dlinois, May 1990. 

[64] A. Malony, "Vinual high resolution process timing," CSRD Rpt. 616, University of Illinois, 
Oct 1986. 

[65] A. Malony, "Cedar perfonnance evaluation tools: a stabls repon," CSRD Rpt. 582, University 
ofI1linois, July 1986. 

[66] A. Mink, G. Nacht, and J. Roberts, "Multiprocessor perfonnance-measurement 
instrumentation," Computer. voL 23, no. 9, pp. 63 -75, Sept. 1990. 

[67] R. Dimpsey and R. Iyer, "Perfonnance analysis of a shared memory multiprocessor: Case 
study." Proceedings 0/ 1988 International Conference on Parallel Processing. pp. 174 - 181, 
Aug. 1988. 

[68] M. Devarakonda and R. Iyer, "Predictability of process resource usage: A measurement-based 
study of UNIX," Ph.D. dissertation, University of illinois at Urbana-Champaign, Oct 1987. 

[69] H. Artis, "Workload characterization using SAS PROC FASTCLUS," International Workshop 
on Workload Characterization o/Computer Systems and Computer Networks. Oct. 1985. 

[70] M. Hsueh, R. Iyer, and K. Trivedi, "A measurement-based perfonnability model for a 
multiprocessor system," Proceedings 0/2nd International. Workshop Applied Mathematics 
andPerfonnance Reliability Models Computer/Communication Systems," May 1987. 

[71] SAS Institute, SAS User's Guide: Statistics, V5, SAS Institute, Cary, NC, 1985. 

[72] V. G. Kulkarni, V. F. Nicola, R. M. Smith, and K. S. Trivedi, "Numerical evaluation of 
perfonnability and job completion time in repairable fault-tolerant systems," Proceedings of 
International Symposium o/Fault-Tolerant Computing Sciences. pp. 252 - 257, 1986. 



148 

[73] R. Dimpsey and R. Iyer, "Performance degradation due to multiprogramming and system 
overheads in real workloads: Case study on a shared memory multiprocessor," Proceedings 
International Conference on Supercomputers, pp. 227 - 238, June 1990. 

[74] K. Trivedi, Probability & Statistics with Reliability, Queuing, and Computer Science 
Applications. Englewood Oiffs, NJ: Prentice-Hall, 1982. 



149

VITA

Robert Dimpsey was born in of the year in He received the B.S.

degree in Computer Engineering in 1986 from the University of Illinois and the M.S. degree in

Electrical Engineering in 1988 from the University of Illinois. He received a fellowship from the

University of Illinois in 1986. He has held summer positions for the Nuclear Data Corp. and the IBM

T.J. Watson Research Center, and has been a teaching assistant and seminar instructor at the

University of Illinois. Currently he has published 8 papers in peer reviewed conferences and journals.

He is a member of the ACM and IEEE. Upon completion of his Ph.D. he will join IBM in Austin,

Texas.



Approved for public release; 
distribution unlimited 

ASA Langley Res. Ctr. Office of Naval Researc 

1 SPONSORING 
ORGANIZATION 

NASA NAG-1-613, N00014-91-J-1116 

NASA Langley Research Center 
Hampton, VA 23665 

1 PERFORMANCE EVALUATION AND MODELING TECHNIQUES FOR PARALLEL PROCESSORS 

2. PERSONAL AUTHOR(S) ROBERT TOD~DIMPSEY 

In practice, the performance evaluation of supercomputers is still substantially driven by 
singlepoint estimates of metrics(eg.,.MFLOPS) obtained by running characteristic benchmarks 
or workloads. hfith the rapid increase in the use of time-shared multiprogrammin$ in these 
systems such measurements are clearly inadequate. This is because multiprogramming and system 
overhead, as well as other degradations in performance due to time varying characteristics of 
workloads, are not taken into account. In multiprogrammed environments, multiple jobs and users 
can dramatically increase theamount of system overhead and degrade the performance of the 
machine. Performance techniques, such as benchmarking, which characterize performance on a 
dedicated machine ignore this major component of true computer performance. 

Due to t.he compexity of analysis ther has been little work done in analyzing, modeling and 
predicting the performance of applications in multiprogrammed environments. This is especially 

SECURITY CLASSlFlCATlON OF THIS PAGE 
All other edittons are obsolete. ..,.̂ _ I ,-,.----- 



true for parallel processors, where the costs and benefits of multi-user workloads 
are exacerbated. While some may claim that the issue of multiprogramming is not a 
viable one in the aupercomputer market, experience shows otherwise. Even in recent 
massively parallel machines, multiprogramming is a key component. It has even been 
claimed that a.partia1 cause of the demise of the CM2 was the fact,that it did not 
efficiently support time-sharingIl]. In the same paper, Gordon Bell postulates that, 
"Multicomputers will evolve to multiprocessors" in order "to support efficient 
multiprogramming". Therefore, it is clear that parallel processors of the future will 
be required to offer the user a time-shared environment with resonable response times 
for the applications. In this type of environment the most important performance metric 
is the completion cr response time of a given application. However, there are few 
evaluation efforts addressing this issue. 




