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1.0 PROJECTSUMMARY

ANCO Engineers, Inc., conducted a Phase I research effort to investi-

gate the feasibility of monitoring the position of a tether during orbital

deployment. Based upon the encouraging results of this study, a Phase II

contract was awarded to ANCO by the NASA/Marshall Space Flight Center. This

contract required the construction of an operational Tether Deplovment

Monitoring System (TEDEHS) that would demonstrate system functionality in a

terrestrial environment.

The principle function of the TEDEMS system is the launching and

attachment of reflective targets onto the tether during its deployment.

These targets could be tracked either visually, with a video system, or with

a radar unit that was pointed towards the targets by a positioning system.

The system requirements include: 1) a method for tether attitude and

tension detection, and 2) a launching device to attach small instrumentation

platforms onto the tether during deployment.

This is the Final Report of the Phase II work. It describes the

approach taken to develop the system configuration and the equipment which

was developed to perform the functional tasks.

After a tradeoff analysis between visible light and radar, the latter

was selected for module tracking. Serious concerns regarding visible light

intensity impacting NASA flight personnel, both inside and outside the

vehicle, was a major factor in this choice.

The Radar unit is aligned with the tether by a Positioning Gimbal which

is driven bv stepping motors. The position commands are provided by a

tether Attitude Detector which provides a continuous indication of the

angular relationship of the tether to the axes of the vehicle.

Three types of radar targets ("Origami" modules) were developed. All

types were corner cubes; the difference being in their profile (square,

round and triangular).

A spring powered launcher (Origami Launcher), which would accommodate

all three types of targets, was designed and fabricated. As each of these

targets were attached to the tether by a flexible lanyard, dynamic



positioning of the launching axis of this device was not necessary (although

they could be oriented with thelr axes in line with the planned tether

attitude at time of launch).

An instrumentation platform (Clamshell) and launcher (Tube Launcher)

were also developed. These devices will allow a variety of instrumentation

packages to be placed on the tether in future projects.

Clamshell Modules are relatively heavy and will influence tether

deployment scenarios, unless they are released with a velocity and

trajectory closely matching that of the tether. Consequently, the Tube

Launcher was also aligned with the tether axis with a Positioning Gimbal

similar to the unit used for aligning the Radar antenna.

Owing to the tracking range limitations encountered during fleld trials

of the Radar system, final TEDENS system integration was not completed.

Successful tests of other subsystems indicate that the proposed system is a

feasible approach to tether position monitoring, although additional work

will be necessary to complete the system and fully verify its capabilities.
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2.0 INTRODUCTION

Several National Aeronautics and Space Administration (NASA} and

International programs are now in effect to make use of tethers in space.

Tethers offer the possibility of fuel economy for payload launching, unique

measurement systems in the upper atmosphere and space, and hitherto

impractical orbital maneuvers.

Under a Phase I contract, ANCO Engineers, Inc., {ANCO) investigated

the feasibility of monitoring the position of a tether during orbital

deployment. These investigations explored techniques for attaching

reflectors to the tether at periodic intervals during the deployment

process, determining its attitude with respect to the axes of the launching

vehicle, and directing a visible light source and video camera or radar

antenna at the reflectors so that the deployment profile of the tether could

be tracked.

The benefits that would accrue from an operational Tether Deployment

Monitoring System (TEDEMS) system include: 1) warning of possible tether

failures, 2) location of severed tethers, and 3) validation of mathematical

models of tether deployment scenarios.

This is the Final Report of a Phase II contract issued by NASA to ANCO

to design, build, and test a functioning TEDEMS system. The report details

the technical objectives of the project, describes the system and equipment

designed and developed for tether tracking, and the results of tests

performed to verify operational functionality.
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3.0 CONTRACT REQUIRENENTS

3.1 Technical Objective

The technical objective of the Phase II program was the design,

development, and testing of an operational TEDENS system that would function

in a one-g environment.

3.2 Scope

The scope of the Phase II program was the Implementation of the

recommendations of the Phase I study.

Task 1: Development and Testing of Both Launcher Configurations

Both configurations of launchers (for Clamshell and Origami modules)

are to be developed and tested. Tether velocity, at the time of launch, is

on the order of 2-10 m/sec. The Clamshell launcher is to be capable of

launching from 3-5 modules consecutively without reloading. Typical module

weight ls to be between 100-1,000 grams.

The Clamshell launcher Is to be interfaced wlth a glmbal unit that will

permlt the aligning of the launcher axis with the tether, In addition to

the launcher development, GTOSS analysls of the dynamic impact of module

attachment on tether wave dynamics will also be performed.

Task 2: Development of a Prototype Clamshell Nodule

A prototype Clamshell module is to be developed. Enhancements for

optical tracking (such as reflective materials) are to be investigated, as

will methods of enhancing radar visibility (by addition of reflectors or

variations in module geometry). Analysis to optimize the payload capacity

for diagnostic and other instrumentation wlll be conducted. This will

involve consultations with NASA investigators, in particular, personnel from

Marshall Space Flight Center and Ooddard Space Flight Center.

Task 3: Development of a Prototype Origami Nodule

(Ku-Band Radar Target)

Small, lightweight radar reflectors are to be developed for indicating

location of points on the tether's profile to the Orbiter's Ku-Band
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rendezvous radar. ANCO will consult with engineers from Hughes Aircraft

Company (Radar Systems) and Lockheed Aircraft Corporation (Shuttle

Operations) to determine suitable operational procedures for utilizing the

Orbiter's gu-Band rendezvous radar for this purpose. Cognizant of the

problems that have been encountered in the past with the ability of the

Ku-Band radar to track multiple targets, consideration will be given to the

use of a separate radar system for the TEDEMS system.

Task 5: Development and Prototyptng of the Tether

Attitude/Tension Detector and Tracking Gimbal

A Tether Attitude Detector (as outlined in Appendix B of the Phase I

Final Report) is to be constructed and tested. It will be interfaced with

the Positioning Gimbal. The Positioning Glmbal is to be utilized both for

the Clamshell launcher (to aim the launcher tube) and with the Tracking

System (to point the transmitting/receiving equipment). The detector will

also provide a continuous measurement of tether tension.

Task 6: Development of the Passive Optical Module Tracking System

A Passive Module Tracking System consists of an optical source (either

a large 25-50 kiloJoule strobe or a large defocused YAO-type laser). Camera

system, data recording system, power supply, and control electronics and

actuators are to be developed and tested to track the Cluster module.

For this system, aiming and pointing is to be accomplished by utilizing the

Tether Attitude Detector and Tracking Glmbal arrangement outlined above.

The scope of the task was revised in Modification No. 2. Wherein, the

Tracking System was specified to be a radar-based system. The other

requirements of the task remain as applicable to a radar-based system.

Task 7: Get Away Special (GAS) Canister Integration

It is anticipated that during actual use in Phase III, the TEDEMS

system will be stored and activated from within a pair of GAS canister

pallets. During Phase II, full-size GAS canister mockups are to be

constructed and used to resolve integration issues.

Task 8: Tether Deployment Simulation Test

A full Tether Deployment Slmulatlon Test of the complete system is to

be conducted either at Ames Research Center/Edwards AFB, Kirt/and AFB, or

3-2
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the National Balloon Center in Palestine, Texas. It will involve all

components of the TEDENS, wlth the exception of the use of the Orbiter's

Ku-Band radar, and will serve as a ground-based proof-of-concept mission.

During this test, a balloon will be used to provide a lifting force for

tether deployment. A tether length of two kilometers will be used, that

being a practical upper limit in length for ground testing. During the

deployment, the various modules built during this phase will be attached

utilizing both the Clamshell and Origami launchers. The modules are to be

tracked using the Tracklng System which, in turn, shall be positioned by the

gimbal and controlled by the Tether Attltude/Tension Detector. The

deployment will be recorded wlth the system video camera and recorder.

The Phase II work scope also required that the respective merits of

visible and radar tracking be analyzed and that the most meritorious system

be selected. This activity was to be executed early in the schedule as many

deslgn decisions were contingent upon the choice made. After weighing the

various factors, a radar-based system was selected. This led to Contract

Nodificatlon No. 2, which revised the original work scope and contract

deliverables.

3.3 Contract Dellverables

The contract deliverables, as revised by Modification No. 2, are listed

in Table 3.1. The TEDEMS equipment was grouped into five major subsystems.
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TABLE3.1 : CONTRACTDELIVERABLES

Quantity

1

Description

Axial Launch Tube Assembly -

including lab and field checkout.

Lanyard Clip Launch Nodule

Assembly - including lab and
field checkout.

Clamshell modules

[Tube Launcher]

[Origami Launcher]

[Instrumentation Platform]

Origami modules (radar reflectors,

3 each of square, circle, and

triangular type).

Radar Tracking System to include:

- Radar Emitter/Recelver

- Camera System

- Video Recorder System

- Power Supply

- Power And Signal cables

- Tracking Gimbals and Actuator

- Control Electronics

- Tether Attitude and Tension

Detection System - including

lab tests

- TEDEMS Bouslng Assembly

- Tether Interaction Study/Data

[Radar Unit]

[Recording System]

[Recording System]

[Recording System]

[Recording System]

[Positioning Gimbal]

[Control System]

[Attitude Detector]
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4.0 EQUIPMENT DESCRIPTION

4.1 Module Launchers

Two different types of module launchers were designed and fabricated:

one for the Clamshell and one for the Origami modules. Both were spring

powered and designed to accelerate the module to a velocity matching that of

the tether at the moment of launch.

Data, from the mission scenarios developed for the Small Expendable

Deployer System [SEDS], were used to establish some basic design parameters

for the TEDEMS launcher.

Values of payout velocity and tether angle were selected from graphs

developed for the SEDS program for appropriate increments of deployment

length. Launch spring parameters were calculated to achieve matching module

velocities and launch angles under a 1-g environment.

The derivation of formulas to calculate spring values is included in

this report as part of Appendix A. These formulas were used to develop a

software program (LAUNCI_D) which calculates module exit velocity for

different springs, given a certain set of input parameters, such as module

weight, travel distance, etc.

As the Clamshell modules are relatively heavy with respect to the

tether, it is necessary to align the module launch trajectory with the

longitudinal axis of the tether at the time of release in order to prevent

the attachment process from influencing the planned tether deployment

scenario. An open-loop, two-axls positioning system was developed to

accomplish this. It points the launcher tube directly in line with the

tether axis during the launch operation.

The Origami modules are lightweight and are attached to the tether with

flexible lanyards. Consequently, dynamic positioning of these launchers

were not necessary, although during assembly their axes could be aligned

with the tether's anticipated attitude at the time of launch.
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4.1.1 Tube Launcher

The Tube Launcher accommodates three Clamshell modules. They are

stacked in a specially designed tube which permlts them to be released

individually at different preset velocities. The two hinged halves of the

module are held partially open (30 ° Including angle) In the tube and remain

in thls attitude as they accelerate down the tube after being released by

their respective retaining solenoids. As they exit the tube, the two halves

close together around the tether under spring pressure.

A tracking system Is used to dynamically position the launching tube

so that the correct relationship between module and tether Is achieved. The

tube has a vee notch which allows It to be positioned so that the axis of

the module coincides wlth the longitudinal axis of the tether during

launching.

The Tube Launcher Is mounted on a Positioning Glmbal that receives

its positioning signals from the Attitude Detector. A similar glmbal is

used for allgnlng the radar antenna with the longitudinal axls of the

tether. Assembly and detail drawings of the Tube Launcher are included in

Appendix B of this report {Drawing No. 131116-115).

Figure 4.1 is a simplified illustration of the device showing an

outline of the launching tube and Positioning Gimba] assembly loaded with

three Clamshell modules together with a photograph showing the unlt during

construction.

4.1.2 Origami Launcher

These launchers consist of a box canister wlth a palr of hinged lids.

Within the box, which is large enough to enclose the biggest Origami module,

Is a frame that supports the module at four locations. This frame can move

vertically on four guide rods which are mounted at the base of the box.

Concentrically positioned on these rods are compression springs which

are located between the box base plate and the threaded compression

adjusters which are screwed into the frame.

When the frame Is in Its cocked position, these springs are held

compressed by a solenoid which engages wlth a tab at the base of the frame.

4-2
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Two hinged links provide a connection between the frame and the hinged lids.

In the cocked position, these links keep the lids closed. Upon release, the

upward motion of the frane causes the links to open the lids so that the

module can be ejected.

The canister is mounted with an adjustable fitting that allows It to

be swiveled and tilted. This permits the vertical axis to be allgned with

the anticipated direction of the tether's longitudinal axis at the time of

launch. The assembly and detail drawings of the Origami Launcher are

included tn Appendix B of this report (Drawing No. 131116-109). Figure 4.2

Is a photograph of the unit (shown with lids open).

4.2 Modules

4.2.1 General

During the Phase I feasibility study, two types of modules were

designed and prototypes fabricated. They were the Clamshell Modules, a

relatively heavy axially-mounted instrumentation platforms; and the Origami

Modules, a lightweight lanyard-attached, corner-cube targets.

4.2.2 Clamshell Modules

The Clamshell Nodules are primarily instrumentation platforms,

which can also act as radar targets with the addition of a reflector. (As

these devices are oriented axially on the tether, a simple corner cube

mounted in the rear of the module would provide this facility at the expense

of some payload room.)

Prior to designing this module, ANCO consulted wlth various NASA

investigators (e.g., NSFC, GSFC) on the nature of instrument packages that

might be borne by the module to ensure that the configuration developed

would be adaptable to potential payloads.

The dimensions selected for the module were 8 In. in diameter and

12-in. long. It provides a payload volume of 0.35 cubic foot. The empty

module weighs 350-400 grams.

A module is comprised of two half cylinders hinged along one 12-1n.

edge. When in the launch position, the two portions are held apart at an
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Figure 4.2: Origami Launcher
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angle of 30 ° by guides in the launching tube. During launching, they are

accelerated in this open configuration with the tether positioned in the vee

formed between them. As they exit the launcher, they close under spring

pressure, thereby clamping themselves axially on the tether. Drawings

showing details of their construction are included in Appendix B (Drawing

No. 131116-121).

They consist of a lightweight aluminum frame covered with 1/8-1n.

thick Fomecor (a lightweight polystyrene foam filled board faced wlth paper

laminate manufactured by Monsanto). Prior to assembly, the Foamcor sections

were metallized with aluminum to provide a radar beam reflectng surface. An

illustration of a Clamshell module in its open launching attitude is shown

in Figure 4.3a; and a photograph of the module in Figure 4.3b.

4.2.3 Origami Modules

The Origami Modules are tether position indicating devices consisting

of large-low mass (25-cm major axis, 100 gram) retro-reflectors which can be

attached to the tether by means of a spring clip and an elastic lanyard.

They were intended to be detectable at distances up to 20 Km, by the radar

system chosen for tracking. For Phase II, three variants of these omni-

directional retro-reflecting modules were designed each with different

profiles (square, triangular and circular). Each give a different response

to the impinging beam from the radar unit. The most powerful but also most

directional signal is returned from the square (23 ° lobe) and the least

powerful but more dispersed signal from the triangular wlth a 40 ° lobe. The

circular module generates a 32 ° lobe and, consequently, provides the best

combination response.

The module is attached to the tether by a short flexible lanyard and

spring clip. It is a passive system, and is designed to be relatively

benign on the overall dynamics of the tether. To minimize the dynamic

effects of attaching these devices to the tether, their weight was

restricted. The target weight of each was a maximum of I00 grams. Drawings

showing details of their construction are included in Appendix B of this

report (Drawing No. 131116-110).

Figure 4.4 is an illustration of all three types.

4-6



CLAMSHELL MODULE

(IN OPEN LAUNCH ATTITUDE)

(a)

(b)

Figure 4.3: Clamshell Module
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4.3 Trackinff System

4.3.1 General

Two different approaches to tracking were suggested in the Phase I

Final Report and an early task performed in Phase II was an analysis of

their advantages and disadvantages so that the optimum technique could be

selected.

The choices were visible light and Radar. After analysis of the

tradeoffs, Radar was selected. A major consideration in this choice was

that calculations indicated that a strobe pulse of 25,000 joules would be

necessary to achieve visibility at the 20 Kilometer range desired. A

visible light pulse of such intensity posed serious concerns regarding its

impact on NASA flight personnel, both inside and outside the vehicle.

Should radar be chosen, one of the options proposed in Phase I was

the use of the Shuttle's Ku-band Radar system for tether tracking (even

though it was mandated that the TEDEMS system should not be dependent on any

existing Space Shuttle system unless absolutely necessary). However,

consultation with experts indicated that the Ku-band Radar is not suitable

for tracking multiple targets and, consequently, was not appropriate for the

TEDE_S tracking task. Therefore, it was decided that a stand-alone X-Band

Radar tracking system would be developed for this project.

4.3.2 Radar Unit

A survey of readily available radar systems, that were appropriate

for this application, was performed.

Calculations indicated that an Origami module with an edge length of

13.5 cm would be detectable at 25 kilometers (a range 20_ greater than that

necessary to meet the project requirements) with a Narco Avionics KWX-56

Radar System. Targets of this size were acceptable from the standpoint of

other system modules; and therefore, the Narco KWX-56 system was selected.

It generates a peak output of 7.5 kilowatts at 9,375 MHz, and has a range of

approximately 60 kilometers. It is comprised of two modules: 1) a KA 126

Antenna/Recelver/Transmitter and 2) a KI 244 Indicator.
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4.3.3 KA 126 Antenna/Receiver/Transmitter

Thls device Is illustrated In Figure 4.5a. It is a compact lO-In.,

flat-plate phased array antenna that scans a 9° wldeband over a 90 ° sector

at 13 sweeps per minute. The band elevation Is continuously adjustable over

an angle of 12 ° upwards and downwards from Its mld position. By arranging

to tllt the band In 4 ° increments every 4-5 seconds and simultaneously

indexing It from the horizontal to the vertical once every 2 minutes, a 90 °

cone can be progressively scanned. A sequence diagram showing the timing

for one complete cycle Is shown in Figure 4.6.

The alignment of the 90 ° cone and the indexing of the antenna from

horizontal to vertical and back again is accomplished by two different

mechanisms. Alignment is achieved wlth a similar gimbal to that used to

point the Tube Launcher both gimbals being directed by tether position data

generated by the Attitude Detector (see Section 4.7).

The indexing mechanism uses a bell crank lever rotated by a linear

actuator. The actuator is extended and retracted alternately by the TFCU

controller which also controls several other system functions (see Section

4.6.3). Details of the Indexing mechanism are included in Appendix B,

Drawing No. 131116-118. Figure 4.7a illustrates the mechanism installed on

a Glmbal Posltloner and Figure 4.7b is a photograph of the unlt wlth the

radar antenna attached mounted on the Gimbal Posltioner.

4.3.4 KI 244 Indicator

This device Is illustrated in Figure 4.5b. It utilizes a 5-in.

diagonal black matrix raster CRT with HEA antl-reflective glass to provide a

clear and undistorted vlew of the 3 color display. The manual controls for

adjusting Range, Tilt, Brightness, and Gain are provided on the front bezel.

For this application, the manual tllt control was deactivated and a remote

signal was provided from the TFCU controller to tilt the antenna in

accordance with the sequence shown on Figure 4.6.

4.4 Recording System

The radar system detects the signals reflected by the modules and

displays them as colored light blips on the CRT display. A video camera,
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focused on the display, monitors the relative positions of the modules and

simultaneously the rotational orientation and elevation of the antenna. By

correlating these, an indication of tether profile can be obtained. Within

the field of view, of the CCTV camera, is an alphanumeric display connected

to the SCC computer system (see Section 4.6.2). This displays time-of-day

and tether tension, as measured by the Attltude Detector, in engineering

units.

All data can be displayed in real time on a video monitor and recorded

by a VCR recorder for later analysis.

4.5 Positioning Gimbal

In the TEDEMS system, two positioning devices are required. One to

align the radar antenna and the other, the Tube Launcher, along the axis of

the tether. Each positioning system consists of a two-axls gimbal driven by

an open loop servo system powered by a pair of stepping motors. The motors

receive their positioning commands from the Attitude Detector via the System

Control Computer [SCC]. A block diagram showing the inter-relationshlp of

these modules is shown in Figure 4.8.

The angle of the tether is measured in two planes by the Attitude

Detector. This data is converted into pitch and roll angular values by the

SCC which then issues commands to the Indexing Modules which power the

Positioning Motors (see Section 4.7.3).

The gimbal is designed to point to any location within a 120 ° circular

cone centered on its vertical axis.

It consists of a base unit with two vertical pillars. These support a

U-shaped bracket between the output shaft of the Pitch gearbox on one side

and a stub shaft and a sleeve bearing on the other. The bracket, which is

capable of 360 ° rotation in the horizontal plane, supports the Roll gearbox

(the output shaft of which is designed to accept either the Tube Launcher or

the Indexing Mechanlsm). This shaft can also rotate 360 °, although the

angular rotation of both shafts is restricted by limit switches. Figure 4.9

is a photograph of the positioning gimbal.

The positioning velocity is low, taking approximately 40 seconds to

traverse across the 120 ° cone angle. However, this speed is more than
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Figure 4,9: Positioning Gimba.l
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adequate for the application, as the tether angular rate of change is small

during the period which modules are to be attached. Low-speed traversing

has the advantage of allowing a high-gear reduction ratio in the drive

system, permitting smaller motors to be employed. Both the Pitch and Roll

axes have motors with 20:1 reduction ratios driving worm and wheel gearboxes

which provided a further 20:1 reduction, giving an overall reduction of

400:1.

The gimbal operates differently for each of the two appllcatlons. The

radar antenna will be active continuously and, consequently, so will its

positioning system.

The Tube Launcher will be retracted below 120 ° cone angle (so that it

will not interfere with the normal excursions of tether) during the majority

of the deployment period.

When the tlme to attach a module approaches, the system will be

activated and the tube will move to acquire the tether. (It has an open vee

notch along its length that is designed to envelope the tether when they are

both aligned.)

When the tube is in position it will move in concert with the tether as

its attitude varies, as measured by the Attitude Detector. At the

appropriate time, the module will be released and then the tube will return

to its retracted position.

Drawings showing details of the construction of the gimbal frame and

drive gearboxes are included in Appendix B (Gimbal Frame - Drawing No.

131116-116) and Gearbox - Drawing No. 131116-117).

Control of the stepping motors is achieved by initiating motion with a

start command and then counting the number of steps taken and issuing a stop

command when they total a desired value.

The motors are each powered by a Superior Electric Co. Type 430-PI

Programmable Preset Indexer Module. This device can be interfaced to a

microprocessor via a RS 232 link. It also has a number of discrete inputs

and outputs that can be used for a variety of control activities.

The normal approach to motor positioning, when this device is

interfaced to a host computer, is that destination (step count) acceleration
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and velocity parameters followed by a start command are downloaded from the

host over the RS 232 link. This arrangement is not appropriate for the

TEDEMS system; because once issued, the destination step count cannot be

altered until traversing is completed.

In the TEDEMS system, the tether location can alter in the interim

period, so a different approach was adopted.

Acceleration and velocity parameters are calculated by the host and

downloaded together wlth a start command. The microprocessor monitors the

number of steps taken (via one of the discrete outputs) and, at the

appropriate time, issues a stop command to allow for deceleration. This

a11ows the destination to be updated while traversing is occurring and also

permits rapid retraction should an emergency be detected (tether slewing at

a rate greater than a predetermined value).

4.6 Control System

4.6.1 General

Two major control subsystems provide the control intelligence for the

TEDEMS system. They are System Control Computer [SCC] and the Tllt and Flip

Control Unit [TFCU].

Figure 4.10 is a slmpllfied schematic

interrelationship of the major system modules.

included in Appendix B, Drawing No. 131116-114.

diagram showing the

A detailed diagram is

4.6.2 System Control Computer

The main task of the SCC is the interpretation of attitude and

tension signals received from the Attitude Detector, and conversion of this

data into positioning commands for the Positioning Gimbals and alphanumerics

for the LCD dlsplay. This procedure is automatic and continuous once it has

been initiated by system turn on.

4.6.3 Tilt and Flip Control Unit

A programmable controller provides the logic sequences for the TFCU

unit. The various activities under its control are initiated manually.

Some then continue until stopped. It controls:

4-18



ATTITUOI[ OISPLAY

ATTITUOI[ & TFN$1ON O[T[CTOR

---- AMPUFI[R
_I , CONTR_ON,TI

NARCO KA 126

ANT/RT UNIT I

FLIp MOTOd
&

ACTUATOR

I

i

I

TUB[ OR I

LANYARO I

LAUNCH[R

GIMBAL I

ROLL I
k_OTORI

Figure 4.10: Simplified Schematic Diagram of Control System
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- Radar Antenna scanning (tilting and horizontal/vertical rotation)

- Hodule launching

This subsystem controls the radar scan path and provides a real-time

indication of its orientation with a matrix of indicator lights which are

displayed adjacent to the radar CRT screen and alphanumeric display so that

all can be captured with a video camera and recorded on the VCR. An

electrical schematic diagram of the TFCU subsystem is included in Appendix

B, Drawing No. 131116-119.

4.7 Tether Attitude and Tension Detection System

4.7.1 General

In order to align the Positioning Gimbals with the deployed tether,

it is necessary to measure its attitude with respect to a known reference.

In addition, the sensing of tether tension during deployment will permit the

comparison with predicted values so that safety of the process can be

continuously monitored.

In Phase I, ANCO developed a concept for a device that would

accomplish both these tasks without affecting the dynamics of the tether.

This device was designed and built in Phase II.

4.7.2 Attitude and Tension Detector

This device consists of three seml-circular hoops mounted on a

circular base. All three hoops rotate on precision instrument bearings and

require minimal force for movement. The two larger hoops are arranged at

right angles to each other and can rotate freely through an angle of 60 ° on

either side of the vertical centerllne. The axis of the smaller hoop is

coaxial with one of the larger hoops to which it is coupled with a torsion

leaf spring. An illustration of the Attitude and Tension detector [Attitude

Detector] is shown in Figure 4.11. Detailed component and assembly drawings

are included in Appendix B (Drawing No. 131116-112).

In operation, the tether, which is dispensed from a storage container

under the base plate, issues through a bush in the center of the circular

base and then passes through a nozzle located at the intersection of the two

larger hoops. This nozzle is supported in position by two flanged instrument
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Figure 4.11: Attitude and Tension Detector
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bearings, one being engaged with the outer hoop and the other with the inner

hoop. The hoops move in unison with changes of tether position. A combi-

nation of their angles providing a measurement of tether attitude with

respect to the vertical axis. Angular deflection is provided by measuring

devices attached to the hoops which generate an output voltage proportional

to position.

The smaller hoop is offset at a 10 ° angle to the inner hoop to which

it is axially coupled with a torsion leaf spring. The tether continuously

contacts the smaller hoop and, as tension increases, applies a force that

tends to reduce the 10 ° angle against the resistance of the leaf spring.

This smaller hoop also has an angular measuring device so by comparison of

signals from it and the device on its associated larger hoop, tether tension

can be determined.

Model R30A Rotary Variable Differential Transformers [RVDT], manu-

factured by Schaevitz Engineering, were used for all angular measurements.

These devices produce a voltage whose magnitude varies linearly with the

angular position of their shaft. The shaft is mounted on miniature precision

ball bearings, consequently, only electromagnetic coupling exists between

the stationary windings and rotor frictional torque is insignificant

(0.015 inch-ounces). Their sensitivity is 2.3 zV/V/°.

The signals from the RVDT modules were amplified by a Schaevitz

Engineering Series LMP-210 LVDT Signal Conditioner. This amplifier

generated a ± I0 VDC, 5 ma full range output signal.

4.7.3 Attitude Detector/Positioning Gimbal Interface

The angles measured by the Attitude Detector and the Roll and Pitch

angles used to align the Positioning Gimbal are different. In the case of

the Attitude Detector, both X and Y axes are independent and the angles

measured ± @ and ± e are with respect to a fixed common reference. With the

Positioning Gimbal, the Roll axis is physically located on the Pitch axis

and, consequently, movement of the latter affects the angle of the former.

The SCC performs the task of converting the signals generated by the

Attitude Detector into commands for the Positioning Gimbals and data (in

engineering units) for the alphanumeric display. To enable the SCC system
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to perform this function, a mathematical expression was derived to convert

the Attitude Detector angles to alignment angles for the Positioning Gimbal.

This was used as the basis to develop a software algorithm that would

perform the desired function in real time.

TETHER -_ /

@

X

N

\

Figure 4.12: Attitude Measurement Diagram

In Figure 4.12, the tether originates at (b) (the intersection of

Axes X, Y and Z) and subtends any pair of angles (within the limits 0°-60 °)

and 0 to planes X and Y, respectively. By calculation, it can be shown

that:

de =

(Tan20 + Tan_b + 1)1/2

Note: the derivation of this equation and those that establish the Pitch and

Roll angles are included in Appendix C.
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TETHER

Figure 4.13: Gimbal Alignment Diagram

In Figure 4.13, the tether position is unchanged (as is its inter-

section point (a) with the inner and outer hoops. Point (a) is now also

located by a right angled llnk (bfg) which represents the mechanical struc-

ture of the 01mbal Positloner. To reach Point (a), the llnk has moved

through Angle (a) wlth respect to Plane Y (Roll Angle} and Angle (_) in

Plane Y {Pitch Angle) from its original position.

Angle afld = Roll Angle = a

= Sln-I
4TanO

1.6905(Tanae + Tan_@ + 1}
1/2
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Figure 4.14: View on Plane Y

Angle fbf 1 = Pitch angle =

(1.6905 Cosa}

(3.6252)
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4.8 Houslng Assembly

Because of the need to conduct field trials, all TEDENS equipment was

designed to be modular and portable.

The control system was divided into logical units and each were housed

in individual enclosures with provision for interconnection by plug and

receptacle.

These units are illustrated in Figure 4.15. They are:

a - System Control Computer

b - TFCU Hodule

c - Attltude Detector ampllfiers

d - Positioning indexers
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Positioning Indexers
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Figure 4.15: Housings for Control System Modules
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5.0 TETHER INTERACTION STUDY/DATA

A study of the dynamic affects that attachment of three Origami

modules, each weighing approximately 100 grams, would have on a SEDS

configuration tether was conducted by Dr. Enrico Lorenzini of Smithsonian

Astrophysical Observatory.

Dr. Lorenzlnl determined that Origami attachment would not signifi-

cantly affect tether control variables, such as tether tension, length, and

payout velocity, and would not appreciably impact the longitudinal dynamics

of the system.

The major affect of emplacement of the Origami modules would lie in the

In-plane shape of the tether (the impact being predicted to be less than a

10_ departure of tether shape from the baseline). This suggests that the

utilization of Origami modules to determine tether shape during deployment

is a viable option.

A copy of this study is included in this report as Appendix D.
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6.0 TESTING

6.1 General

In order to slmpltfy system integration, an incremental approach to

testing was adopted. Each module was to be individually tested, then

integrated subsystems of tested modules were to be tested; and finally after

complete system integration, a tether deployment simulation exercise was to

be conducted In the field. This step-by-step approach allows problems to be

quickly identified and corrected.

Inherently, this approach requires that testing first be conducted in a

laboratory environment prior to attempting field trials.

6.2 Laboratory Tests

6.2.1 Nodule Testing

The various modules were to be tested throughout their assembly

stages to ensure that they met all performance criteria established during

their design. These tests were functional. The equipment was operated over

its intended ranges to ensure that mechanical and electrical limits and

outputs were correct. Nodule tests were performed on the:

- Attitude and Tenslon Detector

- Positioning Gimbal
- Indexing Nechantsm

- Origami Launcher

- Radar System

6.2.1.1 Nodule Test Results

Attitude and Tenslon Detector

This unit was bench tested in conjunction with the signal

conditioning amplifiers. Testing involved a series 10 ° angular displace-

ments of the positioning hoops and the measurement of the voltage output

generated by the amplifier. The results obtained indicated a linear

response over the ± 60 ° range of the device. The tether tension measuring

facility was not tested.
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Positioning Gimbal

This unit was bench tested using an Indexing Programmer (borrowed

from the drive vendor). This device permitted the motors and associated

servo-ampllflers to be commanded to drive in both clockwise and counter-

clockwise directions at selectable velocities. The glmbal performed

satisfactorily with respect to speed and mechanical construction.

Indexing Nechanism

The indexing mechanism was bench tested using an AC supply. It

rotated both clockwise and counterclockwise through a 90 ° arc in approxi-

mately slx seconds as intended.

Origami Launcher

This device failed the initial bench test. The solenoid release

mechanism had insufficient power to overcome the spring tension on the tab

at the base of the frame. After modification of the release mechanism

(adding a second solenoid so that both operated in tandem), this problem was

overcome and module launching was accomplished. (It is recommended that

prior to using thls device on any future program, further work on the

release mechanism be performed to simplify the existing arrangement.)

Radar System

This system consists of the KA 126 Antenna/Receiver/Transmitter and

the KI 244 Indicator modules manufactured by Narco Avionics connected

together with a multl-conductor cable manufactured by ANCO. This subsystem

was tested by interconnecting the modules together and observing the

display on the KI 244. The various controls for range, tilt, brightness,

gain, etc., were adjusted and their functionality verified. Thls test was

performed on the roof of ANCO's facility in Culver City, California.

6.2.2 Subsystem Testing

A fixture for dynamic evaluation of the performance of an integrated

subsystem, comprising the Attitude Detector and the two types of module

launchers, was designed and built. It was installed In a laboratory at

ANCO's Culver Clty facility where the headroom was sufficient to allow 18 ft
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of simulated tether (1/8 dia. steel cable) to be deployed vertically.

Illustrated in Figure 6.1.

It is

The fixture consisted of a variable speed powered winch, which

simultaneously deployed one end of a cable while it retrieved the other.

After leaving the winch drum, the cable passes over a pair of overhead

pulleys mounted on a frame attached to the roof trusses. These pulleys were

arranged so that the inclined leg of the cable could be positioned at any

angle within a 120 ° x 30 ° elliptical cone.

The lower end of the cable emanates vertically through a hole in the

top plate of the frame that houses the winch assembly. At this point, it

passes through the Attitude Detector. This top plate also provided an

anchoring surface for the two types of launcher.

The fixture can simulate a tether under different tensions traveling

up to the maximum speeds envisioned in the SEDS project. The cable is

reversible and can be decelerated to a full stop in one meter. It was

planned to test both types of launchers and the tether Attitude Detector

with this unit.

As system integration was suspended prior to the time that subsystem

testing was practical, this equipment has yet to be utilized. However, if

it is put to use in the future the following should be noted.

Owing to limited headroom, it would be necessary to launch modules

one at a time to allow removal of the previous unit from the tether.

Proper positioning of the Positioning Gimbal, during tether attitude

changes, would be demonstrated by utilizing this equipment. The perfor-

mance of the launchers and the modules would be monitored by a video camera.

As this is a ground-based test (in a one g vertical field), the

Origami modules would be equipped with stronger clips than those envisioned

for an orbital application.

6.3 Field Trials

The only equipment tested in the field was the radar system. Several

trials were performed at a variety of locations:
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- Edward's Airforce Base (dry lake bed),

- Culver City (LA basin),

- Narina Del Rey (Santa Nonica Bay), and

- Hemet (Lake Ellstnore Valley and airspace).

Problems with transmission power limited detection of the Origami modules to

approximately 8-10 kilometers (a distance approximately 1/3 of the

25 kilometer predicted range).

Initially, the system was checked out on topographical features around

the Los Angeles basin. These tests were performed on roofs, hills, hotel

balconies, and similar high locations with the targets being elevated with

balloon and kites over both land and water.

Ground clutter and strong aerodynamic oscillations (during balloon and

kite lifts) inhibited module detection in these tests. However, a test at

Edwards AFB was more successful and the target was detected at a distance of

7-8 kilometers.

Encouraged by success, an additional test was conducted at Hemet (a

rural area approximately 100 miles east of Los Angeles). A wooden glider

was used as the vehicle to carry the Origami module aloft (it having a

minimal radar profile). Again, we were unsuccessful in detecting the

module.
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7.0 POTENTIAL USES/CONCLUSIONS

Radar tests were performed at a variety of locations but the only test

where encouraging results were obtained was at Edward's Alrforce Base, where

the Origami Module was detected at a distance of 7-8 kilometers. Initially,

this test was conducted using a much larger radar target to establish exact

target location, and then the Origami module was substituted and the

response observed. It was found that the signal faded as the range

increased between 7-8 kilometers. This testing was conducted under close to

ideal conditions with the target being held stationary and oriented towards

the receiver. Owing to this range limitation in tracking, further system

integration work was suspended.

The major item not completed was the system control computer. Its

hardware was only partially integrated and the software for converting

tether attitude angles into Gimbal Positioning commands was not developed.

The lack of this device prevented any subsystem testing or field trials to

be conducted. (Other items only partially complete were the Clamshell

launcher and modules and the Origami launcher.)

Prior to work suspension, design, construction, and module testing of

several other subsystems had been conducted. These included the Attitude

Detector and its associated amplifiers; the Positioning Gimbal with its axis

drive motors and servo-amplifiers; the Indexing Mechanism; and the Origami

Launcher.

The work completed and the tests performed suggest that the proposed

system continues to be a feasible approach to tether monitoring, although

additional effort is still necessary to increase the range at which modules

can be detected.

The results obtained during the radar testing indicate that a radar

system with approximately 30 times the power of the Narco system would

suffice. Such aircraft systems are available "off-the-shelf" but their cost

and the cost of retesting were beyond the budget of this project.

This report describes the system concept, the hardware design, and the

testing approach planned for the TEDEMS project. As the SCC system was not

completed, only limited testing was performed and, consequently, performance
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of the hardware when inteffrated toffether is unknown. The equipment

completed and tested, to the extent stated, is available to NASA for use on

any future program that requires tether tracking capability.

It should be noted that the developed system was for concept verifi-

cation In a terrestrial envlronsent and, consequently, space qualification

of the hardware was not a factor in the design.
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APPENDIX A

LAUNCH SPRING CALCULATIONS
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Tube Launcher Spring Requirements

Data from the SEDS-STD Case Condition Assumptions

From Figure 8:

Launch Angle

Module Launch Point Launch Speed (to vertical)

i 1/4 (2000 sec) 0.5 m/s 75 ° (a)

2 1/2 (4000 sec) 2.0 m/s 85 ° (a)

3 3/4 (6000 sec) 4.3 m/s 85 ° (_)

Note: TEDENS hardware would require a 45 ° tilt if it was used in the

Shuttle. SEDS total arc of travel is approximately 90 ° well within the

range of the TEDEMS equipment but its angles range from 0°-90 ° from

vertical, whereas TEDEMS is designed for ± 60 ° from vertical.

For test purposes, a 45 ° spacer will be added to the TEDEHS hardware.

Module 1 parameters for LAUNCHHD:

a = 30 °

weight = 350 grams

Rod Travel (It1) = 14 in. + Spring Compression

Desired velocity = 0.5 m/s

Hodule 2 parameters for LAUNCI_4D:

a = 40 °

weight = 350 grams

Rod Travel (Ir2) = irI + 12 in. + Spring Compression

Desired velocity = 2.0 m/s

Hodule 3 parameters for LAUNCIIHD:

a = 40 °

weight = 350 grams

Rod Travel (It3) = Ir2 + 12 in. + Spring Compression

Desired velocity = 4.5 m/s
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Calculation Sheets 1 through 21 show the derivation of the formulae used to

calculate spring tension.

Program LAUNCI_4D Is Fortran listing of program used to size springs.

A-24



t_
..._j

y..

_.a.l

.->-_Q
..J_

t'X

I,

I

o

¢N

tU

u)

"I-
x I--

l.l,l
I--

i

W

I

UL

A-25



0

0
0
0

0

(oes/uJ)A.110073A lnomd

o

I,&1
'5
I,,,-

A-26

ttJ

O
m

u_



PROGRAM LAUNCHMD

- C THIS PROGRAM CALCULATES THE VELOCITY OF A TETHER MODULE JUST AS
t C IT LEAVES THE END OF THE LAUNCH ROD. THE EQUATIONS USED ARE

C TAKEN FROM "EXIT VELOCITY OF SPRING" BY WBW, 9/23/87.

- CHARACTER*16 IRESP

REAL K,MH,LR,LS
51 CONTINUE

-- C CALL VCLEAR

C CALL VCURXY(O,O)

PRINT *, 'PROGRAM LAUNCHMD -- CALCULATE EXIT VELOCITY OF '

PRINT *, ' TETHER MODULE '
PRINT *, ' '

PRINT *, ' '

PRINT *, ' '

-- C BEGIN ENTERING THE DATA

PRINT *, ' ENTER PARAMETER VALUES '

PRINT *, ' '

PRINT *, 'ENTER SPRING CONSTANT, K '

READ (*,11) K
11 FORMAT (F10.3)

PRINT *, 'ENTER MODULE MASS, MM '

-- READ (*,11) MM
PRINT *, 'ENTER INITIAL SPRING DISPLACEMENT, UMO '

READ (*,11) UMO

PRINT *, 'ENTER ACCELERATION OF GRAVITY, G '

READ (*,11) G
PRINT *, 'ENTER ANGLE OF ROD FROM HORIZONTAL, ALPHA(DEG) '

READ (*,11) ALPHA
-- PRINT *, 'ENTER ROD LENGTH, LR '

READ (*,11) LR

PRINT *, 'ENTER UNDEFORMED SPRING LENGTH, LS '

READ (*,11) LS
END OF ENTERING THE DATA

b

C

C

C

C

-- C

C

BEGIN THE CALCULATIONS

DUMY1 = K/MM
OMEGAO= SQRT(DUMY1)

DUMY2 = ALPHA*3.1416/180.O

DUMY3 = SIN(OUMY2)
DUMY4 = G*DUMY3/OMEGAO**2

DUMY5 = DUMY4/(UMO + DUMY4)
TSTAR = ACOS(DUMY5)/OMEGAO
DUMY6 = UMO**2 + 2.0*UMO*DUMY4

DUMY7 = SQRT(DUMY6)
UMDOTTS = OMEGAO*DUMY7

C1 = UMDOTTS + G*DUMY3*TSTAR

C2 = G*DUMY3*TSTAR**2/2 - CI*TSTAR
DUMY8 = C1"'2 + 2.0*G*DUMY3*(C2-(LR-LS))

DUMY9 = SQRT(DUMYB)

TEl = (C1 - DUMY9)/G*DUMY3
UMDOTTE = -G*DUMY3*TE1 + C1

END OF THE CALCULATIONS

25

BEGIN WRITING OUT THE SOLUTION TO THE SCREEN

PRINT *, ' '

PRINT *, ' '

PRINT *, 'THE INPUT PARAMATER. VALUES ARE GIVEN BELOW '

WRITE (*,25) K,MM,UMO,G,ALPHA,LR,LS

FORMAT (' K = ',FIO.3,' MM = ',FI0.3,' UMO = ',FI0.3,/,

' G = ',F10.3,' ALPHA = ',F10.3,' LR = ',F10.3,/,
' LS = ',F10.3)

PRINT *, ' ' _-27

PRINT *, 'THE SOLUTION OBTAINED IS GIVEN BELOW '



24

C

C

C

PRINT *, ' '

WRITE (*,21) TSTAR
21 FORMAT (' TIME OF SEPERATION FROM SPRING, TSTAR ',F10.3)

PRINT *, ' '

WRITE (*,22) UMDOTTS

22 FORMAT (' VELOCITY AT TSTAR, UMDOTTS ',F10.3)
PRINT *, ' '

WRITE (*,23) TEl

23 FORMAT (' EXIT TIME FROM ROD END, TEl ',F10.3)

PRINT *, ' '
WRITE (*,24) UMDOTTE

FORMAT (' VELOCITY AT EXIT FROM ROD, UMDOTTE ',F10.3)
END WRITING OUT THE SOLUTION

31

DETERMINE IF ANOTHER SOLUTION IS DESIRED

PRINT *, 'IS ANOTHER SOLUTION OESIRED? '

READ (*,31) IRESP

FORMAT (A16)

IRESP = IRESP(I:2)

IF(IRESP.EQ.'Y') GO TO 51

STOP

END
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DRAWING

NUMBER

131116-109

131116-110

131116-112

131116-113

131116-114

131116-115

131116-116

131116-117

131116-118

131116-119

131116-120

131116-121

No. OF

SHEETS

5

3

4

1

1

3

3

2

1

DESCRIPTION

ORIGAMI LAUNCHER

ORIGAMI MODULES

ATTITUDE DETECTOR

CLAMSHELL MODULE ASSEMBLY

CONTROL DIAGRAM

TUBE LAUNCHER

GIMBAL

GEARBOX

INDEXING MECHANISM

ELECTRICAL SCHEMATIC TFCU SUBSYSTEM

CLAMSHELL MODULE COVER ASSEMBLY

CLAMSHELL MODULE BASE ASSEMBLY
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APPENDIX C

CALCULATIONS



@q

ab = Radius of Attitude Detector Hoops = 4.000 inches

ad = de Tan e

dc = de Tan ¢

ad 2 + dc 2 = ac 2

Substituting (C-1) and (C-2):

(de Tan e) 2 + (de Tan ¢)z = ac z

Also: ac z + bc z = ab2; bc = de; and ab = 4.000

Therefore: ac 2 + de 2 = 4 z

Substituting from (C-2):

(de Tan 0) z + (de Tan _)z + de z = 4 z

Expanding and simplifying:

deZ(Tan2e + TanZ¢ + 1) = 42

4
de =

(Tan_8 + Tan2_ + 1) 1/2]

(C-1)

(C-2)

(c-3)

(c-4)

C-2



TETHER-_d_

°

f!

_CX = ROLL ANGLE

_..__/_.--"'e:_" _ : P,TCHANGLE

For thls calculation the following are constants:

af I = 1.6905 inches

bf = bf = 3.6252 inches
1

angle fbg = 25 °, aflb = 90 °

Let angle (afld) = Roll angle = a

and angle (fbf 1) = Pitch angle =

Note from (C-1), ad = de Tan O; and from (C-4) de =

Therefore, ad =
4 Tan 8

(Tan=6 + Tan=¢ + i)1/2

(TanZe + TanZ¢ + 1)1/2

Roll angle = Sin a -

Sin a =

ad

af I

4 Tan O

1.6905(Tan2e + TanZ¢ + 1) 1/2

¢ = sln-1
4 Tan O

1.6905(Tanae * TanZ¢ + 1)
1/2 (c-5)

C-3



I

Angle fbf I = Pitch angle =

af = 1.6905 Cos a
1

1.6905 Cos a
Tan _ = 3.6252

= Tan-1
1.6905 Cos

3,6252

Pitch angle = 180 ° - 5 ° - (90 ° - e + _)

= 85 ° + _ - e

c-4
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Summary

Three radar reflectors, each with a mass of 100 gr, are attached to the

tether of the Small Expendable Deployer System (SEDS) during deployment.

The reflectors are attached to the tether at the 5, 10, and 15 km points. They are

expected to impact the tether, at attachment, with a longitudinal and a transverse

(in-plane) velocity mismatch of :i:10°_ of the predicted tether deployment velocity.

This report investigates the impact of the attachment of the radar targets upon the

deployment dynamics of SEDS. The investigation is carried out by running

numerical simulations with one of the Smithsonian Astrophysical Observatory

(SAO) bead-model computer codes (MASTER20) specially developed for simulating

the dynamics of tethered systems in space. In particular the report assesses the

effect of the radar targets upon the shape of the tether and evaluates the relative

error between the tether shapes with and without radar targets.
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Figure Captions

Figure 1.

Figures 2(a)-2(d).

Figure 3.

Figures 4(a}-4(n).

Figu,es5(a)-5(i).

Figures 6(a)-.6(i).

Page 2

Reference Frames and Coordinates.

SEDS dynamic response during deployment, obtained by

means of SAO computer code (simulation 1), is compared to

the results obtained by Energy Science Lab's. No aerodynam-

ics, spherical gravity field.

System Discretization Models.

Baseline simulation run. Dynamics response of SEDS without

radar targets (simulation 2). 9-lump model. No aerodynam-

ics, oblate Earth gravity field.

Dynamic response of SEDS with three radar targets attached

to the tether with a differential longitudinal and transverse

(in-plane) velocity components of + 10°_ of the predicted tether

payout velocity (simulation 3). 9-lump model. No aerody-

namics, oblate Earth gravity field.

Dynamic response of SEDS'Iike in simulation, 3 but the model
o • •

is a 17-lump model (simulation 4). This simulation runs

covers 75% of the deployment maneuver.
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1. INTRODUCTION

This is the Final Report submitted by the Smithsonian Astrophysical

Observatory (SAO) under contract 2836 from ANCO Engineers, Inc., for "Analysis

of Deployment of Expendable Tethered System." This report covers the period

from 22 April 1988 through 30 July 1988. The Principal Investigator for this

contract is Dr. Enrico C. Lorenzini and the Co-Investigator is Dr. Mario Cosmo.

2. DEPLOYMENT DYNAMICS

SEDS deployment has dynamic features difl'erent from other tethered

systems such as the Tethered Satellite System. The main characteristics of SEDS

deployment are the following:

-- Low tension

-- Limited tether control

-- Expendable tether

The low tension deployment is required to minimize the momentum

transfer to the tethered payload. Since there ts no retrieval phase an expendable
- .

tether poses less constraints on the system hardware suci_ _ actuators on the

payload and adequate sensors on the mother satellite[e.g.the space shuttle (STS)]

and on the payload itself. It is well known that the retrieval maneuver is

D-6



Page 4

intrinsically unstable and requires more time than the deployment.

From reference [1], the ma_or events in a typical SEDS operation ere:

1. Payload separation from the $TS is initiated by a spring.

2. The payload drifts away and pulls tether out under low tension.

3. Small tension adjustments maintain the deployment schedule.

4. Braking reduces the range rate at the end of the 20 km tether.

5. Wide libration ensues, with payload released near the vertical.

6. The payload ends up 20 km to ~270 km below (or above) the STS.

7. The tether is released into a safe short-lived orbit.

The first SEDS experiment will consist of deploying from the mother

satellite a 50 kg-mass payload on a 20-kin long tether. The deployment dyna_nics,

following the scheme above, can be divided into three main phases, namely 1) drift

phase, 2) straighten phase, and 3) brake phase. Phase 1) is characterized by low

tension that rertges approximately from 0.01 N to 0.05 N. This phase takes about

100 minutes and about 50% of the final length is deployed. The long duration of

this phase allows even small forces to cause noticeable perturbations of the payload

trajectory.

Phase 2) reduces the tether curvature raising the tension by one order of

magnitude (~0.5 N). This phase takes about 25 minutes and about 40% of the

final length is deployed.

13-7
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Phase 3) slows the payout velocity down in order to minimize the final

stretch and the payload rebound. This phase takes about 10 minutes. During the

braking maneuver because of the fast build-up of the tension relatively large

tether oscillations may occur unless the straighten phase has effectively reduced the

tether curvature.

2.1 Introductory Remarks

Monitoring the tether shape as well as the tension, the payout velocity

and the tether length are necessary to assess SEDS performance during

deployment. This implies that some provisions in terms of system hardware are

taken. Non-intrusive tensiometers and turns counters are already planned to be

part of the current hardware design. Radar targets attached to the tether have

been proposed by ANCO for monitoring the tether shape by using the Space

Shuttle's radar to track them.

This report addresses the dynamics of SEDS with three radar reflectors

attached to the tether. The three radar reflectors are attached to the tether at 5,

10, 15 km points respectively. The reflectors are expected to impact the tether at

the attachment time with an axial and transverse (in-plane) relative velocity equal

to ±10_ of the predicted deployment velocity. Purpose of "this report is: (1) to

assess that the radar reflectors do not introduce any instability in SED8 dynamics,

such as tether slackness or payload rebound; (2) to verify that the radar reflectors

D-8



" Page 6

do not affect appreciably the tether tension and the payout velocity, which are

fundamental control variables during the tether deployment; (3) to investigate if

and how the longitudinal and lateral tether oscillations, detectable through radar

tracking, are affected by the introduction of the radar reflectors.

2.2 Dynamics Simulation Model

The analysis has been carried out by means of a numerical simulation code.

I_ASTER20, one of SAC) computer codes for simulating tethered systems dynamics,

has been modified to simulate SEDS dynamics in the space environment. This

code models both the end-platforms and the tether by means of lumped mass.

The 3-dimensional equations of motion of SEDS are referred to an orbiting

reference frame (ORF) which rotates at constant orbital rate l_ and radius Ro.

The origin of this frame coincides with the initial position of the system C_I r

(see Figure 1). The z - azi8 is along the ORF velocity vector, the z - azia is

along the local vertical toward the Earth, and the T/- azs'8 completes the right-

handed reference frame.

The tether is assumed to be visco-elastic and perfectly flexible (no bending

stiffness). The orbit of the system is generic. In this particular case the Shuttle

is assumed to follow an orbit which is initially circular.

D-9
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The equations of motion of the N-masses of the system in vectorial form

i:i = -Ro- 2fl x i-_- fl x (fi x r_) +

+ 1 (F_ + Fr,,) i = 1,...,N
ml

(1)

where mi is the mass and ri the radius vector of the ith-mass with respect

to ORF. The above equations are a set of N vectorial equations or correspondingly

a set of 3 x N scalar equations which have to be integrated numerically in order to

obtain the motion of the system. The external perturbations considered in the

present analysis are: the gravitational forces Fg, and the tensional forces FT.

The gravity model is not linearized and it also takes into account the second

zonal harmonic of the gravity field (,I2- term). The J_- term has a secular

effect on such orbital parameters of the system as mean anomaly, argument of

perigee, and right ascension of the ascending node. The J2 - term also affects the

librations and lateral oscillations (see next section) of a long tethered system such

as the one under analysis.

The coordinates z_,yi, zi of the point masses with resI_ect to ORF are

numerically integrated by the computer code with a 4th-order Runge-Kutta or a

predictor-corrector integration routine.

D-If
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A second set of coordinates has also been selected in order to provide a

more direct description of the system dynamics. This set of coordinates is formed

by (see Figure 1): the in-plane (in the orbital plane) 0 and out-of-plane

(orthogonal to the orbital plane) _ angles of Hbration between the line connecting

the end-masses and the local vertical through the system C"M; the N - 1 lengths

of the tether segments li, where N is the number of the lumped masses, and the

N - 2 lateral deflections ei of the inner masses with respect to the llne through the

end-masses. The coordinates _ are further projected onto the in-plane e,,_ and out-

of-plane components col. The e_,'6 and co's, therefore, provide a clear representa-

tion of the tether bowing both in the orbital plane and in the transverse plane.

Drag forces have been neglected (the atmospheric density at the orbital altitude

of SED$ is very small) in order to expedite the simulation runs. _,fASTER20,

like all the other tethered object simulation codes, is very CPU intensive. A

typical simulation run of SEDS with 17 lumps takes 30 hrs. of CPU time to cover

less than 2 hrs. of deployment. The discontinuities introduced by the attachment

of the radar targets, moreover, complicate the job of the integrator and of the

computer analyst as well.

r •
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2.3 Deployment Control Law

BED5 tension control law has been implemented following reference I1].

The computation of the input tension T/N expressed by Equation (2.1) is based on

empirical considerations related to the geometry and dynamics of SEDS deployer.

The controller, [see Equation (2.2)] computes the brake force using an array of

user-provided break points Fi and break values cTi by interpolating the natural

logarithm of the brake setting, as expressed by Equation (2.3). The exponential

of that brake setting multiplied by the input tension is the tether control tension

TCONI_tOL (see Equation 2.5).

Mathematically the control algorithm can be represented as

where

LDEp

L

CT

TMn_

Tzs = TMm ÷ A l 2

F = Lv_/L

cri_1- cr_ (F - Fi)
cr = cr_ + Fi+l F_

T_NrRor. = TZN e °r

Actual deployed tether length

Overall tether length to be deployed"

Brake tension multiplier (natural logarithm)

Minimum deployment tension (Newton)

(2.1)

(2.2)

(2.3)

(2.4)
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Fractional tether length

Constant that keeps into account the

deployer geometry and inertia effects

Deployment velocity

Page 11

Since SEDS control law is proprietary data we refer to Energy Science

Laboratories, Inc. for any further information about the control strategy.

2.4 Computer Code Validation

A firstset of simulations has been run in order to compare the results

obtained from MASTER20 with Energy Science Lab's (Joe Carroll's,1987) results

which are so far the only data availablein the literatureon SEDS dynamics [ref.1].

All the simulationshave been run with the parameters and initialconditions

listedin Table I.

Table I

Mother SatelliteMass (i.e.Space Shuttle)

Payload Mass

Orbit Inclination

Mother SatelliteAltitude

90O00 kg

50 kg
28.5 °

300 km

Tether InitialLength (to)

Tether InitialVelocity (_o)

1 m

0.4 m/s

Tether Radius

Tether Linear Density

Tether Axial Stiffness (EA)

Tether Axial Viscosity (EA')

7 x l0 -4 m

" "2.9 x 10 -4 kg/m

104 Newtons

2 × 104 Newton-sec

D-14
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We have used various numbers of lumped masses in running the validation

simulations and we show here the results obtained with a 5-1ump model (simulation

1). Since the Energy Science Lab's (ESL) code does not have the J2-term the

Earth gravity field has been assumed to be spherical in these validation runs.

Figures 2.4(a), 2.4(b), 2.4(c), and 2.4(d) show the results of the comparison runs,

namely the tether length, payload trajectory, deployment velocity, and tether

tension respectively. The results agree quite satisfactorily with those published by

Energy Science Laboratories. The few disagreements are due simply to different

output steps (Energy Science Lab's - 300 see; SAC) = 50 see). Other minor

differences in the length and tension time histories are most probably related to

small differences in generating the new lumped masses during deployment as the

tether comes out of the spool.

ORIGINAL P,_,(2_- I¢';,
OF POOR _AL IT_"
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2.5 Simulation Of SEDS Deployment Dynamics

2.5.1 Without Radar Targets

After the results of our computer code had been validated we focused

our effort on carrying out comparative simulation runs of SEDS deployment with

and without radar targets attached to the tether. We had been informed by J.

Carroll that recent tests of SEDS's tether at temperature comparable to those to be

expected in space had shown that the tether material damping was much lower

than the room temperature value of 20,000 N-sec. A more appropriate value at

low temperature should be around EA' = 2,000 N-sec. We have, therefore, decided

to run the comparative simulation runs according to the new value of tether axial

viscosity EA'. This explains the different behavior of the tether tension during

the breaking phase. Because of the lower value of material damping the tether

tensions shows a significant ringing phenomenon at the end of deployment. In

other words the longitudinal (along the tether) oscillations are only lightly damped.

The other degrees of freedom, namely the libratious 0 and _o, and the lateral

deflections el'S and co'S, are almost unaffected by the tether damping properties.

Several simulations with increasing number of lumps have been run. A

finer resolution requires smaller ancl smaller integration" steps. Furthermore,

numerical instabilities appear for a large number of lumps and the CPU times,

required to overcome them, become prohibitive. Thus far, from the current

D-18
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literature available on the subject, the maximum number of lumps adopted in

3-D models which do not manipulate the longitudinal tether oscillations in order to

increase the computer efficiency has been 6 [ref. 2]. An important phase of our

investigation has been spent looking for the "best run, _ that is finding the best

compromise between resolution (i.e. number of lumps) and reasonable CPU times.

The discontinuities introduced by the attachment of the radar targets with

mismatched velocities complicate even more the job of the integrator. After

several attempts the number of lumps that provides a good compromise between

resolution and CPU time has been found to be 9 (see Figure 3). The simulations

require a maximum integration step of 0.1 sec for a relative accuracy of 10 -_.

The CPU time for each run is about 4 hours.

In the following the results of a typical SEDS deployment with 9 lumps and

no radar targets are shown (simulation 2). The simulation run stops when the in-

plane angle 0 with respect to the local vertical is less than or equal to 1°. At that

instant the tether is supposed to be cut and the payload released. Figure 4(a)

shows the in-plane libration angle 0. The libration reaches a peak of 73 °

approximately 15 minutes after the payload ejection. The steep variations during

the initial and final phases are a function of. the balance between the gravity

gradient torque and the Coriolis torque which depend upon the tether length and

the tether payout velocity respectively. Figure 4(b) shows the tether length. The

length follows the exponential deployment control law. Figure 4(c) depicts the
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stretched and the deployed tether lengths during the final part of deployment.

The deployment stops around 8100 sec and the stretched length reaches itssteady-

state value. Figure 4(d) depicts the payout velocity _. The break reduces the

value of _ from 6.8 m/s to 0.6 m/s. The discontinuity at the end of the

deployment, which is shown enlarged in Figure 4(e), is mused by the deployed

tether length reaching its finalvalue of 20 km as shown in Figure 4(c). Figure

4(f) shows the controlled tension. The three phases of deployment are easily

recognizable from the plot. The oscillationsin the finalpart are due to undamped

longitudinaloscillationsexcited by the non zero value of the payout velocityat the

end of the deployment. Figure 4(g) depicts the controlledtension and the tension

at the payload during the finalphase of deployment. Both tensions exhibit the

same behavior with a slightdifferencein theirmagnitudes due to the tether mass.

Figure 4(h) shows the in-plane deflectionsel'8for all the inner lumps. Their

values are zeros before the lump is released. Their indexes are referred to the

indexes of the associated lumps as shown in Figure S. All the deflectionshave a

longer frequency at the beginning of the deployment and a shorter frequency at the

end owing to the increasing magnitude of the tether tension during deployment.

It is worth noticing that the _strengthen" phase provides an effectivereduction of

the tether "bowing". The residuallateraloscUlAtions,however, cannot be damped
• o

- r o .

unless an adequate tether control is adopted. The peak value of the bowing is

1350 m which is associated to the deflectionof lump no. 4. At the end of

deployment the deflectionshave a magnitude around 60 m as shown in the
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enlarged plot of Figure 4(i). Figures 4(j), 4(k), and 4(I) depict the out-of-plane

deflections, the enlarged view of their final values, and the out-of-plane [ibration

angle _o. The out-of-plane dynamics is mainly excited by the Jrterm (i.e. Earth

oblateness). The out-of-plane deflections are below 1 m during the entire

deployment and less than 20 cm at the end of the maneuver. Even though

the out-of-plane angle _o tends to increase during deployment its magnitude is quite

small Figure 4(m) shows the radius vectors of the mother satellite and the

payloads measured with respect to an Earth centered reference frame. The

mother satellite radius shows an eccentricity e equal to 2 x 10 -l, (¢ = Ah/2P_ Rp

= perigee radius = 6678 km) caused by the J_ gravity term. The payload radius

show the same behavior at the beginning of the deployment since it is almost free-

flying during that phase. Figure 4(n) shows snapshots of the in-plane motion of

the system. The snapshots are drawn every 200 see. The payload is represented

by the black dot. The flight direction is toward the left of the plot and the Earth

is below. This plot shows some relevant features of the deployment dynamics,

such as the near-horizontal deployment at the beginning of the maneuver, the

initial tether bowing, and the large final libation.
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In order to detect the shape of the tether during SEDS'e deployment

maneuver, ANCO is proposing to add three radar targets, each with a mass of 100

gr, to the tether as the tether is reeled out of the spool. As already mentioned

previously, the three radar targets are attach_ to the 5, 10, and 15 km points

along the tether. The targets axe expected to have a velocity mismatch, both

along and orthogonal (in-plane) to the tether, of about ±10_ of the deployment

velocity. An issue of primary importance to this project is how the attachment of

the radar targets affects SEI_'s dynamics and in particular the shape of the

tether. We run several simulations to address these issue and the results from one

of them are shown in detail in this section. The model adopted for simulation run

3, presented here, is like the model adopted for the baseline simulation run of the

previous section, namely 9 lumps. During deployment the three radar targets are

attached to lumps 3, 5, and 7 respectively (see Figure 3). The velocity mismatch

of the three radar targets is +10°_ of the payout velocity. Specifically, when each

radar target is added to the tether lump, the initial velocity of the radar target

plus tether lump is abruptly modified in the simulation model so that the initial

linear momentum of the tether lump plus target is +10% of the initial linear

momentum of the tether lump without the tat;get. We will elaborate more on the

discretization adopted in the next section. The results of this simulation run are

shown in th next set of figures. Each figure of the set should be compared to the

corresponding figures of the baseline simulation run shown in the previous section.
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Most of the figures are selfexplanatory. We want to point out, however,

some of the relevant features of the deployment dynamics with the radar targets.

The tether payout velocity [seeFigures 5(a), and 5(b) for the enlargement of the

finalphase] is almost unaffected by the addition of the radar reflections. The

mass of the reflectors is too small to influence significantly the longitudinal

dynamics of the "stiff" tether. Similar conclusions hold for the tether tension

shown in Figure 5(c) and its enlargement during the finalphase in Figure 5(d).

More appreciable but still small differences appear in the tether shape of

which the deflections Q'8 and eo'S provide the most visible representation. After

accurately comparing Figure 5(e) with Figure 4(h) we can conclude that the

maximum departure of the tether in-plane bowing from the baseline case (no

radar targets) is less than 10°_ of the baseline bowing. Specifically the maximum

differential bowings at the radar targets are as follows: 80m over 1350 m for

target 1 (the one closer to the payload), 85 m over 1060 m for target 2, and 40 m

over 400 m for target 3.

The out-of-plane bowing is also slightly affected by the attachment of the

radar targets. This is probably caused by coupling between different DOF's

because there is no out-of-plane initial velocity mismatch in this simulation. The

out-of-plane deflections however are small enough to be mbst probably below the

ranging accuracy of the Shuttle's radar. Finally Figure 5(i) shows a snapshot side-

view of the entire deployment. The black dot in the figure is the payload and the
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black squares are the radar targets. The snapshots are taken every 200 sec. The

qualitative behavior of the deployment maneuver with radar targets is just like the

baseline maneuver depicted in Figure 4(n).

Other simulation runs with -10_ initial velocity mismatch have confirmed

the conclusions reported above. In particular the departure of the in-plane bowing

from the baseline case is always within the 10% band.

These results lead us to conclude that the tracking of the three radar

targets will provide a quite accurate measurement of the tether shape. We have

to take into account, of course, that the tracking of three radar reflectors will

provide information on the first three modal shapes of the tether and not on the

higher harmonics. Even if we did not carry a quantitative analysis of the

harmonic content of the tether shape we can however say that the first few modes

are dominant in the tether in-plane dynamics.

OF' PC"_R QU_," F_'Y
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2.6 Tether Discretization And Accuracy

The 9-lump model adopted for the analysis described in the previous section

of this report is the result of a compromise between CPU time consumption and

resolution. Two legitimate questions are: (1) Is the resolution of the 9-1ump

model accurate enough for the purpose of our investigation? (2) Does the strategy

adopted of attaching radar targets to tether lumps provide results which are

accurate enough?

This sections is devoted to answering the two questions above. To this end

we run several partial simulations with higher resolutions than the 9-lump model

and also by adopting a different strategy for the attachment of the radar targets to

the tether. According to the new strategy each radar target is attached to the

tether in between two adjacent tether lumps instead than to the lump itself. This

strategy has however the drawback that a lighter lump mass, a shorter tether

length (hence higher frequencies), and the discontinuity of the initial velocity vector

force the integrator to use extremely small steps following the attachment of the

radar target. On several occasions the integrator become unstable at the

attachment of the second radar target. All these problems may be solved by

filtering the longitudinal tether dynamics (which however impliesa 10ss of accuracy

in the description of the system motion) and also by using more stable integrators

(unfortunately the more stable integrators are usually the slowest!). Both these

solutions, however, require an effort that is far beyond the scope and the funding

OF PC R QL::.:._"f"_
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We show in this section the results of a simulation (simulation run 4) which

adopts the new strategy of radar reflector's attachment to the tether, +10_0

velocity mismatch, and which adopts a 17-1ump model. The simulation run took

30 hrs. of CPU time on a MicroVAX to cover 75_ (less than 2 hrs.) of deployment

before the integrator became unstable at the attachment of the second radar

target. The results of simulation 4 answer the two questions asked above.

Figure 6(a) shows the in-plane bowing of the tether between the ejection of

the 2 nd lump and the 8 th lump. The radar target is lump 5 (see Figure 3) which

occupies the position at 5 km from the payload, formerly occupied by lump 3 of

simulation 3 (9-1ump model). Lumps 2, 3, 4, 6, 7 and 8 do not occupy any

position formerly taken by the lumps of the 9-lump model. The comparison

between the 9-lump and the 17-lump model, therefore, must be based upon the

overall tether bowing (i.e.the envelope of the relevant figures). Morever we can

compare the tether bowing at the firstradar target: lump 5 in simulation 4 and

lump 3 in simulation 3. The conclusion is that when we consider the firstradar

target and we take into account the slightly differenttime of ejection of the

target (the differentdiscretizationmodel slightlyaffectsthe duration of deploy-

ment) the resultsof the two model_ are close. From F_gure 6(a) we can also

noticethat the firsttarget (lump 5) has a bowing which isalmost midway between

lumps 4 and 6. This means that the segment of tether between lumps 4 and 6
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(the target is in the middle of that tether segment) is almost straight. The new

strategy of attaching radar target, therefore, does not uncover any local significs_tt

deflection of the tether segment to which the target k attar.heal. Consequently the

strategy does not improve the resolution with respect to the old strategy but,

on the other hand, it worsen enormously the CPU time rJmsumption of the

computer code. Figure 6(b) shows the out-of-plane tether bowing. We can notice,

again, that the magnitudes of the results are very close to the 9-lump model

[see Figure 5(g)]. Finally Figure 6(c) shows the snapshot side-view of the first

6400 sec of deployment with the 17-lump model.

The conclusion to this section is that the 9-lump model is accurate enough

for the purpose of this investigation. The strategy of adding radar targets to

tether lumps also provides a correct representation of the actual dynamics.
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2.7 Conclusions And Recommendations

The attachment of three radar reflectors at the 5, 10, and 15 km points

of SEDS's tether during deployment does not impact appreciably the longitudinal

dynamics of the system. Control variables such as tether tension, length, and

payout velocity are almost unaffected by the attachment of the radar reflectors.

The major effect of the reflectors is upon the in-plane shape of the tether. The

departure of the in-plane bowing from the baseline case is, however, less than 10%

of the baseline local tether bowing. These results are consistent with radar targets

of 100 grams and with a longitudinal and transverse (in-plane) differential velocity

components at attachment of :f:10_0 of the predicted deployment velocity. These

conclusions were obtained with a 9-lump model of the system and verified, for 75%

of the deployment duration, with a 17-lump model.

The accurate tracking of the three radar targets from the Shuttle will

provide, therefore, a quite accurate measurement of the tether shape.

D-43


