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SUMMARY

Two laser speckle methods are described to measure strain in high temperature environment and

thermal strain caused by high temperature. Both are non-contact, non-destructive and remote

sensing techniques that can be automated. The methods have different but overlapping ranges of

application with one being more suitable for large plastic deformation.

INTRODUCTION

In order to measure thermal strain accurately it is paramount that the output of the measuring

device not be influenced by temperature. Both mechanical and electrical strain gages require

compensation schemes to overcome thermal effect. But compensation becomes difficult if not

impossible when temperature extremes or large temperature gradients are involved. The situation

becomes worse when the loading is a thermal shock. Optical techniques such as moire or moire

interferometry require that a grating or grid be attached to the specimen surface over an area.

Although it has been shown [1] that by appropriately mixing a certain ingredient into the

photoresist, it can sustain temperatures up to about 560°C, at higher temperatures the grating or

grid tends to disintegrate. Holographic interferometry has also been used for measuring thermal

strain. However, since it is not easy to apply it to measuring in-plane strain, its application is

limited.

In this paper we describe two non-contact, non-destructive and remote sensing methods of thermal

strain measurement using laser speckles. In principle thermal strain up to the melting point can be

measured without the aid of an auxiliary device. Other than the impingement of photons from a laser

beam nothing touches the specimen. Recording can be done remotely using a telephoto lens and

data analysis can be computerized.

LASER SPECKLE TECHNIQUES OF STRAIN ANALYSIS

Two laser speckle techniques are described in this article. Each has its own range of applicability

and the two ranges overlap and complement each other. The first technique is the so-caLled speckle

photography or one beam laser speckle interferometry [2,3]. When an expanded coherent laser beam

illuminates a specimen surface which is optically rough (i.e.) its RMS roughness is much larger than
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the wavelength of the light from the laser), multiple reflection (scattering) occurs. Th.e reflected

wavelets, being still coherent, mutually interfere to form a random interference pattern called

speckles. An example of such a speckle pattern after magnification is shown in Fig.'1. These are the

equivalent optical displacement "gages" that are used for thermal strain measurement. Under the

condition of small strain and small displacement these speckles move as if they were physically

attached to the specimen surface. When they are recorded on a photographic film via a camera

before and after the specimen's deformation, the superimposed speckle pattern is called a double

exposure specklegram. The specklegram may be processed either in a pointwise or a full field

manner. For pointwise processing, a thin laser beam impinges upon the specklegram as shown in

Fig.2. Its far field diffraction pattern is a circular halo modulated by a series of uniformly

distributed fringes. It can be shown [3] that the in-plane displacement vector at the probed point
can be expressed as follows:

AL_
d= (1)

where ; is a unit vector perpendicular to the fringes, L the distance of the screen from the

specklegram where the halo is received, A the wavelength of the laser light that is used to probe the

specklegram and S is the fringe spacing.

The full field processing technique uses an optical bench as shown in Fig.3. It can be shown [3] that

the intensity of the diffraction spectrum displayed at the transformed plane of the first field lens is

given by the following equation:

I(r,,r_)= Kcos2k--ff-I.(r,,r2) (2)

where I,(rx,,-2) is the diffraction pattern of a single exposure specklegram with (rl, r2) being the

coordinates of the spectrum plane, k(= 2_r/,_) is the wave number; d is the displacement vector at a

point; _ is a position Vector at the spectrum piane; K is a proportional constant and L is the

distance between the specklegram and the spectrum plane. Alternating bright and dark fringes are

observed when the following condition is met:

d._=nAL, rt = 0, +l, +2, .... (3)

By placing an aperture at e and reconstructing the specimen image through the second field lens,

isothetic (contours of equal displacement component) fringes similar to moire fringes are observed

covering the specimen surface and they are governed by the following equation:

u = a==  AL/I -.I = np=, = 0, +1, 4-2,.... (4)
v = = = LII - I = "G, = 0,+1,+2; .... (5)

where r-z and r-_ are the position vectors of the apertures sequentially located along rl and r2 axes,

respectively, tt and v are the displacement components along z and V directions, respectively; and

P=(= ,_L/[r-,[) and Py(= ,_L/I_vi) are the equivalent "pitches" of moire gratings if they were used

for the determination of strain. This technique is suitable only for the determination of small

strains unless single exposure specklegram and mechanical superposition are adopted. The process

has been automated as a result of our recent development of CASI (Computer Aided Speckle

Interferometry) [4].
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The second laser speckle technique is the so-called LSS (Laser Speckle Sensor). A schematic of this

method is shown in Fig.4. A narrow laser beam impinges upon a point on the specimen surface

where the strain is to be determined. The specimen surface has to be sufficiently sniooth such that

its scattering speckle field is f_irly restricted. Upon deformation the surface roughens resulting in a

more spread out speckle pattern whose autocorrelation function can be used as a means of assessing

the underlying surface strain. The quantity that is most sensitive to strain is the coefficient of

autocorrelation function of the speckle pattern g(i,j) defined as

v,M %--N

co[g(i, j), sj] = ,..,=1 g(i, j) × g[(i - s,), (j - 6;)1
M

E,=l EN=I g2(i,J)
(6)

where 6i and 6j are shifting distances along i and j directions, respectively.

One can use light scattering theory to compute the autocorrelation coefficient for various amounts

of plastic strain [5]. An example is given in Fig.5 where a three dimensional view of the laser

speckle field at three different levels of plastic strain in a copper alloy specimen is depicted. The

corresponding experimental result is shown in Fig.6 and the agreement is quite good. The

calculated autocorrelation functions for different levels of plastic strain and for different lag lengths

are depicted in Figs. 7 and 8, respectively. It should be noted that the lag length is the shifting

"distance" between the speckle field and its image that is used in the calculation of autocorrelation.

Since the speckle field denotes the spatial frequency (see Figs. 5 and 6) of the light disturbance from

the specimen surface, its dimension is in terms of lines/mm. If the area under the curve of the

autocorrelation function is integrated and expressed as a function of strain, the relation can be

approximated by a straight line as shown in Fig.9. Thus fo r plastic shear strain 7 <--3.5%, the linear

relationship between the integrated autocorrelation coefficient and 7 is

C1 = 29.23' - 0.04 (7)

with an error band of 10%. For higher strains the relation is no longer linear. The broadening of the

scattering speckle field becomes saturated at higher strains. In aluminum specimens we have shown

that LSS can be effectively used for strains up tO 20%.

APPLICATION TO THERMAL STRAIN PROBLEMS

Fig.10 shows the u and v fields' isothetics representing the thermal strain distributions of an

aluminum plate at elevated temperatures. The specimen was a quarter inch thick aluminum plate

of about 2' x 2' in size. It was heated at the left lower corner with a propane torch. This place

manifests itself as a dark spot in the pictures, especially at higher temperatures. When the torched

place became red-hot at the back side, the flame was extinguished and the plate was allowed to cool

naturally by thermal convection. A series of double exposure specldegrams were taken. At near the

top of the plate a thermal couple was mounted to monitor the temperature change. (The wiring of

the thermal couple is vaguely visible as a vertical line near the top of the picture.) The temperature

reading at the time of each exposure was recorded and is indicated in the figure. A 1-joule ruby

laser (A "_ 0.69 × 10-sin) was used to record the specklegrams. It was a pulsed laser with a pulse

width of about 60 nsec. The laser only gave a single pulse and needed to be repumped after each

firing. The time separation between the two pulses and the resulting temperature difference as
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indicatedon the picture represent the amount of cooling between the exposures. Since the thermal

couple was located far away from the heat source, it is reasonable to expect that the temperature near

the heat source was much higher than those indicated on the picture.

The double exposure specklegram was Fourier processed using the full-field processing scheme

shown in Fig.3. Filtering aperture_ were placed at two orthogonal directions to yield the u- and

v-field fringe patterns, respectively. A qualitative way to read the fringe pattern is as follows.

Uniform strain is depicted by uniformly spaced fringes whoSe spacing is inversely proportional to

the local average strain. Thus one can see from the pictures that at the earlier stages of thermal

relaxation, the strain distribution is quite nonuniform and the strain is higher. As the convection

cooling progresses the fringe becomes less dense (indicating smMIer Strain) and more uniform

(indicating lower strain). A quantitative calculation of strain near the point where the thermal

couple was located was carried out and the result is depicted in Fig.11. in the course of about 120

seconds the thermal strain has relaxed from about 0.2% to about (I.02%. The difference between

horizontal and vertical normal strains also decreases with time as indicated by the gap between the

two data points. A comparison of thermal strain at various temperatures for this material using data

from an Alcoa Aluminum Handbook was also plotted. Within the range where comparison can be
made the agreement is quite good.

Another exampie is the application of the laser Speckle method to the determination of stress-strain

relation at high temperature and high heating rate. _'ig.i2 is the schematic of a medium strain rate

test-ing machine with a resi-stance heating attachment. TWo types of testing wereperformed [6]. One
was a soaking test at elevated temperature and the other a high heating rate test. In both tests the

strain rate was kept at 10 -_ sec -I. Strain gages were mounted on the tensile specimen as a

comparison with the laser speckle result. The ruby laser was fired once before the beginning of the
test and a second time at an appropriate delay time. A camera was used to record the laser

illuminated specimen. The double exposure specklegram was pointwisely processed by probing

different points along the axial direction within the gage length of the specimen. The resulting

Young's fringes represent the absolute displacement at the probed points between the exposures.

Since the strain field is homogeneous within the gage length, the difference in displacement between

two probed points divided by the separating distance is nothing but the strain. The results of the

soaking test and high heating rate test are depicted in Figs.13 and 14, respectively. As can be seen

from the data presented, the difference between the strain gage reading and laser speckle result is

only a few percent. We have thus demonstrated the reliability of the speckle method at high

temperature tests. At extreme temperatures the strain gage may fail but the laser speckle method will

not. It can even be applied to specimens giving off a wide spectrum of radiation which may include

the radiation of the laser. However, thermal radiation, being incoherent, does not produce speckles.

To prevent thermal radiation from fogging the film, a narrow band (10.&) interference filter can be

mounted on the lens of the recording camera to allow only the laser light to enter the camera.

For:tests that are not repeatable, single exposure: Specklegram at different times Can be recorded

using a continuously pulsing laser (such as a copper vapor laser) and a high speed framing camera.

Two single exposure specklegrams at different instances can be mechanically superimposed to yield

the difference between the two stages of loading. However, the strain difference between the two

cannot be too large, for otherwise decorreiation of the speckle pattern will result.

When either the strain variation or the absolute strain is large, decorrelation of laser speckle tends



to occur. In sucha situation the LSS(LaserSpeckleSensor)technique should be used. The

advantages of LSS technique are that only single exposure is required and speckle decorrelation will
not affect the result. Currently we are in the process of applying LSS to high temperature testing

and the results will be reported in the near future.
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