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unit and zero matrices; dimensions are implied by context

inertias measured in body axes; appended symbol indicates the body

quadratic velocity term in the equations of motion and its gTadients with q, q, u

kinetic energy of a system

cable spring constant and damping coefficient for cable C1,..., Crn "

unloaded and loaded cable lengths of cables C1,..., Crn

number of cables and links in the suspension

masses and inertia matrices of rigid bodies B1,..., Bn

number of attachments of a cable to a rigid body of the system
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generalized forces and their gradients with q, q,..-

lists of the inertial c.g. position and Euler attitude angles, and the inertial e.g. velocities
and angular velocities of the n rigid bodies (eq. (1); note 1)

position, velocity vectors relative to inertial space; appended numbers indicate specific

points or line segments between points (R12 = R2- R1, etc.); the star notation

RI*, VI*,..., indicates the e.g. of body B1,...

suspension force parameters for inelastic suspensions; s = (st,..., so) T

skew-symmetric matrix representing cross-product operation with V for vectors referred

to 5ca (appendix A)

matrix of coordinate transformations to convert configuration vectors with inertial com-

ponents to configuration vectors with body axis components (eq. (35))

transformation of physical vectors from frame 5co to frame 5ca; all transformations are
defined from Euler angles (appendix A)

cable tensions for cable C1,..., Cm

generalized velocity coordinates of the system of rigid bodies

generalized velocity coordinates u for the system with elastic suspension separated into

6n - c coordinates, ul, which define the system with inelastic suspension, and c coor-

dinates, _, which define the system motion due to suspension stretching

configuration velocity with c.g. velocities given relative to the mean wind in body axis

components (eq. (34))

velocity vector relative to the mean wind; appended numbers indicate specific point

reference trajectory velocity relative to ground or mean wind

configuration vector of wind velocities (eq. (34))

mean wind velocity

row list of the axes of rotation of the Euler attitude angles of body Bi (appendix A)

configuration vector of inertia-coupling terms in f* (eq. (3)), and its gradients with u, v, q

rigid-body Euler angle triplet (¢, 0, _) (appendix A) and angular velocity, both relative
to inertial space; appended numbers indicate specific body

list of controls for the configuration of n bodies, or for body Bi

variations r, u, u, q,..., from their reference values

the inertia reaction, .21u, and its gradients with u

e.g. moment per unit tension of cable Cj on body Bi

physical vector given by its coordinates in frame 9r',, the subscript indicates the specific

fl'ame (note 2)

quantity evaluated at a reference flight condition

transpose of ( )

dot and cross-product operators for physical vectors

gradient vector; column of partial derivatives with respect to z, where z is any list of
scalar variables defined in context

variations of 5, 5i for their reference value

1. Standard axes are adopted for the physical vector elements which make up the configuration vectors

f, fa, fc, f*, f9, fo, r, v. Forces and c.g. positions and velocities are given by their inertial components, and

the e.g. moments and angular velocities are given by their coordinates in the body axes of their associated rigid

body.

2. Boldface symbols indicate physical vectors independent of any reference frame (R, V,...). Vectors given by

their coordinates in a frame are in lightface (RN, VN,...).
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Thenotationfollowsvariousrulesorhabitswhichprovideasuccincttreatmentoftheproblemwhilemaintaining
physicalinsightandprogrammableforms.A degreeofnotationaleconomybeyondthat previouslyusedin work
onsingle-helicoptersystemsisusefulto treatthemorecomplex multilift systems.

First, configuration vectors and matrices are introduced to deal with the general n-body system. These are

objects in 6n-dimensional space composed of three-dimensional vectors associated with the c.g. and rotational

dynamics of the n-constituent bodies. The applications work is done entirely in terms of natural vectors and

matrices from three-dimensional rigid-body mechanics. These are the largest objects for which detailed physical

insight is readily maintained. Further expansion to scalar components of these objects is strictly avoided in order

to avoid the unmanageable number of scalar dynamic terms that can arise in multilift analysis.

Second, tim coordinate flames in which vectors are specified are indicated systematically in all equations

throughout the text, using subscripts as stated above, in order to maintain a programmable form. Appendix
A contains useful relations to account for coordinate frames in the usual relations and operations of vector

mechanics; that is, an algebra of transformations is combined with the usual vector mechanics. The result is that

the underlying vector-mechanical and transformation-algebraic structure is retained in the working equations

for efficient analysis and programming. For example, the dynamic terms in the equations of motion in the

applications results consist almost entirely of coordinate transformations and their derivatives, Coriolis effects,

and centrifugal accelerations; this mass of terms is stated in a brief, programmable form.

vii
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EQUATIONS OF MOTION OF SLUNG-LOAD SYSTEMS, INCLUDING

MULTILIFT SYSTEMS

Luigi S. Cicolani and Curd Kanning

Ames Research Center

SUMMARY 1. INTRODUCTION

General simulation equations are derived for the

rigid body motion of slung-load systems. This work is
motivated by an interest in trajectory control for slung

loads carried by two or more helicopters. An approxi-

mation of these systems consists of several rigid bodies

connected by straight-line cables or links. The sus-

pension can be assumed elastic or inelastic. Equations

for the general system are obtained from the Newton-
Euler rigid-body equations with the introduction of

generalized velocity coordinates. Three forms are ob-
tained: two generalize previous case-specific results for

single-helicopter systems with elastic and inelastic sus-

pensions, respectively, and the third is a new formu-

lation for inelastic suspensions. The latter is derived

from the elastic suspension equations by choosing the

generalized coordinates so that motion induced by ca-

ble stretching is separated from motion with invariant

cable lengths, and by then nulling the stretching coor-

dinates to get a relation for the suspension forces. The
result is computationally more efficient than the con-

ventional formulation, is readily integrated with the

elastic suspension formulation, and is easily applied

to the complex dual-lift and multilift systems. Re-

sults are given for two-helicopter systems; three con-

figurations are included and these can be integrated

in a single simulation. Equations are also given for
some single-helicopter systems, for comparison with

the previous literature, and for a multilift system.

Equations for degenerate-body approximations (point

masses, rigid rods) are also formulated and results are

given for dual-lift and multilift systems. Finally, lin-

earized equations of motion are given for general slung-

load systems are presented along with results for the

two-helicopter system with a spreader bar.

Background

Various actual and proposed slung-load systems are

illustrated in figure 1. Single-helicopter slung-load op-

erations with the load suspended by cables in various

ways from a single attachment point have been com-
mon since the 1950s. Such operations were further

developed and extensively used during the Vietnam

war. Later research during the period 1965-1975 for

the Heavy Lift Helicopter was focused on the stabi-

lization of difficult loads, such as the standard 8- by 8-

by 20-ft cargo container (MILVAN), by means of sus-

pensions with multiple attachment points and various
control devices.

The use of two or more helicopters has been pe-

riodically proposed since the early success of single-
helicopter operations using suspensions consisting of

cables and spreader bars (systems 8-12 in fig. 1)

(refs. 1-3). Dual-lift suspensions have received lim-

ited flight testing, have been used to carry payloads in

a few isolated commercial operations, and have been

advocated as an alternative either to developing new

helicopters with greater payloads than those of cur-

rent helicopters (ref. 4), or to obtaining larger-capacity

helicopters than those locally available in a given sit-
uation. A significant obstacle to further operational

development is the complexity of system motion and

its guidance and control along any typical maneuver-

ing flight path (ref. 5). Until recently, progress beyond

the initial investigation of hover dynamics and control

in references 6 and 7 has been hampered by the lack

of realistic and comprehensive equations of motion for
use in theoretical and simulation studies. Tractabil-

ity of the equations for analysis and programming and

computational efficiency become critical factors for the

multilift systems. _Vhereas the slung-load systems can
be viewed simply as a few rigid bodies connected by

cables, considerable complexity of the equations of mo-

tion (EOMs) arises in applying the classic methods of



(4)

(1) (2) (3)

15) (6) (7)

(8)
n = Number of rigid bodies

7
(9) (lo)

c = Number of constraints (inelastic suspension)

d = 6n-c = number of degrees of freedom
m = Number of suspension lines

System n c d m

1 2 3 9 4

2 2 1 11 1

3 2 1 11 5

4 2 3 9 4

5 2 3 9 3

6 2 1 11 7

7 2 2 10 2

8 3 2 16 2

9 3 2 16 2

10 4 4 20 4

11 4 3 21 3

12 5 6 24 6

(11) (12)

Figure 1. Examples of slung-load systems.



the previous slung-load literature to the multilift sys-
tems when the cables are modeled as inelastic.

The approach taken in this paper and in our ini-

tial report (ref. 8) is to develop a systematic analyti-

cal fornmlation for general shrug-load systems and an-

alytical devices tailored to such systems, which are

readily applied to specific cases and yield tractable,

efficient equations. The devices include special coordi-
nates that represent the suspension constraints in an

inelastic system, and the systematic use of the naturM

vectors and matrices of rigid-body mechanics in the

applications work.

An alternative approach that would circumvent the

need for further analysis would be to use one of the

commercially available computer programs for the dy-
namics of general multibody systems. A third poten-

tial approach would be to apply the previous deriva-

tion techniques to multilift systems by using symbolic

digitaI computations to circumvent the excessive labor
and unfavorable error probabilities of extended hand

anaIysis and programming. However, these alternative
approaches are designed to accommodate a very large

class of dynamic systems, and the results do not pro-

vide the insight and computational efficiency achieved

here by restricting the class to slung-load systems.

Equations of Motion for Slung-Load Systems

The slung-load systems shown in figure 1 are viewed
here as members of a class of systems consisting of rigid

bodies connected by massless straight-line links which

can be either elastic or inelastic, and which support

only forces along the link. These systems are charac-

terized by the mass, inertia, and aerodynamics of the

rigid bodies, and the suspension's attachment point

locations, unloaded !ink lengths, and link elastic pa-
rameters. The limitations of these class properties in

representing the slung-load systems are as follows. The
rigid-body assumption excludes flexible loads and heli-

copter elastic modes; cable mass and aerodynamics are

neglected; and cable stretching is neglected in the ease

of inelastic cables. Despite these limitations, the class

properties are expected to suffice for trajectory-control

studies in which only low-frequency phenomena are of
interest.

Previous derivations of the EOMs for single-

helicopter slung-load systems have assumed either in-

elastic cables (refs. 9-12), or elastic cables (refs. 13-15),

or considered both cable models (ref. 16). In most of

these works, the results are specific to particular sus-

pensions, but references 13 and 15 account for a gen-
eral set of elastic suspensions in which all cables con-

nect two rigid bodies. Early work on the EOMs for

multilift systems assumed inelastic cables and yielded

only limited results. In reference 17, a general formula-

tion for systems of point masses connected by inelastic

cables is given, and reference 18 contains equations for

the same approximation of the three-body, dual-lift

system 9 of figure 1. In references 6 and 7 linearized

hover equations are given for the four-body, dual-lift

system 10 of figure 1, assuming a point mass toad.

In the above-cited literature, the formulation of the

EOMs depends principally on their use for simulation
or control analysis. For simulations, the suspension is

usually assumed elastic, and the equations are formu-

lated from the Newton-Euler equations for the rigid-

body velocity coordinates as, for example, in refer-
ences 13-15. This method can be readily applied to

most of the systems shown in figure 1, including the

dual-lift and nmltilift systems. The forces and mo-

ments applied to the configuration by the cables ap-

pear explicitly in the equations, and are calculated

from the system geometry and from a simple spring

model of cable stretching.

In practice, however, cables are relatively stiff, so the

rigid-body motion with inelastic cables differs very lit-

tle from that with elastic cables, and a reduced-order

inelastic-cable model is of interest in trajectory-control

analysis. Equations of motion for inelastic cabIes have

usually been derived from Lagrange's equations for

generM dynamical systems. Equations are given for a

minimal set of suspension-specific, generalized position
coordinates, and the nonworking suspension forces

are eliminated, consistent with d'Alembert's princi-

ple. These equations require the inverse of a large

system matrix and contain lengthy second-order ve-

locity terms in exchange for the reduced system order

and eliminated suspension forces. These features ob-

struct the use of the equations in simulations, but in

controls work the objective has usually been to ob-

tain linearized EOMs for the application of linear sys-

tem theory. Satisfactory results have been obtained

for single-helicopter systems by this approach, but re-
sults for dual lift have been limited to hover, where

the second-order dynamics can be neglected. In ad-

dition, modern control design methods are available

for aeronautical systems with significant aerodynamic

or dynamic nonlinearities based on partial inversion of

the nonlinear EOMs. A segment of the dual-lift control

literature seeks to apply these methods (refs. 17-21).

For this work, a suitable nonlinear model is needed



whichisbothanalyticallytractable and computation-

ally efficient.

An alternative, ad-hoc analytical approach for in-
elastic cables is based on manipulation of the Newton-

Euler equations to eliminate cable tensions in a subset

of these equations. This subset is combined with kine-

matic constraint equations to obtain 6n equations for

the linear and angular accelerations of the system's

rigid bodies, where n is the number of bodies. Re-
sults have been obtained for single-helicopter systems

(ref. 16) and, recently, for dual lift (twin lift), (refs. 19

and 20). This approach requires the inverse of a larger
system matrix than is required for generalized coordi-

nates, and the choice of coordinates is restricted.

Evidently, the dynamical equations for both elastic

and inelastic suspensions are of interest. The existing

formulations for these two suspension models differ sig-

nificantly in form and in analytical and conlputationaI

requirements, and difficulties of derivation or compu-
tation associated with existing methods for inelastic

cables become significant for dual-lift and multilift

systems.

In the present work, slung-load dynamics are treated

systematically. For this purpose, many formulations
of the equations for dynamical systems can be ap-

plied to both elastic and inelastic suspensions. The

Newton-Euler equations are suited to slung-load sys-

tems and are used herein. Simulation equations are de-

rived by applying the Newton-Euler equations to each

rigid body, defining configuration vectors for the n-

body system, and introducing generalized velocity co-
ordinates. The result for inelastic cables is obtained by

applying d'Alembert's principle. Two formulations are
obtained, one for elastic and one for inelastic suspen-

sions. These formulations generalize the previous case-

specific results to general slung-load systems and any

set of generalized coordinates. The method is similar
to that described in references 22-24 for general multi-

body systems. The result for inelastic cables requires

the inverse of a d x d matrix for which an analytical

inverse is unknown, where d is tile number of degrees

of freedom (DOF). Slung-load systems with inelastic

cables have only a few constraints, so d is relatively

large, near 6n in all cases, where n is the number of

rigid bodies. Values of d are listed in figure 1; d = 20

for the dual-lift system 10.

A second pair of formulations is obtained by select-

ing the generalized coordinates to represent the con-

straints found in slung-toad systems. The general-

ized coordinates for the elastic system are selected to

be partitioned into d coordinates that represent the

configuration motion with invariant cable lengths and

c coordinates that define the motion caused by cable

stretching, where c is the number of constraints im-
posed by the inelo_stic suspension. This can usually

be done by including appropriate cable velocity co-

ordinates in the generalized coordinates. The result

for inelastic cables is obtained by nulling the cable-

stretching coordinates to obtain an equation for the

resultant constraint forces on the configuration's rigid
bodies. The solution for this equation requires the in-

version of a relatively small c x c matrix (c = 4 for

dual-lift system 10 of fig. 1), and the resultant force
appears in the EOMs as an additive force, just as in

the elastic-cable equations.

The second fornmlation has reduced the computa-

tional penalty relative to the elastic-cable equations,

can be integrated with the elastic-cable equations in

one simulation, and can be expanded nearly com-
pletely in terms of natural vectors and matrices to

obtain compact, tractable fornmlations. It is read-

ily applied to the multilift systems. Results are given

herein for the three dual-lift systems of figure 1 (sys-

tems 8-10)_ and these can be integrated into a single
simulation. Additional results are included for some

single-helicopter systems to permit comparison with

past work, and for the multilift system (system 11) of

figure i extended to any number of helicopters. The

derivation and results are sufficiently brief so that hand

analysis and computer programming are practical. In

addition, degenerate-body (point masses, rigid rods)

approximations are given for general slung-load sys-

tems and for two multilift cases. Last, linearized equa-
tions of motion are formulated for general shrug-load

systems, and for duaMift system 10 of figure 1.

Equations of Motion for Multibody Systems

A large body of literature on tile dynamics of nmlti-

body systems has accumulated since the early 1960s

in response to the increasing importance of nmltibody

dynamics in the design of, for example, spacecraft, ma-

chines, robotic arms, and human motion models, and

the relevance of the approaches used and of the results

obtained to nmltilift helicopter systems is of interest.

The principal aim in the literature has been to develop

general-purpose computer programs to provide EOMs
from a minimal amount of user input data defining

the multibody system. This aim is motivated by the

impracticality or excessive labor and unfavorable error

probabilities of using hand derivation in most working
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circumstances in these applications. Theory and anal-

ysis are given, for example, in references 24-26, and
surveys of computer programs that encode EOMs for

a general system or that generate and compile sym-

bolic case-specific code from user inputs are provided
in references 27 and 28.

Slung-load systems differ from the applications dis-
cussed above. First, slung-load systems with inelastic

cables have only a few constraints relative to the num-

ber of DOFs (c << d, 6n) and can be equally well

represented as unconstrained (elastic cables). The ap-

plications cited above are all highly constrained, with

relatively few DOFs. For example, spacecraft and
robotic arms are commonly represented as n rigid bod-

ies with fixed orbit or base connected by n - 1 joints

which pernfit one DOF of relative rotational motion;
hence, d = db+ n -- 1, where db is the number of base

body DOFs. Consequently, the conventional fornmla-
tion in which a d x d matrix is formed and inverted is

computationally more efficient for these applications

than one containing a c x c matrix, but the converse

is true for slung loads. Moreover, in most references

the interbody connections are modeled as joints, and

then convenient generalized coordinates are predefined

according to the joint model. These have little appli-

cability to slung-load suspensions. Gimbal-type joints

can represent one to three DOFs of relative rotational
motion, whereas inelastic suspensions allow three to

five DOFs of relative motion, and elastic suspensions

impose no constraints.

One code-generating program, NEWEUL, and its

underlying formulation (given in refs. 22-24), does not
specialize the interbody connection and can be applied

to slung loads. The equations from this program are
in the conventional form which requires the inverse of

a d x d matrix, and the results are obtained with all

terms expanded to their scalar elements.

An alternative computer-based approach is to use

symbolic computations to carry out routine analyti-
cal steps--for example, the energy derivatives in La-

grange's equations. Some general possibilities of ap-

plying MACSYMA (ref. 29) for this purpose are dis-

cussed in reference 30 and this approach is used in ref-

erence 7 to obtain linearized hover equations for dual-

lift systems from Lagrange's equations.

Symbolic computation has many practical advan-

tages, especially that of error-free derivations, and it
has been applied where possible in the present work.

Its ability to generate useflfl scalar equations for dual-
lift systems from traditional methods has been lim-

ited by the explosion in the number of scalar dynamic

terms. In the present efforts, it appeared necessary

to seek more efficient analytical methods. A new for-

mulation and a new applications technique are pre-

sented which improve the computational efficiency of

the inelastic-suspension equations over previous forms,
and which render hand derivation, analysis, and pro-

gramming feasible for the previously difficult dual-lift
and multilift systems.

2. SYSTEM DESCRIPTION

The systems of interest consist of one or more heli-

copters that support a load (or more than one load, in

some instances) by means of a suspension. For typical

slung loads and nominal trajectories, the total load to
be supported by the helicopters due to load weight,

acceleration, and aerodynamics, is dominated by the

load weight. The suspension consists of cables, usually

of nylon webbing, and hooks, rings, isolator springs,
spreader bars, and other hardware (ref. 31). Sus-

pension designs with controllable geometry obtained

by active cable winching and attachment-point move-

ment have been proposed for load-attitude stabiliza-

tion (refs. 32 and 33), and are included in the present
formulation.

These systems can be partitioned into n rigid bod-

ies of non-negligible weight, B1,..., Bn (helicopters,

load, spreader bar). The remainder of such systems,
referred to as the "suspension" hereinafter, consists

of m straight-line links which support force only in
the direction of the link (or only tension, in the case

of cables) and have negligible mass and aerodynamic

force compared to those of interest in trajectory con-
trol. The number of suspension links m is listed in

figure 1 for the systems shown there. In many cases,
short ]inks attached to the load are considered part

of the load rigid body, because their elastic stretch is

negligible and they are immobile relative to the load.
The links can be modeled as inelastic, in which case

c _< m holonomic (position) constraints are imposed
on the motion of the rigid bodies, and the system has
d = 6n-c DOFs. Values of c and d are listed in

figure 1. Alternatively, the links can be modeled as

elastic, because of cable or isolator-spring stretching,
in which case there are 6n DOFs.



An examinationof cableandsuspensionelasticity
andits effectonrigid-bodymotionis reportedin ref-
erence34. Cablestretchingundertensionis usually
modeledasthat of anundampedspringwith damp-
ingsuppliedbytheaerodynamicresistanceof theat-
tachedbodies.Cablestendto bestiff, but thesus-
pensiondesignmustavoidanupperboundwhichis
setby resonancewith thehelicopterrotor frequency
(about4-5 ttz) whereadivergentpilot-inducedverti-
ca/bouncemodehasbeenobservednearhover.The
netresultis that naturalfrequenciesofpracticalsus-
pensionsareabout2-2.5Hz. Thisfrequencyis suf-
ficientlyhighto bedisjointfi'omthefrequencyrange
of interestin trajectorycontrol(about0.5Hz). The
correspondingmodeisoneofrapidandsignificantca-
bletensionvariations,but withsmallstretchingex-
cursionssothattherigid-bodycoordinatesarenearly
unaffected.

Both elastic-and inelastic-suspensionmodelsare
of interestin trajectorycontrol. For practicalsus-
pensions,simulationscanemploythesimpler,more
general,andmorecomputationallyefficientnonlinear
equationsof theelasticmodel.If actuMsuspension
stiffnessweresignificantlygreater,thendifficultiesof
numericalstabilityandill conditioningmightarisein
real-timedigital simulationof the higher-frequency,
low-amplitudecable-stretchingmotion.In controlde-
signs,practicMsuspensionscanbeapproximatedasin-
elastictherebyeliminatingfeedbackofstatesthathave
negligibleinfluenceontherigid-bodymotion•If actual
suspensionstiffnessweresignificantlylower,thenthe
lower-frequency,higher-amplitudemotionscausedby
cablestretchingwouldbeofinterestin trajectorycon-
trol. In the presentreport,simulationequationsfor
bothelasticandinelasticsuspensionsareconsidered.

Thesimulationof cablecollapseis an application
detailoutsidethescopeof thepresentpaper.If a ca-
blecollapses,theresultingsystemis still a member
of theclassof interestandcanbesimulated.Practi-
calsuspensionsaredesignedandoperatedsuchthat
cablecollapsedoesnotoccurexceptduringlargeun-
stableexcursionsfromthenominalconfiguration,or
duringloadpickupanddropoff.System4 of figure 1

(inverted-V suspension) is a special case in which one

or two cables can collapse during small yawing motions
if the cables are assumed inelastic, but this does not

occur in cables with typical elastic properties.

3. EQUATIONS OF MOTION OF GENERAL
SLUNG-LOAD SYSTEMS

Configuration Vectors

Physical vectors are referred to inertial or body-axis

reference frames in the following discussion• Trans-

lational motion and forces are given in inertial co-

ordinates, and rotational motion and moments are

given in body axes. The reference frame is indi-

cated by a subscript, which is N for inertial space and

i C {1, 2,..., n} for body axes of the ith body. Body-
axis components of translational velocity and motion

variables relative to a reference body are commonly

used in slung-load simulations, and are readily intro-

duced later when generalized coordinates for an appli-
cation are selected.

It is convenient to use configuration vectors that

define the motion and forces of the n rigid bodies

whose masses, inertias, e.g. translational motion, Eu-

ler attitude-angle triplets, and angular velocities rel-

ative to inertial space are denoted by (ml, J1,Rl*,

Vl*, al, _.,1),...,(mn, Jn, Rn*, Vn*,an,_n). The

configuration vectors of position r and velocity v are

defined as lists of the rigid body c.g. positions and
Euler attitude angles, and the rigid-body c.g. transla-

tional and angular velocities:

RI *N "_

Rn*N
r_ V _--

al

\an/

Vn*N I

wll I

03T_ n I

(1)

Let f be a list of the resultant forces and mo-

ments applied to each rigid body, and let fg, fa, fc
be corresponding lists of the gravitational forces, the

aerodynamic and rotor forces, and the cable forces,

respectively:

f = fg + fa + fc
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fc = FCnN
MCll (2)
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where FAi, MAi are the sum of the aerodynamic and

rotor forces applied to the ith body and the sum of

their moments about its c.g., respectively; and where
FCi, MCi are similar force and moment sums due to

all cables acting on Bi. The applied forces f depend
on r, v, and the helicopter controls; any dependence of

the aerodynamics on the acceleration 0 is assumed to

be negligible.

Last, let f* be a list of the inertia reactions of the
n bodies:

ml VI* N '

f. = _ rrLT_Vn *N
J1 &11

Jn 5Jnn

0

S(wll)J1 wll

k S(wnniJnwnn

= -D _) - X (3)

The term f* is abbreviated to the form -D _) - X,

where D is block-diagonal with masses and inertia ma-

trices along the diagonal, 0 is the configuration accel-

eration, and X contains Coriolis terms due to the use

of body-axis components of rotational motion.

Kinematics

The systems of interest consist of n rigid bodies con-

nected by m cables which impose c constraints on the
motion of the rigid bodies; they have d = 6 n - c

DOFs, where c = 0 for elastic cables. These

are holonomic systems; that is, the constraints im-

posed by an inelastic suspension can be given as func-

tions of position only. These constraints are usually

time-invariant, but in the special case of active ca-

ble winching or attachment-point movement they have

explicit dependence on time. To accommodate this

case, the kinematic model below includes parameters

P = (Pl,.." ,p_)T, which can represent the control-

lable geometric parameters of such a suspension or

other known time-varying parameters convenient to

the kinematic model in particular applications.

For holonomic systems with d DOFs there exist

d generalized position coordinates, q = (ql,... ,qd) T,

which suffice to locate all points in the system and also

the configuration position

(4)

and d generalized velocity coordinates which suffice to

define all inertial velocities of the system:

u=g(q,p)O (5)

The configuration velocity is related to u by a linear

expression of the form

v = A(q,p)u +B(q,p)p (6)

Here, U is a nonsingular d × d matrix; it can be unity,

but velocity coordinates different from q are commonly

useful in applications. Note that v is asserted in equa-

tion (6) to be linear in u,p. This follows fl'om the

usual linear relationship v(÷) from rigid-body kinemat-

ics (appendix A),

Vi*N = Ri*N _ i 1,..., n
wii = Wii(ai) &i J

and equations (4) and (5). The term A is a 6n × d

matrix. For inelastic suspensions, A expresses the con-
straints by confining that part of the configuration ve-

locity due to u to the d-dimensional linear vector sub-

space defined by the columns of A. If _5 - 0, then

this subspace is tangent to the configuration trajec-

tory r(t).

Equations of Motion

The Newton-Euler equations for each rigid body are
as follows:

FiN -- mi Vi* N = 0

Mii - Ji &ii - S(wii) Ji _ii = 0

where Fi, Mi are the total applied forces and moments

about the c.g. of body Bi. The same equations listed
for all n bodies are

fc+fg+fa+f* =0 (7)



Toobtainthesimulationequations,differentiateequa-
tion (6)withrespecttotime,introducetheresultin f*

(eq. (3)), premultiply equation (7) by A T, and solve
for it:

it = [ATDA]-tAT[fo + fc] (8)

where

fo _ fg+fa - DAn - X- D(Bii+I_/5)

The configuration vector fo denotes the combined ex-

ternal forces, second-order velocity effects resulting

from the choice of coordinates u,v, and the inertia

reaction of the configuration to p(t).

If the cables are elastic, then A is a nonsingular
6n x 6n matrix and

it = A-ID-I[fo + fc] (9a)

In the case that 15 = 0 and we choose u -- v, then
A -=- [ and the result is identical to the Newton-Euler

equations applied to each body:

+ = D -I[f9 + fa- X + fc] (9b)

Equation (9b) for the rigid-body velocity coordinates

can be applied to any configuration without further

analysis except as needed to express fc. Equation (ga)
generalizes this case to allow a choice of generalized

velocity coordinates; for example, the use of cable-

velocity coordinates in u provides a convenient and

well-conditioned calculation of cable lengths and di-
rections for use in the calculation of the cable forces

fc. It should be noted here that the matrix A -1 in

equation (ga) represents the kinematic relation u(v)
and can be given analytically from the kinematics as

readily as the matrix A representing the reverse rela-

tion v(u). Therefore, it is unnecessary to perform a
matrix inversion to obtain A -1.

The constraint force fc in equations (9) can be given

as a sum of forces and moments applied by the suspen-

sion at each attachment point:

M

fe = E hj TCj
j=l

where j enumerates every attachment of a cable to a
rigid body, hj is a configuration vector defined in the

next section, and TCj is the cable tension, which is

given by the spring model of the cable as

TCj = max{O, I_'(gj-goj)+cj gj} j = 1,2,...,M

where {g.oj, Kj, cj} are the unloaded cable length and
cable spring and damping constants, respectively. Ca-

ble damping, ej ¢ 0, is introduced in reference i5,

but otherwise has been neglected in simulations with
elastic-cable models. For cables made of nylon web-

bing, the spring rate K depends on loading and cable

length (ref. 34). This dependency is readily included in

the calculation of cable tensions from the above equa-
tions. If accurate simulation of the small motions that

result from suspension stretching is unimportant, then
a simplified spring model of the cable elasticity that is

consistent with typical natural modes will suffice. The

spring constants K, c are related to the cable's natu-

ral mode parameters by Wn2 = Kg/F, 2(w,_ = c9/F,
where F is the load supported by the cable. In simula-

tions with elastic cables, initial values of cable tension
and stretch can be calculated in cases with nonredun-

dant suspensions from the solution for the constraint

forces fe for inelastic cables given below. Alterna-

tively, the configuration can be allowed to settle from

an approximate initial arrangement, possibly with the

aid of cable damping as a settling device (ref. 15).

Simulation Equations for Inelastic Suspensions

Using d'Alembert's Principle

If the cables are inelastic then the cable forces

fc drop out of equation (8) (ATfc = 0) in ac-

cordance with d'Alembert's principle for constrained

holonomic systems; the constraint forces do no virtual
work. This result is shown as follows. First, enumer-

ate the cable attachments 1,2,...,M at attachment

points R1,R2,... ,RM on their corresponding bod-

ies Bi, i = i(1), i(2) .... , i(M). One or more cables are

attached at an attachment point and every such at-
tachment of a cable to a body is numbered. The con-

straint force on the configuration is then (see fig. 2(a))

M

fc = _ hj TCj (10)
j=l

where TCj is the cable tension. The jth cable at-

tachment at point Rj on body i(j) applies a force and

moment to Bi(j) given by

FCij = kcj TCj

MCij = (Ri*j x kcj) TCj

where kcj is the cable direction outward from the body

and Ri*j is the moment arm of the attachment point

about the c.g. (Rj-Ri*). Thus, hj in equation (10) is

a configuration vector whose nonzero elements are kcj

and (Ri*j x kcj), corresponding to the constraint force

and moment on Bi(j) due to the jth cable attachment,
per unit tension.

Second, enumerate the cables and links which con-

stitute the suspension, C1, C2,..., Crn. Each end of

!: T ]! I



kcj /

(a) Cable attachment at

a rigid body

kcj

Ri*j

Ri'*j'
Bi*

(c) General link
connections

(b) Cable connecting
two rigid bodies

Figure 2. Suspension forces.

a cable or link is attached to either a rigid body or to

another link. In the restricted case, in which all cables

are attached at both ends to rigid bodies, all terms in

equation (10) can be combined in pairs, with each pair

corresponding to a single cable:

rrt

fc = E Hj TCj (11)
j=l

where the nonzero elements of Hj are

kcj, -kcj, (Rj-Ri*) x kcj,-(Rj'-Ri'*)xkcj,

corresponding to the forces and moments on bodies
Bi, Bi' to which the cable Cj is attached at points

Rj, Rj' (see fig. 2(b)). Here, kcj is the direction of

the line segment (Rj' - Rj). Prom the definitions of

Hj, v it follows that vrHj combines the rigid-body

c.g. and angular velocities to give the difference in

cable endpoint velocities along the cable direction:

vTHj = Vi* • kcj - Vi'* • kcj + a_i • (Ri*j x kcj)

- _i' • (Ri'*y x kcj)

= (Vj - Vj') • kcj = -_j

That is, it is the cable stretch rate. Recalling equa-

tion (6), uTATHj is the cable stretch rate due to u.

Since all cable lengths are invariant for arbitrary u in
an inelastic system, then

ATHj = 0 j = 1,2 .... ,m

and

ATfc = 0

For inelastic suspensions, all systems in fignlre 1 except

system 6 can be partitioned into rigid bodies such that

every cable connects two rigid bodies.

For more general suspensions in which links are con-

nected at both ends to a rigid body or to another link
(fig. 2(c)), fc is given by equation (10), and vTfc is a

linear combination of the attachment-point velocities.

To this combination, first add and subtract the veloc-

ities of the cable interconnection points in the cable

directions, and then apply the force-balance condition
to the linear combinations of cable forces at these in-

terconnections. The result is

M

oTfc = E Vj • kcj TCj

j=l

m

: Z(vJ- vy)• kcjTCy
j=l

77t

= - Tcj (12)
j=l

where the second and third sums are taken over all

cables and {_j} are cable lengths. Consequently, if



the suspensionis inelasticthenall cablelengthsare
invariantforarbitraryu, and

ATfc = 0 (13)

Equation (13) indicates that the cable force fc is or-
thogonal to all the columns of A and therefore to the

configuration velocity v, when/5 = 0. This result also

expresses d'Alembert's principle for constrained holo-

nomic systems (the constraint forces fc do no virtual

work) and Jourdain's principle for nonholonomic sys-

tems (the constraint forces have no virtual power):

fc r _r = 0

and

f cT _v = 0

where the virtual position and velocity in this context
are

= vl6q=A U
and

_v = [V_r v] _u = A _u

and the constraint forces to which these principles ap-

ply in slung-load systems are shown above to be the re-
sultant cable forces if the suspension is inelastic. Equa-

tion (8) for inelastic suspensions is now

it = [AT DA]-I AT.fo (14)

Here, [ATDA] is a positive definite d x d matrix; D

contains the system mass-inertia parameters; A con-

tains the system geometry and constraints; and fo (de-
fined by eq. (8)) contains the term DA u + X, which

is second-order in velocity coordinates, and the iner-

tia reactions to 15. It is unnecessary to calculate cable
tensions in this result.

The principal difficulty in implementing equa-

tion (14) is the required inversion of [ATDA]. A gen-

eral analytical inverse is unknown. For slung loads,

d is relatively large (near 6n) and the inversion is

therefore computationally more costly than it is for

the elastic-cable case (eq. (9)), which requires no in-

version. Some analysis of its numerical conditioning

over the flight envelope is needed before inversion can

be confidently implemented. In addition, the matrix
inversion obstructs further expansion and rationaliza-

tion in terms of three-dimensional dynamics whereas

equation (9) can be fully expanded in applications in
terms of natural vectors and matrices to obtain an-

alytically the sensitivities of the elements of "5 to the
forces and moments. A Gauss-Jordan elimination pro-

cedure to reduce the matrix to a block-diagonal form

was considered in initial efforts to reduce the inver-

sion to the inverses of smaller blocks given in terms

of three-dimensional vectors. The procedure was ap-

plied in each case after defining the coordinates u and

identifying some subdivision of u into natural vectors
or groups of coordinates with which to associate the

blocks of the diagonalized form. For typical choices

of u, these blocks usually represented the rigid-body

inertia matrices modified by the constraint moments

(effective inertia).

Analytical results were obtained for systems 1, 2,

7, and 8 of figure 1, but the labor required increased

rapidly with the number of DOFs, and the procedure

appeared impractical to do by hand for dual-lift sys-

tem 10 of figure 1. No generalization of the effective

inertia interpretation of the blocks or of the simplifica-

tion required at each step of the reduction was found,
so the procedure was ad hoc and specific to each sys-

tem and choice of coordinates, and could not be given

effectively as a MACSYMA algorithm for analytical
reduction.

A second form of tile simulation equations, which
requires the inverse of a much smaller c x c matrix, was

obtained after restricting the generalized coordinates

appropriately for slung-load systems; it is described

next. The result can be applied with much less labor
and likelihood of error than the procedure considered
above.

Equation (14), or equivalent forms obtained by

means of Lagrange's equations, is implemented in

many of the general multibody programs, where d is

relatively small in typical applications in the multi-

body literature. Numerical inversion of positive defi-

nite matrices can be carried out by various algorithms

based on the ChoIesky (square-root) decomposition

(ref. 35) previously applied in the field of estimation.
These are computationally efficient and resist numer-

ical instabilities. The conditioning of the coefficient

matrix [ATDA] depends on A in equation (14) or,

equivalently, on the choice of coordinates u. In the

multibody programs these coordinates are often pres-

elected based on the joint model of interbody connec-

tions, and these appropriate coordinates tend to result

in well-conditioned coefficient matrices in typical ap-

plications. In the present work, the interbody connec-

tions are suspensions composed of cables; it is left to

the applications phase to determine in each case what
constraints are imposed and what choice of coordinates

best represents the constrained system motion.

10



Simulation Equations for Inelastic Suspension:

Explicit Constraint Method

The approach in this section is to select the gen-

eralized velocity coordinates for the elastic system in

equation (9) so as to separate the motion due to ca-

ble stretching from the remaining motion by means of
invariant cable lengths, and then to study the results

when the stretching motion is nulled. A solution for

the constraint force and new simulation equations for

the inelastic system are obtained.

First, let the generalized velocity coordinates of the

elastic system u be composed of 6n- c coordinates, ul,

of the s?,stem with invariant cable lengths, and c length
rates, A, which suffice to define the motion resulting

from cable stretching. In general, if the c independent

position constraints imposed by an inelastic suspen-

sion are given by {Al(r) = 0,..., Ac(r) = 0} then A

can be taken as (M,..., Ac) T. For slung-load systems,
A can usually be taken as the cable lengths and the

complete set of coordinates (ul, A) can be taken as the

c.g. velocity of a reference body, the angular velocities

of all rigid bodies, and the cable angular velocities and

stretching rates.

Next, substitute the partitioned u in equations (6)

and (9):

v = A u + B /5=A1 ul + L A + B i) (15)

it = = D- 1(fo + fc) (16)

AT /

where fo is defined in equation (8); A1, L are the
6n - c and c columns of A which, respectively, define

the contributions of ul, A to v; and AI1 T, A T are the

6n- c and c rows of A -1 which, respectively, define the

relations ul(v) and A(v). As noted earlier, A -1 can be
obtained without matrix inversion since it defines the

relation u(v) for the elastic system and can be given
from the kinematics as readily as A, which defines the

relation v(u).

Equation (16) gives the simulation equation for sys-

tems with elastic suspensions in terms of the coordi-

nates (ul, A), where ul leaves the cable lengths in-
variant. The influence of cable-stretching motion on

ul can be viewed by entering the derivative of the
partitioned generalized velocity coordinates given by

equation (15) in f*, and rederiving equation (8). The
first 6n - c equations can be arranged as

it1 = [A1T D All -1 A1T[fo -- D(LA + f,i)]

where fo is as defined with equation (8) except that
A1 ul replaces /1 u. As in equation (14), fc drops

out (A1T fc = 0 in view of eq. (13)) and the result
differs from the inelastic system equations (eq. (14))

only in the presence of the configuration acceleration
due to elastic stretching. The effect of the stretching

motion on ul depends on the cable spring constants:
for a fixed disturbance, the extremes of ._ decline with

increasing spring stiffness, whereas the extremes of the
term in A remain fixed in magnitude, although A(t)

increases in frequency (ref. 15).

The constraint force can be given in terms of c in-

dependent parameters; that is, it can be given in the
form

(;)s2

fc = [HI,...,Hc] = H s

C

where s is arbitrary, {H j} are configuration vectors,
and rank [H] = c. Prom equation (13), A1TH = O,
and fi'om the construction of A -1, A1TA = 0. There-

fore, the columns of H and A are both bases of the

same linear vector space, and A can be used to define
the constraint force:

fc = A s (17)

where A T is the Jacobian IV T A], and s has units of

force, if the coordinates A are lengths.

For inelastic suspensions, A = 0, and equation (16)

gives c equations from which to calculate the con-
straint forces:

0 = ATD-I(fo + fc) (18)

Introduce equation (17) into equation (18) and solve
for s:

s = -[ATD-1A]-IATD-lfo (19)

Further, A can be replaced in equations (17) and (19)

by any other convenient basis, H, of the space con-

taining fc. For example, in the special case that every
cable connects two bodies and c = m, then s can be
taken as the c cable tensions with the basis vectors

H1,..., Hc, as defined by equation (11) above.

The cable tensions are related to s, and can be

uniquely determined from s if the suspension is not

redundant. However, the constraint force applied to

the configuration, fc, can always be calculated. A

suspension can be separated into disjoint sets of inter-
connected links. Each such set imposes one holonomic

11



constraint;if thenumberof setsis c, then all cable

tensions can be uniquely determined from s, but if it

exceeds c, then the constraints axe redundantly im-
posed. In the special case that all cables connect two

rigid bodies, then each cable is a disjoint set and all

cable tensions can be found only if c = m.

FinMly, the sinmlation equations are

it = A-aD-l(fo+ A s) (20)

or, for the inelastic DOFs;

izl = AI1TD-I[I- A[ATD-1AI-aATD-1Jf o (21)

This result has several advantages over equation (14)
for the slung-load systems. First, the leading coeffi-

cient matrix, A -1 or AI1, is known analytically. Sec-

ond, equations (19) and (20) require the inversion of a
c x c matrix, [ATD-1A], where c = 1 for system 1 and

c = 4 for dual-lift system 10 (fig. 1), compared with
the required inversion of 11 x 11 and 20 x 20 matrices,

respectively, for these two systems when equation (14)
is used. In many cases, the cable tensions can also be

generated by equation (19).

Computational efficiency in calculating the dynam-
ics can be compared among the formulations of the

simulation equations defined above by counting the

number of multiplications required to generate/t, given
A, A -I, D, D -1, fo. These are shown in table 1 for sys-
tems 1 and 10 of figure I.

In table 1, g0 refers to the number of nmltiplica-

tions and divisions required for the Cholesky inver-
sion, which increases with the square of the matrix size

(ref. 35). The general formulas (derivations omitted)
include savings gained from generic zeros, ones, and

matrix symmetries. The number of coordinates u,v

that are identical is represented by i in these formulas,
and accounts for the generic zeros and ones. In most

cases, u can be selected such that i = 3n+3. Additions

are omitted from the operations count for brevity, but

this omission does not affect the conclusions. Equa-
tion (14) is representative of previous single-case for-

nmlations of the slung load dynamics with inelastic

cables, as well as those in the nmltibody literature

(e.g., refs. 24 and 36). As shown, equations (19) and
(20) provide a significant reduction in the computa-

tional requirements to represent these dynamics, and

a much reduced penalty compared to the elastic cable

formulation (eq. (9)). The same conclusion applies to
all systems of figure 1.

Computational requirements are of interest in real-

time simulation and control. In simulations, the time

required to compute the dynamical terms are of in-

terest if these are a significant fraction of the cycle
time. In control systems, linear control laws use coef-

ficient matrices that can be calculated off line, and are

nearly unaffected by the underlying fornmlation of the

nonlinear EOMs. However, modern control-law design
methods for aeronautical systems (inverse model, out-

put linearization) treat systems with significant aero-

dynamic or dynamic nonlinearities by partially invert-

ing the simulation equations. It is beyond the scope

of this report to consider such control laws in detail,

but it is expected that the formulation of the dynam-

ics in the EOMs will affect the computational require-
ments for such control laws significantly for slung-load
systems.

Sinmlation Equations for Inelastic Suspensions
from Lagrange's Equations

Lagrange's equations have been the principal ana-

lytical approach in stung-load controls studies, where
the object is usually to obtain lineaxized EOMs. The

EOMs for general slung-load systems with inelastic

suspension are derived here from Lagrange's equations,

and it will be shown that they have the same form as
equation (14).

Lagrange's equations for generaI holonomic systems
with d DOFs axe

d

•d-t VO KE - Vq KE = Q (22)

where q = (ql,.--,qd) T are generalized position co-

ordinates; Q = (Q1,...,Qd) w are the generalized

forces, including conservative forces; and KE is the

Table 1. Multiplications required to calculate

Multiplies
Equation System 1 System 10 General formula

(9) 60 264 6n(6n - i + 2)

(14) 616+9(112) 3430+9(202 ) d((6n ._(a+3_-% 2 +12n+d)+g(d 2)

(19) and (20) 119 868+g(42) d(6n-i)+3n(c2+9c+4)+c2+g(c2)

12



kineticenergy.Forslung-loadsystems,KE, Q can be

given as

KE = (1/2) vTDv = (1/2) (tTATDAdl

Q = A T (fg + fa) (23)

where A defines v(0) as

v = Aq

and v, fg, fa are defined in equations (1) and (2).
The controllable parameters, iO, in equation (6) have

been omitted from the velocity relation and kinetic en-

ergy for brevity, but they can be routinely included

in KE and its derivatives. The generalized forces

are obtained as coefficients of the generalized coor-

dinate displacements in the virtual work, 6W --- fT

8r = fTA8 q. Here, f is the resultant force on the

configuration, f = fg + fa + fc. For inelastic cables,

fc is orthogonal to the columns of A in accordance
with d'Alembert's principle, and drops out of Q.

After carrying out the derivatives of the kinetic en-

ergy in equation (22), the general slung-load equations
are obtained as a second-order ordinary differential

equation:
1¥[(q)4 + k(q, dt) = Q

M=ATDA

k = A T D ft 0 + (ft - G) T D A O (24)

where

G = IV T (A(q) q)]

d 0A

a=Z
i=1

All terms in k are second order in the velocity coordi-

nates of q. Equation (14) can be placed in the same

form as equation (24) for comparison:

M(q);_ + k(q, (t) -- AT (fg + fa)

M=ATDA

k = AT(Dft_t + X) = ATDA it + AT X (25)

where u has been taken to be identical to 0 for the

comparison.

The equations of motion, (24) and (25), from La-

grange's equations and from equation (14), respec-
tively, have the same form. The inverse of a d x d

matrix, M, to obtain/i is required in both cases.

In the slung-load literature, Lagrange's equa-

tions (22) have been applied by defining generalized

position coordinates q, forming KE(q,(t), and gener-

ating the latter's derivatives routinely (refs. 10, 15,

and 7). Contact with the rigid-body velocities is lost
in KE, and the terms M, k, Q in equation (24) are

obtained as structureless objects in the d-dimensional

space of constrained motion. This has sufficed for

studies of single helicopters, but appears to be imprac-

tical for multilift systems.

Equation (23) introduces the multibody structure of
slung-load systems in the Lagrangian fornmlation, fol-

lowing similar steps found in the nmltibody literature,
to obtain equation (24) in terms of objects A, D, A0,

and f in the 6n-dimensional space of configuration mo-

tion. Equations (24) and (25) are identical except for
differences in the analytical statement of the second-

order velocity terms, k. In particular, the term A T X

in equation (25) is given easily from the kinematics
and from equation (3), but its numerical equivalent

in equation (24), (A - G) T D AO, requires numerous
derivatives of A. However, k can be neglected in tile

derivation of linearized equations for windless hover

because its gradients with respect to q, 0 are zero for

practical choices of coordinates, q.

Additional differences between equations (14) and

(24) occur in all terms when the velocity coordinates
u are different from 0. In the applications work, these

terms can be generated more easily from equation (14)

than from equation (24) owing to the simpler kine-

matics A, usually obtained using generalized velocities,
and the simpler expression for the nonlinear term, k.

Simulation Equations for Inelastic Suspensions

Using Rigid Body Velocity Coordinates

Simulation equations for the rigid-body velocity co-

ordinates v, (eq. (1)) have been derived assuming in-
elastic suspension for several slung-load systems in ref-
erence 16 and for dual lift in reference 20. These spe-

cialized derivations are obtained by extracting a sub-

set of the Newton-Euler equations with the suspension

forces eliminated and appending derivatives of the con-

straint equations to obtain 6n equations for the rigid-

body accelerations _). This procedure can be formally

extended to general slung-load systems with inelastic

suspension by using the partitioned coordinates previ-

ously defined in equation (15).

As before, partition the generalized velocity coordi-

nates of the elastic system u into 6n - c coordinates

ul of the system with invariant cable lengths and c

length rates A with suffice to define the motion due
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to cablestretching.Thenthekinematicscanagainbe
partitionedas

v = Au = A1 ul +L_

(ul)u = = A-Iv = v (26)
._ A T

Controllable parameters p have been omitted from the

kinematics for brevity but can be included routinely
in the derivation. Here, the columns of A and the

rows of A -1 are partitioned into [A1, L] and JAIl, A].
The term A1 is a basis of the space perpendicular to

the suspension forces fc and A is a basis of the space
containing these forces. The suspension forces can be

expressed as in equation (17) in terms of A and c in-

dependent constraint force parameters s. Introduce

this into the Newton-Euler equation (9b) and premul-

tiply the result by A r to obtain the dynamic equations

(note that A1Tfc = 0 and LTA = I):

A1TD'b = A1r(fg + fa -- X) (27)

s = LT(Db - fg - fa + X) (28)

A derivative of equation (26) provides c addi-
tional kinematic constraint equations for inelastic
suspensions:

__ AT/_ + £Tu -_ 0 (29)

Together, equations (27) and (29) comprise 6N scalar
equations for the rigid-body accelerations in which the

suspension forces have been eliminated. These yield
the simulation equations in the form

= M(,.)-lz

where

AITD )
M = (30)

AT

z=l A1T(fg+ fa-X) )_ATv

Equation (30) requires the inversion of the 6n x 6n

matrix, M, composed of 6n - c columns from D A and
c rows from A -1. General results for its rank or for

efficient inversion algorithms are not available. The

second-order velocity terms occur in X,/_k T ?3. The

use of the rigid-body velocity coordinates results in
calculation of relative motions from small differences

of large numbers in a simulation.

The suspension force parameters, s, can be com-

puted from equation (28) after computing accelera-
tions. Alternatively, equation (19) gives s in terms

of the applied forces and the velocity coordinates, but

requires more computation than equation (28). In gen-
eral s suffices to define the resultant suspension forces

applied to each rigid body of the configuration. Cable

tensions are related to s by fc = As = Hr, where r

is a list of cable tensions and H contains appropriate
configuration vectors defining the force and moment

action of each cable on each rigid body. If the number

of cables equals the number of constraints, then the
cable tensions are readily obtained from this relation.

4. APPLICATIONS

The object of this section is to demonstrate and ap-

ply the methods of this report to slung-load systems

of practical interest, particularly the dual-lift systems

for which general simulation equations were not pre-

viously available. Results are given for systems 1, 2,

and 7 and for all three dual-lift systems shown in fig-
ure 1, as well as for multilift system 11 extended to

any number of helicopters. These results are given as

summaries of sinmlation equations in programmable
form in the appendixes.

General Procedure

A general procedure for applying and implementing
the present results for slung-load simulation equations

is outlined in figure 3. Both elastic suspensions (eq. (9)
or (16)) and inelastic suspensions (eqs. (19) and (20))

are included. The first task (fig. 3(a)) is to perform
an analysis to (1) determine the constraints of the in-

elastic suspension; (2) define 6n generalized velocity
coordinates (ul, _) such that ul are d coordinates for

the inelastic suspension and such that _ are c coor-

dinates which define system motion caused by cable

stretching; and (3) obtain expressions for A,A -1, A

from the kinematics and for B,/_ from the suspen-
sion geometry, if it is controlled. These items are case

specific.

The selection of appropriate generalized coordinates

u is case specific, but several features were used repeat-

edly in the applications to maintain simplicity of the
kinematics and equations. The coordinates u can be

selected to consist largely or entirely of natural vectors.

If u contains rigid-body velocities identical to those in

v, then the corresponding rows of A, A -I, A are from

14
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c

ul

u

A

A-1

A

B

number of holonomic constraints on configuration for inelastic suspension

6n - c generalized velocity coordinates for system with inelastic suspension

c generalized velocity coordinates defining suspension stretching motion

6n generalized velocity coordinates for system with elastic suspension

U = (ul T, iT) T

the Jacobian [V_ v] obtained from the kinematics

the Jacobian IV T u] obtained from the kinematics

the Jacobian [V_, _T] from A -1 or any basis of the interaction force space

the Jacobian IV T v] (required only if p _ 0)

(a) Quantities required a priori.

fa = fa(r, v, 5)

fo = fg + fa - D ft u - X - D(Bi5 + f?D)

hj max{O, Kj (gj- eoj)}
fc m j=l

-A[ATD-1A]-IATD-lfo

sf = D-l(fo+ fc)

it = A-lsf

u= f (Ldt

v= A u + B f) or i = Z_ u + Z_ f)

i'=i'(r,p,v,D)

r=f÷dt o," z=f dt

(elastic cables)

(inelastic cables)

(5 = helicopter controls)

(b) Simulation equations.

Figure 3. Procedure for simulation of slung-load systems.
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fo = fg + fa - X - D(._,u + 131_+ B_)

fc

-A[ATD-IA] -I A T D-I fo

sf = D-1 (fo + fc)

ZuU + Zpl_

(c) Simulation flow diagram.

Figure 3. Concluded.

the mlit matrix or zero. If u contains cable veloci-

ties, the corresponding rows of A, A- 1, _i, contain only

coordinate transformations and skew-symmetric ma-

trices representing Coriolis velocities and Coriolis and

centrifugal accelerations. In most of the applications

discussed in this paper, u consists of the c.g. velocity

of a reference body, the angular velocities of all bod-
ies, and various cable velocities or their equivalents. A

consideration in choosing u is that the relation v(u)
should hc nonsingular and well-conditioned over the

domain of motions (v,r) of interest; that is, all con-

figuration motion should be readily detected fi'om a

knowledge of u. Among the examples given, this was

a factor only for system 7 (fig. 1).

The second task is to implement the sinmlation

equations (16) or (19) and (20) as given in the equa-

tion summary (fig. 3(b)) mad the information flow di-

agram for the gcncral n-body system (fig. 3(c)). The

applied forces and moments due to weight, acrody-
namics, and rotor arc combined in fo with thc inertia

coupling associated with the choice of coordinates u, v

and the controllable geometry, if any. The configura-

tion vectors fg, fa, X, and D were previously defined
in terms of physical vectors and matrices of the three-

dimcnsional rigid-body mcchanics of the systcm's con-

stituent bodies, in equations (2) and (3). The aerody-
namic term fa need not be considered in detail here,

except to note that it can be assumed to be a fimction

of the configuration kinematics and the acrodynamic

controls, 6. Thcsc dcpendcncics are considcrcd in more

detail later in deriving the linearized EOMs.

The forces and lllomeztts applied by the suspen-

sion to the configuration fe are calculated fl'om equa-

tions (10) or (11) (elastic cables) or equations (18)

and (19) (inelastic cables). Both elastic and inelastic

cable models can be accommodated by switching for-
mulas for the interaction force. Expressions are given

for both cases in all examples. For elastic cables, fc is

calculated from cable tensions and fi'om configuration

vectors defining the force and moment action of each

cable on the n rigid bodies. For inelastic cables, fc is
calculated from any basis of the constraint force space

A, and the corresponding independent constraint force

parameters s. The Jacobian, [V.j_T], from A -1 is al-

ways a basis. When every cable connects two bodies

and when m = c, as in the dual-lift systems, then

the constraint force parameters s can be taken as the
cable tensions, and the coefficient matrix defined in

equation (11) can be used for both models:

fe = Hs

(max{0, Kj(tj- goj)}, j = 1,...,c) T

(elastic cables)

-[H T D -1 H] -1 H T D -1 fo

(inelastic cables)

Subsequently, the configuration-specific forces and mo-
ments s f, and, finally, fi are calculated. The remain-

ing steps generate the kinematics u, v, i', r routinely or,

more generally, these kinematic variables can be ex-

panded to any set of velocity and position coordinates

_, z of interest after defining 2(z, p, u, ib) from the kine-
matics and geometry. For inelastic cables, the coordi-
nates A and their equations can be eliminated since A is

theoretically zero. Alternatively, all 6n equations can

be retained to permit simulation of both cable nmdels;
for inelastic cables, the computed A indicates numeri-

cal accuracy.
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Thegeneralsimulationequationsshownin figure3
aregivenin termsof vectorsin the6n-dimensional
configurationspace.Theseareexpressedin allresults
in termsofthenaturalvectorsandmatricesoftheun-
derlyingthree-dimensionalrigid-bodymechanicsand
geometry.Generalformulasusedto obtainthisform
aregivenin appendixA. Therequiredequationsare
relationsfromtheclassicvectortheoryof rigid-body
dynamicsin a programmableform. First, theskew-
symmetricmatrixis introducedto representthecross
productswhichoccurin theCoriotisvelocities,Cori-
olisandcentrifugalaccelerations,andcablemoments
that pervadeA, A -s, .Ziu, and fc. Second, reference

frames are defined for all rigid bodies, and standard ex-

pressions are given for the coordinate transformations,
angular velocities, and transformation rates that occur

in the results. All transformations are given in terms

of the customary Euler-angle sequence of aeronautics.
Third, the treatment of cable direction angles, cable

axes, and cable velocities is outlined; Euler angles are

again used, but only two angles are needed.

Examples

The literature describes a variety of existing and pro-

posed slung-load systems (fig. 1). These are grouped,

for this discussion, into (1) single helicopters with a

single attachment point on the helicopter, (2) single

helicopters with multiple attachment points, (3) dual-

lift systems, and (4) multilift systems. Several suspen-

sions are of interest in each category, including con-
trollable geometry in systems 5 and 6 of figure 1. Re-

sults are given for systems 1, 2, and 7 and for all three

dual-lift systems, as well as for a simple multilift sys-

tem. Systems with controllable suspension geometry
are not included in the present examples.

The single-helicopter systems 1, 2, and 3 of figure 1,

with a single attachment point on the helicopter, are

considered in appendix B. Results are obtained for sys-

tems 1 and 2 by using the above procedure. The

suspensions for systems 1 and 2 impose three con-

straints and one constraint, respectively, on the load
relative motion when inelastic. Appropriate partition-

ing coordinates were readily obtained by including the

load relative velocity (system 1) or cable-axis compo-

nents of the cable velocity (system 2) in the gener-
alized coordinates. Differences from the earlier for-

mulations of simulation equations include the use of

relative-acceleration coordinates for the elastic suspen-

sion ease, the nonlinear EOMs for the inelastic suspen-

sion with explicit calculation of cable tensions, and

the integration of both elastic and inelastic suspension
models into one equation set.

Partitioning coordinates for single-cable-and-sling
system 3 of figure 1 were not found. If the suspension

is inelastic, this system is identical to system 2 and can

be represented by the same equations. For tile elastic

suspension, the principal elastic elements are the sling

legs, in which case no cable connects two rigid bodies.

Here, the suspension geometry and cable tensions are

determined from the force balance at the sling vertex.

Coordinates are given in appendix B that simplify this
calculation relative to the method found in the earlier

literature. Kinematic relations needed to obtain the

EOMs from equation (9a) are given, but these depend

on suspension elasticity parameters, as well as on ordi-

nary kinematics. A compIete set of EOMs is omitted

because the coordinates given are not of the type that

is of interest in the present applications work. In this
ease the EOMs for an inelastic suspension are sim-

pler than those for an elastic suspension because of

the complexity in calculating interaction forces when
each elastic link is not connected to two rigid bodies.

The single-helicopter systems, 4-7 of figure 1, with

multiple attachment points on the helicopter, are con-

sidered in appendix C. These suspensions were de-

veloped in the 1965-1975 period to stabilize difficult

loads such as the standard cargo container (MIL-
VAN). They provide yaw restraint to stabilize elon-

gated loads in a minimum-drag heading, and pitch at-

titude is restricted. The addition of active cable-length
and attachment-point control to increase load-motion

damping was also considered.

Results are given in appendix C for the bifilar sus-

pension (system 7, fig. 1), which imposes two con-
straints on load relative-motion when inelastic. This

system also approximates the inverted-Y suspension
(system 6, fig. 1) when the bar is sufficiently close to

the load. For inelastic suspension, several sets of load-

suspension coordinates have been used in the earlier

literature. The load-suspension geometry is examined

in detail in appendix C, and several choices of coor-

dinates, some of which are ill-conditioned and some
well-conditioned, are identified. One set is selected

and expanded to a set of partitioning coordinates, and

a complete set of nonlinear EOMs for both elastic and

inelastic-suspension is given. Differences from the ear-
lier literature include the use of relative accelerations

for the elastic suspension case, and the formulation

of efficient equations for the inelastic suspension with

cable tensions explicitly calculated.
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Theremainingsuspensionsin thisgroupareanalyti-
callydifficulttorepresentasinelastic.In theinverted-
Y suspension(withor withoutthespreaderbar)no
cableconnectstworigidbodies,andtheforcebalance
at thesuspensioninterconnectionsmustbeconsidered
asinsystem3,discussedabove.Further,if thebaror
interconnectionsarecloseto the helicopter,thesus-
pensioncanberepresentedasan invertedV, andif
closeto theload,asbifilar. Forinelasticcables,there
canbeone,two,or threeconstraints,dependingon
thesedetailsof suspensiongeometry.Finally,it ap-
pearsthatrepresentationoftheinverted-Vsuspension
asinelasticisbothunrealisticandintractable.Sinmla-
tionequationsfortheelasticinverted-Vsuspensionare
givenin theliterature,alongwith approximateequa-
tionsin whichcablestretchingmotionis neglected.
Althoughtheexistinganalyticaldifficultiesin simu-
latingthemultipointsuspensionsofpracticalinterest
arenotrelievedby themethodspresentedin thisre-
port, recallthat theprincipalobjecthereis to treat
thedifficultmultilift systemsdiscussednext.

Simulationequationsfor the three-andfour-body
dual-lift systems(8-10, fig. 1) are givenin ap-
pendixD.Appropriatepartitioningcoordinatesforap-
plyingequation(16)werereadilyfoundbyusingcable-
axiscomponentsofthecablevelocitiesor theirequiv-
alents.Theresultsintegrateelasticandinelasticsus-
pensionmodels;sincec = m for these systems, the

suspension forces fc = Hs can be calculated by using

the identical matrix of configuration vectors H for the

two models. Further, all three systems can be simu-

lated by a single equation set. System 8 is a three-

body subsystem of system 10 obtained by deleting the

load and bridle cables, and can be represented by a

subset of the coordinates and equations for system 10,

and system 9 is a simple specialization of system 8

with coincident attachment points on the load. Gen-

eral nonlinear equations for these systems with inelas-
tic suspensions were not previously available owing to

the complexity of representing the dynamics by the

traditional methods found in the slung-load literature.
The methods of this report render these dynamics ac-

cessible and tractable, and provide a new formulation

of the EOMs for inelastic suspensions that is efficient

and that provides explicit calculation of the suspension
forces.

Simulation equations for the multilift system 11 of

figure I extended to any number of helicopters are

given in appendix E. Each helicopter is connected to

the load by a single cable, which, if inelastic, imposes

one constraint on the motion of a helicopter relative

to the load. Equations for this system are readily ob-

tained by extending the single-helicopter/single-cable

system formulation in appendix B. The generalized co-

ordinates include cable velocities for every cable, and
the results represent either elastic or inelastic cables.

The EOMs in the above applications work have been

systematically formulated in terms of the natural vec-

tors and matrices of rigid-body mechanics. This de-

parts from the earlier formulations which were given

in terms of the scalar components of all vectors. One

consequence is that repreated matrix and vector prod-
ucts are visible in the equation summaries, and their

repeated calculation can be eliminated in efficient cod-

ing. Another is that programming in a language that

admits operators for such products would result in

simpler, briefer code with associated savings in the

programming task. These have not been significant
issues for single-helicopter simulations, but they are

of greater consequence for the dual-lift and nmltilift

systems.

5. APPROXIMATE NONLINEAR MODELS

Approximations that reduce the number of DOFs

and thereby simplify the system are ahvays of interest

in control analysis and design. These include the as-

sumption of inelastic cables considered in the previous

sections. Approximations of the rigid bodies as point

masses or as rigid rods have also appeared in the litera-

ture (e.g., ref. 10), particularly for dual-lift systems. In
references 6 and 7, the dual-lift system with spreader

bar is approximated by using a point-mass load and

a rigid-rod spreader bar. In references 17 and 18 all

bodies, including the helicopters, are approximated as

point masses. Modification of the nonlinear EOMs to

include these degenerate-body approximations is con-
sidered in this section.

The nature of these approximations in representing

real systems is of interest. The rigid rod can approx-

imate elongated bodies with negligible inertia about

one axis. The point-mass assumption implies negligi-
ble inertia about all axes. This is never realistic in

slung loads, but it does approximate possible practical

situations in which the attitude dynamics of a rigid

body do not affect the remaining DOFs (reduced sys-

tem). First, if the suspension is attached at the e.g.

of a body and the applied forces are negligibly depen-
dent on attitude, then the reduced system motion is

independent of its attitude dynamics and is governed

by EOMs identical to those obtained assuming a point

18

11II



mass. Second, if a helicopter can be assumed to control

the slung-toad system solely through its applied force,

then its attitude dynamics are dependent DOFs as re-

quired to generate that force, and can be removed from

the system DOFs to leave a reduced system in which

the helicopter's applied force is the control. Simulation

and control analysis of the reduced system can then

proceed without the details of the helicopter model

being considered, and separately from implementation
of the applied-force controller in the helicopter. A cor-

responding separation of the EOMs is examined below

and it is shown to result in equations for the load-
suspension subsystem that are identical to those ob-

tained when point-mass helicopters are assumed. This

separation of the slung-load control and the related

point-mass approximations in references 17 and 18 are

of interest for control synthesis based on inversion of
the nonlinear model.

Degenerate Body Approximations

Point-mass bodies- If any bodies in the system
are approximated as point masses, then all formula-

tions of the EOIvls (eqs. (8), (9), (14), (16)-(20)) can

be applied by removing the attitude coordinates, an-
gular velocities, applied and suspension moments, and

inertias of the point-mass bodies from the configura-

tion vectors and matrices r, v, X, fa, fc, and D.

Rigid rods- A rigid rod has a singular inertia ma-

trix so that equations (9) and (16) for the uncon-
strained system, in which D -1 occurs, are invalid.

Repairs can be made by defining a reduced configu-

ration velocity that contains only as many coordinates

as there are DOFs of the unconstrained system and

retracing the derivations of section 3, beginning with
the Newton-Euler equations.

A rigid rod is a line segment in space with only two

attitude DOFs. Attach body axes _-b = {ib,jb, kb}

to the rod with it) along the rod and located in inertial

space by its heading and pitch angles:

Jb = diag{O, Jb', Jb'}

Tb,N = E2(0b) E3(¢b)

wbb -= = Wbb _-b (31)

cosG /

The overbar (-) is introduced to indicate objects from
the three-DOF rigid-body attitude dynamics, such as

Wbb, ab, which are reduced to represent rigid rods.

The direction angles are taken as heading and pitch
here, with the assumption that the rod is never ver-
tical. The columns of Wb are the axes of rotation

for pitch and heading. Also, -_ = VVb T cObb, since

_--_T _Vbb = I.

Next, consider a system of n bodies containing rigid

rods, where 7-4are the indices indicating the rigid rods,

and cOt, a---f are lists of their angular velocities and

rates; cOr = (a;jj, j e 74), _ = (_j, j e T_). To avoid
the difficulties in deriving the EOMs from equation (7)

that result from the singular D, define the reduced con-

figuration velocity _ to contain the Euler-angle rates
of the rigid rods. The relation v(_) is

(,1) (i:)(v:)v= =14z_ =

cO?-

where

(32)

Wr = diag{Wjj, j e 74}

Here, v has been partitioned into the angular velocities

of the rigid rods cOt and the remaining configuration

velocities vl, and g contains 6n - r coordinates cor-

responding to the DOFs of the unconstrained system.

Also, _ = _-;T V since IV T W = I.

Next, let u be the generalized velocity coordinates
for the system and denote the relations v(u), "O(u) as

v = A u and _ = A u

where, from equation (32), A, A are related by

A = W A and _ = }-_T A

Since v = I¥ Au, replacing A in equation (8) by IV A

gives the following convenient form for the EOMs:

?_ = [_T _ _]--1 "_r wT (fo + fc)

where

D = W T D W (33)

The D term is a nonsingular (6n-r) x (6n-r) reduced

mass-inertia matrix, where the rigid-rod inertias are
now 2 x 2 matrices:

:T

Jj = WTj Jj Wjj = Jj' diag{1, cos 20j}, jeT4
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Theconfiguration forces fo, fc are the usual objects
in 6n-dimensional space previously defined, with forces

and moments listed in the same order as the rigid-body

linear and angular velocities in v above (eq. (32)).

For the constrmned system with inelastic cables,

equation (13) expressing d'Alembert's principle still

applies (ATfc = -ATWTfc = 0), and then equa-

tion (33) can be rewritten in a form analogous to equa-
tion (14):

a = wT fo (34)

For tile system with elastic cables, A is a nonsingular

square matrix so that equation (34) can be expanded

in a form analogous to that of equation (93):

ft = --_-1 -_-1 wT (fo -1- fc) (35)

The coordinates u can be selected as in equation (16)

to contain 6n - r - c coordinates ul, representing the

configuration motion with inelastic suspension, and
e coordinates A, which define the motion induced by

cable stretching. Equation (35) then becomes

= _--I W T (fo "}- fc) (36)

Ll = .. S T /

For inelastic cables, tile condition )_ = 0 yields c scalar

equations in the constraint force. This force may be
expressed as

fc = W TIC ='-H8

where s is c independent parameters and H is a basis

of the 6n - r dimensional constraint force space for
fc. As in section 3, it can be shown that A and H

are b_es of the same space, and then the equations

obtained above yield the solution for s as

,S _- __['_T _--1 "_]-1 "-_T -_--1 WT fo (37)

where H = WTH, and where H is some known basis

in 6n-dimensional space, or A from the kinematics u(_)

in (6n-r)-dimensional space. Equations (36) and (37)
are analogous to equations (16) and (19), respectively.

Applications- Example applications are given in
appendixes D and E. In appendix D, the duaMift sys-

tem with spreader bar is approximated as three point
masses, representing the two helicopters and load, and

a rigid-rod spreader bar. This system has 14 and

10 DOFs for elastic and inelastic cables, respectively.

The result completes the work begun in reference 17

to obtain a degenerate-body appro:dmation for this

system. In appendix E, equations are given for the

multilift system with m helicopters and a pendant sus-

pension with all bodies approximated as point masses.

These extend the equations given in reference 18 for a

two-helicopter, two-dimensional point-mass system.

Center-of-Gravity Attachments

To examine coupling between the attitude DOFs of

body Bn in an n-body system with the remaining

DOFs, partition the configuration vectors and matri-

ces to separate its attitude coordinates, inertia, and
moments:

(::):("i
0 Jn

The Newton-Euler equations (9b) for the configuration

with elastic suspension are then similarly partitioned
as

i_l = D1-1 (fol + fcl)

= D1-l(f91 + fal - X1 + fcl)

dmn = Jn -1 (MAn,_ - S(wn,_)Jn wn,_ + MCn, 0

Coupling of the reduced system (rl,vl,i,1) with the

attitude dynamics (an, wn,,dm, 0 can occur in the

aerodynamics, fal, and the suspension forces, fcl.

Aerodynamic coupling is principally coupling of the

body's attitude and e.g. dynamics, plus secondary in-
terbody interferences. This coupling can be neglected
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if the aerodynamic force is negligible (e.g., load aero-

dynamics at hover and low speeds) or nearly indepen-

dent of attitude (e.g., load aerodynamics when these

are dominated by attitude-independent drag, or when

the attitude is assumed to be constant).

The bodies interact principally through fc. For an

elastic suspension, fc can be given by equations (10)

or (11) from the inertial cable directions and lengths,

and the attitude angles of all bodies, and these are

functions of the configuration position r. It can be
shown that

If

then

where

Rn*j=0, jeCn

MCn,_ = O, fcl = fcl(rl)

Cn = indices of the cables attached to Bn at

attachment points {Rn*j, j e Cn} on Bn

Thus, if the suspension is attached at the c.g. of

Bn, and the dependence of fal on its attitude is ne-

glected, then the subsystem (rl, vl, _)1) is independent

of (an, _on_,, &n,_). Further, generalized coordinates

for the reduced system can be selected according to
the procedure of section 4 to represent both elastic and

inelastic suspensions. The coordinates (rl, vl) are also

those of a configuration in which Bn is assumed to be

a point mass, and the Newton-Euler equations for this

reduced system are identical to those obtained when

Bn is assumed to be point mass.

If Bn is a helicopter, then its aerodynamic force is

attitude dependent. However, system control is sim-

plified by a c.g. attachment at the helicopter. The

helicopter controls '01 solely through its applied force,

FOnN, and attitude is selected to generate the required

control force. For e.g. attachment, the helicopter's at-

titude dynamics are those of a free rigid body and

are unaffected by the suspension or the motion of any

other body. The extension of this separation of the

control to more general single-point attachments is
considered next.

Simplified Helicopter Model

Helicopter aerodynamics are a significant source of

complexity in the simulation of multilift systems and of

their control analysis and design. It is desirable to sep-
arate the design of the helicopter control from that of

the shrug-load system control to allow a similar separa-

tion of the simulation and analysis work. The general

approach is to view the helicopters as force genera-

tors that control the slung-load system by means of

their controllable applied forces, and then to consider

the shrug-load control independently of the details of

controlling the helicopters' applied forces. The heli-

copters' applied forces are controlled through the heli-

copter attitude DOFs; that is, given the instantaneous

helicopter state and the desired force, the helicopter's
force and moment balance equations can be solved for

the corresponding helicopter attitude angles and con-

trol settings, and then the controls can be used to drive
to its desired value. If the attitude control bandwidth

is much faster than the bandwidth of the applied forces

required to control the slung-load motion, then it can
be assumed that the attitude is always approximately

at the required value; that is, the attitude control is
instantaneous and the attitude DOFs are in steady

state (& = 0) relative to the applied force variations

needed to control the remaining DOFs of the system.
The condition & = 0 characterizes the "controlled he-

licopter approximation" considered next.

Partitioned EOMs- Let 7-/be the indices identi-

fying the helicopter rigid bodies {B j, j e _} in an

n-body slung-load system. Denote the helicopters' an-

gle coordinates, inertias, moments, and forces as c_h,

wh, Jh, f c2, f o2, f oh, as defined in part a of ta-

ble 2. Assume that 6n generalized velocity coordinates
u have been selected for use with equations (16)-(20);

that these include the helicopter angular velocities a_,h;

and that the remaining coordinates ul suffice to define

the velocity of any point in the system outside the he-

licopters. A review of the generalized coordinates se-

lected for the examples in the appendixes shows that

these are "reference-point coordinates"; that is, they

contain the velocity of a reference point and additional
coordinates that define the motion of all points rela-

tive to the reference point. As such, a_h is present in u
for all examples, but the use of a helicopter c.g. as the

reference point in most examples violates the above

requirement for ul. This can be repaired by moving

the reference point to the load, as in appendix E, or to

a suspension attachment point on a helicopter. Next,

partition the kinematics, the mass-inertia matrix, and

the configuration forces u, v, v(u), u(v), D, fo, fc,

as shown in part b of table 2, to separate the EOMs

into equations for d_h and for the remaining (reduced

system) DOFs, _1:

i_l = JAIl1 AI12]D -1 (fo+ fc)

= AIll D1-1 (fol + fcl)t + AI12 (zh

dJh = Jh -_ (fo2 + fc2)

In general, gl is coupled with the helicopter attitude

dynamics (c_h, _h, &h) through the term AI12 CJh

and the possible dependence of fcl, fol, and AIll on

(c_h, _h).
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Table2. Equationsof motion for controlled helicopterapproximation

(a) Helicopter attitude variables,inertias, moments,and forces:

= indicesof helicoptersin ann-body system:

c_h=(aj, j_)

wh = (cojj, j e _)

Jh = diag{J_, j e 7-l)

fc2 = (MCjj, j e 7-l)

fo2 = (MOjj, j _ _)

foh = (FOjN, j e 7-l)

(b) Partitioned equations:

v= =Au=
02

0 Jh

fo2 '

(A[11 AZ12) (re)0 I coh '

fo= fg+ fa-X-D A u

(AIll = Ai-11; AI12 = -A_I 1 A12)

For inelastic suspension:

fc= {fcl"_ (A1)\fc2] = A2 s

8 = -iA1T D1 -a A1 +A2 T Jh -1 A2] -a (A1T D1-1 fol +A2 T Jh -_ fo2)

izl = Alll D1-1 (fol + fcl) + AI12 &h

(oh = Jh -1 (fo2 + fc2)
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Table2. Concluded

(c) Controlled helicopter approximation:

If: d_h= 0

Then:id = An 1 D1 -t (fol + fcl)

f o2 = - f c2

s = -[A1T D1-1 A1] -1 A1T D1-1 fol

If also: fcl = fcl(rl), An = An(rl), fol = fol(rl, ul, foh)

where: ÷1 = ÷1 (rl, ul) and fob are the helicopter applied forces

Then: (1) The reduced system EOMs are independent of the helicopter

attitude DOFs: _1 = _1 (rl, ul, foh)

And: (2) The steady-state controls and attitude of conventional helicopters

satisfy the following quasi-static trim equations:

For j e 7-/:

Given: FOjN, &j, Vj* N, Cj

Find: (Sj, Cj, Oj) such that

VAj*j = Tj,N (Yj* N - WON)

= wj, aj

TN,j FAjj (VAj*j, cojj, 8j) + mj gN = FOjN + rnj Aj u

MAjj(VAj_, cajj, 5j) = S(wjj) Jj wjj - MCjj

where

FOjN is an element from foh

Aj are rows of A which give V j* y = Aj u

MCjj is an element of fc2 = h2(r) s(rl)

WON is the mean wind velocity

IYjj defines angular velocity from Euler-angle rates of Bj

(appendix A, eq. (72))
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Controlled helicopter approximation- If the

condition &h -- 0 is imposed, then the coupling of
•hi with &h drops out, and the helicopter applied-

moments satisfy fo2 -- -fc2 -- -A2 s. Substitute this

expression for fo2 in the equation for the interaction

force parameters s to obtain the result shown in part c

of table 2: s -- -[A1T D1-1 A1] -1 A1T D1-1 fol.

These parameters are independent of the helicopter

moments and inertias, fo2, Jh. In general, A depends

only on position variables. If A1 depends only on
position variables rl, which can be determined from

ul, then fcl = A1 s is independent of the helicopter

attitudes, except for possible dependence of foi on

(ah, wh). This condition is met in all the applica-

tions examples presented in the appendixes for the

coordinates u selected there. In these examples, A1
depends on the cable directions and the attitude an-

gles of the bodies other than the helicopters, and ul

contains the cable velocities and the angular velocities
of these bodies.

To examine fol, pm'tition it into the helicopter ap-

plied forces and inertia reactions, f oh = FOjN, je TI,

and the forces and moments on the remaining bodies

of the system (load, spreader bar,...):

,o1=(
\ MOjj, j

\ MAjj - S(wjj) Jj aJjj j

The helicopter forces foh are considered to be the con-

trols of the reduced system. The remaining forces,

fol', contain the aerodynamics and the inertia reac-

tions of the remaining bodies. Coupling of these aero-

dynamics with (cth, _vh) can be neglected. In the iner-

tia reactions, Aj are the rows of A that define Vj*t¢ (u)
and that can introduce coupling with (ah, a;h). In

the examples in the appendixes this occurs as centrifu-

gal accelerations in the helicopter attachment-point

moment arms, but these terms are zero for straight-

line flight (aJh _. 0) and are expected to be negligible
otherwise.

Last, the submatrix AIll = [VvT ul] is independent
of ah in the examples in the appendixes for the coor-
dinates u selected there.

Reduced system EOMs- For the examples

in the appendixes, the reduced slung-load system

(rl, ul, gl) can be approximated as being inde-

pendent of the helicopter attitude variables by using

the controlled helicopter condition and neglecting sec-

ondary coupling in fol'. The helicopter applied forces

foh are the controls for the reduced system.

Examples are omitted since the reduced system

equations are identical to the equations obtained by
assuming point-mass helicopters. For point-mass heli-

copters, a3h, fc2, and fo2 are undefined, and for c.g.

attachments at the helicopters, AIx2 = 0 and fc2 = O,

so that the resulting equations for _il and s are identi-

cal, in both cases, to those of the reduced system given
above.

Quasi-static equations for helicopter attitude

and controls- If the reduced system is known, then

the helicopter attitude angles and controls are depen-

dent variables that can be determined by solving the

quasi-static trim equations given in part c of table 2.

The helicopters are assumed to be conventional, with

four controls, and FOjN, V j* N, &j are known for each

helicopter, Bj, jeT-l, along with a specified value of

the redundant attitude angle Cj. Then the four heli-

copter controls and remaining two attitude angles can
be determined from the kinematic equations and the

force-and-moment balance equations listed in part c

of table 2. The quasi-static trim equations are related

to the usual static trim algorithm found in conven-

tional helicopter simulations. The helicopter model

(FAjj, J_IAjj) has the usual independent variables as
noted in the table. For isolated helicopters in static

equilibrium, the angular velocity, linear acceleration,

and suspension forces and moments are zero. Here, the

equations account (1) for nonzero angular motion, &j,
which is presumed to be known from the attitude his-

tory; (2) for linear acceleration and suspension forces

in FOjN, which are known from the reduced system;

and (3) for the suspension moments, MCjj, in the

moment equation. The body axis components of the

suspension moments and rigid-body velocities depend
on attitude, and these relations are included in the

iterative solution procedure.

6. LINEARIZED EQUATIONS OF MOTION
FOR GENERAL SLUNG-LOAD SYSTEMS

WITH INELASTIC SUSPENSIONS

Linear analysis is the most commonly used technique

in stability studies and control system design, hence
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linearizedequationsofmotion(LEOMs)forslung-load
systemsareofinterest.Thesedefinetheperturbation
behaviorin theneighborhoodof asingleflightcondi-
tion, andthisbehaviorischaracterizedby theeigen-
vectorsandeigenvaluesofthelinearequations.

TheLEOMscanbeobtainedby numericalevalua-
tionof thegradientsfroma workingnonlinearsimu-
lationprogram(e.g.,ref. 15)or byanalyticalderiva-
tionfromnonlinearEOMs.Previousderivationsin the
slung-loadliteraturearespecificto thesuspensionand
flight conditionstreated,andto theapproximations
made.Earlystudiesof single-helicoptersystemscon-
sidersingleandmultipointsuspensionswith various
simplificationsoftheloadandits aerodynamics(refs.9
and10),orwithoutsuchsimplifications(ref.33).More
recentstudieshavefocusedontransportof theMIL-
VANandbluffbodieswhosestabilityasslungloads
is problematical(refs.11,15,and16). TheLEOMs
arederivedfrombothLagrange'sequationsandfrom
theNewton-Eulerequations,andinelasticcablesare
assumedin thisliterature.

Linearizedequationsof motionforthetwin-liftsys-
tem with spreaderbar arederivedfromLagrange's
equationsin references6 and7 for hoverconditions
andpoint-massloadwithoutloadaerodynamics.Ad-
ditionallinearcontrolstudiesreportedin references37
and38utirizetheseresults.

The presentwork providesformulationsof the
LEOMsforgeneralstung-loadsystemsat generalac-
celeratingor staticequilibriumreferenceflight con-
ditions. Thecablesareassumedinelastic,andcon-
ventionalaerodynamicsfor all bodiesare included.
Controllable suspension parameters are omitted for

brevity, but the derivation of the LEOMs can be ex-

panded routinely to include these. The LEOMs are

derived from Lagrange's equations (eqs. (23) and (24))
and from the Newton-Euler formulations of the nonlin-

ear EOMs (eqs. (14), (19) and (20)) previously given.

In appendix F, the general formulation from equa-

tion (14) is applied to the dual-lift system with a
spreader bar. Results are given for static equilibrium,

fg + fa = fg + T fba = +

TN,i

0
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and account for load and spreader-bar inertias and

aerodynamics, and for dissimilaa" helicopters.

The derivation in each case is carried out in three

steps. First, a general form of the nonlinear equations

showing the dependencies of its terms on the indepen-
dent variables of the problem is stated. These depen-

dencies represent typical working simulation models.
Second, the reference trajectory or flight conditions

are defined. Third, the perturbation equations are de-

rived and evaluated on the reference trajectory. Ill all

cases, a representative model of the applied forces and

their linearization and a definition of reference trajec-

tories are needed; these matters are settled first.

Applied External Forces

The applied external forces and moments on each

body Bi are due to gravity and aerodynamics:

FiN = mi gg + TN,i FAii (VAi* i, wi_, 5i)

Mii =MAii (VAi* i, wii, 5i) (38)

where

VAi*, = Ti, N (Vi* N - WON)

It is assumed that the aerodynamic and rotor forces

and moments of Bi are given in simulation models in

body axes as functions of the body axis coordinates

of the e.g., the velocity relative to the air mass VAi* i

(W0 is the mean wind velocity), the angular velocity,
o3ii, and controls, 6i. This general, conventional model

neglects position- and acceleration-dependent aerody-

namics (e.g., ground effects, other altitude-dependent
effects, interbody interference effects, unsteady aero-

dynamics), and gust disturbance effects, but is ade-

quate for most loads, systems, and flight conditions.
Most of the omitted effects can be superposed or

are only weakly position-dependent. Models for the

higher-order unsteady cargo carrier aerodynamics are
discussed in references 11, 15, and 16.

Equation 38 can be assembled for the complete con-

figuration as

: 0

: I

FA1. 1 I

F An,_

MAll

MAnn

(39a)



va = T r (v - w) =

Ti,N

0

0
VI* i

wll

tMn r

lil'WON (39b)

The notation T, fba, w, va is conveniently introduced

above, where fba, va contain the body axis compo-

nents of the aerodynamic forces and c.g. velocities.

The LEOMs require the gradients of the aerodynamic
and rotor forces:

Fb_ = V_ fba

Fb_ = _7_ fba (40a)

where 5 is a list of all controls (helicopter rotor con-
trols and control-surface deflections). The terms Fbva

and Fb_ are assembled from the stability and control

derivatives for each body:

FAii )
V T V T. V_) i=l,...,n (40b)

( VAi,, _,, \MAii

These derivatives are all assumed to be available from

a simulation model for any flight condition of inter-

est. Nonlinear and linear models for helicopter aerody-

namics are commonly available, but the aerodynamics
of loads are much tess systematically known or pre-

accelerating straight-line flight, and various kinds of

turns) connected by brief transitional maneuvers. For

multibody slung-load systems the relative motion of

the bodies is usually carefully controlled such that the

configuration moves as a single rigid body during each

steady segment, or very nearly so. The relative posi-

tions of the bodies differ from one segment to another,
so that the configuration must be rearranged during

the transitions between these segments. In the follow-

ing discussion, the term "fixed configuration" means

that the system behaves as a rigid body. That is, if

RI* is a reference point in the configuration, and Rj is

any other point in the configuration, then the inertial
velocity of Rj is

Vj=VI*+wxRI*j

where aJ is tile configuration angular velocity. If w --= 0
then the configuration is nonrotating as well, and every

point has identical velocity. This occurs in hover, in

static equilibrium, and, approximately, in accelerating

straight-line flight.

dictable. Static aerodynamic data for several military .........

vehicles and cargo carriers are reported in literature Linear analysis is usually limited to hover and static-

cited in reference 39. Stability derivatives are less well

known, but reference 33 contains data for a vehicle,

and references 11, 15, and 16 review the literature and

data for the MILVAN and cargo carriers.

Reference Trajectories

The linearization is taken about a reference configu-

ration trajectory {to(t), Vo(t), _)o(t), 5o(t), to < t < t/}

which satisfies the EOMs and additional engineering

conditions which specify redundant variables. Quanti-
ties evaluated on the reference trajectory are indicated

by the subscript ( )o.

For a single rigid-body aircraft, a complete reference

trajectory consists of a sequence of extended quasi-

static flight segments (hovering, static equilibrium, or

equilibrium flight conditions. Static equilibrium is de-

fined here as a fixed, nonrotating configuration that

follows an unaccelerated straight-line path:

_o(t) = 0

lilV o _. VO N (41)

_o(t) = _o(to) + _o (t - to)

6o(t) = 6o(to) = constant

where V0 is the fixed reference velocity. Hover is the

special case of equation (41) with no motion, VO = O.

The quantities {ro(to),5o(to)} are obtained fi'om a
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trim-solution algorithm. References 15 and 16 describe

trim algorithms for single helicopters with one- and

two-point suspensions. No complete algorithm has

been given yet for any dual-lift system, but a study
of equilibrium configurations along general reference

trajectories for the dual-lift system with spreader bar

obtained by solving a simplified trim problem is de-

scribed in reference 5. Results are given for configura-

tion geometry, cable forces, and thrust requirements.

The reference trajectory generalized coordinates

qo(t), uo(t), ito(t) are needed for the linearization, and
are obtained from the reference configuration motion

using the following geometry and kinematics:

r = r(q)

v = A(q) u + w (42)

,b= A u + A i_

Here, the kinematic model assumes that the coordi-

nates u are chosen to generate configuration velocities

relative to the mean wind, v - w, as is usual for lin-

ear analysis. If _) = O, then Au = -Ai_, and it does

not follow that u is fixed in static equilibrium with-

out further assumptions about the generalized coor-

dinates. If u is selected such that A(q) depends only
on variables that are fixed in static equilibrium, then

A(qo), Uo are fixed and .2io, ito are zero in static equi-

librium. Such variables can be the coordinates of any

line segment connecting points in the configuration,

such as the rigid-body attitude angles and cable an-
gles relative to inertial or body axes. The coordinates

selected for the nonlinear EOMs in all the applications

cases presented in appendixes B-E are reference point

coordinates of this type. That is, (q, u) contain the po-

sition and velocity of a reference point (RI*N, VI*N)

and additional coordinates (_, _), which suffice to de-
fine the positions and velocities of all points in the

system relative to the position and velocity of the ref-

erence point

q= , u= , v= u

where _ is constant and _ = 0 if the configuration

is fixed and nonrotating. For linear analysis, the

reference-point coordinates are usually given relative

to the mean wind in body axes:

q= , u= ,v = A(_) u + w

q

where, as above, _ is constant and g = 0 for fixed, non-

rotating configurations. Then, for static equilibrium,

go(t) = _(ro(t))

rio=0

and

• OA.)Ao: :0
o

ql eq

Linearized Equations from Lagrange's

Equation

(43)

The nonlinear EOMs are obtained from Lagrange's

equations in terms of the generalized position coor-
dinates q. Equations for general slung-load systems

are given by equations (23) and (24) and these are re-
peated in table 3. The terms M, k are obtained from

derivatives of the kinetic energy. In the generalized

forces, A defines v(q, il), and T, fba, va are defined in
equation (39). All dependencies on the independent

variables {q, q, q, 5} are indicated.

The reference trajectory {qo(t),Oo(t),_o(t),5o(t)}
satisfies the EOMs. The LEOMs are obtained by ex-

panding these to first order in variations about the

reference trajectory:

q = qo + 6q

4=00+54

q = qo+ 5_i

5= 6o+A

and then subtracting the EOMs evaluated on the ref-

erence trajectory to get

Mo 5_ + 5M _o+ [V_k]o 50 + [V_%]o5q = 5Q

The variations 5M, 5Q are further expanded by using

their general dependencies on the independent vari-

ables of the problem. Complete results are given in

the equation summary, table 3. Products and vari-

ations are interchanged where useful, for example,

5M(q) qo = 5(M(q)/i/o) = [VT(M(q) qo)]qo 6q.

The terms in the perturbation equations that are

due to the dynamics M(q) ?]and k(q, q) are Mo, Mo,

and kq, k 4. The term Mo is zero whenever /]o = 0;
the coordinates q are usually selected such that this
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Table3. Linearized EOMs for slung-load systems from Lagrange's equations

Nonlinear EOMs:

M(q) i_ + k(q, q) = Q(q, _t,5)

v = A(q) O + w, _tb=O

1 ,V r D vKE= -_

M = V_ V O KE = A T D A

k = IV T V o KE]dl - VqKE = A T DA 4 + (A - G) T D v

G = [Vqv (A(q) q)]

Q = A(q T) (fg + fa)

fa = T(q) fba(va, 5)

va = T(q) T (v- w)

LEOMs:

Reference trajectory: {qo(t), (to(t), qo(t), 5o(t)}

Perturbations: {Sq, 50, 5_, A}

Equations: ._fo 5_ + Co 5?t + Ko 5q = Q6 A

where

and

where F,,aN = To Fbva TT;

Co = k 4 - Qq

Ko = Mo + kq - Qq

Q6 = A T To Fb6

Qq = AT FvaN Ao

Qq = Qlq + Q2q

Qlq= [VT(A(q) T (fg + T(q) fbao))]qo

Q2q = A T To V T fba = A T Fray [VT(To T(q) T (vo - w) + A(q)Oo)]qo

Fb_, Fva, T, fba are defined in eqs. (39)and (40)

 -7o= qo)]qo

28



occursinstaticequilibrium.All termsinkq, k 4 contain
a velocity coordinate from qo and are zero whenever

qo -= 0; the coordinates q are usually selected such

that this occurs in hover, and then k(q, it) need not be
formed, and

5ij = ll,[yl(Qq 50 + Qq 5q + Q_A) (44)

The terms that are due to k also drop out or simplify in

static equilibrium for special choices of the generalized
coordinates as established in the next subsection.

The terms in the LEOMs that are due to the applied

forces are Q_, Qq, Qq. To obtain these expressions, the

extended chain of dependencies

Q(q, q, 5) = Q(A(q), f a(T(q), fba(5, va(v(q, 0))))

should be noted. It can be seen in table 3 that Q_ con-

tains the control derivatives and that Q0 contains the

stability derivatives. Furthermore, Qq has been sepa-

rated into Qlq, which contains the equilibrium forces,
and Q2q, which contains a combination of stability

derivatives with the reference velocity. The term Q2q
is zero in windless hover where qo, vo- w are zero. The

gradients of T, A in Qq expand principally to gradi-
exits of coordinate transformations in the applications

work; useful general formulas for this are given in ap-

pendix A (table 7).

Linearized Equations from d'Alembert's

Principle

The nonlinear equation (14) can be arranged in a

form that parallels the result from Lagrange's equa-
tions, and this form is given in the equation summary,

table 4. All dependencies on the independent variables

{q, u,/t, 5} are noted. These EOMs differ from the La-

grangian equations in the formulation of the second-

order velocity terms k(q,u) and in the use of gener-
alized velocity coordinates, u different from q. The

second-order velocity term X is formulated in equa-

tion (3) in terms of the system's angular velocities,
which are coordinates of v, whereas ]t is formulated

in the applications work (appendixes B-E) in terms of

{q, u} in all cases; these dependencies are assumed in
table 4. The notation ( = Au, introduced for conve-

nience, represents a configuration acceleration. Equa-
tion (14) is applied by formally defining the general-

ized velocity coordinates u, and position variables are

introduced as needed to define v(q,u) and T(q). In

general, fewer than d such variables may suffice for

this purpose, and these are assumed to be given by

a linear relation q = Y(q) u in table 4, where Y has
full rank. If q is expanded to a set of d coordinates

sufficient to define r(t), then Y is nonsingular.

A reference trajectory is an}, {qo(t), uo(t), i_o(t),

5o(t), to <_ t <_ ti} which satisfies the EOMs. The
LEOMs are obtained by expanding the EOMs to first

order in the independent variations, {Sq, 5u, 5iz, A},
and then subtracting the EOMs evaluated on the ref-

erence trajectory:

.hlo 5i_ + 5M i_o + 5A T (Xo + D_o)

+AT(SX + DS_) = 5Q

The variations 5M, SA, 5X, 5_,5Q can be expanded

further; the results are given in the equation summary,
table 4. In the coefficient matrices of the linearized

equations, Mo, Mo are from the term M(q) iz; k_, kq

are from k(q, u); and Q_. Qq, Q6 are from the general-
ized forces.

In static equilibrium, the rigid-body angular ve-

locities are zero, so that Xo, X,, X_, Xq are all zero
regardless of the choice of generalized coordinates.

Furthermore, the generalized coordinates used in all

application examples given in appendixes B-E are
reference-point coordinates. If inertial coordinates of

the reference-point velocity, VI* _., are used as in these

appendixes, then it is readily shown that the terms k_

and kq due to k, and Mo, are zero in static equilib-
rium. However, for linear analysis it is customary to

use body axis coordinates of the velocity relative to the

mean wind, VAI* 1- In this case, A has the partitioned
form

/TN,1

V ----- TN'I

0

0

A(_)
WOw

(45)

where _ is fixed and g = 0 is in static equilibrium, and

where A depends only on coordinates (_, o_1), which

are fixed in static equilibrium. Then

Mo = 0

_o = 0

(q = 0

lilTN,1 S(_TAO1) i-all 1
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Table 4. Linearizedslung-loadEOMs from equation (14)

Nonlinear EOMs:

i't.l(q) fl + k(q, u) = Q(q, u, 5)

(1 = Y(q) u

v = A(q) u + w, (v = O

M = A(q) T D A(q)

k = A(q) T (X(v) + D _(q,u))

= .it(q, u) u

Q = A(q) r (fg + fa)

fa = T(q) fba(va, 5)

va = T(q) T (v - w)

LEOMs:

Reference trajectory: {qo(t), Uo(t), ito(t), 5o(t)}

Perturbations: {Sq, 5u, 5it, A}

Equations: Mo 55 + Co 5u + Ko 5q = Q_ A

54 - Yo 5q = Yo 5u

where

Yo = [V_ Y(q) uo]qo

Co =k_-Q_

Ko = Mo + kq - Qq

Qz = AT To Fb6

and

_7o= [V_(M(q)_o)1_o

ku=A / [Xu+D_.]

kq = A T [Xq + D _q] + [VTA(q)T(Xo + D _o)]qo

where

x. = [v_X]_o

X_ = X_ Ao

3O
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Table 4. Concluded.

Xq = X,, [VTA(q)Uo]qo

¢_= Ao + [VrA(qo,_) Uo]

Cq= [V_ A(q,Uo)UO]qo

and

Q_, = A T F,,ay Ao

Qq = Qlq + Q2q

Qlq = [VT(d(q)T(fg + T(q) fbao))]q °

Q2q = A T Fvay [VT(To T(q) T (vo - w) + A(q) uo)]qo

where F, aN = To Fb,,a TT; Fb,s, Fva, T, fba are defined in eqs. (39) and (40)

Second-order ODE for 6q:

M_o 6_+ C" 64 + K" 6q = 05A

u = U(q) ct

M;=_oUo

C'o= Co Uo+ _o [< + V_ (O(qo,O)0o)]

If" = Ko + Co [vTU(q)(lo]qo + A/Io [VTq((-I(q,(lo)(lo + U(q) qo)]qo
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whereVA0 = V0- W0. Assumingthat wll is in-

cluded in the generalized coordinates u, then the only

nonzero column of _u is the gradient with respect to
wll:

_ 5u = _1 &oll = - ilTN,1 S(VAOx)5_ll

(46a)

For this case, the LEOMs for static equilibrium sim-

plify to

5iz = Mo_((Qu - AToD_,)au + Quaq + Q_A) (46b)

Here, _u is the only contribution fl'om the second-order

velocity terms k. It is given from _,1 above; it is zero in

hover, and otherwise adds terms in VA0 x awl to the

velocity coefficient matrix in the LEOMs. The equa-
tions for static equilibrium and hover differ in form

only by the terms _ and Q2q from Qq; these terms
are proportional to the reference airspeed.

The LEOMs can also be given as a second-order ordi-

nary differential equation (ODE) in the generalized po-

sition coordinates. This equation is obtained by form-

ing the variations au(aq, agl), 5iz(aq, agt, ai_) from the

kinematic relation u = U(q) q and substituting these

in the state equation. Here, q contains d coordinates,

which suffice to define r(t), and U is nonsingular. Re-

sults for general reference conditions and coordinates
are included in table 4. For static equilibrium and

reference-point coordinates such that

U 0)
where u, _ have the same meaning as above and are

zero in static equilibrium, the second-order ODE form

simplifies to

Mo Uo a_-(Q_-A T D _)Uo 5it-Qq aq = Q_ A (47)

In applications, U is usually block diagonal and
the modifications of the coefficient matrices in equa-

tion (46b) that are required to obtain the coefficient

matrices in equation (47) are simple.

Linearized Equations from Explicit Constraint
Method

The nonlinear equations (19) and (20) for the in-
elastic system are repeated in the equation summary,
table 5. This form assumes that 6n coordinates u

have been selected for the elastic system, which con-

tain 6n-c coordinates, u l, of the system with inelastic
suspension, and c coordinates, A, which suffice to de-

fine the motion resulting from cable stretching. The
matrices A,A -1 define the relations v(q,u), u(q,v),

respectively, and the matrices A1, All, A, which ap-

pear in the EOMs for the inelastic subsystem ul, are
submatrices of A, A -1. Equations (19) and (20) dif-

fer from equation (14) in the formulation of the co-

efficient matrix of fo, which is known analytically in

equations (19) and (20) up to the inverse of the c x e
matrix, S. The EOMs are linearized by expanding to

first order in the variations {aq, 5u, 55, A} and then

subtracting equations (19) and (20) evaluated on the

reference trajectory {qo(t), Uo(t), i2o(t), 5o(t) } :

5itl = aAI1T Alo 51o + AI1To D -_ [_fo + 5fc] (48a)

In the first term, D-l(foo + fco) has been replaced

with its equivalent, Alo/tlo. The variation of fo is as-

sembled from the variations of its terms, all of which

were previously treated in tables 3 and 4. The con-

straint force perturbation is obtained from variations
of

fc = E fo = A s

s=-S -1 ATD -1 fo

S= AT D -1 A

which yield

as = -So_[6S So + 5A T D -1 fOo + AoTD -1 afo]

where

aS so=aA T D-1 fco + A T D-15A so

and then

as = -So_[5A r Alo/*lo+Ao T D -1 5A soA r D -1 5fo]
(48b)

and also

5fc = 5A so + Ao as = Eo 5fo

+(I + Eo)aA So - Ao So 1 _A T Alo Z21o (48c)

In equation (48b), Alo/Llo replaces its equivalent as

above. The completed expansions of the constraint-

force perturbations as, 5fc are included in table 5. Fi-

nally, the results for a/tl in table 5 can be obtained by
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Table 5. Linearized slung-load EOMs from equations (19) and (20)

Nonlinear EOMs:

v = A(q) u + w = Al ul + L A + w, (v = O

= A-l(q) (v- w) = (v- w)
• A T

Fork=O:

(1 = Y(q) ul

itl = AIl(q) T 0 -1 (fo+ fc)

fc = 2(q) fo = A(q) s

= -A(q) S(q) -1 A(q) T D -1

s =-S(q) -1 A(q) D -1 fo

S = A(q) T D -_ A(q)

fo = f9 + T(q) fba(va, 5) - X(v) - D _(q, ul)

va = T(q)T(v -- w)

----Al(q, ul) ul

Linearized suspension forces (A = 0, _b = 0):

58 = Sq 5q + Su 5ul + S6 A

5Ic = Ao 5s + [V T A(q) SoJqo 5q

_ = -_ + _o[F_ - o _ - X.l

_ = -_o[F.ou Alo - D _. - X.]

s6 =-So To Fb6

and

-So = -So 1 A T D -1

_q = -So- 1[VqT A(q)T Alo _ilolqo
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LEOMs:

5i_1= Fq 6q + r_, _ul + Y6 A

60 = Yo 6q + Yo 6ul

where

Yo = [VaT Y(q) ulo]qo

Fq = rq + Go[Fq - D _q - Xq]

ru = ao[FvaN Alo - D _u -- Xu]

F_ = Go To Fb_

and

Go = AI1T D -1 [I + Eo]

Xu = Xv Alo

Xq = Xv IV T Al(q) ulo]qo

x_ = [v_ X]_o

_u = Alo + [V_, Al(qo, ul) ulolu,o

6 = [vat Al(q,_lo) Ulol_o

and

Table 5. Concluded.

Fq = VaT jAil(q) T - AI1 [ D -1 Ao So I A(q)Tlqo Alo ulo

Fq = Flq + F2q

rlq = [V T (T(q) fbao + A(q) So)]qo

F2q = FvaN [V T (To T(q)T(Vo -- W) + Al(q) ulo)]qo

where

,30 = --So I A T D -1 fOo

FvaN = To Fb.a Toy

Fb6, Fb_a, T, fba are defined in equations (39) and (40)
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combining equations (48a) and (48c) and expanding

the remaining variations. The gradients of the second-

order velocity dynamics X, _ and the stability and con-
trol derivatives FvaN,F6 occur in the coefficients of

5u, 5q, A as previously seen in table 4. The matrix

Fq is linear in the acceleration coordinates/tlo, and is

zero whenever/tlo = 0. The reference trajectory forces

occur in Flq, and differ from their occurrence in the
analogous Qlq of table 4 in that a term in the cable-

tension parameters s replaces a term in the external
forGes.

Finally, if the coordinates, q,u, are reference-

point coordinates with body axis coordinates of the

reference-point velocity (eq. (45)) then for static equi-

librium Xo, X_,, Xq, (q, I'q are zero, _u is given by
equation (46), and the LEOMs simplify to

5it1 = Go [(FvaN Alo -- D _,)5ul + Fq 5q + To Fbe A]

(49)

The matrices Go, Fq are defined in table 5.

Linearized Equations for Dual-Lift Systems

Linearized equations of motion for the dual-lift sys-
tem with spreader bar are derived in appendix F for

static equilibrium by using the formulation from equa-
tion (14). Reference-point coordinates are used with

body axis components of the reference-point velocity,

and equation (46) is applied. These results extend the

hover equations given in references 6 and 7 to general

static-equilibrium flight conditions, and include load

and spreader-bat" inertias and aerodynamics, and dis-
similar helicopters.

The coefficient matrices are expanded to a working
form in terms of the natural vectors and matrices of

three-dimensional rigid-body mechanics. The number

of such terms is much greater for the linearized.exqua-
tions for 5_/than for the nonlinear EOMs for/t, but the

derivation is feasible with the methods of this report.

MACSYMA was used to expand matrix products in

order to reduce error probabilities in the analytical

expressions.

7. CONCLUSIONS

Nonlinear simulation equations for general slung-

load systems have been derived. These account for

any suspension geometry, including controllable ge-

ometry and both elastic and inelastic suspensions, for

any number of helicopters, and for any choice of gen-
eralized velocity coordinates. Two formulations are

given that generalize the previous case-specific con-

ventional fornmlations for elastic and inelastic suspen-

sions that are given in the slung-load literature. These

formulations differ significantly in form and computa-

tional requirements. A third, new fornmlation is given

by selecting the generalized coordinates of the uncon-

strained system to represent the constraints of the

inelastic suspension. The internal suspension forces

are calculated explicitly for both elastic and inelastic

suspensions. The new. formulation improves computa-
tional efficiency significantly for inelastic suspensions,

enables integration of elastic and inelastic suspension

models in a single equation set, by using a single set of

generalized coordinates, and is readily applied to the

complex dual-lift and multilift systems.

An inelastic suspension imposes constraints on the

system motion, but their number is small compared
with the number of DOFs. This fact, along with the

cable interbody connections, distinguishes the slung-
load systems from typical applications considered in

the literature on multibody systems, and accounts for

the efficiency of the new formulation for inelastic sus-

pensions compared with the conventional ones in the

slung-load and multibody literatures, the latter being
efficient for highly constrained systems.

In past work, simulations have usually utilized elas-

tic suspension models and rigid-body velocity coordi-

nates, whereas control analyses have been based on
the inelastic suspension model. These methods are se-

lected because of the analytical simplicity and compu-

tational efficiency of the former, and the elimination of

DOFs characterized by small motions in the latter. For

simulation, the present results allow the use of any gen-

eralized velocity coordinates with the elastic suspen-

sion model, and the use of inelastic suspension mod-
ets with reduced computational penalties. For control,
the fornmlation of efficient nonlinear EOMs for inelas-

tic suspensions makes it possible to apply the recent
global inverse-model methods to slung-load systems,
and facilitates the derivation of linearized EOMs for

single-flight-condition designs.

Application of the general equations to the deriva-

tion of simulation equations for specific systems is

demonstrated for a series of single-, dual-, and

multiple-helicopter systems. Results are given in pro-

grammable form, with the dynamics formulated in
terms of the natural vectors and matrices of three-

dimensional rigid-body mechanics. This formulation
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allowsthedevicesof efficientcodingto beappliedto
tile vector-mechanicalstructureoftheequations.

The single-helicoptersystemswith singleattach-
mentpointsat thehelicopterarereadilytreated,and
the resultsprovidealternativeformulationsof the
EOMsto thosealreadygivenin the literature. Re-
sultsfor single-helicoptersystemswith multipleat-
tachmentpointsat the helicopteraremoredifficult
to deriveandweregivensolelyfor thebifilarsuspen-
sion,whichhasalsobeentreatedin the literature.
Nonlinearequationsfor the inelasticinverted-Vand
inverted-Ysuspensionsarenot foundin theopenlit-
erature.Themethodsofthisreportdonotaddressthe
analyticaldifficultiesofthesecases,whichareomitted
fromthepresentwork.

Theprincipalnewresultsarethosefordual-liftand
nmltilift systems.Equationsfor threedual-liftconfig-
urationsaregivenandit isshownthat thesecanbe
integratedin a singlesinmlation.Themultilift sys-
tem extendedto anynumberof helicopterswasal-
sotreated.Thesepreviouslydifficultproblemsareseen
to betractableforderivation,analysis,andprogram-
ruingbyhandwith themethodsofthisreport.

Equationsfor degenerate-bodyapproximations
(pointmasses,rigid rods)aregivento accommodate
varioussimplificationsusefulin controlanalysis,and
resultsfordual-liftandmultiliftsystemsaregiven.A
reduced-orderload-suspensionsystemis obtainedby
assumingthatthehelicopterscontrolthesystemsolely
throughtheir appliedforceswith thehelicopteratti-
tudesin steadystaterelativeto thereducedsystem
motion.Thereducedsystemequationsarethoseob-
tainedassumingpoint-masshelicopters.Thereduced
systemcanbestudiedanda controllawformulated
for theappliedforcesindependentlyof anyhelicopter
detailsandoftheproblemofimplenlentingtheapplied
forcecontrollerin thehelicopters.Thissimplification
is expectedto be realisticfor helicopterswithsingle-
pointattachments,includingthedual-liftandmultilift
systems.

Linearizedequationsof motionfor generalslung-
loadsystemswith inelasticsuspensionsarederived
fromthenonlinearequationsof motion,andresults
forthedual-liftsystemwithspreaderbararegivenfor
generalstatic-equilibriumflightconditions.
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APPENDIX A

SUMMARY OF USEFUL KINEMATIC RELATIONS

INTRODUCTION

This appendix collects the general kinematic formu-

las used in applying the methods of this report to de-

rive the simulation equations given in appendixes B-E

and the linearized equations for dual-lift systems.

These formulas are mostly counterparts of relations

from the classic physical vector theory of rigid-body

dynamics given here in a form appropriate for digital

computations by introducing coordinate-frame trans-

formations. They facilitate derivation of the simula-
tion equations in the preferred form of this work, in

which all terms appear as operations on the underly-

ing physical vectors.

The notation for this work is stated in the list of

symbols. Occasionally, the general notational rules

for vector kinematics advocated by Kane (ref. 40), are

used; these are as follows:

1va Velocity of point Ra rclativc to reference
frame $-5

2,_1 Angular velocity of reference frame $'1 or
of rigid body B1 relative to frame _'2

'dV
dr-

Time-derivative of physical vector V rela-

tive to rcfcrcnce frame, .T'5

To work with the scalar equations used in digital com-

putations a subscript can be added to indicate the ref-
erence frame in which the coordinates of the vector are

given:

Velocity of point Ra relative to frame $'5

given by its coordinates in frame )v2

2w_ Angular velocity of frame fl relative to

frame $'2 given by its coordinates in frame
Y=3

Time-derivatives of these objects are necessarily with

respect to the reference frame in which they arc given:

g3_t °r(_-tV) ; time-derivative °f physical
5

vector V relative to _'5 and given by the

coordinates in $'5

The notational specializations stated in the list of sym-

bols are continued in this appendix (e.g., Va, wb are
reserved for the inertial velocity of Ra, _'b, respec-

tively), but there is no conflict with the notation shown
above, in which superscripts are used. Definitions and

specializations reflect aeronautical usage and are gen-

erally consistent with those in reference 41.

Skew-Symmetric Matrix

First, the general skew-symmetric matrix Six, y, z)

is defined from the scalar triplet (x, y, z) as shown in
table 6. This allows scalar representation of the vector

cross products, which occur frequently in this work, as

shown in equation (51) for vectors V1, V2 referenced
to frame .Ta. The algebra of skew-symmetric matrices

is consistent with corresponding relations in vector al-

gebra such as product reversals (eq. (51)) and triple

products. Geometrically, S(VI_) maps any vector V

given in $'_ to the vector V1 × V referenced to $-_
and perpendicular to the plane of (V1,V). The refer-

ence frames of vectors occurring in expressions based

on equation (51) can be selectcd in any convenient

and consistent way using transformations (eq. (52)).
When viewed as an isolated matrix, the columns of

S(Va) physically represent cross products of V with

the axes of _'a and referred to 5ca (eq. (53)). Identities
in the matrix S(V_,) represent vector operations on an

arbitrary vector, such as product reversal and the cross

product with a sum of vectors (eqs. (54) and (55)).

Cross products representing Coriolis velocities and

accelerations and centrifugal accelerations (eqs. (56)-

(58)) are the basis from three-dimensional kinematics
of virtually all terms in Au, A-iv, _tu, in the appli-

cations of this report. Cross products also represent

the applied moments due to cables in the term fc. In

general, the force F applied to body B at point Ra

imposes a moment on B about the point Rc, which is

given by M (c) = Rca x F. In the present work, this
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canbespecializedtocablesin tensionandto moments
abouttherigidbody:c.g.'s(eq.(59)andaccompanying
sketch).If cableCj applies tension TCj in the direc-

tion kcj at point Rj on body Bi, then its moment

about the e.g. of Bi is given by

Mij=Ri*j xkcj TCj=_ijTCj

where the symbol _ij is reserved for the moment of Cj

on Bi per unit tension.

Coordinate Transformations, Angular Veloci-

ties, and Transformation Rates

Formulas defining the transformation of a vector

from its coordinates in inertial space, JrN, to its co-

ordinates in body axes, 5rb, are given in table 7 along

with relations governing its occurrence in kinematic

equations with time-derivatives and its gradient.

The primitive transformations for rotations about

a single axis i,j,k of a right-handed orthogonal ref-

erence frame, f are denoted El (a), E2(a), E3(cr), re-
spectively (eqs. (60)-(62)). Then the usual Euler-angle

transformations of aeronautics is given by the yaw,

pitch, and roll sequence of rotations Tb,N as illustrated

and defined in table 7 (eq. (63)). It is often useful to

note that the rows of Tb, N are the ._g-components

of the ,axis vectors of .T'b and its columns are the 5cb-

components of the axis vectors of _-g (eq. (64)). The

notation (¢, 0, ¢) is reserved in this work for inertial

angles, and a subscript is a_tached to indicate the body
axes. Euler-angle transformations from other axes 5v_
are sometimes needed and an ad hoc notation is de-

fined in text (e.g., ACb, AOb, A'_bb).

In general, if frame ¢'b is obtained from ._'N by

any arbitrary sequence of independent rotation angles

j31,/32 .... , fin about the axes ul, u2,..., un, respec-

tively, then its inertial angular velocity is given by the

superposition

Nwb =/)1 ul +...,+_b un (78)

Equation (66) specializes this rule to the Euler-angle

sequence defined above, and the familiar linear relation

from aeronautics for wbb(&b) and its inverse arc noted
in the table, along with expressions for Eulcr-angle

rates in terms of dot products with wb. The notation
Wb is introduced to indicate the row list of the axes

of roll, pitch, and yaw rotations for body axes Fb, and

a subscript indicates the coordinate frame in which

these are given.

Transformation rates arise in the inertial coupling
term A or A u in the equations of motion, and useful

expressions are noted in equations (69) and (70). In

general, if T..b is a transformation from 5rb to Jr, then

T.,b = To,b (79)

This relation follows as a counterpart of the Coriolis

equation relating the time-derivative of a vector, V,

relative to two different frames, 9r., _'b; that is, using

Kane's notation,

adV bdV
= -- + aw b x V

dt dt

but the time-derivative of

Yo= To,bYb

is

yo '2b+ To,bYb

whence _b_,b lib is identified as the scalar counterpart of

_w b x V for arbitrary Vb; this establishes equation (79).
In M1 cases, A u is composed of terms that are Cori-

olis and centrifugal accelerations that arise from the

Coriolis equation and utilize equation (79).

Derivatives of transformations with respect to Euler

angles occur in the linea2ized EOMs, especially in the

position-perturbation term. These derivatives can be

obtained from equation (79) by identifying the terms

in the expansion

OTbjv Cb + OTb,N OTb NT 'N= +

with corresponding terms in the expansion of

Tb, N S(wbN), using a;b = q_b ib + _)bjb' + ¢_ kN and

the distributive property (eq. (55)). The results are

listed in table 7 (eqs. (71)-(73)) and here as

OTb,N = --Tb,N S(ibN) = -S(ibb) Tb,N
O¢b

OTb,N = --Tb,N S(jb'N) = --S(jb'b) Tb N (80)
OOb

orb,N = --TbN S(kNN) = -S(kNb) N
O_bb '

These derivatives are cross products with the axes of

roll, pitch, and yaw rotations, which are illustrated in

table 7. They are also maps from JOg to _-b, and the

rotation axes can be given in any convenient reference

fi'ame by using transformations as requil;cd for consis-

tency with the input and output reference frames.
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Derivatives of transformations arise commonly in the

linearized EOMs from gradients of vectors,

Vb = Tb,N "ON, "ON = TN,b Vb

relative to Euler angles, where the vectors on the right-

hand side are independent of (¢b, 0b, _bb). It follows

from equation (80) that

(:_Tb,N VN
-- (ib × V)b = (V X ib)b

0¢b

OTb,g VN
-- (jb' x V)b = (V X jbt)b (81)

OOb

OTb,N VN
= -(kN x V)b = (V X kN)b

0_b

The vector-mechanical meaning and output reference

frame is apparent in equation (81). Rcfcrcncc frames
for the vectors and the order of the cross product can

be selected in any convenient way consistent with these
characteristics. By using equation (81), the gradient

with respect to the Euler-angle triplet is

T T ---- ,Vab( b,N VN) Tb N S(VN) [ibN,jb_,kNN]

----Tb, N S("ON) _VbN (82)

and also

T
Vab(TN,b "Ob) = --TN,b S(Vb) Wbb = --S('oN) YtTbN

Again, the notation WbN, Wbb indicates the matrix of

Eulcr-angle rotation axes given by inertial or body-axis
components, respectively. These results arc included

in table 7 and are valid for any arbitrary vector, v.

Cables Axes

The general treatment of cable angles and cable axes

in this report is summarized in table 8. The cable di-
rection kc is located by incrtial roll and pitch angles

(¢c, 0c) taken in the usual Euler sequence, as illus-
trated in the table and in equation (83).

Cable axes Yc = {ic,jc, kc} are constructed from

these two angles with kc along the cable and |c in the

inertial vertical plane of (iN, kN). The transforma-

tion T_,N (eqs. (84) and (85)) is a specialization of the
usual Euler-angle transformation with ¢¢ = 0, and its
rows and columns are the axes of Yc expressed by its

coordinates in .TN and, conversely, as before.

Useful formulas are given for the inertial angular ve-

locity of Yc in terms of cable-angle rates (eqs. (86)-

(88)), and for the cable velocity expressed in terms of

cable length and angle rates (eqs. (89)-(92)). The Y_
coordinates of the cable velocity (eq. (92)) separate

the cable-stretching motion (go) from the orthogonal

motion caused by cable rotation; this fact is frequently

used in selecting the generalized coordinates u in the

applications.

Cable angles relative to some noninertial axes Yl

(e.g., helicopter body axes or level-heading axes) may
be more useful coordinates in some problems. For

these cases, Euler pitch and roll angles relative to

.T1 are used with special notation (e.g., ACe, A0c)

to distinguish them from inertial angles. The previ-
ous coordinate transformations and illustration apply

by analogy with a change of notation (eq. (93)). The

longitudinal cable axis ic is now in the Yl vertical

plane of (il,kl). The velocities of Rc, Yc relative

to Yl (eqs. (95) and (96)) are given by analogy to

equations (88) and (92). The relative cable velocity
in cable axes 1V_ separates the cable-stretching mo-
tion and motion due to cable rotations relative to 5rl

into orthogonal components. The inertial transforma-

tion and velocities (eqs. (97)-(99)) are obtained from

elementary rules. Cable-stretching motion is again iso-
lated in Vc and its rotational motion is represented as

a superposition of orthogonal rotation relative to _'1

plus the effect of Yl's inertial angular velocity.

Gradients of the cable-axis transformations Tc,N oc-

cur in the linearized EOMs. The required general for-

nmlas are specializations of the previous results ob-

tained by dropping the yaw derivative and the axis of

yaw rotation kN from table 7 (eqs. (71)-(75)).
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Table6. Skew-symmetricmatricesand crossproducts

S(z, y, z) = o

--y X

(Vl x V2)a = S(Vla) V2a = -(V2 x Vl)a = -S(V2a) Via

(Vl × Vm)a = S(V1.) T.,b V2b = T.,b S(Vlb) Y2b

S(Va) = [(V x ia)a, (V × ja)a, (V x ka)a]

s_(v_)= -s(vo)

S(Vla + V2a) = S(VIa) + S(V2a)

(5o)

(51)

(52)

(53)

(54)

(55)

Coriolis and centrifugal terms:

(w × R)a = S(";a) Ra = -S(Ra) Wa

(w× v). = s(w_)v_ = -s(v_)_,_

(56)

(57)

(ss)

Moment of cable Cj on body Bi about Ri* :

Fi = {ii, ji, ki} = body axes for Bi

A'Iij_ = (Ri*j × TCj kcj)_ = S(Ri*j,) kcj, TCj = _ij, TCj (59)

cj

._" kcj

Bi

Cable moment.

4O
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Table 7. Coordinate transformations, angular velocities, and transformation rates

Single-axis transformations:

El(a) ----

E2(_) =

(i0 0/cos a sin a

-sin_r cosa/

coscr0 01 -sln(71

sincr 0 cosa /

cos_r sina 0/
E3(c_)= -sina cosa 0

0 0 1

(60)

(61)

(62)

Euler-angle transformation, Tb,N:

Jr N = {iN, jN, kN} = inertial axes

9rb = {ib,jb, kb} = body axes

ab = (¢b, 05, Cb) T = Euler-angle triplet

(
kN

• iN

ib'

jb" jN

ib

ib" _b6b

kb" kN

(
ib

• jb"

Ib

kb
kb"

(a) _/b = heading rotation
(about kN)

(b)0b = pitch rotation
(about ]b')

Euler angles.

(c) _b = roll rotation
(about ib)
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Table 7. Continued.

Tb,N(ab) = El(¢b) E2(eb) E3(¢b)

cos Cbcos Ob= sin Cb cos Cb sin 0b -- COSCb sin Cb

\ cos Cb COSCb sin Ob + sin Cb sin Cb

 vg
Tb,N = jb T = ( iNb, jNb,

kb T

TN,b=T[,N

sin Cb cos Ob

sin Cb sin Cb sin Ob + COSCb COSCb

COSCb sin Cb sin Ob -- sin Cb COSCb

kNb)

- sin Ob

sin Cb COSOb

cos Cbcos 0b
) (63)

(64)

(65)

Angular velocity of F_ relative to YN:

Nwb = _b kN + _}bjb' + Cb ib

_bb = Wbb &b =
1 0
0 cos Cb

0 - sin Cb

--si'Ob",('b),sin Cb cos Ob I Ob

cos Cbcos Ob/ Cb

=(ibb, jb' b, kNb)

(!sin.btn0bo,btdb = I'Vbb 1 a,'bb = cosCb --sinCb wbb =

sin (_b/COS 0 b COS Cb/COS 0 b f

ib' • _b/cos Ob "_

jb' • wb ]

kb' • wb/cos 0 b f

where {ib',jb', kb'} are unit vectors related to Fb, .TN as illustrated above.

(66)

(67)

(68)

Transformation rates:

_'a,b Ta,b a b= s(_) = s(_) T_,b

_-ffN,b = TN,5 S(wbb) = S(wbN) TN,b

_J"b,N :-S(wbb) Tb,N =--Tb,N S(wbN)

(69)

(70)
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Table7. Concluded.

Transformationgradients:

igTb, ,_r ( OTN b, T= _) = -Tb,_ S(ibN) = -S(ib_) Tb,N

OTb,2v (OTN,b ,IT
-gY7 -- ,-D'_b , -= --Tb,N S(jb'N) = -S(jb'b) Tb,N

( rgTb, N ) To¢_ = ,-_T-_ = --Tb,N S(kNx) = -S(kNb) T_,N

V_TbTb,N(ab) VN = Tb,N S(VN) Wbw = S(vb) IYbb

VTb TN, b(ab) Vb= --TN, b S(Vb) _Vbb = --S(YN) IYbN

(71)

(72)

(73)

(74)

(75)

Wb = [ib,jb',kN] = roll pitch, yaw axes of rotation

WbN = (cosebcos bi)cos Ob sin _Pb cos _Pb

-- sin 8b 0

}Vbb=

i 0 - sinSb
cos ¢_ sin ¢_ cos Ob

- sin Cb cos Cb cos Ob

(76)

(77)
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Table8. Inertial cableanglesand cableaxes

Cabledirection:

•_"N ---- {iN, jN, kN} = inertial axes

(0c, ¢c) = cable pitch and roll angles

kc = cos ¢¢ sin 0c iN - sin ¢c jN + cos ¢c cos 0_ kN (83)

ic

jN
Oc

kc' kN

(

/
[C

ic

kc
kc'

(a) Pitch rotation (about jN)

Cable angles.

(b) Roll rotation (about ic)

Cable axes, .To:

7c = {ic, j¢, kc}

Zc,N : El(Oc) E2(Oc) :

Tc,N = [ jcT I = ( iNc

cos O_ 0

sin ff_ sin 0¢ cos _¢
cos ¢c sin 0c - sin ¢c

jN_ kNc )

- sin 0_

sin ¢¢ cos O_

cos¢_cosO_
) (84)

(85)
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Table 8. Concluded.

Inertial angular velocity of 5_c:

wc = 0c jN + (_c ic

o_c --- ¢c ic + 0c (cos ¢c jc - sin ¢ckc)

we = _c (cos Oc iN - sin 0_ kN) + 0c jN

Inertial velocity of cable line segment, Rc:

Rc = ec kc

Vc = _c kc +_c kc

l::c = wc x kc = 0c cos ¢_ ic - $c jc

Vc=e_Oc cos¢cic-$ce_jc+_ckc

Cable angles relative to non-inertial axes, _1:

_-1 = {il,jl, kl}

(A0_, A_bc) = cable pitch and roll angle relative to F1

Tc,1 = EI(A¢c) E2(AOc) = (

cos A_¢ 0

sin A0c sin A¢_ cos ACe

sin A0c cos ACe - sin A¢c

ic -- cos AO_ il - sin AO¢ kl

- sin A0c

cos AO_ sin A_b_ J

cosA0_ cos ACe /

1we = 50c jl + A$c ic = ACe ic + A0c (cosA&c jc -- sinA¢c kc)

= A0c jl + A$_(cos A0c il - sin A0c kl)

1vC =£c kc+ec l_c × kc = (gc A0_ cosA¢c ic-g_ A$_je+_ kc)

Te,N = Tc,1 T1,N

we = l_oc + wl

Vc=lVC+ecwl ×kc

(86)

(87)

(88)

(89)

(90)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)
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APPENDIX B

SIMULATION EQUATIONS FOR SINGLE-POINT SUSPENSIONS

INTRODUCTION

Figure 4 shows three suspensions of interest with a

single attachment point on the helicopter. If the cables

arc modeled as inelastic, then the multicable suspen-

sion with three or more cables (fig. 4(a)) imposes three
constraints on the load motion whereas the other two

suspensions impose only one. If cable elasticity is mod-

eled, then the suspension in figure 4(b) is considered
to have only one elastic cable; the sling legs that con-

nect tile load to the ring are assumed to be sufficiently

short and stiff that their elastic stretching is negligible.

Figure 4(c) represents suspensions with long sling legs

whose etastie stretching must be considered.

Previous simulations of such systems are described

in references 13, 14, and 16. Reference 14 documents

a Langley Research Center simulation of the CH-54

helicopter with a MILVAN cargo container suspended

from a single elastic cable as in figure 4(b). Refer-

ence 13 uses a general formulation for elastic suspen-

sions with multiple attachment points in which every

cable connects the two bodies; this is readily special-

ized to systems a and b in figure 4, and an approximate
adaptation to system c, in which no cable connects two

bodies, is given. Reference 15 considers a system like

a with elastic suspension and one like system b with

elastic or inelastic suspension. These formulations all

begin with the rigid-body accelerations, either inertial

or relative to body axes, and relative load velocity is
calculated in some cases.

This appendix contains simulation equations for sys-
tems a and b obtained by the methods presented in this

report. Generalized velocity coordinates are selected
specific to each ease in order to separate the system

motion caused by cable stretching from motion with

invariant cable lengths. These are rigid-body veloci-

ties and cable velocity or relative motion coordinates in

an appropriate coordinate frame. The results account
for both elastic and inelastic suspensions. Interaction

forces are explicitly calculated in both cases. Appro-

priate partitioning coordinates for system c werc not

PRECEDING PPlGE BLANK NOT FILMED

obtained, but coordinates that simplify the determi-

nation of the suspension forces for elastic cables are
indicated without elaboration to EOMs.

Nomenclature and enumeration of the attachment

points, cables, rigid bodies, and system parameters
used in this appendix are defned in figure 4. The

cable-length parameters {f.oj} refer to the fixed ca-
ble lengths in the case of inelastic cables and to the

unloaded cable lengths in the case of elastic cables.

Controllable parameters are not considered (15= 0).
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Multicable Suspension

System and constraints- Referring to figure (4a),
m cables, C1,C2,... ,Cm attach the load, B2 to the

point Ra on the helicopter, B1. Usually, three or four

cables are used. In any case, it is assumed that the

cable geometry is such that if the cables are inelastic
then the suspension fixes the distances from Ra to

three noncolinear points on B2. This suffices to impose

three holonomic constraints on the configuration

c = 3, d = 9 (100)

by fixing the line segment between the load e.g. and

the helicopter attachment point in load-body axes;
that is, for inelastic cables,

/_a2* 2 = 0

where

Ra2*2(r) = T2,N (R2*N -- RI*N -- Tn,1 Rl*al)

For some arrangements of three cables, collapse of a

cable is possible, thus leaving the load free to rotate

about a line joining the remaining two attachment
points, in which event the number of constraints is

reduced to two. However, this is prevented by adding

a cable (m = 4), and then c = 3 even if one cable

collapses. With four or more inelastic cables the con-

straints are imposed redundantly, and the individual
cable forces cannot be calculated; however, their resul-

tant can always be calculated, and this calculation is

independent of the number of cables used to maintain
c=3.



-- BI_ --

8z
B2 a_

a C1

j_

Parameters:

ml, J1, Rl*a 1

m2, J2, R2"12, ..., R2*m 2

,_oj, j=l, ..., m for m > 2

ml, J1, Rl*a 1

m2, J2, R2"12

fo

ml, J1, Rl*a 1

m2, J2, R2"22, ..., R2*m 2

_oj, j=l, ..., m for rn > 2

(a) Multi-cable

suspension
(b) Single-cable

suspension
(c) Single-cable sling

suspension

Figure 4. Single point suspensions.

Generalized velocity coordinates and config-
uration kinematics- The first task is to find gener-
alized velocity coordinates for the elastic system

(lol)

such that, if the cables are inelastic, then A = 0 and
ul are the generalized coordinates. In the present
case, (VI*N, wll, _o2_) comprise nine generalized ve-
locity coordinates which suffice to define the configu-
ration velocity of the inelastic cable system and can
be taken as ul. The remaining element of the con-
figuration velocity, V2*N, is given from the inertial
derivative of

R2* N = RI* N + TN,1 Rl*al + TN,2 Ra2*2 (102)

as

VI*N -- Tjv,1 S(RI*az) wll

--TN,2 S( Ra2*2) _o22

(inelastic cables)

V2*_ =

VI*N --TN, x S(RI*al) _zll
+TN,2IRa2*2-- S(Ra2h)  221

(elastic cables)
(103)

Thus, the configuration velocity caused by cable
stretch can be given by augmenting the coordinates
ul for the inelastic cable system given above with the
velocity of tta2* relative to toad-body axes, _2:
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U

V1* A

wll

w22

/_a2*

(104)

The inverse relation for/_a2_(v) is obtained from equa-

tion (103) as

/_a2"2 = T2,N (--VI*N + V2*N + TN,1 S(RI* al) wll)

+S(Ra2*2) w22 (105)

The complete kinematic relations v(u), u(v) are as-

sembled in the equation summary, table 9, using equa-

tions (103) and (105). The submatrices AI1, A of A -1
required below are identified in the table. Only coor-

dinate transformations and skew-symmetric matrices

representing Coriolis terms occur in A, A -I. Other-

wise, these matrices each contain nine rows from the
unit matrix corresponding to the nine coordinates of

u, which are also configuration velocity coordinates.

External forces and inertia coupling terms-

The external forces and inertia coupling terms fo

are assembled in part b of table 9. The notation

F01,...,M02 for the vector elements of fo is in-

troduced for brevity in later equations; fo contains

the sum of the applied forces and moments due to

weight (ml g, m2 g), aerodynamics and rotor out-

put (FAI.,..., MA2), and the inertia coupling terms,
X + D A u. The time-derivative of A requires only

time-derivatives of transformations, for which a gen-

eral formula is given in appendix A. The three terms
in FO2N due to Au are recognized as centrifugal and
Coriolis acceleration terms of the form w × w × R and

,_xV.

Suspension forces- The forces applied to the con-

figuration of rigid bodies by the suspension are denoted

for this system by

(' FC1N
I

FC2N I
fc = MClt | (106)

!
k,MC22]

where FC1,..., MC2 are the resultants of cable forces

acting on each rigid body and their moments about its

c.g.

For inelastic cables, fc is given by equation (17) as

s2 (107)

fc = A s = I --AT TN,2 s3

\ -S(Ra2*2)

where AT are the last three rows of A -1 and s are

suspension force parameters. Since FC1N = --TN,2 s,
s is identified as the Y2 - components of the resultant

suspension force applied to the helicopter at Ra; that

is, s ---- -FC12. In that case, s can be conveniently

replaced by --T2,N FC1N in equation (107), and T2,N
can be combined with A to obtain the simple, alterna-

tive expression,

fc = A' FCIN = FC1N (108)
AT

\ /

Finally, for inelastic cables, FC1N is given in terms of
A' and fo from equation (19). The results are listed

in the equation summary, part c of table 9.

For elastic cables, fc can be given by equation (11),

which applies generally whenever each cable connects

two rigid bodies. However, it is simpler to use the

form in equation (108), which is valid in this exam-

ple whether or not the cables are inelastic. It only
remains to calculate the resultant suspension force,

FCIN, from the cable tensions:

m

FC1N = _j=l kcjN TCj

- gj (1 --- = tj l + cj _ } Rajg

(109)

Cable damping, cj, is usually absent from slung-load
simulation models. The cable line segments required

in equation (109) can be calculated from

Rajy = TN,2 (Ra2*2 + R2*j2) j = 1,..., m

and each cable length rate can be obtained as the com-

ponent of cable velocity along the cable, and can be
shown to be

ej = Raj T /_a2* 2 /_j j = 1, ..., m

where {R2*j2,j = 1,..., m} are given system parame-

ters and where Ra2*2,/_a2_, TN,2 are obtained directly
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fromthegeneralizedpositionandvelocitycoordinates.
Theseresultsareincludedin thesimulationequation
summary(table9).

Simulation equations- Finally, the simulation

equations are listed in part d of table 9. The total

specific force, s f, due to fo + fc, is assembled and its
vector elements are denoted SF1, ..., SM2 for conve-

nience. Last, the elements of /t are obtained by ex-

panding A -1 sf. If the cables are inelastic it is unnec-

essary to calculate Ra2* 2 or the term due to Ra2* 2 in
u, but they can be evaluated to monitor computa-

tional accuracy.

Single-Cable Suspension

System and constraints- The suspension shown

in figure 4(b) has a single main cable, C, attached to

the helicopter at Ra. Additional cables or hardware
attach the load to R1, but these are assumed inelastic

here, being either short cables with negligible stretch,

or inelastic links of any length. In these cases, they

can be regarded as part of the load rigid body, B2,

since the point R1 is fixed relative to the load.

If C1 is inelastic then it imposes a single holonomic
constraint on the configuration motion by fixing the

distance between Ra on B1 and R1 on B2, in which
case

c = 1, d = 11 (110)

and the constraint equation can be given as

e(r) : [RalNI

= IR2*N + TN,2 R2"12 - Rl*t,, - TN,1 Rl*all

eo

Generalized coordinates- The first task is to

select appropriate generalized coordinates (ul, A)

with the properties previously stated with equa-

tion (101). Assume that the nine rigid-body coordi-

nates, (V1*y,wll,w22) can again be included in ul.

Then the remaining rigid-body velocity, V2*N, can be

given from the derivative of

R2* N -'- Rl*lv + TNj Rl*al + RalN -- TN,2 R2"12

as (111)

V2* N = VI* N - TN, 1 S(RI* al) wll +ValN

+TN,2 S(R2"12) w22

It remains to express ValN in terms of coordinates

that separate the cable rotational motion from the ca-
ble stretching motion, _. The rotational coordinates

can be defined in several ways that represent rotations

relative to either inertial space -PN, or to helicopter

body axes 9t-1, or to level heading axes based on the

helicopter heading S-h- The kinematics are given for
all three cases, and the simulation equations are given

for coordinates defining cable rotations relative to _h.

First, inertial cable pitch and roll angles 0c,¢c

are defined in table 10, and then cable axes .Pc =

{ic,jc, kc} can be constructed with kc along the ca-
ble and ic in the inertial vertical plane of (iN, kN).

The angular velocity of -Pc relative to .T'N is, from ap-

pendix A:

wc -- q_c ic + Oc (cos ¢c jc - sin ¢c kc)

and the velocity Val is given from

Val = _ kc + g wc × kc

or

Vale, = T_v,cVaL = TN,c (t O_ cos¢_, --_ _, _)r
(112)

The coordinates Vale are seen to separate the cable

rotational and stretching motion and, together with

(VI*_¢, w11, w22), they are suitable generalized coordi-
nates for the elastic cable system. The cable rotation

is represented by linear velocity components perpen-
dicular to the cable direction. This results in a sim-

pler kinematic relation, v(ul, than is obtained by us-
ing the cable angular rates 0_, ¢c as coordinates. The

kinematic relations v(u), u(v) are readily given from
equations (111) and (112), and the results are listed in

part a of table 10.

Most loads suspended by a single cable will stabilize

at a steady-state position relative to the helicopter on

each steady segment of a reference flight path. For

such loads, in a steady turn, the cable will trail the ver-

tical at a steady angle in the vertical plane of (il, kN)

because of load drag, and the load will swing out to a

steady cable angle that is about equal to the helicopter

roll angle, ¢1, from th_s vertical plane as a result of cen-

trifugal force. These steady angles are represented by
sinusoidal variations of the inertial cable angles t_c, _

with helicopter heading, ¢1. For example, t_c alter-

nately represents the trailing angle or the swing angle

at different headings. To avoid this complexity in rep-

resenting ordinary steady motion, other choices of the

generalized coordinates are considered next.
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Second, cable pitch and roll angles relative to heli-

copter body axes A0c, ACe, are defined in part b of ta-

ble 10. The following derivation uses general formulas
for cable kinematics relative to noninertial axes given

in appendix A, table 8. Cable axes, _-c = {ic,jc, kc}

are again constructed with kc along the cable, but ic

is now a direction in the helicopter vertical plane of

(il,kl). In this case, a steady load-trail angle is rep-

resented by a steady relative pitch A0c, and a steady

load-swing angle is represented by a relative roll an-

gle that is approximately zero. For these coordinates,

the angular velocity of .To relative to 5rl is (table 8,

eq. (95))

Aa_C = A¢c ic + At)_(cos A¢c jc - sin ACe kc)

and then the inertial velocity Val is (table 8, eq. (96))

Val = g kc + g(wl +Awc) x kc

or

Val N = --TN, 1 S(Rall) Wll + TN,c AValc

where

AValc = (t_ At)c cos ACe, --t_ ACe, _)T (113)

Here, AVal is the velocity of Ral relative to

.T1, and its components in 7c are seen to separate

the cable rotational and stretching motions; then

(VI* N, wll, w22, AValc) are suitable generalized ve-
locity coordinates for the elastic system. The kine-

matic relations v(u), u(v) are given by using equa-

tions (111) and (113), and the results are listed in

part b of table 10.

Third, level heading axes, 9rh = {ih, jh, kN}, are a

local vertical frame defined from the helicopter heading

¢1, as shown in part c of table 10. Cable pitch and roll

angles relative to 5rh, are denoted 0_h, ¢ch, and then

cable axes 9re = {ic,jc, kc} are constructed (part c
of table 10) with ic in the inertial vertical plane of

(ih, kN). In this case, Och, ¢_h have steady values in a

steady turn that are approximately the load-trail and

load-swing angles, respectively. The angular velocities

of 5rh relative to 9rg, and of -To relative to 5Oh are

wh = _1 kN

wch = q_h ic + 0_h(coSOch jC-- sin¢ch kc)

where ¢1 is given in terms of wll by the usual kine-

matic relation for Euler-angle rates (eq. (68) in ap-

pendix A):

_-- 1 (kl ) r 11
_1 -- 1 (0, sin¢l, cos¢1)Wll = cos0"----_cos 01

where kl' can be shown to be a direction in the vertical

plane containing (il, ih, kN) at an angle 01 from kN.

Then the inertial cable velocity is

Val={kc+g(wh+wch) xkc

or

g

Valg = TN,¢ (c_sO1 (kN

where

X ke)c (kltl) T wll+Valhc)

(114)

Valh_ = (g O_h cos ¢ch, --g ¢ch, _)T

Here, Valh is the velocity of Ral relative to _'h,

and its components in _'_ are seen to separate the ca-
ble rotational and stretching motion. The coordinates

(VI*N, wl 1, w2_, Valhc) are suitable generalized coor-
dinates for the system with elastic cables. The kine-

matic relations v(u),u(v) are readily given by using

equations (111) and (114), and the results are listed in

part c of table 10.

The remaining equations for simulating the system

with these coordinates are given in parts d-f of ta-

ble 10. The suspension force is obtained from equa-

tion (11) using the last row of A -1 which corresponds
to g(v).

Remarks

1. In the event of extraordinary motion in which all

the cables collapse (fc = 0), the equations for elas-

tic cables still correctly represent the motion of the
two independent rigid bodies. However, the equations
for inelastic cables assumed c constraints. If the num-

ber of constraints is reduced as a result of collapsed

cables, the d equations no longer suffice, but the simu-

lation can accommodate this regime by carrying along

the complete set of 12 equations. However, additional

equations are needed to detect the onset of such col-

lapse, but these are not given here. Since such extreme

divergent load motion is unacceptable it may be un-

necessary to simulate it.

2. The suspension of figure 4(c) has not yet been

specifically discussed. This suspension consists of a

three- or four-cable sling which attaches the load to

the single cable C1, and the elasticity of the sling is
to be simulated. If the sling cables are inelastic, then

the treatment and equations of table 10 apply, since

the load and sling still form a rigid body. If the sling

cables are elastic, then all cables must be considered
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in orderto determinefc. In this latter case, each ca-

ble is connected to only one of the rigid bodies. The

principal analytical problem is to locate the intercon-

nection point, R1, from the force-balance equation at
R1 and from the sling geometry in order to obtain

cable lengths and tensions:

eol

FC12 = TC1 kcl2 = K1 (1 - -_)Ral2

m

=-Emax{O, gj (1- _°J))
tj " Rjl2

j=2

Ral2 = Ra2* 2 + R2"12 = el kcl2 (115)

Rjl2 = R2"12 - R2*j2 -- gj kcj2 j = 2,...,m

Cable C1 can be taken as elastic or inelastic in the

force-balance equation, and cable damping is omitted.

If Ra2* 2 is known as a result of using the coordinates
v or including /_a2* 2 in the generalized velocity co-

ordinates, then equations (115) is a nonlinear vector

equation in R2"12 and the (dependent) cable force,

FC12. Reference 13 provides an approximate solution
for R2* 12.

Alternatively, if the generalized coordinates u arc se-
lected as (Yl*y, wll, O221, /_2'12), then R2"12 and all

sling-leg lengths and tensions are known, and FC12,

Ral2 are readily given from equations (115). This use

of specially selected generalized coordinates for the

elastic-sling case circumvents the problem of solving
equation (115) for/_2" 12. Moderate complexity reap-

pears in the velocity relations V2* g (u) and/_2" 12(v),

which now depend partly on the sling geometry and
elasticity parameters:

V2* N = VI* g - TN,1 S(RI*al) Wll

--TN,2 S(Ra2*2)w22- TN,2 [1+ M] ///2'12

or, solving for/_2"1_,

/_2"12 = -[I + M] -1 T2,N [V2* g - VI*N

+TN,1 S(RI*al) ¢all + TN,2 S(Ra2*2) ;a22]

(116)

where

Ra2* 2 = Ral2 - R2"12

and /_./ gives 1_a12 from /_2"12. Noting in equa-

tion (115) that Ral2 can be given from FC12 which,
in turn, can be givcn from R2712, then

/_a12 ----[VTcI2 Ral2] FC12

= [VTc12 Ra12][_TT2.12 FCX2]ft2*12

= -M-_2* 12

and (algebra omitted):

M = M1 M2

M1 = [_7Tc12 Ral2] = _-_-T[I - (1 - -_)I(C1]

M2 =--[vT2.12 FC12]

= _-'._'=2 6_Zj [KCj + _ [I - gcj]]

where for j = 1,2,...,m

KCj = kcj2 kcj T

Aej = ej - eoj

f o ej <_eoj
5j

1 gj > goj

Here, KCj, I- KCj are projections on and perpen-

dicular to the cable directions, kcj. If cable C1 is
inelastic, then Agl = 0 in M1.

The kinematic relations u(v), v(u) can be assembled

by using equation (116) and then the simulation equa-

tions can be given by applying equation (9a). Fur-

ther description of the resulting sinmlation equations
is omitted because the treatment here is outside the

pattern of interest for the applications work; that is,

there is no subset of the coordinates u that represents
the inelastic suspension.

3. The EOMs for _ given in reference 16 for the

two systems (a) and (b) of figure 4 with inelastic sus-

pensions can be obtained by the proccdure outlined

in section 3, equations (26)-(30), by using generalized

coordinates which are reference point coordinates like

those in part a of tables 9 and, part a of table 10,

except that the reference point is moved to the load

attachment point for system (a), and to the cable mid-

point for system (b).
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Table 9. Simulation equation summary: multicable suspension

(a) Configuration kinematics:

V v_,_j I A_2A23I _2 |_1,
= A u = | w2__oli ) 0 I 0 I 0

\ _22 / 0 0 I I 0 \/_a2

A22 =--TN,1 S(RI*al)

A23 = --TN,2 S( Ra2*2)

U

)
{ VI* N _ / I 0 0 0

AI1 T
_22 = v = 0 0 0 I

• A T
\ Ra2_ / --T2,N T2,N --T2,N A22 S(Ra2_)

Vl*N I

V2* N

Wll

w22

(b) External forces and inertia coupling terms:

fo = fg + fa- X- D A u

\ M022 / \ MA22 - S(_22) J2 w22

A22 Wll = --TN,1 S(wll) S(RI*al) wll = TN,1 $2(w11) Rl* al

A23 w22 = --TN,2[S(w22) S(Ra2*2) + S(/_a2*2)]w22 = TN,2 S(_22) (S(w22) Re2* 2 +/_a2"2)

5by,2 /_a2"2 = TN,2 S(_22) /_a2* 2
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Table9. Concluded.

(c) Suspension forces:

l FC2N -I

fc = [ 31Cll = A' FC1N = AT

\ MC22 AT

FC1N

Inelastic cables:

FC1N = -[A zT D -1 At] -1 A 'T D -1 fo

A 'T D -1 fo = 1 FOIN 1 FO2N + A22 J1-1 M011 + A23 J2 -1 AI022_-7 - _-i-_2

A 'T D -I A ' _ I + A22 J1 -I AT q-A23 J2 -a ATrnl *n2

Elastic cables:

FC1N = TN,2 _j_=l max{O, Kj (1 - eoj/ej) + c_ £}ejRaj2

Raj2 = R2*j2 + Ra2*2

_j = Raj T Ra2*2/e j

(d) Simulation equations:

SFI N I

SF2N
s f=

SIt,Ill

$AI22

it= A -1 sf

VI* N = SFIN

d_'ll = SJ_Ill

= D -1 (fo+ fc)=

(F01N + FC1N)/'ml "_

J(F02N + FC2N)/m2

J1-1 (A_/011 + M'Cll)

J2 -I (AI022 + }if C22)

0)22 = S-_122

/_a2"2 = T2,N [SF2N - SF1N -- A22 SAfll - A23 SM22]
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Table10. Simulation equation summary: single-cable suspension

(a) Configuration kinematics for inertial cable angles:

iC

IN

Oc (

/
kc' kN

[C

jc

kc
kc"

(a) qc = pitch rotation (about jN) (b) fc = roll rotation (about ic)

Inertial cable angles.

Tc,N = E_(¢c) E_(ec)

Valc = (e b c cosec , -e (ge, _)T

(VI N)(!000V2* N A22 A23 TN,¢
v= =Au=

_11 I 0 0

w22 0 r 0

A22 =--TN,I S(Rl*aO

A23 = TN,2 S(R2"12)

u= [ _1' | :A-iv=

\ Valc/ --Tc, N

B43 = --Tc,N A22

B44 = --Tc,N A23

0

0

0

Tc,N

Wll

w22

Valc

I

0

B43 B44

I VI*N

V2*N [

2)
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Table 10. Continued.

(b) Configuration kinematics for cable angles relative to _-1:

ic

k'c kl

(

kc

|c

.._c jl

jc

kc"

(a) Pitch rotation (about jl) (b) Roll rotation (about ic)

Cable angles relative to 9-1.

Tc,1 = EI(A¢c) E2(AOc)

AValc = (f AOc cosA¢c, --fA_c, _)T

,F1N (i000)V2*N I A22 A2a Tg,cV_--- _-

\ co21 / 0 [ 0

R1"11 = Rl*al + Rall = Rl*al + f. kcl

A22 =--TN,I S(RI*ll)

A23 = TN,2 S(R2"12)

(Vl*lv_[ I

\ AValc] -G,_

B43 = --Tc, N A22

B44 = --rc,N A23

I VI*N

wll |

w22 J

AValc]

o _ I_._}
o o |_j

T_,_r B_3 B44 \ w22 /
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Table 10. Continued.

(c) Configurationkinematicsfor cableanglesrelative to JVh:

(

t
jh

kN, kh

• iN

ih

jN

(a) Heading axes

Th,_ = E3(¢1)

Tc, N _. Tc, h Th,N

Valh c _- (e Och COS¢ch, -_ _ch, {)T

JC"

jh

kc' kN

(b) Pitch rotation (about jh)

Cable angles relative to F h.

(

kc

ic

• ih

ic

kc"

(c) Roll rotation (about ic)

V

VI* N

V 2*y =Au=

I_i 0 0 0

A22 A23 TN,c

I 0 0

0 I 0

I VI*N

wll I

:LJ
t S(kCN) kNN = ¢_sOiTN,h( - sin ¢ch, -- cos ¢ch sin Och, O)TZWN = c_sO1

kl_ = (0, sin_bl, cos¢i) T

A22 = --TN,1 S(Rl* al) - zwy(kl'i) T

A23 = TN,2 S(R2"12)

U _"l=A-,v= o ± IV2*N
o o

Valh_] --Tc,N T_,N B43 B44 \ _v22

B43 : --Tc,N A22

B44 :--Tc,N A23
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Table 10. Continued.

(d) External forcesand inertia couplingfor cableanglesrelative to -7-h:

fo= fg+ fa -X -D A u

(FOIN _ (reigN+FAIN I

= IFO2NI = Im2gNT, FA2N-m2(A22coll+A23w22+TN,cValhc)

fo 1"_I011/ [_fAll-S(Wll) Jlcoll

\ M022 / \ 21,1A22 - S(w22) J2 w22

Auxiliary expressions for 91:

= [diag(£ cos¢ch, -g, 1)] -1 Valhc

wchc = (¢ch, Och COS¢ch, --Och sin¢ch) T

(!tan01sin1tan0tcos1_)1 = COS¢1 -- sin ¢1

@l sin ¢1/cos 01 cos ¢1/cos O1

_11

COCO = _/1 kNc + cochc

Z&N = (_/e+t)l tanO1) ZCON+ c_sO_ ]_CN (&C
• kN) - TN,c ._cc (kc • kN)]

Terms from A u:

,2122col1 = TN,1 $2(w11) Rl*al - iCON cos01 ¢1 -- zCOx q_l t_l

A2a w22 = --TN,2 $2(w22) R2"t2

_i"_N,c Valhc = TN,c S(wc_) Valh_
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Table10. Concluded.

(e) Suspension forces: cable angles relative to Yh:

/ /
k MC% k -_22

_11 = S(RI*al) T1,N kcN

_22 = S(R2"12) T2, N kCtv

TC = I max{O, t( (_ - go) + c [_}

t -(H T D -1 H) -1 H T D -1 fo

(elastic cables)

(inelastic cables)

H T D -I fo = kc_v (FO1N/ml - FO2N/m2) +_1T J1-1 M011 - _2T J2 -1 M022

H T D -1 H = _ + _1T J1-1 _11 + _2 T J2 -1 _22ml m2

(f) Simulation equations for cable angles relative to 5oH:

SF1N I

SF2N
sf = = D -1 (fo + fc)

SMll

SM22

ix= A -1 sf

l_l* N = SF1N

0511 = SMll

0522 = SM22

Valhc = Tc,N [SF2N - SF1N - A22 SMll - A23 ShI22]
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APPENDIX C

SIMULATION EQUATIONS FOR BIFILAR SUSPENSIONS

INTRODUCTION

Several multipoint suspensions were developed or

considered in the 1965-1975 period of research for

the Heavy Lift Helicopter, including the inverted-Y

suspensions (fig. 5(a)) with or without spreader bar

(ref. 42), or with active longitudinal and lateral con-
trol of the attachment points by means of control arms

(ref. 32); the inverted-V suspension (fig. 5(b)) (refs. 15

and 43), and the three-point suspension (fig. 5(c)) with
active vcrtical winching of all threc cables and ac-

tive lateral movement of the forward attachment point

(ref. 33). The bifilar supension (fig. 5(d)) is of ana-
lytical interest as a tractable approximation of some

practical suspensions, and is the case treated in this

appendix. These suspension designs, along with wind-

tunnel and flight-test results and additional bibliogra-

phy, are discussed in the references cited above.

The object of these multipoint suspensions was to

stabilize difficult loads developing significant aerody-

namic specific forces and moments, such as the 8- by

8- by 20-ft standard cargo container (MILVAN). In

a single-point suspension, such elongated loads ori-

ent themselves broadside to the flight path in a max-

imum drag attitude and become unstable at speeds

(40 60 knots) that are well below the power-limited
speed of the helicopter. In addition, the light natural

damping factor of the load pendulum motion (less than

0.1) interferes with rapid, precision load placement and
can result in pilot-induced oscillations at cruise spccds,

especially in IFR operations. The two-point suspen-

sions (figs. 5(a) and 5(b)) provide yaw restraint and re-

strict pitch attitude to achieve stable flight at higher

speeds in a minimum drag orientation, and the ad-

dition of active control of appropriate suspension pa-

rameters increases pendulum damping sufficiently to
achieve precision load plaeemcnt and stable flight over

the helicopter's power-limited speed range under IFR

conditions (refs. 32 and 43).

For many of these suspensions, thc cquations of mo-

tion are difficult to derive. The bifilar suspension is

tractable by the present application method in which

coordinates are selected to represent both elastic and

inelastic suspensions, but the remaining suspensions

in figure 5 are not.

A simulation of the inverted-V suspension with elas-

tic cables, obtained from equations for general elas-

tic suspensions in which all cables connect the two
rigid bodies, is reported in reference 15. The behav-

ior of elastic and inelastic inverted-V suspensions is

compared in reference 11, where it is noted that the

variation of the suspension's yaw-restoring torque with

relative yawing of the load depends on cable elastic-

ity, and that this differs significantly between inelastic

cables and the cables with elastic properties found in

practice. Thus, cable elasticity must be considered

in any accurate simulation of yawing motion. Fur-
ther, one or two cables will collapse during small yaw-

ing motions of an inelastic inverted-V suspension, and

this appears intractably complex to simulate as well as

unrealistic. Approximate equations are given in refer-

ences 11 and 12, in which the load-suspension motion

is represented by three angle coordinates (load yaw

and longitudinal and lateral swing angles) and cable

stretching is neglected.

The inverted-Y suspension imposes one constraint

when inelastic. If the spreader bar is removed, then

c = 2. No cable or link in the suspension connects
two rigid bodies, so that force balance at the bar end-

points must be utilized in the simulation to locate the

load relative to the helicopter regardless of elasticity.

This renders the problem analytically difficult, as pre-

viously seen for the simpler system c in appendix B.

No simulation equations were found in the open liter-

ature for this suspension. However, if the spreader bar

is sufficiently close to the helicopter, then only small

motions of the bar relative to the helicopter can occur,

and the system can be approximated as an inverted-V
suspension. Similarly, if the bar is sufficiently close to

the load, then only small motions of the bar relative

to the load can occur and the system can be approxi-

mated as a bifilar suspension, as is done in references 9
and 36.

Simulation equations for the bifilar suspension are

given in references 13 and 15 for elastic suspensions
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B1

B2

(a) Inverted Y

suspension
(b) Inverted V (c) Controllable (d) Bifilar

suspension 3-cable suspension
suspension

Figure 5. Multipoint suspensions.

Parameters:

ml, J1, RI*ll, R1"2,

m2, J2 R2"32, R2"42

 ol,

in terms of the rigid-body coordinates, and in refer-

ences 36 and 44 for inelastic suspensions. Equations

of motion are derived in reference 36 from Kane's equa-

tions, but the load-suspension motion coordinates ap-

pear to be ill-conditioned for ordinary small-angle mo-

tion, as discussed below. Equations for a fixed-base bi-

filar pendulum are derived in reference 44 from Kane's

equations; this pendulum is equivalent to the load-

suspension portion of the bifilar slung-load system. In
addition, linearized EOMs are derived in reference 9.

In this appendix, the methods of this report are ap-

plied to the bifilar suspension of figure 5(d), by us-
ing relative motion coordinates for the load-suspension

subsystem. The selection of generalized coordinates

is an issue of interest. The inelastic load-suspension
has four DOFs, which might be chosen variously from

among the seven cable and load Euler angles, but
many of these choices are ill-conditioned; that is, the

relation of dependent motion variables to some sets

of four DOFs becomes undefined or weakly depen-

dent during ordinary small-angle motion. The load-

suspension geometry is studied to determine well-

conditioned DOFs, and simulation equations are given

for one such set, including both elastic and inelastic ca-
bles. The coordinates used here are similar to those

used in reference 44. An alternative, well-conditioned

set is used in the linearized equations of reference 8.

A third set used in the exact equations in reference 36
is found to be ill-conditioned:

System and Constraints

The bifilar suspension is shown in figure 5(d) along

with the enumeration of the bodies, cables, attachment

points, and system parameters used in the derivation.

The load is suspended by two cables, C1, C2, attached
at distinct points, R1, R2 on the helicopter, B1. It is

assumed that the suspension is uncontrolled (p -- 0)

and that the line segment between load-attachment
points parallels the load x-axis, R34 = a i2. The

reference cable lengths, go1, go2, refer to the unloaded

lengths of elastic cables or the fixed lengths of inelastic
cables.

If the cables are inelastic, then two independent

holonomic constraints are imposed on the configura-
tion position:
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el(r) = IR2*N -t- TN,2 R2"32 - RI* N

= gol

/?2(r) = JR2* N -t- TN,2 R2"42 - RI* N

=/?02

- TN,1 R1"11]

(117)
- TN,1 R1"21[

so that the inelastic system has 10 degrees of free-

dom;

c = 2, d -- 10 (118)

Generalized Coordinates of System with Inelas-

tic Cables

The generalized velocity coordinates of the inelastic

system can be taken as the helicopter's rigid-body ve-
locities and four coordinates that define the motion of

the load and suspension:

ul = a_ll
f_

The immediate task is to select suitable coordinates,

fL These can be chosen from the seven cable and load

Euler angles, but, as shown next, some possible choices
of four coordinates are singular or ill-conditioned for

ordinary small-angle motion of the system.

The suspension geometry shown in figure 5(d) is

a nonplanar four-sided figure governed by the vector

equation

R12 + R24 - R34 - R13 -- 0 (119)

These vectors can be expressed in terms of their

lengths and directions as given in table 11. The vec-
tor directions can be given in terms of the usual cable

pitch and roll angles and load Euler angles described
in appendix A. These angles can be taken relative to

inertial space or helicopter body axes .7"1. Angles rela-

tive to _1 are used here for simplicity in representing

ordinary motion since these have steady values during

both steady turns and straight-line flight. The angles
relative to _'1 are indicated by appending A to the

usual notation. That is,

To,1 = El(ACe) E2(A0c) c E {cl, c2}

JT2,1----EI(A¢2) E2(A02) E3(A_2)
(120)

where Tc,1 defines cable axes, {ic, jc, kc} such that

kc is in the cable direction away from the helicopter,
and ic is in the helicopter vertical plane of (il, kl), as

sketched in table 11. Equation (119), when expressed

in 5rl coordinates, gives three scalar equations among

six of the seven cable and load Euler angles in equa-

tion (120) (load roll angle does not occur), and three

of these angles can be given in terms of the remaining
three. However, in simulations these angles are more

conveniently calculated from their rates.

The angular rates are related by the time-derivative

of equation (119) as follows:

R12 + 1_24 - I_34 - R13 = 0 (121)

The time-derivatives in equation (121) can be taken in

any coordinate frame -7"a according to the general rule

If R = e u then adR/dt = _u+ aw b x/?u (122)

where /?, u are the length and unit direction vector

of R; adO/dt is the time-derivative in _'_; _b is any
coordinate frame in which u is a fixed vector; and _w b

is the angular velocity of .7-b and u relative to _. In

this appendix the velocities relative to .7-1 are indicated

by appending A to the usual velocity notation:

AVij A ld
= _-_ Rij

A_a =_ 103a

for any line segment, Rij

for any reference frame, ._

Expressions for the velocities relative to 9vl are listed

in part b of table 11, and then equation (121) is ex-

panded in terms of the load-suspension angular rates.
To obtain ft, note, first, that the relative load roll rate,

Ap2, must be one of the coordinates in gt, since it
does not occur in the velocity equation and is inde-

pendent of the six load-cable angular rates which do

occur. Thus, gt cannot be taken as the four cable-angle

rates. An inspection of the suspension geometry in fig-

ure 5(d) confirms that the effect of load roll about the

line segment R34 on the relative position and velocity

of any point in the load would be undetectable from

any knowledge of the suspension geometry alone.

Secondly, scalar equations in only four of the load-

suspension angular rates can be obtained from dot

products of equation (121) with any vector that is

perpendicular to two of the vector coefficients of the

load-suspension angular rates in equation 121 as ex-

panded in part b of table 11, that is, from dot prod-
ucts with kcl, kc2, i2, icl × jc2, icl × j2,

icl × k2, jcl × k2, jc2 × k2, etc. We consider the

following relations obtained from dot products, with

kc2, i2, icl × k2, respectively:
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(123)

/_0cl = _-_ CO8 "_¢cl icl • _J /_0c2 "_- cos A--_I i_-i * i2 gl cos_-_d--i_'l • i2

ACd=( e2 icl×jc2*k2"_g-l-k-_ol¢2] A¢_c2 + \el" k-_-clo k-2( a iel.i2 ) At2+ (g2 c°sA¢c2 ic2 x iel*k2)A0c2-[1-k-c-l_k2 (125)

Use has been made of the triple-scalar and vector-
product identities to obtain convenient forms.

A review of the coefficients of the angular velocities

on the right-hand-side of equation (123) shows that

these are much smaller than 1. That is, in steady

flight (hover, straight-line, or turning flight) if kc2 is

perpendicular to j2, icl,jcl, then Aq2 = 0 and, other-

wise, for small-angle departures from these conditions,
then IAq2[ << rnax{[Ar2t, tA0clt, IA_cl]}, assuming

£1, a are of similar size. This reflects the suspension's

restriction of the load relative pitch. Similarly, using

the dot product of kcl with equation (121), it can be
shown that IAq21 << rnaz{IAr21, IA0c2[, [A¢c2[} near

the condition that kel is perpendicular to j2, ic2,jc2.
Consequently, any use of Aq2 as an independent co-

ordinate will yield equations for the dependent an-

gle rates that are singular, or nearly so, in Aq2, so
that Aq2 cannot be selected as a coordinate of g_. In

that case, D cannot contain the load angular velocity,
Aw22.

A similar analysis of equation (124) shows that A0cl
has first-order dependence on A0_2 and second-order

dependence on the cable roll rates. This follows after

assuming that gl, g2, a are of similar size and that in

the vicinity of steady flight conditions, i2 is nearly
perpendicular to jcl,jc2 and that it forms moderate

angles with icl, ic2. In that case, one of A0_l, A0_2

must be included in _ in order to represent the effects

of cable pitching motion, but not both, since these are
nearly mutually dependent coordinates.

A similar analysis of equation (125) shows that the
coefficients of A¢c2 , Ar2 are first order and the coef-

ficient of A0c2 is second order. This follows, assum-

ing that el,g2, a are of similar size, that _d,_c2 are
nearly parallel frames, and that k2 forms a moderate

angle with kcl. In that case, any two coordinates

from {A¢cl, A¢c2, Ar2} can be selected to repre-

sent the cable roll-load yaw motion. The net result

is that _ must be selected to contain (1) Ap2, (2)

two rates from {A¢cl, A¢c2, Ar2}, and (3) one of
{A0cl, A0c2}; for example,

_'_ = (Add, A(_cl, Ap2, At2) or

(A0d, ACd , A¢c2, Ap2) (126)

The first of these, with load roll and yaw and rear-

cable angle rates, will be used below for the simulation

of the relative load motion. Equations for the depen-
dent rates, Aq2, A0c2 , A¢_c2 are included in table 11.

The load-suspension generalized coordinates selected
in reference 36 are

= (AOcl, ACd , _, /%2)

where _ is the load pitch angle measured about jl.

This set includes a load pitch-angle rate and is nearly

equivalent to the set (A0_I, ACd, Aq2, Ap2), which
was shown above to be ill-conditioned. Similarly, the

set in reference 36 can be shown to be ill-conditioned;

that is, the equations for load yaw-angle rate and A(bc2

in terms of gt are singular, or nearly singular, for or-
dinary small-angle motion. The coordinates used in

reference 9 are equivalent to the second set in equa-
tion (126) corresponding to three cable angle rates and
load roll, and are well-conditioned. The coordinates

used in reference 44 are equivalent to those used here,

that is, the direction angle rates of the cable and the
load roll and yaw rates. The principal difference lies in

the use of polar coordinates to define cable direction in

reference 44, where one coordinate is undefined when
the cable is vertical.

The angular velocity coordinates considered here do

not exhaust the possible choices of Q. For example, the

load-suspension geometry can be viewed as consisting
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of two noncoplanar triangles with sides (R12, R13)

and (R24, R34). The orientation of the triangle

(R12, R13) can be defined by the rear-cable angles,
the orientation of the triangle (R24, R34) relative to

the triangle (R12,R13) by the roll angle about the

common diagonal (R23), and the orientation of the

load relative to the triangle (R24, R34) by its roll

angle about (R34). These four coordinates are well-

conditioned but the resulting v(u) is complicated.

Simulation Equations Using Generalized Load-

Suspension Coordinates Relative to Helicopter

Body Axes

The generalized velocity coordinates for the system
with elastic cables u, are to be chosen as the gener-

alized coordinates of the inelastic-cable system aug-

mented by two length rates such that (1) the aug-

mented set comprises generalized coordinates of the

system with elastic cables and (2) the length rates be-
come zero if the cables are inelastic. Here, the two ca-

ble lengths are the holonomic constraints of the inelas-

tic cable system, and their length rates can be added

to (VI*N, wll) along with one of the well-conditioned
coordinate sets listed in equation (126) for gt, to obtain

u. Taking _ to be the rear-cable angle rates and the

load relative roll and yaw rates, then u can be taken

as

VI*N

Wll

u= AV123cl / (127)

Ap2, Ar2) T)

where AV13 is the relative velocity of the rear cable,

which, using equations from part b of table 11, is given
in terms of the cable angle and length rates by

AV13cl = (21 A_cl cos A¢cl , -21 A_cl, _1) T

The linear velocity components of AV13cl are pre-

ferred _ generalized coordinates over the cable angle
rates At_cl, A¢cl owing to the simpler kinematic rela-

tion v(u) obtained. Then the load c.g. inertial velocity
is given from the derivative of

R2* = RI* + RI*I + R13 + R32"

as

V2* = VI* + wl × RI*I + (wl x R13 + AV13)

-- w2 x R2"3

or

V2* N = VI* N - TN,1 S(R1"31) wll + Ty,cl AV13_I

+TN,2 S(R2"32) w22 (128)

The load angular velocity can be written as

w22 = T2,1 wll + A_22 (129)

It remains to determine Aq2(u) for the case of elastic
cables in order to complete the relation v(u). This is

obtained from the dot product of kc2 with the velocity

equation for elastic cables; the result is included in
table 11.

The configuration kinematics v(u), u(v) are assem-

bled in the equation summary,, part a of table 12.
The cable coordinates AV13cl, e2 in the inverse rela-

tion, u(v), are obtained by solving equation (128) for
AV13¢I and solving a similar kinematic relation for
the forward cable for 22. The result for A-1 is seen to

be simpler than for A. Additional equations for the de-

pendent angular rates Aq2(u), Awc2_2(u) and the rel-

ative angular velocities needed to calculate T2,1, Tc2,1
in a simulation are included in the equation st_mmary

for completeness.

The external forces and inertia coupling terms fo

are assembled in part b of table 12. The notation

F01,..., M02 for the vector elements of fo is intro-

duced for brevity in later equations. These repre-

sent the sum of applied forces and moments result-

ing from weight (mlg, m2g), aerodynamics, and he-

licopter rotor output (FAI.,...,MA2), and inertia
coupling terms from X + A u. The coupling terms

comprise a large number of scalar terms that are all
second order in velocity coordinates from u,v, and

whose computation can be organized in terms of nat-

ural vectors and matrices as given in the equation

summary. If expanded to scalar expressions, a large
number of terms are obtained. This is done in ref-

erence 36 where the number of such terms exceeds

300. If the relative motion is assumed sufficiently

small ([Awcl I, law21 << 0.1 rad/sec) and the cables
are inelastic, then all terms in A u are negligible (of

the order of 10 -3 rad sec 2, 10-3g) except a term in

wl × Rl*2* x wl from -_22 w11. This greatly reduces

the programming and computations required, but is
inaccurate in representing the dynamics of larger tel-

ative motions.
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Equationsfor the interactionforcefc are given in

part c of table 12. Each cable connects two bodies so
that the interaction force can be assembled in terms

of cable directions and tensions as in equation (11) by

2

fc = _ Hj TCj -_ H TC
j=l

where {Hj} are given in the equation summary. For
this example, c = m so that H is also a basis of the

interaction force space and can be used for both elastic
and inelastic cables. Note that H is identical to -A

given by the rows_of A -1 corresponding to _1 (third

component of AV13cl) and _2.

Finally, the simulation equations are listed in part d

of table 12. The total specific force s f, due to
fo + fc, is assembled, and its vector elements are

denotedSF1,..., SM2 for convenience. The elements

of _ are obtained b.y. expanding A -1 sf. If the cables
are inelastic_ then el and _2 need not be calculated,

and various terms in A u containing _1, _2 are also

zero in the computation of fo.
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Table 11. Generalized load-suspension velocity coordinates: bifilar suspension

(a) Suspension geometry:

R12 + R24 - R13 - R34 = 0

R13 =J_lkcl

R24 = 0 2 kc2

R34 = a i2

®
BI

Angles relative to brl:

Suspension geometry.

v il(J

kc'

kl

(a) Pitch rotation (about jl)

|c

A¢c

le

]1

kc'

(b) Roll rotation (about ic)

Cable angles relative to F 1.

Tc,1 = El(ACe) E2(AOc) c E {cl, c2}

T21 = E2(A02) Ea(A¢2)

kcl = cos A¢cl sin A0cl il -- sin A¢cl jl + cos A¢cl cos A0dkl

kc2 = cos A¢c2 sin AOc2 il -- sin A¢c2 jl + cos A¢c2 cos A0c2kl

i2 = cos A_b2 cos A02 il + sin A¢2 cos A02 jl - sin A02 kl
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Table 11. Concluded.

(b) Suspension velocity equation relative to helicopter body axes, Yl:

AV12 + AV24 -- _V13 - AV34 = 0

Velocities relative to _-l:

Awcl = Aq_ci icl + A0ci (cos A¢c I jcX -- sin A¢c 1 kcl)

A_c2 = A¢c2 ic2 + A0c2 (cos A¢_2 jc2 - sin A¢_2 kc2)

Aw2 = Ap2 i2 + Aq2 j2 + Ar2 k2

AV12 = 0

AV13 -- _1 kcl + gl A_ccl x kcl

AV24 = _2 kc2 + 22 Awc2 × kc2

AV34 = a A_'2 x i2

Velocity equation for inelastic cables:

g2(A0c2 cosA¢c2 ic2 - A¢_2 jc2) - 21 (A0ci cos A¢ci icl - A_)ci jcl) - a (Ar2 j2 - Aq2 k2) = 0

Suspension angular rates in terms of (A¢¢i, At)el, At2) for inelastic cables:

/_'_ ei " cosA¢¢iicl kc2 Aq_djcl.kc2)
Aq2 = \k2,kc2/ At2+ a k2.kc2 (A0d * -

Awc2 x kc2 = ÷2(21 Awcl x kcl + a A_v2 x i2)

At)c2 = Awc2 x kc2 * ic2 / cos A¢c2

A¢_ 2 = --A_c2 x kc2*jc2

Velocity equation and load pitch rate for elastic cables:

_2 kc2 + 22(At)¢2 cos A¢¢2 ic2 - Aq_c2 jc2) - AV13 - a (Ar2 j2 -- Aq2 k2) = 0

(_) kc2*AVI3 21. "Aq2 = Ar2 + a k2,kc2 _ k kc2 22
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Table 12. Simulation equation summary: bifilar suspension

(a) Configuration kinematics:

VI*N

V A u_

k w22 /

'I 0 0 0 0

I A22 A23 A24 A25

0 I 0 0 0

0 A42 A43 A44 A45

AV13cl = (el At_cl cos ACd, --el ACe,, el) T

V I*N

Wll L

AV13cl /

Auxilliary expressions for A: Submatrices of A:

z0 = k2.kc2 = k2 T kc21

zl = j2 • kc2 = j2 T kc21

A22 =--TNj 8(R1"2"1)

A23 = TN, I[TI,cl + T1.2 sj2 z13 T]

ze = -1 / a zO

zr = zl / zO

A24 = TN,2 s j2 zg

A25 = TN,2 [si2, sk2 + zr sj2]

z13cl = -ze Tel,1 kc21

Rl*2* 1 = R1"11 + el kcll - T1,2 R2"32

A42 -- 72,1

A43 = j22 Z13cT

si2 = (R2"3 x i2)2 = 1 st column of S(R2"32) A44 --- j22 ze

sj2 = (R2"3 x j2): = 2nd column of S(R2"32) A45 -- zr
1

sk2 = (R2"3 x k2)2 = 3 rd column of S(R2"32)

7N, 2 : TN, 1 71,2
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Table12. Continued.

U

/' VI* N "_

wl_

AV13cl

t2

(A;2, A_2)_ /

_A -1 y___

I. I 0 0 0

0 0 I 0

-- Tcl,N Tcl,N t333 B34

-k_2_ k_2_ -_121_ _22_

0 0 B53 B54

I VI* N

V 2*g

2
Submatrices of A-1.

Tcl,N = Tcl,1 T1,N

B33 = rcl,1 S(RI*t_) + S(R13_1) Tcl,I

B34 _--- -Tcl,1 T1,2 S(R2"32)

kC2N = TN,1 kc21

(121 = (lZl*2 x kC2)l = S(R1"21) kc21

_222 = (R2"4 x kc2)2 = S(R2"42) T2,1 kc21

B53 --- - 0 0 1 ' 0

Relative angular velocities:

Aq2 = zg _2 + z13_T AV13_I + zr At2

Aw22 = (Ap2, Aq2, Ar2) T

AV241 = (AV13 + AV34)_ -- T_,c_ AV13cl +a (At2 j21 - Aq2 k21)

A0c2 = ic2T AV241 / 22 cos A¢c2

A$_2= -jc2 T AV24_ / 22

AWC2c2 = (A¢c2, AOc2 cosA¢¢2, --AO_.2 sin A¢c2) T

Awc21 = A¢_2 ic21 + A_}c2 jll = (A¢¢2 cos A0_2, At}_2, -A¢_2 sin A0_2) T
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Table 12. Continued.

(b) External forces and inertia coupling terms:

fo=fg+ fa-X-D Au

f o -_

FO1N I

F02N

M011

_,[022

era1 gN + FA1N

m2 gN + FA2N - m2(A22 Wll + A23 AV13c1 + -{_:i g2 + A25 (Ap2, Ar2) T)

MAll - S(";11) J1 wi1

MA22 - S(w22) J2 .;22 - J2 (_/142 ";11 + A43 AV13c1 + A44 g2

+A25 (Ap2, At2) T

Auxilliary expressions for A: Submatrices of Jl:

w22 = T2,1 wll + Aw22 _t22 = -TN,I[S(wla) S(RI*2*,) + S(/_1"2"1) ]

";cll = ";11 + i";cll

w2c22 -- Aw22 -- T2,1 A";c21

A23 = TN,,[S(";c11) Tl,cl

+ T1,2 (S(w22) sj2 z13cT + sj2 _13cl)];T

A24 = Tg,2[kg [ + zC S(";22)]sj2

";c2clcl = Tcl,1 (Awc21 - AwCll) A25 = TN,2 [#12, /122]

t0 = kc2 * (A";2 - Awc2) x k2 #12 = S(";22) si2

= kc2T1 T1,2 S(";2c22) k22 #22 -- S(w22) (sk2 + zr s j2) + kr s j2

_1 = kc2 * (A";2 -- z_";c2) × j2 A49 = -8(A";22) T%_

= kc2 T T1,2 3(w2c22) j22 A43 = j22 zl3c 1.T

Z,g = --Zg ,_O/zO 2_-44= _g j22

(!o)kr = (/'1 - zr _.O)/zO A45 = "
0

_13d = -(kg kc2 + zf(A";c2 -- A";cl) ×kc2)d = [ig/zg I + S(";c2clc_)] z13c_

/_1"2"1 = Tl,cl AV13cl + 7"1,2 S(R2"32) A";22
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Table12. Continued.

(c) Suspensionforces:

fc=[H1, H2](TC1)
\TC2

kclN = TN,1 kcll

kClN

--kClN

-_212
kC2N I

--kc2N

_121

--_222

kC2N =TN,1 kc21

_111 = (RI*I x kcl)l = S(Rl*11) kcll

_212 = (R2"3 x kcl)2 = S(R2"32) T2,1 kcll

_121 = (Rl*2 x kc2)1 = S(R1"21) kc21

_222 = (R2'4 x kc2)2 = S(R2"42) T2,1 kc21

TC1)TC2

Cable tensions for elastic cables:

TCj = max{O, Kj (gj - eoj)} j = 1, 2

Cable tensions for inelastic cables:

( TCI _ D_ _ HT D_I
TC2 ,] = - [HT HI-1 fo

H1T D -_ fo = kcl T (FO1N/ml -- FO2g/m2) +_11T J1-1 M011 - _21T 52 -2 M022

H2 T D -1 fo = kc2_ (FO1N/ml - FO2N/m2) +{12 T 51-2 M011 - _22_:J2 -1 M022

H1T D -1 H1 = #12 + [11T J1-1 _111 +_21_ J2 -1 _212

H2 T D -1 H2 = _t12 + _12 T J1 -_ [121 +[22 T J2 -1 _222

H1 r D -t H2 = #12 kcl T, kc2y + _11_ J1-1 [121 + [21T J2 -_ _222

where

#12 = (ml+ m2)/ml m2
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Table 12. Concluded.

(d) Simulation equations:

SF1N

SF2m

s/= = D-1 (fo +/c)
SM11

SM2_

i_= A -1 sf

_rl* N = SF1N

d;ll = SMll

A_213cl = Tcl,N (SF2N - SF1N) ÷ Bas SMll ÷ B34 SM22

_2 =- -H2 T sf

A+2) o
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APPENDIX D

SIMULATION EQUATIONS FOR DUAL-LIFT SYSTEMS

INTRODUCTION

Simulation equations are derived in this appendix

for the three dual-lift configurations shown in figure 6.

Rigid loads that are sufficiently long to allow safe
separation of the two helicopters can be suspended di-

rectly below the helicopters (fig. 6(a)). Several isolated

civil operations have used this configuration (ref. 4),
including a load carried with a separation of 1.5 ro-

tor diameters. Shorter loads can be carried by various

configurations considered in the early studies (refs. 1

and 2). Flight tests and control-system analyses have

focused principally on the arrangement shown in fig-

ure 6(c), which uses a spreader bar (refs. 3-7, 17, 20,

and 21). Limited flight tests wcre conducted using a

relativcly heavy spreader bar that was 2 rotor diame-

ters long in order to ensure safe helicopter separation.
Control automation is expected to result in minimum

separations of 1.25 rotor diameters and a spreader-bar

wcight penalty of about 5% of payload (ref. 4). Al-

though this weight is small relative to the other masses

in this system, it is included in the equations of mo-

tion, and the configuration is represented as a system

of four rigid bodies. An alternative three-body con-

figuration without a spreader bar (fig. 6(b)) has also
becn considered in references 18 and 19. The stabiliza-

tion of difficult loads has not been considered in the

suspension designs of figure 6 and may lead to new

suspensions in the fllture.

Until recently, work on the cquations of motion of

dual-lift systems was limited to approximate models

tractable for control studies of these complex systems.
The cables have been assumed inelastic in all cases.

]n reference 17, the slung-load systems are approxi-

mated as point masses linkcd by fixed-length cables

in tension, and general cquations of motion for these

systems are given from d'Alembert's principle. The

general equations required inversion of a d × d ma-

trix analogous to that in equation (14), but analyt-
ical inversion did not appear feasible for a 12-DOF

point-mass model of the system in figure 6(c). In later
work on this system at Princeton University (refs. 6

and 7) Lagrange's equations were used, assuming a

point-mass load and thin-rod spreader bar (16 DOFs).

Linearized equations specialized to hover are obtained

(ref. 7) and the results include a real-time simulation

of two-dimensional motion (seven DOFs, ref. 6). More

recently, nonlinear equations of two-dimensional mo-

tion have been given for a point-mass approximation
of the three-body system shown in figure 6(b), which

has four DOFs (ref. 18). General nonlinear EOMs for
the dual-lift system with spreader bar similar to those

given here were initially reported in reference 8; non-

linear EOMs in terms of the rigid body velocity coor-

dinates for the same system with inelastic suspension

are given in references 19 and 20.

Simulation equations are derived in this appendix
for the three dual-lift configurations of figure 6 using

the methods of this report. The results accommodate

elastic or inelastic cables and dissimilar helicopters.

All three dual-lift systems can be integrated in to a

single set of simulation equations. In addition, equa-

tions are given for an approximate model of the dual-

lift system with spreader bar, using point-mass heli-

copters and load, and a thin-rod spreader bar. With

elastic cables, this system has 14 DOFs; with inelastic

cables it has 10 DOFs. Cables, rigid bodies, attach-

ment points, and system parameters are enumerated

in figure 6. The system parameters arc the masses, in-
ertia matrices, and body-axis coordinates of the cable

attachment points for each body, and the reference ca-

ble lengths, {goj), which refer to the unloaded lengths
of elastic cables or the fixed lengths of inclastic cables.

Dual-Lift System for Long Loads

System and constraints- The configuration in

figure 6(a) accommodates long loads and consists of

three rigid bodies B1, B2, B3 connected by two ca-
bles, C1, C2, attached at R1,..., R4. If the cables are

inelastic then each imposes onc holonomic constraint

on the configuration motion by fixing the distances

PRECEI_NG P_GE BLA_qK NOT FILMED

75

 _tml,.



B3
C2

4

Parameters:

ml, J1, R1"1,

m2, J2, R2"22

m3, J3, R3"33, R3"43

(a) Long loads

BI B2

CI C2

BI

1 C1

3

B3 C2 2

C4

5

B4

B2

Parameters:

ml, J1, R1"1,

m2, J2, R2"22

m3, J3, R3"33

_O1, _02

Parameters:

ml, J1, R1"1,

m2, J2, R2"22

m3, J3, R3"33, R3"43

m4, J4, R4"54

_ol, _o2, _'o3, ,_04 : _O3

(b) Pendant suspension
(c) Spread bar suspension

Figure 6. Dual-lift suspensions and system parameters.
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R13, R24:

el(r) = IR3* N + TN, 3 R3"33 - Rl_v
--TN,1 RI*lll =eol

g2(r) -- {R3*g + TN,3 R3"43 - R2_v

--TN,2 R2"221 -- eo2

and then, for inelastic cables;

(130)

c -- 2, d = 16 (131)

Generalized velocity coordinates and configu-

ration kinematics- The generalized velocity coordi-
nates u are to be selected so as to separate motion

caused by cable stretching from motion with invariant
cable lengths. This is readily done by extension of the

single-cable example of appendix B. First, assume that
the c.g. velocity of B1 and the angular velocities of all

bodies (Vl*g,Wll,W22,w33) can be included in u, and
then observe that the c.g. velocities of B2, B3 can be

given from the derivatives of

R3* N = RI* N + TN,1 R1"11 +R13N

--TN,3 R3"33

as

R2* N --" R3* N + TN,3 R3"43 - R24N

--TN,2 R2"22

(132)

V3* N = VI* N - TN,1 S(Rl*11) ¢Vll

+TN,cl V13cl + TN,3 S(R3"33) w33

V2* N = V3* N - TN,3 S(R3"43) w33
--Tg,c2 V24c2 + TN,2 S(R2"22) w22

}
(133)

where V13c1,V24c2 are the inertial cable veloci-

ties referred to cable axes _ct,._c2. As described

in appendix A, these axes are obtained by defin-

ing inertial pitch and roll angles for each cable

(_cl, _cl), (¢c2, _c2), and then cable axes ._cl,._'c2 are

obtained from the inertial axes by

Tc,N = Et(¢c) E2(_c) c = cl,c2 (134)

where kcl,kc2 are along the cables, R13,R24; and

icl, ic2 are in the inertial vertical plane of (iN, kN).
For these axes

wc -- ¢c ic -4-_c (cos ¢_ jc - sin ¢_ kc)

and then

V13cl = _1 kclcl + (wcl x kcl)cl g.1

= (gl _cl COS ¢cl, --gl ¢cl, gl) T

V24c2 = (g2 _c2 cos ¢c2, -g2 _)c2, _2) T

c = cl,c2

(135)

(136)

These velocity coordinates separate the cable rota-

tional and stretching motion, and, together with

(Vl_v, Wll, w22, _v33), make up 24 generalized coordi-

nates for the system with elastic cables which contains
a subset of 16 coordinates for the system with inelastic

cables.

The configuration kinematics v(u) are assembled in

the equation summary of table 13. The 18 x 18 ma-

trix, A, contains 6 rows representing equations (133),
and 12 rows from the unit matrix for the coordinates

that are in both u and v. The reverse relation, v(u), is

readily given after obtaining V13cl(V), V24c2(v) from

equations (133). Only transformations and skew-

symmetric matrices representing Coriolis terms occur

in A, A -1.

External forces and inertia coupling- The ex-

ternal forces on the configuration and the coupling

terms, fo, are assembled in part b of table 13. The

vector elements of fo are denoted (F01,..., M03) for

brevity in later equations. The fo contains the forces

and moments on the rigid bodies due to weight, aero-

dynamics, and rotor output, along with the coupling
terms, X+DA u, which are all second order in velocity

coordinates from u, v. The submatrices of _l require

only time-derivatives of transformations (appendix A),
and _l u yields terms which are recognized as centrifu-

gal and Coriolis accelerations of the forms w x w x R
and w x V.

Suspension forces- The resultant forces and mo-

ments applied by the suspension to the configuration

of rigid bodies, fc, is given in part c of table 13. Here,
each cable connects two rigid bodies so that fc can be

given from equation (11) in the case of elastic cables.
Since the number of cables and constraints is equal, the

configuration vectors of the cable tensions {H1, H2},

given in table 13, comprise a basis of the suspension

force space which can be used with equations (18)

and (19) to give fc for inelastic cables. The results

are given in table 13. This basis is identical to the for-
mal basis, -A, given by the rows of A -1 corresponding

to the stretching-motion coordinates _l(v), _2(v). The

suspension force parameters for inelastic cables are the

two cable tensions, and the equations for elastic and

inelastic cables differ only in the calculation of these
tensions.

Simulation equations- Finally, the equations for

_, are assembled in part d of table 13 from A -1 s f,

where sf refers to the applied specific forces and mo-
ments on the configuration due to fo + fc. The vector
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elementsof sf are denoted SF1,..., SM3 for conve-

nience. The equations for _rl*N, &ll, d_22, d233 are

identical to those usually obtained from the Newton-

Euler equations. The equations for the (relative) cable
accelerations V13cl, V24c2, depend solely on differ-

ences of specific forces and moments on the connected

bodies. For inelastic cables, the third components of
_'13cl, I_'24c2, namely, gl, g2 are theoretically zero.

Dual-Lift System with Pendant Suspension

The system shown in figure 6(b) consists of
three rigid bodies with the load suspended by two ca-

bles C1, C2 connected at a common point R3. The

load and the hardware attaching it at R3 are regarded

as a single rigid body, B3. This system is simply a spe-

cialization of the previous configuration to one with a

single attachment point at the load, R3. Analysis and

simulation equations are identical to those of the previ-
ous case except for replacing R4 with R3 throughout.

An equation summary is therefore omitted. Equations
for this system are also included in the results for the

multilift system with m-helicopters and pendant sus-
pension that is treated in appendix E.

Dual-Lift System with Spreader Bar

System description and constraints- The dual-

lift system shown in figure 6(c) consists of four rigid

bodies: the two helicopters, B1, B2, are connected by
tether cables, C1, C2 to a spreader bar B3, and the

load is suspended from the spreader bar by the bridle

cables, C3, C4, attached at a common point, R5. The

load and the hardware attaching it to R5 are regarded
as a single rigid body, B4.

It is unnecessary to make any specializing assump-

tions about the system parameters, but it is noted that

existing designs are characterized by bridle cables of

equal length with an angle from the spreader bar in

the range 45 ° - 60 °, with a spreader bar length in the
range of 1.25 to 1.5 rotor diameters, and a spreader-

bar weight that is about 5% of the system payload

(ref. 4). Identical helicopters with equal loading are

usually considered, but the present results accommo-

date dissimilar helicopters and unequal loading.

If the four cables are inelastic, they impose four in-

dependent holonomic constraints on the configuration

by fixing the following distances:

el(r) -- IR3* N + TN,3 R3"33

-RI* N - TN,1 R1'111 = go1

g2(r) = IR3*N + TN,3 R3"43

--R2*N -- TN,2 R2"221 = go2

g3(r) = [R4_r +TN,4 R4"54

--R3*N -- TN,3 R3"33[ = go3

(137)

e40") =

Then, for

[R4_ + TN,4 R4"54

--R3* N -- TN,3 R3"431 ----go4

inelastic cables,

c = 4, d =- 20 (138)

Generalized velocity coordinates and configu-
ration kinematics The generalized velocity coor-

dinates u are to be selected so as to separate mo-

tion caused by cable stretching (four coordinates)

from motion caused by invariant cable lengths (20 co-
ordinates). First, note that the subsystem that

consists of helicopters, tether cables, and spreader

bar is identical to the system in figure 6(a) and

can be represented by the identical 18 coordinates

(VI* N, toll, w22, _33, V13cl, V24c2). As before, in-

ertial cable angles (¢cli 0d), (¢c2, Oc2) and cable axes

9vd, U_2 are defined (eq. (134)), and then the iner-
tial velocities, V13¢1, V24c2 separate the tether cable

stretching and rotational motions (eq. (136)), and the

rigid body velocities V3_v , V2_v are given in terms of

the generalized coordinates by equation (133).

Secondly, the load motion remains to be given in

suitable coordinates. The load c.g. velocity is obtained
from the derivative of

R4* N = R3* N + R3*5N -- TN,4 R4"54

as

V4* N = Y3* N + V3*5N + TN,4 S(R4"54) _44 (139)

Assume that w4a can be included in u. It then remains

to develop appropriate coordinates for V3*5N. This
development is given in table 14.

The inertial velocity, V3"5, results from the iner-

tial velocities of the two cables C3, C4. These cables

always form a triangle with the spreader-bar longitudi-

nal axis i3, and axes _'t can be attached to the plane of

the triangle with longitudinal axis along the spreader

78

il ili 



bar, i3, and normal axis, kt, perpendicular to i3 in

the plane of C3, C4. This plane can have any roll

angle, et, about i3, and then R3"5 has components

(e3x, e3z) in this plane. For elastic cables, (e3x, e3z)

are arbitrary; for inelastic cables, they have fixed val-
ues. The coordinates {¢t, _3x, _3z} are appropriate ve-

locity coordinates which separate the stretching and
rotational motion of R3"5. To isolate these coordi-

nates in V3"5, define the modified spreader-bar ref-

erence frame F3,, from the spreader-bar Euler angles

{¢3, (?3}, and then give the inertial velocity of R3"5

as the sum of its velocity relative to F3, (VT in part a
of table 14) and the effect of the inertial rotation of

F3, (AVT in part a of table 14). As seen in table 14,
the motion of R3"5 caused by cable stretching and et

is isolated in VTt and the remaining motion, AVT

depends only on the spreader-bar angular velocity.

Appropriate generalized coordinates for the system

can now be given by augmenting the 18 coordinates

previously used for the system of figure 6(a) with

(VTt, w44); V4* N is given in terms of these coordinates
by

V4*N = V3* N -[- TN,t (YTt + BT _33)

+TN,a 8(R4"54) w44 (140)

Finally, the kinematic relations v(u), u(v) are assem-

bled in table 14, by using equations (133) and (140)

to obtain V2*g(U), V3*g(U), V'4*g(U ) and then re-

arranging these same equations to obtain V13cl(v),
V24c2(v), VTt(v). The remaining 15 rows of A, A -1

are all from the unit matrix, since the corresponding

coordinates are in both u, v. The nontrivial submatri-
ces of A, A -1 are all coordinate transformations and

skew-symmetric matrices representing Coriolis terms.

Applied forces and inertia coupling-These

terms, fo, are assembled in part c of table 14. The

vector elements of fo are denoted F01,..., M04 for
brevity in later equations. The configuration vector

fo contains the sum of applied forces due to weight

(ml g,...,m4 g), aerodynamic and helicopter rotor

forces and moments (FA1,..., MA4), and the inertia
coupling X + J. u. The submatrices of A are defined

in part b of table 14 except that BT is given in part a.

Their time-derivatives are obtained principally from

derivatives of coordinate transformations. A general

expression from appendix A is repeated here along
with expressions for the cable-axis angular velocities

in the required reference frames, wclcl, wc2c2, wtt, and
expressions for the nontrivial terms of A u. The time-

derivative of BT is obtained routinely, but a formula

is omitted for brevity.

Suspension forces- Equations for the suspension

force fc are assembled in part d of table 14. Each

of the four cables C1, C2, C3, C4 connects two rigid

bodies so that fc can be given as in equation (11) by

4

Hi TCj = H TC (141)
j=l

The matrix H is given in table 14. Its columns also

form a basis of the suspension force space since c --

m = 4, so that equation (141) can be used for both
elastic and inelastic cables, the cable tensions being

calculated from cable stretch or from equations (18)

and (19) in the two cases, respectively. Expressions for
both cases are listed in the table. The table includes

formulas for calculating cable line segments from u,
and these suffice to determine H and the elastic cable

tensions.

Alternatively, a basis can be given as the rows of
A -1 corresponding to the cable-stretching coordinates

(rows 6, 9, 10,12). This basis is given as A in part d

of table 14. The corresponding constraint force pa-

rameters s can be identified as TC1, TC2, and the .T't

components of the suspension force, FT, which acts

on the triangle at R5. Note that these components

can be given from the cable tensions and, conversely,
so that A can also be used to assemble fc for both
elastic and inelastic cables.

Simulation equations- The total specific force ap-

plied to the configuration, s f, is assembled in part e
of table 14 from the vector elements of the external

forces fo and the interaction forces fc. The vector
elements of sf are denoted SF1,..., SM4 for conve-

nience. Finally, the simulation equations for the vector
elements of/L are given by expanding i_ : A- 1 s f, and

these represent either elastic or inelastic cables. For

inelastic cables, the four cable-stretching coordinates

(coordinates 6, 9, 10, 12 of _) are all theoretically zero.

Remarks- The three dual-lift systems can be inte-

grated into a single simulation. The three-body system

in figure 6(a) is a subsystem of the four-body system
c. That is, system a is obtained from system c by

dropping the load and bridle cables and by regarding

the spreader bar as the load and assigning it appropri-

ate parameter values. System a can be represented

by a subset of the generalized velocity coordinates

and equations for system c, obtained by deleting the

six load-triangle coordinates and the load forces and
moments. Further, as previously noted, the pendant
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suspensionsystemin figure6(b)isasimplespecializa-
tionofsystema to coincident load-attachment points

(R4 = Ra).

The EOMs for the rigid-body velocities, v, given in

reference 20 for dual lift with spreader bar and inelastic

suspension can be obtained by the procedure outlined

in section 3, equations (142)-(146), by using general-

ized coordinates, u, which are reference point coordi-

nates like those in part b of table 14, except that the

reference point is taken at the spreader bar c.g. These
coordinates also result in a simpler kinematic relation,

v = Au, than in part b of table 14 and are of interest

as an alternate set of generalized coordinates for the

simulation equations.

Dual-Lift System with Spreader Bar:

Degenerate-Body Approximation

In this section the system is represented by point-

mass helicopters and load, and a rigid-rod spreader

bar, as illustrated in part a of table 15. The system
with elastic cables has 14 DOFs. Inelastic cables im-

pose four holonomic constraints as in equation (137),
in which case d = 10.

The formulation of EOMs for systems with degen-
erate bodies is outlined in section 5. To account for

the point masses, B1, B2, B4, it is only necessary to

modify the equations in table 14 to remove the angu-

lar velocities from v, u, along with the associated rows
and columns of A, A -1, and the associated moments

in fo, fc. A 15-DOF system is obtained.

The rigid-rod spreader bar has two attitude degrees

of freedom, represented by its inertial heading and

pitch angles. The spreader-bar body axes _'3 are now

coincident with the special axis frame 9r3,, defined in

table 14, and the attachment points on the spreader

bar are on the i3-axis (table 15).

To account for the rigid-rod spreader bar B3, define

the reduced configuration velocity _, in which w33 is

replaced by the spreader-bar's pitch and heading rates,

a-3 -- (03, ¢3) T, and make the same replacement in the

generalized coordinates, u:

= (VI*N, y2*y, V3*N, V4*N, -_"_)T

U = (VI*N, V13cl, V24c2, VTt, -_-_)T

The required kinematic relation,

w3a = j33 03 + kN3 ¢3 = W3a _3

is expanded in table 15. The cable velocities

V13, V24, VT were defined previously in equa-

tion (136) and part a of table 14. The 14 coordinates of
u contain four scalar coordinates 21,22, _3x, _3z, that

represent cable stretching and 10 coordinates that rep-

resent motion with invariant cable lengths. The kine-
matic relations _(u),u(_) are obtained by specializ-

ing equations (133) and (140) to the degenerate bod-

ies. The results are assembled in part b of table 15.

The submatrices of A, A 1 are coordinate transforma-

tions and cross products with the spreader-bar's axes

of pitch and heading rotations.

Equations for the applied forces and inertia reactions

fo, are given in part c of table 15. The configuration
vector fo is expanded routinely except to note that A

in Au is from the relation v(u) = W A u, where W

maps Euler-angle rates to angular velocities (eq. (32)).
The inertia reactions consist of Coriolis velocities due

to transformation rates, centrifugal accelerations due

to spreader-bar angular velocity, and an effect, zl, of

the Euler-angle rate coordinates.

The suspension forces (table 15) can be given in

terms of cable tensions as in table 14, fc = H TC,

where H here is obtained from H in table 14 by delet-

ing the elements that generate moments on the point-

mass bodies. The moment action vectors {(3j} were
defined previously in table 14 along with equations

for calculating cable line segments. For elastic cables,

TC is calculated from the cable lengths as usual. For
inelastic cables, first obtain the reduced basis in 14-

dimensional space, H = W T H, and then the cable

tensions are given by equation (37). Inversion of a

4 × 4 matrix (_T D_ 1 _) is again required. Expres-

sions for its elements are routinely obtained by expan-
sion of the matrix. The alternative basis, A from the

rows of A -1 corresponding to the cable stretching co-

ordinates, can also be used in equation (37) to obtain

-- -- _Tf c = A s = f c. The cable tensions can be ob-

tained from s as given in part d of table 14.

Finally, the simulation equations (36) are assem-
bled in part c of table 15. The reduced specific force,

sf = D -1 W T (fo + fc), contains the specific forces,

SF1 .... , SF4, and the reduced specific moment on the

spreader bar, SM3; the latter contains the compo-

nents of the moment sum, M03 + MC3, along the

pitch and heading axes of rotation, j3, kN. Last,

the simulation equations for _2 are given by expand-

ing equation (36).
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Table 13. Simulation equation summary: dual lift for long loads

(a) Kinematics:

VI* N .

V 2* N

V3* N

wll

w22

w33 J

=Au=

I 0 0 0 0 0

I TN,cl --TN,c2 A24 A25 A26

I TN,cl 0 A24 0 A36

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

U

I VI* N "_

V13_1

V24¢2

w22

k _33 J

=A -1 v=

( VI* N \

V13¢1

V24c2

wll

w22
!

w33

I 0 0 0 0 0

-- Tcl,N 0 Tcl,N B24 0 B26

0 --Tc2,N Tc2,N 0 B35 B36

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

V13cl = (gl _cl coS(_ci, -_1 _cl, _1)T

V24c2 = (_2 0c2 cos (_c2, -t2 q_c2, _2) T

A24 =--TN,1 S(RI*ll)

A25 = TN,2 S(R2"22)

A26 =--TN,3 S(R343)

A36 = TN,3 S(R3"33)

B24 = --Wcl,N A24

B26 = --Tct,N A36

Ba5 = T_2,lv Ae5

B3_ = --Tc:,N TN,3 S(R3"43)

I VI*N

V 2* N

V3* N

o911

w22

W33 J
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Table 13. Continued.

(b) External forces and inertia couoling:

fo= fa -X -D Au+ fg

fo

F01N

FO2N

FO3N

31011

M022

\ M033

ml gN + FAIN "_

m2gN + FA2N - m2(TN,cl V13cl - TN,c2 V24c2 + A24 wll

+A25 u,'22 -[- A26 w33)

m3 gN + FA3N - m3(ShN,cl V13cl + A2a wll + A36 w33)

MAll - S(wll) J1 wll

MA22 - S(_22) J2 _22

MA33 - ,-,¢(w33) J3 w33 )

• }TN,c = T,_,,¢S(_cc)
c = cl,c2

wcc = (q_c, _c cos ¢c, -0c sin ¢_)T

A24 wll -- TN,1 S;(w11) R1"11

A25 w22 =_TN,2 $2(w22) R2"22

A36 w33 = --TN,3 $2(o.,'33) R3"33

_i26 w33 = TN,3 $2(W33) R343
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Table 13. Continued.

(c) Suspension forces:

¢'FC1N "_ { kelly

FC2N 0

FC3N --kclN

fc= = H1 TCI + H2 TC2 =
MCll {111

MC22 0

\ M'C33 ] -_313

{111 = (RI*I × kcl)l = S(Rl*11) T1,N kclN

{313 = (R3"3 × kcl)3 = S(R3"33) T3.N kclN

{222 = (R2"2 × kc2)2 = S(R2"22) T2,N kc2N

{323 = (R3"4 × kc2)3 = S(R3"43) T3,N kC2N

0

kC2N

--kc2N

0

{222

-{323

TC2/

Elastic cable tensions:

TCj = max{O, Kj (gj - eoj)} j=l,2

Inelastic cable tensions:

/" TC: )', TC: = --(HT 9-1 H)-I HT D-1 fo

H TD -1 fo=kclTy t[F01Nm,-- F0_Q_3.]m3+{111T J1-1 M011-_31_ J3-' M033

g T 9 -1 fo = kc2TN [F0__q_2m2-- F---Q_lma_ + (22T 52-1 M022 - _32 T 53 -1 5'/033

g T D -1 Hi ml+m3 +{11T jl-1 4111 +_31T J3 -1 {313ral m3

H T 9 -1 //2 = _ +{22 T J2 -1 {222 + _32 T J3 -1 {323m2 m3

U T D -1 H2 = kclTN kc2N/m3+_31ff J3 -1 {323
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(d) Simulation equations:

¢'SFIN \

SF3N ]sf = D-'(fo + fc) = =

SA,II_ I

3M22 J

SM33 /

i*= A -1 sf

T_I*N = SF1

Table 13. Concluded.

(F01N -l- FC1N)/?nl

(F02N + FC2N)/m2

(F03N + FC3N)/m3

JI-I(M011 + ]1[Cll

J2-1(M022 + MC22

J3-1 (-h:/033 + d1,/C33

1_z13_1 = Td,N(SF3x -- SF1N - A24 SM11 - A36 SM33)

1724e2 = Tc2,N(SF3N -- SF2N + A25 8M22 - TN,3 S(R3"43) $5133)

&ll = SMlt

d_22 = 3M22

&33 = S_'/33
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Table 14. Simulation equation summary:

(a) Generalized velocity coordinates for bridle cables (C3, C4):

_t = {i3, jt, kt)

i3 -- spreader bar longitudinal axis, along R43

kt = perpendicular to i3 in plane of C3, C4

R3"5l = (g3x, O, g3z) T

Jr3, -- {i3,j3', k3'}

%',N = E2(O3)E3(¢3)

Tt,z, = Ex(¢t)

V3*5t _ Tt,u /_3"5N = VTt + AVTt

R3"53, = T3,,t R3*St = (g3x, -e3z sinCt, e3z cosCt) T

VTt _= Tt,3, /_3"53, -- (t3x, -e3z St, _3z) T

w3'= ¢3 kN + 03 j3'-- [j3' j3'+ kN k3'/cos0a]*w3

AVT -- -R3"5 x w3'

A VTt = BT w33

i g3z cosA¢ g3z sinA¢ )
BT = -£3x sinA¢ + g3z sin¢3 tan03 e3x cosA¢ + £3z cos¢3 tan03

-g3x cosA¢ -£3x sinA¢

where

A¢ _ Ct - ¢3

dual-lift system with spreader bar
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Table14. Continued.

(b) Configuration kinematics:

V

(VI*N

V2*N

V3*N

V4* N

Wll

w22

w33

=Au=

_I 0 0 0 0 0 0

I Tg,cl --Ty,c2 0 A25 A2s A27

I TN,cl 0 0 A25 0 A37

I TN,cl 0 TN, t A25 0 A47

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I

0 0 0 0 0 0 0

0

0

0

A48

0

0

0

I

VI* N "_

V13c1

V24c2

VTt

wl_

w22
w33

w44

z

? VI* N

V13d

V24c2

VTt

Wll

w22

w3a

\ w44 /

A- l,v

I 0 0

-- Tcl,N 0 Tcl,N

0 --Tc2,N Tc2,N

0 0 --Tt,N

0 0 0

0 0 0

0 0 0

0 0 0

o o o 0

0 B25 0 B27

0 0 B36 B37

Tt,N 0 0 -BT

0 I 0 0

0 0 I 0

0 0 0 I

0 0 0 0

0

0

0

B4s

0

0

0

I

VI*N

V2*N

V3*N

V4*N

wll

W22

W33

0344

]

A25

A26 =

A37 =

A_T =

A27 =

A47 =

A48 =

-TN, IS(RI*Iz)

TN,2S(R2*22)

TN,3S( R3*33)

TN,3 S(R3"43)

A37 - A_7 = --TN,3 S(R343)

A37 + TN,tBT

TN,4S(R4*54)

B25 = - Tcl,N A25

B36 -- Tc2,NA26

B27 = -Tcl,NA37

B37 = --Tc2,N A_7

B48 = -Tt,NA48
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Table 14. Continued.

(c) Applied forces and inertia couplings:

fo= fg+ fa -X -D Au

/FO1N \

FO2N

F03N

FO4N

M041

M022

M033

M044

ml gN -t- FAIN

m2 gN + FA2N - m2[TN,d V13_1 - TN,_2 V24_2 + A25 wll

-f-A26 w22 + A27 '_33]

m3 gN + FA3N - m3[TN,cl V13cl + A25 wll + A37 _33]

m4 9N + FA4N - m4[J'N,cl V13cl + _'g,t VTt + A25 '_11 + A47 w33 + A4s w44]

MAll - S(_11) Jlwll

MA22 - S(w22) J2 w22

MA33 - S(_33) J3 _33

MA44 - S(w44) J4 w44

TN,c = TN.cS(wcc) c= 1,2,3,4, cl, c2, t

w'c_ = (¢_, O_cos ¢_, -_ sin ¢_)T c = cl, c2

wt = i3 Ct + .13'

' 1 --sin¢3tanO 3 --cos¢3tanO 3
[

= I 0 cosA¢ sinA¢02_ t

[0 -sinA¢ cosA¢

Ji25 _11 = --TN4

_126 ¢O22 ---- --TN,2

A27 w33 = --TN,3

A37 w33 = --TN,3

A47 u.,33 : --TN,3

w33(2)

\ _33 (3) ]

S(wlz)S(R1*11) Wll = TN, I $2(w11) R1"11

S2(w22)R2*22

S2(w33)(R3*33 - R3"43)

S2(w33)R3*33

S2(w33) R3"33 + TN,t S(wtt) BT w33 + TN, t BT w33

A4s w44 - -TN,4 S2(w44)R4*54
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(d) Suspension force:

Table 14. Continued.

fc = H TC =

( kclN 0 0 0

0 kC2N 0 0

--kClN --kC2N kC3N kC4N

0 0 --kC3N --kC4N

_111 0 0 0

0 _222 0 0

--_313 --_323 _333 _343

0 0 --_434 --_444

TC1

TC2

TC3

TC4

fc=As---

( kClN 0 0 0

0 kC2N 0 0

--kClN --kC2N i3N ktN

0 0 --i3N --ktN

_111 0 0 0

0 _222 0 0

--_313 --_323 _3X3 _3Z3

0 0 --f4x4 --f4z4 J

TC1

TC2

FTx

FTz

TC1,..., TC4 = cable tensions for C1,..., C4

Ft=kc3TC3 + kc4TC4=i3FTx+ktFTz

_11 = RI*I × kcl

_31 = 1=t3"3 × kcl

_22 = R2"2 × kc2

_32 = R3"4 x kc2

_33 = R3"3 x kc3

_43 = R4"5 x kc3

_34 = R3"4 × kc4

_44 = R4"5 × kc4

_3x = g3z jt

_4x = R4"5 x i3

_3z = -e3x jt

{4z = R4"5 x kt
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Table 14. Continued.

R13N = 61 kclN : f TN,cl V13cl dt

R24N = 62 kc2y : f TN,c2 V24c2 dt

R3*5N = f TN,t (VTt + AVTt) dt

R35N = 63 kc3g : R3*5N + f S(R3*3a) w33 dt

R45N = 64 kc4:v = R3*5N + f TN,3 S(R3"43) w33 dt

Elastic cable tensions:

TCj=max{O, Kj (gj-6oj)} j=1,...,4

Constraint force parameters for inelastic cables:

S : TC : -[H T D- 1 H]- 1 H T D- 1 fo

HITD-_ fo = kcl T (FO1N/ml - FO3N/m3) + _ll_T JI-_MOI_ - (31aTj3-_M03a

H2T D-_ fo = kc2 T ( FO2N /m2 -- FO3y /m3) + (222Tj2-1/lI022 -(32_J3-1M033

H3T D-_ fo = kc3 T ( FO3g /m3 -- FO4g /m4) + (333T j3-_ M033 - (43Tj4-1M044

H4TD-l fo = kc4 T (FO3g/m3 -- FO4g/m4) + (343T j3-1M033 - (44TJ4-1]kr044

H1TD-1H1 = #13 + (111TJ1-1(111 + (313TJ3-1(313

H2TD-1H2 : #23 + (222Tj2-1(222 + (32TJ3-1_323

H3TD-1H3 = #34 + (333TJ3-1(333 + (43TJ4-1(434

H4TD-1H4 = #34 + (343TJ3-1(343 + (44Tj4-1(44a

H1TD-1H2 = kcl T kC2N/m3 + (313TJ3-1(323

H1T D-1H3 = -(kcl T kC3N/m3 + (313TJ3-1(333)

H1TD-1H4 = -(kcl T kC4N/m3 + (313TJ3-1(343)

H2TD-1H3 : -(kc2y v kC3N/m3 + (323Tj3-1(33a)

H2TD-1H4 = -(kc2 T kc4g/m3 + (323TJ3-1(343)

H3TD-1H4 = #34 kc3yv kc4x + (333TJ3-1(343 + (43TJ4-1(444

where

#13 = (ml +m3)/ml m3

#23 = (m2 + m3)/m2 m3

#34 = (m3 + m4)/m3 m4
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(e) Simulationequations:

Table 14. Concluded.

sf = D-l(fo+ fc) =

i_= A -1 sf

_'1" N = SF1N

¢'SF1N

SF2N I

SF3N I

SF4N I

Sitlll I

SM22 [

(F01N + FCIN)/ml

(F02N + FC2N)/m2

(F03N + FC3N)/m3

(F04N + FC4N)/m4

J1-1(51011 + MCll)

J2 -1 (M022 + MC22)

J3 -1 (M033 + MC33)

J4 -1 (51044 + MC44)

(oll = SMll

&22 : $5122

;b33= $5_33

_b44 = SM4a

V13cl = Tcl,_,,[SF3N - SF1N - A25 S_[ll - A37 SM33]

V24c2 = Tc2,N[SF3N -- SF2N h- A26 SM22 - A_7 SM33]

rJTt = Tt,N[SF4N -- SF3N - A4s SM44] - BT SM33

9O

i1!1]i



Table 15. Simulation Equations: Degenerate-Body Approximation of

Dual-Lift System with Spreader Bar

(a) System and spreader-bar kinematics:

1T
3. 4

Degenerate-body dual-lift system.

Parameters:

ml

m2

m3, J3 = J3' dlag {0,1,1}
m4

_ol, Ro2, Ro3, Ro4 = 1o3, R3"3, R3"4

i3 = spreader-bar longitudinal axis

(R34, R3"4, R3"3) = (-R34 i3, -R3"4 i3, +R3"3 i3)

T3,N = E2(e3) E3(_,_)

T,,3 : El(eL)

wa3 = (j33, kN3 ) = 0 = W---33 "_
_3 ¢3

cos 03
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Table 15. Continued.

(b) Kinematics:

V2*N [

= V3* N [

V4.*N]

\,3-2 "

=7_u=

U

VI* N

V13cl

V24c2

VTt

=_'-1 V=

I 0 0

I TN,el -TN,_2

I TN,_I 0

I TN,_I 0

0 0 0

-Tcl ,N 0

0 --Tc2,N

0 0

0 0

0

0

0

Tm, t

0

0

A25

A35

A45

I)

0 0

T_,N 0

Tc2,N 0

-T_,N Tt,N

0 0

f VI*N "_

V13cl

V24c2

VTt

\a3)

0

B25

B35

-BTt

I

( VI*N

V2* N

V 3*N

V4* N

Auxiliary expressions:

A_5 = +Tg,z S(i33) W--33 = ( +k3N, --cos03j3N)=
+ sin 03 cos ¢3
+ sin 03 sin _b3

+ cos 03
+cos. :,o:::)-- cos 03

0

R ----1

Submatrices of A,A :

A2a = -TN,a S(R34a) W3a = R34 A_5

A35 = TN,3 S(R3"33) W33 = R3"3 A_5

A45 -- --TN,3 S(R353) W33 = --TN,3 S(-R3"33 + R3"53) W33

B25 =--T¢I,N A35

B35 = -T_2,N TN,3 S(R3'43) W-33 = R3"4 T_2,N A_5

AVTt = -(R3"5 x _z3')t = BTt c_3

_-ft = -S(R3*5t) Tt,3 W-33 = (

g3z cos ¢*

-g3x sin qit

--e3.T, cos Ct

g3z sin Ct cos 03

g3z sin 03 + g3x cos Ct cos 03

-e3x sin Ct cos 03
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Table 15. Continued.

(c) Applied forces and inertia reactions:

fo= fg+ fa -X -D fiu

A = W A = diag{I, I, I, I, W-33} _[

fo

( FO1N \

FO2N

FO3N

FO4N

\ M033 /

ml gN + FA1N

m2 gN + FA2N - m2(7"N,cl V13cl - TN,_2 V24_2 + A2s a-3)

= m3 gN + FA3N - m3(_/'N,cl V13_1 + Aa5 a_-_)

m4 gg + FA4N - m4(_i"N,cl V13cl + 7"g,t YTt + ft4_ -_--3)

MA33 - S(w33) J3 w33 - J3V_33 _-3 )

Transformation rates:

TN,_ = TN,_ S(wc_) c = cl, c2, t

wc_---(¢c, 0¢ cosec, -0_ since) T c = el,c2

_;tt =
f 1 0 - sin 030 cos ¢t sin Ct cos 03 /

1
0 -sinCt cosCt cos 03/

03 =Wtt (_t

Other submatrices of A u:

z13 = H_33 c_3 = -03 ¢3 (cos 03, O, sin 03) T

Z2N = A'25 -_ = TN,3 [$2(w33) + S(zl3)] i3a

--032 COS 03 COS _33 + 203 _3 sin 03 sin ¢3 -- O_ cos 03 COS¢3
= --03_ cos03 sin¢3--203 _a sin03 c0s¢3--_32 cosO3 sin¢3

--0] sin 03

.A25 a-3 = 1234 Z2N

• "--L.--
A35 a3 = R3"3 Z2N

f145 o_-_= TN,3[(S2(w33) + S(zl3)) R353 + S(w33) R3531

where

)

R353 = -R3"33 + R3"53

R35a = T3,t VTt
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Table 15. Continued.

(d) Suspension forces:

( kclN

0

f c = H TC = --kcl N

0

--_313

Elastic cables:

0 0 0

kc2N 0 0

--kc2N kc3N kc4N

0 --kc3N --kc4N

--_323 _333 _343

TC1

TC2 I

TC3 I

TC4 /

TCj = max{O, Kj (ej - goj)} j = 1.... ,4

Inelastic cables:

H=W T H=

I kclN 0 0 0

0 kc2N 0 0

--kclN --kc2N kc3N kc4N

0 0 --kc3N --kc4N

--_313 --_323 +_333 +_343

_3j3 ----W3 T _3j3 j = 1,...,4

TC = -[]i7 T _-1 _]--1 _T -_-1 wT fo

W = diag{I, I, I, I, W33}

D = W T D W = diag{ml I, m2 I, m3 I, m4 I, -_}

J----3= W3 T J3 W-33 = J3' diag{1, cos 2 83}
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Table 15. Concluded.

(e) Simulation equations:

s--f = -_-1 wT (fo -4-fc) =

1
i_ = A sf

I)1" N = ,-,¢F1N

_'SF1N '_

SF2N

SF3N

SF4N

SM3 /

V13cl = Tcl,N(SF3N - SF1N - R3"3 A_5 SM3)

V24_2 = T_2,N(SF3N - SF2N + R3"4 A_5 S--_--3)

l/Tt = Tt,N (SF4N - SF3N) - "-_-Tt

[_-'3= SM3

(F01N + FC1N)/rnl

(F02N + FC2N)/m2

(F03N + FC3N)/m3

(FO4N -4-FC4N)/m4

j-_-i _--_3T (M033 + MC33
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APPENDIX E

SIMULATION EQUATIONS FOR A MULTILIFT SYSTEM WITH PENDANT

SUSPENSION

INTRODUCTION

This appendix gives simulation equations for the

multilift system shown in figure 7, in which m heli-

copters support a load with a single cable attaching

the load to each helicopter. This system was sug-

gested in discussions by P. K. A. Menon (ref. 18) as

one of potential interest using remotely controlled heli-

copters. These equations can be obtained by extension
of the results for a single helicopter with single-cable

suspension. Results are also given for the special case

in which all attachments are at the c.g.'s of the rigid

bodies; these include the equations for the point-mass

approximation of the system.

System and constraints- The n-body system

shown in figure 7 consists of a load B_ sus-

pended, pendant-style, from m = n - 1 helicopters,

B1,..., Bin, by cables C1,..., Cm attached to the he-

licopters at R1 .... ,Rm. The load and short cables
and the hardware attaching the load to the pendant

vertex at Rn are considered a single rigid body. If the

cables are inelastic, then each imposes one holonomic

constraint on the motion of a helicopter relative to the

load by fixing the distance

ej(r) = IRjnl

= IRn*N+TN,, Rn*nn--Rj*N--TN, j Rj*jj I = toj
(142)

For inelastic cables

c = m = n- 1 and d = 6n- m (143)

Generalized velocity coordinates The general-

ized velocity coordinates u, are to be selected so as to

separate motion caused by cable stretching from mo-

tion with invariant cable lengths. This is readily done

by extension of the treatment of a single-cable suspen-

sion from a single helicopter given in appendix B. The

coordinates u consist of the c.g. velocity of a refer-

ence body, taken as the load in this case, Vn*N, and

the m cable velocities given by their components in

cable axes, {Vinci j = 1,...,m}. These are aug-
mented by the angular velocities of all n rigid bodies to

obtain 6n coordinates for the elastic suspension. For

the inelastic suspension, the cable-stretching coordi-

nate _j of each cable velocity is nulled, leaving 6n - m
coordinates.

To assemble the kinematic relations v(u), u(v) note

that the c.g. position of each helicopter is given by

Rj* g = Rn*N+Rn*ng--Rjng--Rj*jg j = 1,... ,m
(144)

whence its c.g. velocity is given in terms of coordinates
from "/2 as

Vj* N = Vn* N - TN,n S(Rn*nn) corm - TN,cj Vjncj

+TNd S(Rj*j._) wjj j = 1,...,m (145)

This can be rearranged to give the cable velocities in
terms of the coordinates of v as

Vjncj = Tcj,N (Vn*lv - Vj*N + TN,j S(Rj*jj) wjj

--TN,, S(Rn*n,_) _on,,) j = 1,..., m
(146)

The kinematics v(u), u(v) can be obtained from equa-

tions (145) and (146), and are presented in part a
of table 16. The coefficient matrices A, A -_ contain

3(n + 1) rows from the unit matrix, corresponding to
coordinates that are in both u,v, and the remaining

rows contain only transformations and cross products
from Coriolis velocities.

External forces and inertia coupling- The ex-

ternal forces and moments on the configuration, fo,

are assembled in part b of table 16. Its vector el-

ements are denoted (F01,...,M0n) for convenience

in later equations. The .fo term contains forces

and moments on the rigid bodies due to weight,

(mlg,...,mn g), aerodynamics and helicopter rotor

output, (FA1,...,MAn), and the inertia coupling
terms X + DAu. The submatrices of A require only

time-derivatives of transformations, and the corre-

sponding terms in fo due to Au are all Coriolis accel-

erations of the cables wcj x Vjn, and centrifugal ac-

celerations of the c.g. attachment-point moment arms

for all the bodies, wj x (wj x Rj*j).

PRECEDING P_-_GE i_LANK l',iOi"FiL_viLD
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®

B1 ..... Bn

C1, ..., Cm

(mj, Jj, Rj*jj), j = 1,..., n
/'1

_oj, j = 1.... ,m

Rigid bodies

Cables, m = n - 1

Rigid body parameters

Reference cable lengths

Figure 7. Multilift pendant suspension.
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Suspension forces- The resultant forces and mo-

ments applied by the suspension to the rigid bod-

ies of the configuration fc, is given in part c of ta-
ble 16. Since the number of cables and constraints is

equal, the configuration vectors for the cable tensions

{H1,..., Hm} comprise a basis of the suspension force
space which can also be used to give fc for inelastic ca-

bles; as a result, only the cable-tension formulas differ
for the elastic and inelastic cable models. For inelas-

tic cables, it is necessary to invert the m × m matrix
HT D -1 H.

Simulation equations- Finally, the equations for
are assembled in part d of table 16 from i_ = A -1 sf.

Here, sf refers to the specific forces and moments

on the configuration due to fo-t-fc. Its vector el-
ements are denoted SF1,...,SMn for convenience.

The equations for Vn* N and {wjj,j = 1,...,n} are
identical to those obtained from the Newton-Euler

equations; the cable-velocity equations depend on dif-
ferences of specific forces and moments.

Special case of e.g. attachments on point-mass
bodies- A simpler set of equations is obtained if all
cable attachments are assumed to be made at the he-

licopter and load c.g.'s (Rj*j = 0, j = 1,...,n).
Results are listed in table 17 and are obtained by im-

posing the c.g. attachment-point condition on the re-
sults given in table 16. The matrices A, A -1 become

block diagonal for the linear and angular velocity co-
ordinates; this accounts in part for the separation of

these coordinates into independent subsystems. Fur-

thermore, since the suspension can apply no moments

to any body (MCj -- 0, j = 1,...,n), the attitude

dynamics of each rigid body are independent of all
other coordinates of the configuration motion, except

through the aerodynamic moments, and are defined by

the usual Euler equation for independent rigid bodies

(table 17).

The remaining equations in table 17 govern the lin-

ear velocity coordinates and are also simulation equa-

tions for the point-mass approximation of the system.

The c.g. velocities now depend only on cable velocities

in equations (145) and (146), and in the assembled ve-

locity kinematics given in table 17. The applied forces
have no coupling with the rigid-body angular veloci-

ties through .4u, although such a coupling can occur

in the aerodynamics. The interaction forces for the in-

elastic suspension are now independent of the applied

moments on any body. The corresponding cable ten-
sions still require the inverse of an m × m matrix. This

is given in table 17 as a sum of a diagonal matrix of
mass ratios and the positive semidefinite Grammian
of the cable directions, and can be inverted without

computational difficulty. The final result is almost as

simple as the elastic suspension formulation using rigid

body coordinates. It uses cable-velocity coordinates
and accommodates both inelastic and elastic suspen-

sions with explicit calculation of cable tensions in both

cases.
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Table 16.

(a) Configuration kinematics:

v--Au

( VI* N _ --TN,cl 0

V2* N 0 --TN,c2

V ra *N 0 0

Vn *N 0 0

o311

w22

03T/2 n

k _n n )

Simulation equation summary:

0 I

0 I

--TN,cm I

0 I

multilift with pendant suspension

Al,n+l 0 0 A1,2,_ "_

0 A2,n+2 0 A1,2.

0

0

0 Am,n+m A1,2n

0 0 0

Vinci

V2nc2

VTt2ncm

Vn* N

w22

u=A -1 v

Vinci
V2nc2

UIFeYtcm

Vn* N

Wll

w22

wren

¢_rt n

[ --Tcl,N

0

0

0

0

-- Tc2,N

0

0

--Zcm,N

0

0 TcI,N

0 T_2,N

Bl,n+l 0 0

0 B2,_+2 0

0 0 Bm,n+m

0 0 0

B1,2n "_ l" VI*N I

I
] Wll ]

I'/
k _Tt n I

Aj,n+j = TNj S(Rj*jj) j = 1,...,m

A1,2n =--TN,n S(Rn*nn)

Bj,n+j = Tcj,N Ay,,,+I j = 1,..., m

.Bj,xn = Tcj,Y A1,2n j = 1,..., m
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Table 16. Continued.

(b) Applied forces and inertia coupling:

FOln

fo = fg + fa- X- DAu =

FOm N

FOnN

MOll

MOnn .

ml gN + FA1N - ml Alu

mm gN -k-FAmN -mm ftmu

MAnn - S(_vn_) Jn _zn,_

where:

Aj = jthrow of A

.4j u = --TN,cj S(wcjcj) Vjncj - TN,j S2(_ojj) Rj*jj + Ty,n S2(tonn) Rn*n_

wcjcj = (_bcj, Ocj cOS¢cj, -Ocj sin¢cj) j = 1,...,m

j ----1, ..., m

I01



(c) Suspension forces:

kclN

fc = H TC =

0 kc2N

Table 16. Continued.

0 0 kcmN

--kClN --kC2N --kCmN

0 0

_222 0

0 0 _mmm

-_nl,_ --_n2n -_nm,_

_jjj = (Rj*j × kcj)j = S(Rj*jj) Tj,N kcjg

_njn = (Rn*n × kcj),_ = S(Rn*n,_) T,_,N kcjg

TC = ! (max{O, Kj (ej - eoj)}, j = 1, ..., m) T

t -- [H T D- 1 H]- 1 H T D- 1 fo

o

0

f TC1,

TC2

\ TCm ]

i j ...,m
1,

(Elastic cables)

(Inelastic cables)
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Table 16. Concluded.

(d) Simulation equations:

( SFIN

sf = D-l(fo+ fc) =

SFnN

SMll

1

\ SMnn

(F01N + FC1N)/ml

(FOnN + FCnN)/mn

JI-I(M011 + MCll)

Jn -1 (MOnn + MCn,_)

i_=A -1 sf

Vjncj -- Tcj,N[SFnN -- SFjN + Aj,,_+j SMjj + A1,2,_ SMn,,]

_rn* N = SFnN

_bjj = SMjj j = 1,..., n

j = I,...,m
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Table 17. Simulation equation summary for c.g. attachments:

multUift with pendant suspension

c.g. Attachments: Rj*j =0 j = 1 .... ,n

Angular velocity coordinates:

(vii = Jf_[MAjj - S(_vjj) Jj wjj] j = 1,...,n

Linear velocity coordinates

(a) Configuration kinematics:

( --TN,_I 0

0 --TN,_2

0 0

0 0

0 I_

0 I

-TN, cm I

0 lj

( Vlncl "_

V2nc2

Yiancrn

\ Vn* N ,)

--Tcl,N 0

0 --T_2,N

0 0

0 0

0

0

--Tcm,N

0

(b) Applied forces and inertia coupling:

I FO1N \
fo= i.

\F N,

FOjlv = rnj gN + FAjN - Iaj TN, cj S(wCjcj) Vjncj

WCjcj = (¢cj, _cj cos¢cj, -_cj sin¢cj)

FOnN = Ian gN + FAnN

Vlncl

V2nc2

Y?72_cm

Vn* N

TcliN _ ( VI'*N _

Tc2,N V 2*N

Tcm,N Vm* g

S \ Yn* g

]
,j = 1,...,m

J
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Table 17. Concluded.

(c) Suspension forces:

FCIN

f c -_

or

FC2N

FCmN

FCnN

=HTC=

kClN

0

0

--kclN

0

kC2N

0

--kc2N

kcm N

--kcmN J

FCjN = kcjg TCj j=l,...,m

m

FCng = - _j=l kcjg TCj

TC = I (max{O, Kj (ej - eoj)}, j = 1,..., m) T

t -[H T D -1 H] -1 H T O -I fo

(Elastic cables)

(Inelastic cables)

H T D-lfo =
kclTv (FOIN/ml--FOnN/mn) ]

kcm T (FOmN/mm -- FOnN/mn) /

l [diag{ _,HT D -1 H=-_-_

K = [kclN, kC2N, ... , kemN]

(d) Simulation equations:

sf = D-I(fo+ fc) =

j= l,...,m} + KTK]

ISFIlI O1N+ ClNJmll
SFnN \ (FOnN + FCnN)/mn ]

it = A -1 sf

(7n* N = SFnN

(Zjncj = Tcj,N (SFnN - SFjN) j = 1, ..., m
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APPENDIX F

LINEARIZED EQUATIONS FOR DUAL-LIFT

SYSTEM WITH SPREADER BAR

INTRODUCTION

Linearized equations of motion (LEOMs) are given

for the dual-lift system with spreader bar for static

equilibrium reference flight conditions and assuming

inelastic suspension. These are derived from the non-

linear EOMs, equation (14); LEOMs for general slung-
load systems and for general reference flight conditions

are given in table 4, and these are specialized to static

equilibrium in equation (41). The dual-lift system ge-

ometry and details of the nomenclature arc given in

appendix D (fig. 6), and notation for the configuration
vectors and matrices in the LEOMs follows that estab-

lished in section 6. Standard linearized aerodynamics

are assumed for each body axis as stated in section 6.

Various secondary effects arc neglected, including in-

terbody interferences.

Coordinates and kinematics- Coordinates are

often selected for linear analysis to exploit any nat-

ural decomposition of the perturbations into nearly

decoupled subsystems of forces, controls, and motion
variables. For a single-symmetric aeronautical body

aligned with the air-velocity vector, motions in the

plane of symmetry containing (Va, ib, kb) are nearly
decoupled from its lateral-directional motions. For the

multibody dual-lift system in hover, all mass lies in or

near a plane defined by the spreader bar and local ver-

tical (i3, kN), and the system modes of motion in this

plane are nearly decoupled from its yawing and pen-
dulum modes of motion lateral to this plane. These

two decompositions can be made coincident at hover

by aligning the helicopters in or perpendicular to the

plane of the suspension; this is done in references 6
and 7 where a comprehensive description of the nat-

ural modes is given. In static equilibrium at cruise

speeds, the spreader-bar heading may be at an angle

to the flight path, with the helicopters arranged as in

formation flying, and with the load-bar triangle swept

back to moderate angles from the local vertical, if there
is significant load specific drag (fig. 8). In this case,

the aerodynamics can couple the motion in and latcral

to the plane of the load and spreader bar.

For the present work, the coordinates are selected

to maximize the longitudinal-lateral aerodynamic de-

coupling; this is expected to be a satisfactory starting

set for analysis of the natural modes. The generalized
velocity coordinates u, and the kinematics v(q, u) are

given in part a of table 18. These differ from those
in appendix D in the use of body axis coordinates of

the reference-point velocity relative to the mean wind,

VAle, and tether cable velocities relative to body axes,

AV13cl, AV24c2, where

AV13 = V13- wl x R13

AV24 = V24 - w2 x R24

These cable velocities and the cable axis transforma-

tions are given in terms of cable angles relative to he-

licopter body axes as given in part a of table 18, and
discussed in appendix A. Note that u contains all 24

velocity coordinates of the system with elastic suspen-
sion. This allows an easier statement of results. Re-

sults for the 20 coordinates of the system with inelastic

suspension are obtained by deleting columns 6, 9, 10,
and 12 from A corresponding to the scalar coordinates

AV13 * kcl, AV24 * kc2, VT * i3, VT * kt of u, or

by deleting appropriate rows and columns from the co-
efficient matrices of the LEOMs derived from A for the

system of 24 coordinates, as is done at the end of this

analysis.

The generalized position coordinates q and the kine-

matic relation u(q,q) are included in part a of ta-

ble 18, for the 20 coordinates of the inelastic system.
The coordinates u, q selected here are reference-point

coordinates consisting of the c.g. position, and ve-

locity of body B1, f VAl_dt, VAle, plus additional
position coordinates _ = {A_cl,...,_4}, which are

fixed in static equilibrium, and velocity coordinates

= {_V13- icl,... ,w44}, which are zero in static
equilibrium. The cable angles Ac_cl, Aac2 in _ are

angles relative to helicopter body axes. The reference-

point position coordinates, f VAl*ldt in q, have no

useful physical meaning, and they do not occur in the

LEOMs. Their derivatives, VAle, do occur, and these
are meaningful and convenient in aeronautical work.
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(a) Plan view

F4 = m4 g + FA4

(b)Side view

Figure 8. Dual-liN configuration in static equilibrium.
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Linearized EOMs for static equilibrium- The

LEOMs are listed in part b of table 18, for both the

state equation for (Sq, 5u) and the second-order differ-
ential equation for 5q. These repeat equations (46b)

and (47), which were obtained by specializing the

equations in table 4 for general slung-load systems

and general (accelerating) reference flight conditions to

static equilibrium and for reference-point coordinates,

q, u. The primitive configuration vectors, matrices,

and perturbations va, fba, T, Fbs, Fbva, 5q, 5u, 5it,
A are defined in section 6. The stability and control

derivatives Fb6, Fbva are assumed to be given, along

with the reference flight condition and the correspond-

ing values of vao, fbao, To. The matrix, _u, is defined
in table 4 and has one nonzero colunm for static equi-

librium and reference-point coordinates (eq. (46a)).

Results for the coefficient matrices of the state equa-

tion, Mo, Q_, Q'_, Qq, for the dual-lift system are given
in parts c-h of table 18. These matrices are expanded

to a working form; that is, they are partitioned into

submatrices corresponding to the subdivision of the co-

ordinates q, u in part a of table 18, and the submatrices

are given in terms of natural vectors and matrices us-

ing coordinate frames and formulations as they would
be found in a working nonlinear simulation based on

appendix D. MACSYMA was used to carry out routine

matrix product expansions.

Acceleration coefficient matrix- Results for the

symmetric acceleration coefficient matrix,

Mo = AToDAo are given in part c of table 18.
The matrix .hlo-I serves the general function of

mapping perturbation forces and moments from

(Q'_ 5u + Qq 6q + Q6 A) to perturbation accelera-
tions 5'h. Details of the map describing the sources of
effects on each element of 5/t are inaccessible analyti-

cally but can be given from numerical inverses of Mo

in specific cases.

Control term- The control term

Q,sA = A T To Fb6A is given in part doftable 18,
and contains all control derivatives. Controls for the

two helicopters 51, 52 are represented. Load controls

are omitted but can be added routinely if these are of

interest. The matrix To transforms the derivatives of

the body axis components of force in Fb5 to derivatives
of their inertial components, and the matrix Ao does

bookkeeping on the coordinate frames and takes cross

products with moment arms to generate the perturba-

tion moments due to perturbation forces. The vector

elements of Q_A and the sum, Q' 6u + Qq 5q + Q_ A

are perturbation forces and moments with units and
coordinate frames consistent with the usual listing of

forces and moments in the configuration force vectors

fa, fc, etc.

Velocity coefficient matrix The velocity coef-

ficient matrix Q_, in part e of table 18, contains
all the stability derivatives of the system, along

with terms in the reference velocity. The matrix

Fray = To Fb_a ToT transforms Fb_a to gradients

of the inertial components of the forces relative to the

inertial components of the air velocity vectors. Its sub-

matrices are conveniently indicated by the notation
FA1NvN,..., MA44,_ defined in part e of table 18.

The matrix Ao in Q_ does bookkeeping on coordinate

frames and applied moment arms. Every submatrix

of Q_ maps an input perturbation from a vector ele-

ment of _u to an output perturbation force or moment

corresponding to the elements of fa, and has units

and input-output reference frames consistent with this
function. Every column is associated with an element

of 5u, as indicated in part e of table 18, and this de-

fines the input reference frame and input units for all

its submatrices. Every row is associated with an el-

ement of Q6A, and this defines the output reference

frame and output units for all its submatrices.

Position coefficient matrix- The position coeffi-

cient matrix Qq is given as a sum of two parts, Qlq

(part f of table 18), which contains the reference tra-
jectory forces fg, fbao; and Q2q (part g of table 18)
which contains a combination of stability derivatives

and the reference velocity. The nonzero submatrices

of Qq map angle perturbations from 5q to perturba-
tion forces and moments corresponding to the vector

elements of fa, and their units and output reference
frames are consistent with this function. Each column

of Qq gives the effect of an element from 5q; the refer-

ence point position perturbation has no effect on the

system motion, and all other elements of 5q have a
nontrivial effect.

The position coefficient matrix requires the gradi-

ents of several configuration vectors containing A(q),

T(q), and these entail gradients of coordinate trans-
formations and the matrix BT. A general formula

for the gradient of coordinate transformations is given

in appendix A. A treatment of the gradient of BT

is appended in part h of table 18. This matrix oc-
curs solely in the submatrix A47 of A and contributes

to the seventh row of Qlq in the derivatives of p13,
where #13 is a moment due to load external forces,

F4 = m4 g + FA4, and is given in $:'3 coordinates by

_ti.3 = ST T Tt,N F4N

= ([j3' j3'÷kN k3' sec_)_]R3*5 × F4)3
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A convenientscalarform is givenin part tl of ta-
ble18.Theunit vectors{j3',k3'} areassociatedwith
thespreaderbar,andtheircoordinatesin Y3, _'N are

noted in part h of table 18. The vector, ILl3 is seen

to be a function of the variables {¢t, Ca, 0a, _b3} from
q, and the required derivatives are obtained routinely,

and are given in part h of table 18.

For static equilibrium, tile reference trajectory forces

in Qlq, satisfy

FI + F2 +F3 + F4 = 0

where Fi is the total applied external force on Bi

(eq. (38)). This has been used to simplify several sub-

matrices of Qlq. The toad and spreader-bar aerody-
namics occur only in Ql17, Q11s in cohmms 7 and 8,

corresponding to 6a3, 6a4. In sufficiently low-speed

flight these can be neglected, and most terms in

columns 7 and 8 drop out, leaving only load-bar weight

effects. An approximate view of the equilibrium forces

on each body is given by assuming that the load-
bar aerodynamic forces are dominated by drag, and

that each helicopter supports its share of the load-bar

weight and aerodynamic force:

F3 = m3 g + FA3 _ rn3 g- D3 iva

F4 = m4 g +FA4 _ m4 g- D4 iva

L = F3 + F4 -._ (m3 + m4)g - (D3 + D4) iva

F1 = ml g + FA1 = -FC1 = -TC1 kcl -_ -pL

F2 = rn2 g + FA2 = -FC2 = -TC2 kc2 -_ -(1-p)L

where ira is the direction of the reference air-velocity

vector, VA0; L is tile load to be supported by the two

helicopters, and is transmitted to them by means of

the tether cable forces, FC1, FC2; and p is the load

fl'action supported by the helicopter B1. If these are

substituted in Qlq, then only the load-bar weight and

drag are present. In general, cable forces FC1,FC2

can include nmtually cancelling tugging of the heli-
copters against each other through the spreader bar,

but is not present in the optimized reference config-

uration assumed in the expressions above. The net

external forces on the helicopters are directed oppo-

site the cables in equilibrium. Finally, it is noted that

all moments MA1,... ,MA4 drop out of the gradi-

ent in Qlq. The terms in Qlq 6q are perturbation
forces and moments. A typical perturbation force is

illustrated by the contribution from the submatrix in

row 2, column 5:

Tcl,NS(F1N) WIN 5al = (F1 x dal)cl

dal = il 5Cl +j1'601 + kN 6g;l

F1 .._ -pL

This is seen to be the cable-axis components of the

cross product of the net external force on B1 with

the total attitude perturbation of B1. The load-bar

drag at cruise speeds appears in L. A typical pertur-

bation moment is illustrated by the contribution from
the submatrix in row 5, column 5.

--AT S(F1N) _V1N 5al = -(R1"3 x (F1 x dal))l

which is the moment about the c.g. of B1 of the

perturbation force described above applied at the

tether cable attachment point, R3, and given in 9cl

components.

The second term, Q2q, contains the stability deriva-

tives of all bodies except the reference body, B1,

in combination with the reference air-velocity vector,

VA0, and is zero in hover. More generally, its terms

can be rationalized by forming the vector Q2q 6q. In
the result, all terms have the same form; for example,
the third element is

Tc2,N FA2NvN S(V.40N)[IV1N 6c_1- I'V2N 6c_2]

= Tc2,N FA2NvN (VA0 x (dal - dct2))y

Tc2,N FA2NvN

x[kNN VAO 6(02 -0_) -jhN VAO 6(g'2 -¢1)1

where dc_l, dc_2 are attitude perturbations of B1, B2
as above, jh is perpendicular to the reference veloc-

ity in the horizontal plane, and the expanded ap-

proximate result assumes that the body and level-

heading axes 9_1, Y2,bCH are nearly parallel. The

result is an aerodynamic perturbation force due to

the perturbation velocities kN V !A0 6 (02 - 01),

jh VAO 6(¢2 - ¢1)- All terms in Q2q _q similarly con-
sist of aerodynamic perturbation forces and moments

from bodies Bi, i = 2, 3,4 due to the perturbation

velocities kN VAO 5(0_ - 01), jh VAO 6(¢i - ¢1),

which are perpendicular to the flight path and depend

on differences in attitude perturbations from those of

the reference body.

Second-order ODE Finally, the state equa-

tion is reduced to the 20 coordinates of the sys-

tem with inelastic suspensions by deleting the rows

of Mo, Q_, Qq, Qe and the columns of Mo, Q_ cor-

responding to the cable-stretching coordinates of u

(scalar coordinates 6, 9, 10, and 12). The second-order
ODE for 6q is obtained from this result as defined in

part b of table 18; that is, Mo, Q_ are post-multiplied
by the block-diagonal matrix, U (part a of table 18).
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This modifies tile columns of these matrices to convert

from the linear cable velocities and angular velocities

of 6t,, 6_ to tile Euler-angle rates of 60, 60".
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Table 18. Linearized equations of motion for dual-lift system

(a) Coordinates and kinematics:

V

/ VI*N

V2* N

V3* N

V4* N

o;11

o;22 Io;33

\ 0344 J

=Au+w=

/TN, 1 0 0 0

TN,1 Tx,d --TN,_2 0

TN,1 TN,¢I 0 0

TN, t TN,cl 0 TN,t

0 0 0 0

A25 A2_ A27 0

A25 0 A37 0

A25 0 A47 A4s

I

I

I

I

/ VAI*I

AV13cl

AV24c2

VTt

o;11

o;22

w33

o;44

+

(I

,'/
I

I

0

0

0

0
k.

WON

Cable velocity coordinates:

Td,N = El(ACe1) E2(Aecl) TI,_T

Tc2,N = EI(AVc2) E2(Ae_2) T2,N

V13¢1 = T_I,N /_13N = AV13_I - (R13 x wl)_l

V24c2 = T_2,N /_24N = AV24_2 -- (R24 x o;2)_2

AV13¢1 = Tcl,1 /_131 = (gl A0cl cosAOd,--gl A@cl,_l) T

Submatrices of A:

A25 = --TNj S(RI*ll + el kc11)

A26 = TN,2 S(R2"22 + _2 kc22)

A27 =--TN,3 S(R343)

A37 = TN,3 S(R3"33)

A47 = A37 + TN, t BT

AV24cl = Tco.,N /_242 = (e2 A0c2 cos A0c2, --e2 A¢_2, _2) T A4s = TN,4 S(R4*5a)

VTt = (_3x, -t3z Ct, _3z) w

BT = -S(R3*5t) [j3' t j3 'T + kNt k3_3T sec 03]

Notes: Scalar elements of BT are given in appendix D, table 14.

W0 is the mean wind.
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Table 18. Continued.

Generalized position coordinates (inelastic suspension):

U

VA I *I

AV13 * icl

AV13 *jcl

AV24 * ic2

AV24 *jc2

VT * jt

coll

co22

0033

c_44

= U(q) O = U(q)

f VAI*I \

A&cl

A&c2

Ct

&l

&2

&3

\ &4 /

_: U--1 u

Acecl = (A¢cl, A0cl) T

Aac2 = (A¢c2, AOc2) T

U(q) = diag{I, U22, 0"33, -g3z, Wll, W22, W33, W44}

U-l(q) = diag{I, U_21, U_31, -1/(3z, WI_ _, W221, W3a _, W441}

[]22 =

U33

Note: {Wii, Wi-( 1 i = 1,2,3,4} defined in appendix A, equations (67) and (68)
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Table 18. Continued.

(b) LEOMs for static equilibrium:

5(t = Uj 1 5u

5h = 1_Io 1 (Q'uSu + Qq 5q + Q6 A)

or

M" 5_- Q_ 54- Qq _q = Q_ A

where

Mo=mToDdo

Q" = d[ fvoN do - d_oD Cu

Qq = Qlq + Q2q

Qlq : [VTq AT(q) (fg + fao) + AT VTq T(q) fbao)]qo

Q2q = A T FvaN [V T (To T(q) T (vo - w) + A(q) Uo)]qo

Q,5 = A T To Fb6

FvaN = To Fb.a ToT

_ : defined in equation (46) for static equilibrium.

and

M'=MoUo

Q_ = Q" Uo

Uo= U(qo)
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+
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Table 18. Continued.

(d) Control vector: Q6 A = A T To Fb6 A.

Q_ /k=

V[I FAll

0

0

0

VT1M A11

0

0

0

(" _ T1,N

TcI,N

-- Tc2,N

0

0

Note: A1, A2-----control perturbations for helicopter #1,#2.

TN,2 V[2FA22 +

0

0

0

0

0

V[2 MA22

0

0

A 2
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v

v

ll

¢q

÷

0

0

f

¢9
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Table 18. Concluded.

(h) Derivatives of #13 : 0#13/0¢t, VaT #13:

#13 = BT T Tt,y F4N = -[j3_ j3'_v + k3_ kN T sec03] S(F4N) TN,t R3*5t

where:

j3' = - sin ¢3 iN + cos ¢3 jN = cos ¢3 j3 - sin _3 k3

k3' = sin ¢_ j3 + cos _3 k3

then:

a#13/0¢t = Z13

_'aT #13-----[0¢3 ' 003 ' 0¢3 J

0#13/0¢3 = [--j3_ kNf_ sec03 ÷ k3_ j3_ T] #2N

0#1z/c903 = Z23 - sec 03 tan 03 k3_ kN T l_2g

0#13/c9¢3 = Z33 + j3_ i3 ''T #2_

where:

i3" = cos ¢3 iN + sin ¢3 jN

_2N = S(F4N) TN, t R3*5t

ST1 = j3' 3 j3'N T + k3_3 kN T sea 03

[Z13, Z23, Z33] = BT1 S(F4N) TN,t S(R3*5t) Wtt

and: Wtt = [itt, j3_, kNt] (appendix A, eq. (77))
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