DESIGN OF A WELDED JOINT FOR ROBOTIC, ON-ORBIT ASSEMBLY OF SPACE TRUSSES

By W.K. Rule and F.P. Thomas

Structures and Dynamics Laboratory
Science and Engineering Directorate

October 1992
Design of a Welded Joint for Robotic, On-Orbit Assembly of Space Structures

W.K. Rule* and F.P. Thomas

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

National Aeronautics and Space Administration
Washington, DC 20546

Prepared by Structures and Dynamics Laboratory, Science and Engineering Directorate.
*Assistant Professor, Department of Engineering Mechanics, University of Alabama.

A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. MEMBER FORCES GENERATED BY RANDOM MEMBER MISFITS 2

III. NODE SEPARATION INDUCED BY RANDOM MEMBER MISFITS 7

IV. DESIGN OF THE WELDED JOINT .. 10
 A. Design Philosophy .. 10
 B. Finite Element Analysis of the Aluminum Components of the Welded Joint 12
 C. Design of the Connection Between the Graphite/Epoxy Tube and the Aluminum Joint ... 13

V. ANALYSIS OF THE JOINT TEMPERATURE DURING WELDING 15

VI. CONCLUSIONS .. 20

REFERENCES .. 21

APPENDIX A – Listing of the Nodal Coordinates of the Finite Element Model of the Tetrahedral Truss ... 23

APPENDIX B – Listing of the Nodal Connectivities of the Elements of the Finite Element Model of the Truss ... 24

APPENDIX C – Listing of Program CALCMSFT Used to Calculate Nodal Forces Due to Member Misfits ... 25

APPENDIX D – Listing of Program GETFORCE Used to Calculate the Largest Member Force Due to Member Misfits ... 27

APPENDIX E – Listing of Program GETDISPL Used to Calculate the Relative Displacement Between Nodes 318 and 320 Due to Member Misfits 28

APPENDIX F – Listing of the MSC/pal 2 Input Deck for the Preliminary Design of the Joint .. 29

APPENDIX G – Listing of the COSMOS/M Input Deck for the Analysis of the Composite Material-Aluminum Interface Joint ... 30

PRECEDING PAGE BLANK NOT FILMED

iii
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Structural configuration of the undeformed truss</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>MSC/pal 2 finite-element model input deck for the tetrahedral truss</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Typical MSC/pal 2 random-member misfit-loading input deck</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Typical deformed shape of the tetrahedral truss due to random member misfit loading</td>
<td>7</td>
</tr>
<tr>
<td>5.</td>
<td>Location of member removed from structure to calculate the relative displacement between nodes 318 and 320 due to member misfits</td>
<td>9</td>
</tr>
<tr>
<td>6.</td>
<td>Truss member telescoping design concept</td>
<td>11</td>
</tr>
<tr>
<td>7.</td>
<td>Joint overlap to aid assembly and alignment during welding</td>
<td>11</td>
</tr>
<tr>
<td>8.</td>
<td>MSC/pal 2 finite-element model of preliminary joint design</td>
<td>12</td>
</tr>
<tr>
<td>9.</td>
<td>Von Mises stress contours in preliminary joint design</td>
<td>13</td>
</tr>
<tr>
<td>10.</td>
<td>Drawing of composite material strut-aluminum end fitting joint</td>
<td>14</td>
</tr>
<tr>
<td>11.</td>
<td>Deflection and stresses in the composite material strut-aluminum end fitting joint due to a compressive load of 140 kips and a temperature increase of 250 °F</td>
<td>16</td>
</tr>
<tr>
<td>12.</td>
<td>Deflection and stresses in the composite material strut-aluminum end fitting joint due to a compressive load of 140 kips and a temperature increase of 250 °F</td>
<td>17</td>
</tr>
<tr>
<td>13.</td>
<td>Drawing of a node and a welded joint</td>
<td>18</td>
</tr>
</tbody>
</table>
TECHNICAL MEMORANDUM

DESIGN OF A WELDED JOINT FOR ROBOTIC, ON-ORBIT ASSEMBLY
OF SPACE TRUSSES

I. INTRODUCTION

In the future, some spacecraft will be so large that they must be assembled on-orbit.¹⁻⁴ These spacecraft will be used for such tasks as manned missions to Mars or will be used as orbiting platforms for monitoring the Earth or observing the universe. Large spacecraft will probably consist of planar truss structures to which will be attached special-purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but mostly unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extravehicular activities (EVA's). Some missions will involve very large loads. For instance, the truss structure supporting an aerobrake heat shield will experience up to 6 g's of deceleration during entry into the Martian atmosphere.⁵

To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the space shuttle bay in 1985.⁶

The development of a design for a welded joint for an on-orbit, robotic-truss assembly is described here. Mechanical joints for this application have been considered previously.⁷⁻⁸ Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. Welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose) and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, welding consumes a significant amount of power, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints.

Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973.⁹¹⁰ A hand-held, electron-beam welding apparatus is currently being prepared for use on the MIR space station.¹¹ Presently, Marshall Space Flight Center (MSFC) is evaluating processes appropriate for on-orbit welding.¹² A low-gravity environment has been found to have very minor effects on the welding processes appropriate for this application. This finding is based on tests run on-orbit as well as low-gravity environments achieved by flying aircraft in parabolic trajectories. In fact, low gravity can make welding easier since the flow of the molten metal is dictated by surface tension effects undisturbed by gravitational forces.¹²

It appears that a modified form of gas tungsten arc welding (GTAW) will be most appropriate for welding together structures on-orbit.¹² The process has been modified to work in a vacuum by providing gas to the arc zone by means of a hollow tungsten electrode with special shielding. A commercial tube-welding head has been successfully modified for use on-orbit with a gas leakage rate of approximately 2.5 L/min.¹²
To develop as realistic a joint as possible, a specific truss structure was selected on which to base the design. The structure considered was based on the 120-ft diameter aerobrake tetrahedral truss structure described in references 5, 7, and 8. Structural characteristics of tetrahedral trusses are also discussed in reference 13. The truss members were assumed to consist of graphite/epoxy tubes. Also, it was assumed that the nodes were constructed of 2219-T87 aluminum alloy. The magnitude of the member load assumed for design purposes was 100 kips.

No manufacturing process or robot is perfect, so it is anticipated that the truss members will be slightly too long or short after welding. These member misfits will be randomly distributed throughout the structure and will lock in member forces and distort the truss before service loads are applied. This effect is considered in section II. These misfits will also cause the nodes of a partially assembled truss to move away from their ideal positions. Thus, the assembly robot will be required to pull the nodes together or push them apart while assembling the last few members of the truss. The force required to do this is discussed in section III. Both of these effects need to be considered while developing a joint design. Mechanical details of the welded joint design are given in section IV. Peak temperatures in the vicinity of the fusion line of the weld are investigated in section V. Conclusions derived during the course of this study are listed in section VI.

II. MEMBER FORCES GENERATED BY RANDOM MEMBER MISFITS

A structural configuration must be selected before a welded joint can be designed. Here, an approximately 120-ft diameter tetrahedral truss structure (fig. 1) was considered based on the aerobrake structure of reference 7. The 660 members of the tetrahedral truss were all 12.56-ft long and consisted of identical graphite/epoxy tubes (elastic modulus = 10.5E6 lb/in², shear modulus = 4.0E6 lb/in², Poisson’s ratio = 0.33, outside diameter = 5 in, wall thickness = 0.375 in). The truss was 10.25-ft deep in accordance with the geometric properties of a tetrahedron.

No manufacturing or assembly process is absolutely accurate. Thus, after being welded into the truss, the members will tend to be slightly too long or short. These randomly distributed misfits will lock in member forces before service loads are applied. The misfits will also distort the truss to some degree. Before a joint can be designed, some measure of an acceptable misfit must be determined which will dictate the accuracy required of the robot and the joint configuration. Member misfits will be randomly distributed, so peak member forces can only be determined in a statistical sense. The structure was analyzed 50 times with different randomly generated sets of member misfits, and the mean and standard deviations of the peak member force magnitudes were calculated from these results. The technique used to perform these calculations will now be described.

The MSC/pal 2 (version 3.0) finite-element program was used to perform the calculations.14 A partial listing of the model input deck is shown in figure 2. A full listing of the nodal coordinates and the nodal connectivities of the elements is provided in appendices A and B, respectively. The model consisted of tubular-beam elements rigidly connected at the nodes—a frame structure. Rigid nodal connections were assumed because the joints will be welded. However, since all loads will be applied through the nodes, the structure will behave very much like a truss.

Figure 2 indicates that all the displacement components of node 161, which is at the center of the top plane of the truss, were made to equal zero. This was done to remove the rigid-body displacement modes, thus making the stiffness matrix nonsingular (invertable). Node 161 was arbitrarily selected; any
other node could have been similarly fixed with no effect on the calculated member forces. This is because the nodal loads produced by the member misfits are self-equilibrating, as will be discussed.

The member misfits were treated in the following manner. First, a different misfit for each member was calculated using a random number generator. The random number generator was set up to produce values varying between minus and plus a specified maximum misfit magnitude. Then, the force required to make the member (with random misfit) fit between its nodes was calculated using elementary strength of materials theory

$$F_i = \frac{-EA D_i}{L},$$

where F_i is the force in the ith member, E is the elastic modulus, A is the cross-sectional area, D_i is the misfit in the ith member, and L is the member length. Note that if D_i is negative (member a little too short), then equation (1) indicates that F_i will be positive (tensile) since the member would have to be stretched to fit between its nodes. Similarly, a positive D_i will produce a compressive (negative) force in
a member. These F_i were considered to be initial forces in the members. With these initial forces applied, all members will be the same length and will fit together perfectly to produce the undistorted truss of figure 1. Thus, this initial member force technique allows the same undistorted finite-element model to be used for all sets of member misfit analyses.

The initial member forces will produce forces on the nodes. A member with an initial tensile load will tend to pull its nodes together. Similarly, a compressively loaded member will tend to push its nodes apart. Since the member forces can be calculated from equation (1), the nodal loads associated with member forces are also known and can be applied to the nodes in the form of a load vector. The nodal loads produced by the internal force in each member were broken down into components along the global cartesian coordinate directions (based on the orientation of the member) and summed up (for all members) to produce a global nodal load vector. Note that a member will push or pull one way on one node but the opposite way on its other node—a self-equilibrating force set. A typical MSC/pal 2 load file of misfit-generated nodal loads is shown in figure 3.

The analysis procedure can be summarized as follows. Random member misfits are generated, and the associated initial member forces are calculated and stored in a file. Nodal loads due to the initial member forces are calculated and summed up to form a global nodal load vector. The load vector is applied to the structure, and the finite-element program is run to calculate a set of intermediate member loads. To save solution time here, the stiffness matrix was inverted (decomposed) only once, and the restart mode of MSC/pal 2 was used for all subsequent runs. Finally, the initial member loads are added to the intermediate member loads to produce a set of final member loads. The two Microsoft QuickBASIC programs that were written to perform these calculations will now be described.
TITLE MEMBER LENGTH ERROR LOAD FILE

FORCES AND MOMENTS APPLIED 0
FX 1 -230442.5204966329
FY 1 53184.79766821611
FZ 1 49436.58426652521
FX 3 -158863.1236084707
FY 3 -270611.7564973687
FZ 3 -203426.5088752082
FX 5 -77143.89459794664
FY 5 48554.34908752082
FZ 5 -190155.6006866425
FX 7 -65203.79829002415
FY 7 -77442.8286363869
FZ 7 262003.1117336018
FX 9 334861.5685711871

.*

FX 319 39670.97931474186
FY 319 -396517.7200944773
FZ 319 303580.2824678487
FX 320 99311.72126063828
FY 320 386502.2201876945
FZ 320 -254415.5649100334
FX 321 -270827.0943719279
FY 321 -192052.8781665579
FZ 321 -83481.81538990338

SOLVE
QUIT
END

Figure 3. Typical MSC/pal 2 random-member misfit-loading input deck.

Program CALCMSFT (CALCulate MiSFIt) is listed in appendix C, and it performs the following tasks. First, it reads in files containing listings of the nodal coordinates and nodal connectivities of the elements. These files are generated by the “TABULAR LISTS” function of the VIEW2 program of MSC/pal 2. Then, CALCMSFT reads in the maximum length error (misfit) magnitude, the elastic modulus, the member outside diameter, and the member inside diameter. This information is used to calculate the misfit-induced initial member forces (which are stored in a file for later use) and the nodal loads resulting from these initial member forces. CALCMSFT then appends these nodal loads to a nodal load “stub” file to form a load file appropriate for input to the STAT2 program of MSC/pal 2. Here the stub file simply contains the run title and a blank line. Program STAT2 is then run (in restart mode for all runs except the first) to calculate a set of intermediate member forces.

The other program written to investigate the member force effects of misfits is called GETFORCE, and it is listed in appendix D. First, this program reads in the results output file produced by the STAT2 program of MSC/pal 2. The following STAT2 output options are used when generating the output file: no applied forces, no external forces, no displacements, full-element analysis, calculate average nodal stresses, and process all elements. GETFORCE searches through the results output file and stores the member “intermediate” forces in an array. GETFORCE adds the initial member forces (previously stored by the CALCMSFT program) to the intermediate member forces to produce a set of final member forces. GETFORCE then searches through the array of final member forces to find the largest magnitude of member force. Finally, GETFORCE writes this information and all final member forces to a file.
Fifty sets of random member misfits were generated and the corresponding final member forces calculated. The member force results were scaled and nondimensionalized by dividing by the magnitude of member force that would be generated if the maximum misfit (the value input to program CALCMSFT) was applied to a member, and then this member was stretched or compressed so that it returned to its nominal length. Thus, the scaling factor can be calculated from the magnitude of the \(F_i \) given by equation (1) with the \(D_i \) set to the maximum member misfit magnitude. In other words, the scaling factor is equal to the magnitude of the largest possible misfit force for the case of a structure consisting of a single member placed between two rigid walls. This scaling technique allows the results of this study to be applied to other similar trusses.

The average maximum (scaled) member force for the 50 runs was 1.04 with a standard deviation of 0.22. These two values can be used to make a prediction of the maximum misfit-generated member force likely to occur for a given level of certainty. For instance, the maximum member force magnitude will be less than the mean plus two standard deviations \((1.04+2(0.22) = 1.5)\) with a certainty of 97 percent. Accordingly, the peak member force with a 97-percent level of certainty can be estimated as follows:

Step 1: Estimate the maximum member misfit. This will be due to two sources: the tolerance on the manufacturing process used to fabricate the member and associated nodes on Earth, and the tolerance on the robotic assembly of the member on-orbit. These numbers are difficult to estimate. The tighter the tolerance, the higher the cost of the structure. Suppose that these tolerances can be economically held to 0.01 inch in a mass production environment. Thus, the maximum member misfit will be \(D_{\text{max}} = 0.01 + 0.01 = 0.02 \) inch.

Step 2: Determine the scaling force, \(F_s \). From equation (1):

\[
F_s = \frac{EAD_{\text{max}}}{L} = \frac{(10.5E6)(5.45)(0.02)}{(150.7)} = 7.6 \text{ kips}.
\]

Step 3: Multiply the scaling force by the 97-percent force multiplier to calculate the predicted maximum member force, \(F_{\text{max}} \):

\[
F_{\text{max}} = 1.5F_s = (1.5)(7.6) = 11.4 \text{ kips}.
\]

\(F_{\text{max}} \) could be a tensile or a compressive force. Note that \(F_{\text{max}} \) amounts to a significant portion of the member design load of 100 kips.

Besides generating member forces, random member misfits will also distort the structure. The distortion (greatly exaggerated) of a typical member misfit analysis is shown in figure 4. This type of distortion may cause problems for truss structures supporting equipment with fine pointing requirements or the heat shield associated with aerobrake structures\(^{15}\).

Member misfits will also cause the nodes of a partially assembled structure to move apart or closer together. Thus, the assembly robot will be required to exert forces on adjacent nodes while assembling a member. The magnitude of these forces will impact the design of both the robot and the joint. This effect is considered in the next section.
Figure 4. Typical deformed shape of the tetrahedral truss due to random member misfit loading.

III. NODE SEPARATION INDUCED BY RANDOM MEMBER MISFITS

The effect of member misfits, in terms of member forces locked in, was discussed in the previous section. Here, the effect of member misfits on relative nodal displacements of a partially assembled truss structure is considered. Misfit-induced member forces will cause the truss to distort and, thus, will cause pairs of nodes to move closer together or farther apart. These relative nodal displacements will have to
be corrected by the robot during the assembly process. As more members are assembled, relative nodal displacements will tend to increase since there are more member misfits to cause distortion. Thus, the robot will have to make the largest relative nodal displacement corrections while assembling the last few members of the truss.

To correct for these misfit-induced relative nodal displacements, the robot will be required to push or pull on pairs of nodes. The magnitude of force required to make these corrections must be estimated because it affects the design of both the robot and the joint. The correction force can only be estimated in a statistical sense since the member misfits are randomly distributed.

To be conservative, the correction force required while assembling the last member of the structure was considered. It was assumed that the structure will be assembled from one edge through to a far edge, so the last member would be an edge member. Accordingly, for this relative nodal displacement correction force study, an edge member was removed from the structure described in the previous section. The edge member removed was connected to nodes 318 and 320, as shown in figure 5. Nodes 318 and 320 are on a line parallel to the global x-axis.

The analysis procedure involved the following steps. First, program CALCMSFT (described in the previous section) was run to generate a set of random misfit-induced nodal forces for the structure with the edge member removed. These loads were then input to the STAT2 program of MSC/pal, and the nodal displacements due to these forces were calculated. An output file was created by STAT2 containing these displacement results. The following STAT2 output options were used while generating the output file: no applied forces, no external forces, full displacement components, and no element output. Program GETDISPL was then run to read the displacements of the STAT2 output file and to calculate the relative displacement between nodes 318 and 320. Program GETDISPL was written in Microsoft QuickBASIC and is listed in appendix E.

This analysis procedure was repeated with 50 sets of random member misfits so that the mean and the standard deviation of the misfit-induced relative displacement between nodes 318 and 320 could be calculated. Note that STAT2 was run in the restart mode for all except the first run to save computational time. Nodes 318 and 320 form a line parallel to the global x-axis. It can be shown that to a first-order level of accuracy the change in distance (relative displacement) between nodes 318 and 320 is the algebraic difference between their respective x-displacements.

The calculated results were scaled and nondimensionalized by dividing the mean and standard deviation by the maximum member misfit magnitude, which was an input to program CALCMSFT. This scaling conveniently allows the results obtained to be used for any assumed maximum member misfit for the particular truss under consideration here, and the results can also be applied to other similar trusses. The scaled mean and standard deviation of the relative displacement between nodes 318 and 320, as determined by the 50 simulations, were 1.00 and 0.72, respectively. Thus, to a 97-percent level of certainty, the scaled relative displacement between nodes 318 and 320 will be less than 1.00+2(0.72) = 2.44.

The spring stiffness associated with pulling nodes 318 and 320 together or pushing them apart was determined in the following manner. A unit load was applied to node 318 in the direction of node 320 (parallel to x-axis). Another unit load was applied to node 320 in the direction of node 319. Program STAT2 was then run to calculate the relative x-displacement between these two nodes due to the unit loads. Note that the member between nodes 318 and 320 was removed during this process. The magnitude of forces applied (unity) divided by the relative x-displacement gives the node-to-node spring
Figure 5. Location of member removed from structure to calculate the relative displacement between nodes 318 and 320 due to member misfits.
constant, \(k_n \). Of course \(k_n \) would vary throughout the structure depending on which pair of nodes was considered. However, the \(k_n \) associated with nodes 318 and 320 is representative of the structure as a whole. The calculated 318 to 320 \(k_n \) was 7.76E4 lb/in. This amounts to about 20 percent of the spring stiffness of an individual member. The robot must push or pull against this “spring” while attempting to correct for member misfit-induced relative nodal displacements.

The peak force that a robot will likely have to exert with a 97-percent level of certainty can be estimated as follows:

Step 1: Estimate the maximum member misfit. This was discussed previously, and a value of \(D_{max} \) of 0.02 in was suggested.

Step 2: Calculate the maximum relative joint displacement, \(D_{max,\text{joint}} \):

\[
D_{max,\text{joint}} = (\text{scaled displacement multiplier, 97-percent level of certainty}) \times D_{max}
\]

\[
= (2.44)(0.02) = 4.88\text{E-2 in.}
\]

Step 3: Calculate the maximum force likely (97-percent level of certainty) to be required of the robot to correct for member misfit-induced relative nodal displacements, \(F_{max,\text{robot}} \):

\[
F_{max,\text{robot}} = k_nD_{max,\text{joint}} = (7.76\text{E4})(4.88\text{E-2}) = 3.8 \text{ kips (either push or pull)}.
\]

This analysis has shown that the assembly robot must be capable of pulling or pushing with a relatively large force while attempting to correct for member misfit-induced relative nodal displacements.

In the next section, the details of the design of the welded joint will be considered.

IV. DESIGN OF THE WELDED JOINT

A. Design Philosophy

The trusses under consideration here will be robotically assembled on-orbit. This makes it imperative that the truss members and joints be “designed for assembly.” The design should be such that the robot can: easily transport the member from the pallet it was taken into orbit on to the appropriate position on the truss; insert the member between the nodes; correct the node positions for member misfit errors; and then weld the member into position.

The members and joints must also be light and able to be densely packed together for efficient transport to orbit, a major cost driver. A light design is also necessary to control inertial forces while in service. The joint components must be relatively easy to produce so that manufacturing costs will not be excessive. The joint design must provide a seal so that fluids may be pumped throughout the members of the truss. Based on prior studies,7 it was assumed that the joint must be capable of carrying 100 kips, and that the members consist of graphite/epoxy tubes of circular cross section (5-in outside diameter, 0.375-in wall thickness).
A major difficulty with the joint design was allowing for the member to be connected to the nozzles of two nodes that had already been welded into position. This could be handled in two ways. A member could be made precisely the correct length so that it could be positioned between the node nozzles (without being inserted) and then welded into place. This approach has two major drawbacks: the joint configuration provides no alignment assistance to the robot, and joint gap control would be difficult. Alternatively, one half of the member could be designed to telescope into the other as shown in figure 6. This would allow a member to be shortened (telescoped), placed between the nodes, and then extended so that its ends would fit inside the nozzles of the nodes (fig. 7). This provides for very accurate alignment of the joints and complete control of the weld joint gap. The joint overlap shown in figure 7 is tapered to facilitate insertion into the nozzle of the node. When the joint has been fully made up, the joint overlap will be snug against the inside surface of the nozzle of the node, and the joint will be temporarily held together by the friction provided by the compressed O-ring (fig. 7). The telescoping action allows for very compact shipment to orbit. A disadvantage of the telescoped member approach is that three weld joints will now have to be made (at each end and at the sliding joint in the middle) instead of the two required for the nontelescoped design. However, it appears that the telescoped design will make it easier for the robot to assemble and weld the structure; therefore, the telescoped design was selected for further study.

Figure 6. Truss member telescoping design concept.

Figure 7. Joint overlap to aid assembly and alignment during welding.
B. Finite Element Analysis of the Aluminum Components of the Welded Joint

A preliminary analysis of the joint using an isotropic finite-element model without thermal loading was conducted using the MSC/pal 2 program. The MSC/pal 2 program can make no provision for anisotropic material properties; therefore, a detailed analysis of the composite material portion of the joint or a thermal loading analysis could not be performed using this program. These effects are discussed in the next section. The analysis described in this section was undertaken to develop an initial concept for the joint design such that the stresses in the aluminum components (both parent and weld metal) were less than the yield stress when factored loads were applied. A listing of the MSC/pal 2 input deck is given in appendix F, and the finite element mesh and joint dimensions are displayed in figure 8. Axisymmetric elements were used in the analysis.

As shown in figure 8, the part of the node that the truss member ferrule was welded to was assumed to consist of a nozzle similar to that found in pressure vessels. A design of this nature allows for the easy passage of fluid along the truss member and into the node. This configuration also provides for a very simple and clean design of both the member ferrule, the weld, and the node. However, the nozzle approach is not very efficient structurally since the load path must change abruptly as axial loads run from the member into the node. This produces large bending stresses in the node fitting (fig. 9). Thus, generous fillets and relatively thick components will be required for the design of the node. Figure 8 shows that the node component was rigidly fixed at a somewhat arbitrary radial distance of 3 in from the outer wall of the member. A more accurate value for the effective support distance can be obtained when a design for the node becomes available. Figure 9 demonstrates that with the factored axial load applied (140 kips), the maximum Von Mises stresses in the node portion of the joint and in the ferrule outside of the weld are held to less than the 51 ksi yield stress of 2219-T87 aluminum.16
As was illustrated in figure 7, a joint overlap will be provided to aid assembly and to provide alignment during welding. The geometric discontinuity associated with the joint overlap produces a small stress concentration at the root of the weld (fig. 9). This stress concentration dictates that a GTAW groove weld 0.5-in deep is required to keep the Von Mises stress level within the heat affected zone (HAZ) to less than the weld metal yield stress of 26 ksi. 17

Figure 8 shows a double scarf joint for the composite strut-aluminum ferrule connection. This joint was subsequently redesigned due to concerns about manufacturability and thermal loading capacity. The redesigned joint is the subject of the next section. Redesigning the composite material-aluminum joint will not significantly affect the stresses in the vicinity of the weld.

C. Design of the Connection Between the Graphite/Epoxy Tube and the Aluminum Joint

For many applications, the ideal design of the graphite/epoxy strut will consist of laying up the fibers such that they are oriented at ±10° with respect to the axis of the member. 5 This layup will provide for high stiffness and strength parallel to the axis of the member, along with a slightly negative axial coefficient of thermal expansion. The slightly negative coefficient of thermal expansion of the struts, coupled with the relatively large positive coefficient of thermal expansion of the aluminum fittings can produce members with a net axial coefficient of thermal expansion of zero. This is highly desirable in spacecraft since it prevents temperature changes from causing structural distortions.

However, a ±10° layup will create some problems, especially in applications where the composite material must be attached to a metallic component in an environment where there will be large temperature changes, as is the case here. In this study, it was assumed that during the mission temperature variations as large as ±250 °F could occur. The primary difficulty with this type of joint is that the coefficient of thermal expansion of the composite in the circumferential direction is five times that of the aluminum.

The design illustrated in figure 10 was investigated as a means of coping with the large differences in the anisotropic coefficients of thermal expansion of the graphite/epoxy material and that of the aluminum. This design incorporates a joint reinforcing ring of graphite epoxy with a quasi-isotropic ±45° layup. As indicated in figure 10, this reinforcing ring has coefficients of thermal expansion which
are roughly midway between those of the strut and the ferrule. In addition, the reinforcing ring has relatively low elastic moduli. Thus, the reinforcing ring is intended to act as a compliant structure to help smooth the transition from the ±10° layup graphite/epoxy strut to the aluminum ferrule.

This design would be fabricated by first machining down the ends of the graphite/epoxy truss member and that of the aluminum ferrule in the form of opposing 4-in long linear tapers. There is no difficulty machining graphite/epoxy materials with tungsten-carbide tipped tools. The graphite/epoxy and aluminum components would then be bonded together using an epoxy adhesive. The assumed maximum design temperature of the adhesive was 300 °F. At this temperature, a typical epoxy adhesive has an ultimate shear strength of approximately 1.3 ksi. After the epoxy adhesive has cured and the outside surface of the tube in the vicinity of the joint has been cleaned, the ring of joint reinforcement is applied in the form of a prepreg tape or other convenient means. Care should be taken to obtain a good bond between the reinforcing ring and the tube. After the reinforcing ring has cured, the edges of the ring should be machined down to form a linear taper (fig. 10). Tapered joints tend to produce a uniform shear stress distribution in the bond line.

The joint of figure 10 was analyzed using the COSMOS/M finite element program which, unlike the MSC/pal 2 program, has some capability to treat anisotropic material behavior. The COSMOS/M input deck used to model the joint is listed in appendix G. The model consisted of 593 nodes and 483 axisymmetric elements. The material properties used in the model were as follows (x-axis is radial coordinate, y-axis runs along axis of symmetry):

1. **2219-T87 Aluminum**

 \[E = 10.5 \times 10^6 \text{ lb/in}^2, \; \nu = 0.33, \; \alpha = 12 \times 10^{-6}/\text{°F}, \; \sigma_{\text{yield}} = 51 \text{ ksi} \]

2. **±10° Layup Graphite/Epoxy**

 \[E_x = 24 \times 10^6 \text{ lb/in}^2, \; E_y = 1.7 \times 10^6 \text{ lb/in}^2, \; E_z = 1.7 \times 10^6 \text{ lb/in}^2, \; \nu_{xy} = 0.3, \; \nu_{xz} = 0.3, \; \nu_{yz} = 0.3, \; G_{xy} = 0.65 \times 10^6 \text{ lb/in}^2, \; \alpha_x = -1 \times 10^{-6}/\text{°F}, \; \alpha_y = 63 \times 10^{-6}/\text{°F}, \; \alpha_z = 61 \times 10^{-6}/\text{°F}, \; \sigma_{\text{yield}} = 42 \text{ ksi} \]
3. $\pm 45^\circ$ Layup Graphite/Epoxy

\[E_x = 2.4 \times 10^6 \text{ lb/in}^2, \quad E_y = 1.7 \times 10^6 \text{ lb/in}^2, \quad E_z = 2.4 \times 10^6 \text{ lb/in}^2, \quad v_{xy} = 0.3, \quad v_{xz} = 0.3, \]

\[v_{yz} = 0.3, \quad G_{xy} = 0.65 \times 10^6 \text{ lb/in}^2, \quad \alpha_x = 31 \times 10^{-6} \text{/°F}, \quad \alpha_y = 63 \times 10^{-6} \text{/°F}, \quad \alpha_z = 31 \times 10^{-6} \text{/°F}, \quad \sigma_{y,\text{max}} = 7 \text{ ksi}. \]

These values are meant to represent typical high-modulus graphite/epoxy material properties at room temperature. The moduli and strengths will decrease as the temperature is increased.

A compressive axial load of 140 kips (100 kips times 1.4 safety factor) and a temperature increase of 250 °F were applied to the joint. The resulting deflected shape (greatly exaggerated), axial stress, and shear stress distributions calculated by the COSMOS/M program are shown in figure 11. Similar results for a temperature decrease of 250 °F are given in figure 12. These results are identical, except for a difference in sign, to those that would be obtained with a 140 kip tensile load applied with ±250 °F temperature changes. Figures 11 and 12 indicate that very high stresses will be produced in the joint. Actual stresses would be somewhat smaller since the stress-relieving effects of plastic deformation were not included in the analysis.

From these results, it appears that allowable bond-line shear stresses between the three components of the joint will be exceeded. Also, the $\pm 10^\circ$ layup graphite/epoxy strut may fail at the tip of its taper. These stresses might possibly be reduced by increasing the length of the joint and making all of the tapers sharper, but it may be impossible to connect a $\pm 10^\circ$ layup graphite/epoxy strut to an aluminum end fitting in an environment where large temperature changes occur. Differential thermal expansion problems can be reduced by increasing the ply angle from 10°, but, as the ply angle is increased, the advantages of the composite material over that of aluminum soon disappear. A mechanical joint does not appear to be practical because a large number of fasteners would be required, and the $\pm 10^\circ$ layup is not suitable due to the tear-out failure mode. Controlling the temperature variations in the truss using active cooling may be the only way to keep the composite/aluminum joint from self-destructing.

V. ANALYSIS OF THE JOINT TEMPERATURE DURING WELDING

Advanced space structural concepts is a task initiated to develop assembly methods and welding techniques for in-space joining of structures. The focus is directed toward welding tubular fluid-carrying truss-support struts for a 120-ft diameter aerobrake. The strut is composed of a graphite/epoxy tube with aluminum fittings at the ends of the strut for welding to a mating metallic node (fig. 13).

For the welding process to be effective, the tubes being connected are melted, via a weld torch, and a fusion of the joint is achieved. The temperature at the fusion line is necessarily the melting temperature of the material being joined. As heat is transferred during welding, the temperature of the metallic end fittings, the composite strut, and the metallic node increase. The composite strut is designed to tolerate a maximum temperature of approximately 300 °F. The distance between the weld line and the edge of the composite strut required to avoid thermal damage to the composite strut is estimated in this section.

The welding process selected for this application is GTAW because it is appropriate for welding 1- to 6-in diameter tubes. Here a three-pass weld is required. The first pass will melt and join one half of the thickness. On the second pass, filler wire will be fed into the groove, thereby joining the remainder
Figure 11. Deflection and stresses in the composite material strut-aluminum end fitting joint due to a compressive load of 140 kips and a temperature increase of 250 °F.
Figure 12. Deflection and stresses in the composite material strut-aluminum end fitting joint due to a compressive load of 140 kips and a temperature increase of 250 °F.
Figure 13. Drawing of a node and a welded joint.
of the tube cross section. A third pass will be made without filler wire to ensure complete fusion of the weld. It was assumed that the initial temperature in the vicinity of the weld will be 32 °F. It was further assumed that after both the first and second passes, the temperature at the fusion line will be allowed to cool to the initial temperature. In this scenario, the area in the vicinity of the weld will be either actively cooled or heated, as required, to a temperature of 32 °F before the beginning of each welding pass. Other parameters affecting the peak temperature at a distance from the fusion line include weld velocity, material melting temperature, and power input. The power input, \(P \) (Btu/min), is determined by: \(^{21}\)

\[
P = \frac{-2\pi Kh(T_m - T_o)}{\ln(vd/(4.5\alpha))},
\]

where \(K \) = thermal conductivity (0.1625 Btu/(min in °F)), \(h \) = thickness of weld material (0.5 in), \(T_m \) = melting temperature of 2219 aluminum alloy (1,080 °F), \(T_o \) = initial temperature (32 °F), \(v \) = welding velocity (10 in/min), \(d \) = weld width (0.5 in), \(\rho \) = weight density of the aluminum (0.103 lb/in\(^3\)), \(C \) = specific heat (0.23 Btu/(lb °F)), and \(\alpha \) = thermal diffusivity = \(K/(\rho C) \) (6.86 in\(^2\)/min). Equation (2) predicts a power input of \(P = 294 \) Btu/min. The current, either direct or alternating, is dictated by the electrode diameter and American Welding Society classification of tungsten electrode. For most GTAW welding, a \(\frac{1}{16} \)-in diameter EWP classification electrode is used. The amperage for the direct and alternating currents range from 50 to 150 A. \(^{23}\)

A fundamental entity in the study of heat flow in arc welding is arc energy input, \(H_{net} \), and is defined as the ratio of the effective input power of the heat source to its travel velocity. Not all of the heat generated in the arc can be effectively utilized in arc welding due to heat losses caused by conduction, radiation, and splashing off of droplets (spatter). \(^{24}\) To account for the heat loss, a heat transfer efficiency term, \(f_1 \), is introduced which is the ratio of the heat actually transferred to the workpiece divided by the total heat generated by the heat source. \(^{24}\) For GTAW, the heat transfer efficiency range is 21 to 48 percent. \(^{24}\) Thus, \(H_{net} = f_1 P/v \).

Having selected the material, thickness, weld velocity, initial temperature, heat transfer efficiency, and welding process, the peak temperature \(T_p \) (°F), at a distance \(y \) (in), from the fusion line is: \(^{24}\)

\[
T_p = T_o + \left\{ \frac{H_{net}(T_m - T_o)}{[(2\pi e)^{0.5} \rho Chy(T_m - T_o) + H_{net}]^{0.5}} \right\},
\]

where \(e = 2.718 \) is the base of natural logarithms. Thus, according to equation (3), the distance the composite components should be from the fusion line to avoid temperatures greater than 300 °F is 0.8 in for the maximum heat transfer efficiency of 48 percent. Intuitively, this distance appears to be too small. However, similar results have recently been obtained experimentally. \(^{21}\) To be safe, it is recommended that a 2-in spacing be maintained between the fusion line and the edge of a composite material component.

Figure 13 shows an O-ring (silicone elastomer, size AS 568-044) \(^{25}\) which is intended to provide a frictional force to hold the assembled joint in position during welding. This O-ring may sustain some thermal damage during the welding process without compromising the integrity of the joint. The O-ring serves no function after the welding has been completed.
VI. CONCLUSIONS

On the basis of this study, the following conclusions were reached:

1. Member length errors should be carefully controlled in large truss structures. Member length errors can lock in large stresses and structural distortions before service loads are applied. Distortions may cause problems for instruments with accurate pointing requirements. Distortions may also disturb the flow of hot gases over an aerobrake heat shield.

2. The assembly robot will need to be designed to exert relatively large forces while building the truss structure. The assembly robot will also require an accurate device for ensuring that the member length is correct before welding.

3. The telescoping member and joint overlap with O-ring approach seems to be a workable approach for positioning the truss members before welding. It is important that the joint system be "designed for assembly."

4. A modified GTAW process appears to be a feasible technique for the automated welding of aluminum components on-orbit.

5. A half-inch thick groove weld will be required to carry the design loads. This weld will be made in three passes. The joint weld should be at least 2 inches from the nearest epoxy bond line to avoid thermal damage to the adhesive.

6. A good design for the graphite/epoxy strut-aluminum end fitting joint is difficult to obtain because of the differential thermal expansion problem. The joint investigated in this study may fail under load unless nonlinear behavior produces a significant amount of stress redistribution. Better thermal control of the truss structure (reduce temperature changes) may be required to avoid a joint failure.
REFERENCES

21

APPENDIX A

Listing of the Nodal Coordinates of the Finite Element Model of the Tetrahedral Truss

<table>
<thead>
<tr>
<th>NODE ID</th>
<th>X-COORD.</th>
<th>Y-COORD.</th>
<th>Z-COORD.</th>
<th>NODE ID</th>
<th>X-COORD.</th>
<th>Y-COORD.</th>
<th>Z-COORD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-31.3900</td>
<td>-54.3800</td>
<td>10.2500</td>
<td>170</td>
<td>56.5100</td>
<td>-3.6300</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>-18.8400</td>
<td>-54.3800</td>
<td>10.2500</td>
<td>171</td>
<td>62.7900</td>
<td>0.0000</td>
<td>10.2500</td>
</tr>
<tr>
<td>5</td>
<td>-6.2800</td>
<td>-54.3800</td>
<td>10.2500</td>
<td>173</td>
<td>-56.5100</td>
<td>10.8800</td>
<td>10.2500</td>
</tr>
<tr>
<td>7</td>
<td>6.2800</td>
<td>-54.3800</td>
<td>10.2500</td>
<td>175</td>
<td>-50.2280</td>
<td>7.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>18.8400</td>
<td>-54.3800</td>
<td>10.2500</td>
<td>176</td>
<td>43.9500</td>
<td>10.8800</td>
<td>10.2500</td>
</tr>
<tr>
<td>11</td>
<td>31.3900</td>
<td>-54.3800</td>
<td>10.2500</td>
<td>177</td>
<td>37.6700</td>
<td>7.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>13</td>
<td>-37.6700</td>
<td>-43.5000</td>
<td>0.0000</td>
<td>178</td>
<td>-31.3900</td>
<td>10.8800</td>
<td>10.2500</td>
</tr>
<tr>
<td>15</td>
<td>-25.1100</td>
<td>-43.5000</td>
<td>0.0000</td>
<td>179</td>
<td>-18.8400</td>
<td>10.8800</td>
<td>10.2500</td>
</tr>
<tr>
<td>17</td>
<td>-12.5600</td>
<td>-43.5000</td>
<td>0.0000</td>
<td>180</td>
<td>-12.5600</td>
<td>7.2500</td>
<td>0.0000</td>
</tr>
<tr>
<td>19</td>
<td>6.2800</td>
<td>-43.5000</td>
<td>0.0000</td>
<td>181</td>
<td>-2.6280</td>
<td>10.8800</td>
<td>10.2500</td>
</tr>
<tr>
<td>21</td>
<td>6.2800</td>
<td>-43.5000</td>
<td>0.0000</td>
<td>182</td>
<td>6.2800</td>
<td>10.8800</td>
<td>10.2500</td>
</tr>
<tr>
<td>23</td>
<td>6.2800</td>
<td>-43.5000</td>
<td>0.0000</td>
<td>183</td>
<td>50.2300</td>
<td>0.0000</td>
<td>10.2500</td>
</tr>
</tbody>
</table>

The Nodal Coordinates of the Finite Element Model of the Tetrahedral Truss.
Listing of Program CALCMSFT Used to Calculate Nodal Forces Due to Member Misfits

CLS

' A unique seed is used for the random number generator for each run so ' different random numbers are generated for each run.
' seed% = (32760# * TIMER) / 86400#

RANDOMIZE seed%

' Here the node information file generated by the VIEW2 program is read in.
OPEN filenamel$ FOR INPUT AS #1
FOR i% = 1 TO 7
 INPUT #1, dummy$
 NEXT i%

numnodes% = 0 'numnodes% stores the number of nodes.
DIM x%(1 TO 1000), y%(1 TO 1000), z%(1 TO 1000) 'x, y, z are nodal coords.
DO WHILE NOT EOF(1)
 numnodes% = numnodes% + 1
 INPUT #1, dummy%, x%(numnodes%), y%(numnodes%), z%(numnodes%)
LOOP
CLOSE #1

' Here the element info file generated by the VIEW2 program is read in.
OPEN filename2$ FOR INPUT AS #1
FOR i% = 1 TO 7
 INPUT #1, dummy$
 NEXT i%

numel% = 0 'numel% stores the total number of elements.
'nodel%(i) and node2%(i) are the nodes associated with the i-th element.
DIM nodel%(1 TO 1000), node2%(1 TO 1000)
DO WHILE NOT EOF(1)
 numel% = numel% + 1
 INPUT #1, dummy%, eltype%, nodel%(numel%), node2%(numel%)
LOOP
CLOSE #1

'Member length errors (misfits) are randomly introduced in the members ' that vary between minus MaxLengthError# and plus MaxLengthError#.
INPUT "Enter Magnitude of Maximum Error In Member Length: ", MaxLengthError#
INPUT "Enter Elastic Modulus: ", ElasticModulus#
INPUT "Enter Member Outside Diameter: ", OutsideDia#
INPUT "Enter Member Inside Diameter: ", InsideDia#
area# = (OutsideDia# ^ 2 - InsideDia# ^ 2) / 4 * 3.14159265#

'fx%(i), fy%(i), and fz%(i) store the net force components due to member ' misfits that are to be applied to the i-th node.
DIM fx%(1 TO numnodes%), fy%(1 TO numnodes%), fz%(1 TO numnodes%)

'elforce%(i) is the misfit force in the i-th element.
DIM elforce%(1 TO numel%)
FOR i% = 1 TO numel%
 'delta# is the length error in the i-th element.
 delta# = MaxLengthError# * (-1 + 2 * RND)
 dx# = x%(node2%(i%)) - x%(nodel%(i%))
 dy# = y%(node2%(i%)) - y%(nodel%(i%))
 dz# = z%(node2%(i%)) - z%(nodel%(i%))
 length# = SQR(dx# ^ 2 + dy# ^ 2 + dz# ^ 2)
 ex# = dx# / length#
 ey# = dy# / length#
 ez# = dz# / length#
 force# = ElasticModulus# * area# * delta# / length#
 elforce%(i%) = -force#
 fx%(nodel%(i%)) = fx%(nodel%(i%)) - force# * ex#
 fy%(nodel%(i%)) = fy%(nodel%(i%)) - force# * ey#
\[f_{z#}(\text{node1}(i)) = f_{z#}(\text{node1}(i)) - \text{force#} \cdot \text{ez#} \]
\[f_{x#}(\text{node2}(i)) = f_{x#}(\text{node2}(i)) + \text{force#} \cdot \text{ex#} \]
\[f_{y#}(\text{node2}(i)) = f_{y#}(\text{node2}(i)) + \text{force#} \cdot \text{ey#} \]
\[f_{z#}(\text{node2}(i)) = f_{z#}(\text{node2}(i)) + \text{force#} \cdot \text{ez#} \]

NEXT i

'The Loading Stub File contains the loading file title
' followed by a blank line. Other info could be put in the stub file if
'desired.
INPUT "Enter Name of Loading Stub File: ", filename3$
OPEN filename3$ FOR INPUT AS #1

'Count number of lines in the stub file.
numlines% = 0
DO WHILE NOT EOF(1)
 LINE INPUT #I, dummy$
 numlines% = numlines% + 1
LOOP
CLOSE #1
OPEN filename3$ FOR INPUT AS #1
DIM LoadingStubFile$(1 TO numlines%)
FOR i% = 1 TO numlines%
 LINE INPUT #I, LoadingStubFile$(i%)
NEXT i%
CLOSE #1

'The Misfit Loading File is the file of member loads that the STAT2
' program reads in. The Misfit Loading File contains the contents of the
' Loading Stub File to which are appended the member misfit nodal loads
' and then some commands required by STAT2.
INPUT "Enter Name of Misfit Loading File: ", filename4$
OPEN filename4$ FOR OUTPUT AS #1
FOR i% = 1 TO numnodes%
 PRINT #i, LoadingStubFile$(i%)
NEXT i%
PRINT #1, "FORCES AND MOMENTS APPLIED 0"
FOR i% = 1 TO numnodes%
 'Node 161 was completely fixed so no forces need
 ' be applied to it. Also, no need to print out nodal forces that
 ' are zero.
 IF i% <> 161 THEN
 IF fx#(i%) <> 0# THEN PRINT #1, "FX "; i%; " "; fx#(i%)
 IF fy#(i%) <> 0# THEN PRINT #1, "FY "; i%; " "; fy#(i%)
 IF fz#(i%) <> 0# THEN PRINT #1, "FZ "; i%; " "; fz#(i%)
 END IF
NEXT i%
PRINT #1, ""
PRINT #1, "SOLVE"
PRINT #1, "QUIT"
PRINT #1, "END"
CLOSE #1

'To get the final member forces the initial, misfit member forces must
' be added to the member forces calculated by STAT2.
INPUT "Enter Name of File for Storing Initial Member Forces: ", filename5$
OPEN filename5$ FOR OUTPUT AS #1
FOR i% = 1 TO numel%
 PRINT #i, elforce#(i%)
NEXT i%
END
APPENDIX D

Listing of Program GETFORCE Used to Calculate the Largest Member Force Due to Member Misfits

'The Results Data File is created by STAT2. It contains the results of a static analysis of the structure.
INPUT "Enter Results Data File: ", filename1$
OPEN filename1$ FOR INPUT AS #1

'Here the Results Data File is searched for the axial forces in the members. AxialForce#(i) is the axial force in the i-th member. node1%(i) and node2%(i) are the nodes associated with the i-th member.
DIM node1%(1 TO 1000), node2%(1 TO 1000), AxialForce#(1 TO 1000)
elnum$ = 0
DO WHILE NOT EOF(I)
 INPUT #1, dummy$
dummy$ = LTRIM$(dummy$)
 IF LEFT$(dummy$, 7) = "ELEMENT" THEN
 IF LEFTS(dummy$, 14) <> "ELEMENT MAJOR" THEN
 elnum$ = elnum$ + 1
 node1%(elnum$) = VAL(MIDS(dummy$, 49, 6))
 node2%(elnum$) = VAL(MIDS(dummy$, 69, 6))
 INPUT #1, dummy$
dummy$ = LTRIM$(dummy$)
 AxialForce#(elnum$) = VAL(MIDS(dummy$, 6, 13))
 END IF
 END IF
LOOP
CLOSE #1

'The initial member forces were determined when calculating the member misfit nodal forces.
INPUT "Enter Name of File Storing Initial Member Forces: ", filename2$
OPEN filename2$ FOR INPUT AS #1
FOR i = 1 TO elnum$
 INPUT #1, elforce#
 AxialForce#(i) = AxialForce#(i) + elforce#
NEXT i$
CLOSE #1

'Here the results are sorted to find largest member force magnitude.
MaxForce# = ABS(AxialForce#(1))
FOR i = 2 TO elnum$
 IF ABS(AxialForce#(i)) > MaxForce# THEN MaxForce# = ABS(AxialForce#(i))
NEXT i$
PRINT
PRINT "Largest Force Magnitude: ";
PRINT USING "##.####......", MaxForce#
PRINT

'The Output Data File stores the member force results.
INPUT "Enter Output Data File: ", filename3$
OPEN filename3$ FOR OUTPUT AS #1
PRINT #1, "Data From File: "; filename1$; " Date: "; DATES; " Time: "; TIMES$
PRINT #1, "Largest Force Magnitude: ";
PRINT #1, USING "##.####......", MaxForce#
FOR i = 1 TO elnum$
 PRINT #1, USING "##.####......", i; node1%(i); node2%(i);
 PRINT #1, USING "##.####......", AxialForce#(i)
NEXT i$
...
APPENDIX E

Listing of Program GETDISPL Used to Calculate the Relative Displacement Between Nodes 318 and 320 Due to Member Misfits

CLS

' The Results Data File is created by STAT2. It contains the results
' of a static analysis of the structure.
INPUT "Enter Results Data File: ", filename$
OPEN filename$ FOR INPUT AS #1

'Here the Results Data File is searched for the displacements of nodes
' 318 and 320.
'dx#, dy#, and dz# store the displacements of nodes 318 and 320
NumDisplace% = 2
Displace% = 0
DIM dx#(1 TO NumDisplace%), dy#(1 TO NumDisplace%), dz#(1 TO NumDisplace%)
DO WHILE NOT EOF(1)
 INPUT #1, dummy$
 dummy$ = LTRIM$(dummy$)
 IF LEFT$(dummy$, 3) = "318" THEN
 Displace% = Displace% + 1
 dx#(Displace%) = VAL(MID$(dummy$, 4, 12))
 dy#(Displace%) = VAL(MID$(dummy$, 16, 12))
 dz#(Displace%) = VAL(MID$(dummy$, 28, 12))
 END IF
 IF LEFT$(dummy$, 3) = "320" THEN
 Displace% = Displace% + 1
 dx#(Displace%) = VAL(MID$(dummy$, 4, 12))
 dy#(Displace%) = VAL(MID$(dummy$, 16, 12))
 dz#(Displace%) = VAL(MID$(dummy$, 28, 12))
 END IF
LOOP
CLOSE #1

NetDisplace# = SQR((dx#(2) - dx#(1))^2)
PRINT "Net Displacement Nodes 318-320: ";
PRINT USING " ###.####"; NetDisplace#

END
APPENDIX F

Listing of the MSC/pal 2 Input Deck for the Preliminary Design of the Joint

<table>
<thead>
<tr>
<th>Title Axisymmetric Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodal Point Locations 3</td>
</tr>
<tr>
<td>1,2,0,9 Through 21,1,875,0,5</td>
</tr>
<tr>
<td>22,1,875,0,4 Through 30,1,875,0,3,2</td>
</tr>
<tr>
<td>31,1,875,0,3 Through 34,1,875,0,2,8</td>
</tr>
<tr>
<td>35,1,875,0,2 Through 40,1,875,0,1,6</td>
</tr>
<tr>
<td>41,1,875,0,1 Through 44,1,875,0,0</td>
</tr>
<tr>
<td>45,2,0625,0,9 Through 65,2,0,5</td>
</tr>
<tr>
<td>66,2,0,4,8 Through 74,2,0,3,2</td>
</tr>
<tr>
<td>75,2,0,3 Through 78,2,0,2,8</td>
</tr>
<tr>
<td>79,2,0,2,6 Through 82,2,0,2</td>
</tr>
<tr>
<td>83,2,125,0,9 Through 112,2,125,0,3,2</td>
</tr>
<tr>
<td>113,2,125,0,3,1 Through 116,2,125,0,2,8</td>
</tr>
<tr>
<td>117,2,125,0,2,6 Through 119,2,125,0,2,2</td>
</tr>
<tr>
<td>120,2,125,0,2 Through 130,2,0,0</td>
</tr>
<tr>
<td>131,2,0,0,3 Through 133,2,0,-0,333</td>
</tr>
<tr>
<td>134,2,3,125,0,9 Through 154,2,1875,0,5</td>
</tr>
<tr>
<td>155,2,1875,0,4 Through 159,2,25,0,4</td>
</tr>
<tr>
<td>160,2,25,0,3 Through 163,2,25,0,3,2</td>
</tr>
<tr>
<td>164,2,25,0,3,1 Through 167,2,25,0,2,8</td>
</tr>
<tr>
<td>168,2,25,0,2,6 Through 170,2,25,0,2,2</td>
</tr>
<tr>
<td>171,2,25,0,2 Through 181,2,1563,0,0</td>
</tr>
<tr>
<td>182,2,1563,0,0,33 Through 184,2,1563,0,1</td>
</tr>
<tr>
<td>185,2,5,0,9 Through 205,2,25,0,5</td>
</tr>
<tr>
<td>206,2,25,0,4,8 Through 210,2,375,0,4</td>
</tr>
<tr>
<td>211,2,375,0,3 Through 214,2,375,0,3,2</td>
</tr>
<tr>
<td>215,2,375,0,3,1 Through 218,2,375,0,2,8</td>
</tr>
<tr>
<td>219,2,375,0,2,6 Through 221,2,375,0,2,2</td>
</tr>
<tr>
<td>222,2,375,0,2 Through 232,2,3125,0,0</td>
</tr>
<tr>
<td>233,2,3125,0,0,33 Through 235,2,3125,0,1</td>
</tr>
<tr>
<td>236,2,3125,0,0,3 Through 238,2,3125,0,1</td>
</tr>
<tr>
<td>257,2,4375,0,4,8 Through 261,2,5,0,4</td>
</tr>
<tr>
<td>262,2,5,0,3 Through 265,2,5,0,3,2</td>
</tr>
<tr>
<td>266,2,5,0,3,1 Through 269,2,5,0,2,8</td>
</tr>
<tr>
<td>270,2,5,0,2,6 Through 272,2,5,0,2,2</td>
</tr>
<tr>
<td>273,2,5,0,2 Through 283,2,4687,0,0</td>
</tr>
<tr>
<td>284,2,4687,0,0,33 Through 286,2,4687,0,1</td>
</tr>
<tr>
<td>287,2,625,0,9 Through 316,2,625,0,3,2</td>
</tr>
<tr>
<td>317,2,625,0,3,1 Through 320,2,625,0,2,8</td>
</tr>
<tr>
<td>321,2,625,0,2,6 Through 332,2,625,0,0</td>
</tr>
<tr>
<td>333,2,625,0,0,3 Through 337,2,625,0,1</td>
</tr>
<tr>
<td>338,2,625,0,0 Through 341,2,625,0,1</td>
</tr>
<tr>
<td>342,3,025,0,0 Through 345,3,025,0,1</td>
</tr>
<tr>
<td>346,3,225,0,0 Through 349,3,225,0,1</td>
</tr>
<tr>
<td>350,3,425,0,0 Through 353,3,425,0,1</td>
</tr>
<tr>
<td>354,3,625,0,0 Through 357,3,625,0,1</td>
</tr>
<tr>
<td>358,4,0,0 Through 361,4,0,1</td>
</tr>
<tr>
<td>362,4,5,0,0 Through 365,4,5,0,1</td>
</tr>
<tr>
<td>366,5,0,0 Through 369,5,0,1</td>
</tr>
<tr>
<td>370,5,0,0 Through 373,5,5,0,1</td>
</tr>
<tr>
<td>374,2,6452,0,0,8</td>
</tr>
<tr>
<td>375,2,7085,0,0,6</td>
</tr>
<tr>
<td>376,2,8285,0,0,4</td>
</tr>
<tr>
<td>377,3,025,0,0,2</td>
</tr>
<tr>
<td>378,3,225,0,0,835</td>
</tr>
<tr>
<td>379,3,425,0,0,202</td>
</tr>
<tr>
<td>380,2,825,0,0,2</td>
</tr>
<tr>
<td>381,2,115,0,2,9</td>
</tr>
<tr>
<td>382,2,115,0,2,6 Through 385,2,115,0,2,2</td>
</tr>
<tr>
<td>386,2,115,0,2 Through 388,2,090,0,1,6</td>
</tr>
<tr>
<td>389,2,065,0,1,2 Through 392,1,199,0,0</td>
</tr>
<tr>
<td>393,2,125,0,9,4</td>
</tr>
<tr>
<td>394,2,125,0,9,2</td>
</tr>
<tr>
<td>395,2,3125,0,9,4</td>
</tr>
<tr>
<td>396,2,3125,0,9,2</td>
</tr>
</tbody>
</table>

Material 1.05E+07, 0, 0, .33, 51000, .0000119, 70

Quad 4 0

Element Generate 21

Connect 76 To 77 To 381 To 114
Connect 330 To 331 To 375 To 374
Connect 331 To 332 To 376 To 375
Connect 332 To 333 To 380 To 376
Connect 333 To 334 To 338 To 380
Connect 335 To 338 To 334 To 377
Connect 377 To 342 To 346 To 378
Connect 378 To 346 To 350 To 379

Triangle Plate Type 4,0

Connect 38 To 39 To 82
Connect 82 To 39 To 82
Connect 82 To 82 To 386
Connect 329 To 330 To 374
Connect 330 To 331 To 375 To 374

MATERIAL 2.32E+07, 0, 0, .33, 48000, -2.5E-6, 70

Quad 4 0

Element Generate 21

Connect 393 To 394 To 396 To 395
Connect 394 To 83 To 134 To 396
Connect 395 To 396 To 398 To 397
Connect 396 To 134 To 185 To 398

Zero 1

R a all

Ta 370,371,372,373

End Def
APPENDIX G

Listing of the COSMOS/M Input Deck for the Analysis of the Composite Material-Aluminum Interface Joint

```
EG,1,PLANE2D,0,1
EX,1,10.56E6
NUXY,1,0.33
ALPX,1,12E-6
ACTIVE,MAT,1
GIC,1
ACTIVE,REAL,1
PT,1,2,125,5,0
PT,2,2,125,5,0
PT,3,2,875,6,0
PT,4,2,875,8,0
REGSIZE,113,7,2
AREA,1,1,2,3,4
EDELETE,337,368
EDELETE,449,488
EDELETE,561,608
EDELETE,433,448
EDELETE,537,560
EDELETE,641,672
NDELETE,453,489
NDELETE,566,605
NDELETE,679,726
NDELETE,550,565
NDELETE,655,678
NDELETE,760,791
EX,2,24E6
EY,2,17E6
EZ,2,17E6
NUXY,2,0,3
NUXZ,2,0,3
NUYZ,2,0,3
GXY,2,0,656E6
ALPX,2,10E-6
ALPY,2,63E-6
ALPZ,2,61E-6
ACTIVE,MAT,2
EMOD,1
EMOD,113
EMODIFY,225
EMODGEN,95,1,1,1
EMODGEN,79,113,1,1
EMODGEN,63,225,1,1
EX,2,4E6
EY,2,7E6
EZ,2,4E6
NUXY,3,0,3
NUXZ,3,0,3
NUYZ,3,0,3
GXY,3,0,656E6
ALPX,3,31E-6
ALPY,3,63E-6
ALPZ,3,31E-6
ACTIVE,MAT,3
EMOD,369
EMODGEN,271,369,1
EDELETE,369,369
EDELETE,489,489
EDELETE,609,609
EDELETE,640,640
EDELETE,536,536
EDELETE,432,432
EDELETE,289,289
EDELETE,193,193
EDELETE,96,96
ACTIVE,MAT,3

N,302,2.37109375,1.375,0
N,303,2.359375,1.5,0
N,304,2.34765625,1.625,0
N,305,2.3359375,1.75,0
N,306,2.3241875,1.875,0
N,307,2.3125,2,0
N,308,2.3125,2.125,0
N,194,2.30078125,2,2,0
N,195,2.290625,2.25,0
N,196,2.2800,2.375,0
N,197,2.2734375,2.375,0
N,198,2.265625,2.5,0
N,199,2.25390625,2.625,0
N,200,2.2421875,2.75,0
N,201,2.23046875,2.875,0
N,202,2.21875,3,0
N,203,2.20703125,3.125,0
N,204,2.1953125,3.25,0
N,205,2.183984375,3.375,0
N,206,2.171875,3.5,0
N,207,2.16015625,3.625,0
N,208,2.1484375,3.75,0
N,209,2.13671875,3.875,0
D,1,UX,0,758,ROTXY,ROTY,ROTZ
D,113,U,0,452,113
EP,1,4,26E3,225,112
NT,1,TEMP,250,758
RENUMBER,ON
```

DESIGN OF A WELDED JOINT FOR ROBOTIC, ON-ORBIT ASSEMBLY OF SPACE TRUSSES

By W.K. Rule and F.P. Thomas

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

J.C. Blair
Director, Structures and Dynamics Laboratory