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INTRODUCTION

A program entitled "Reacting Gas Experimental
Data in Low Density Flow," which is funded by the

Wright Laboratory/Flight Dynamics Directorate, is

underway with the overall purpose of defining a set of

standard experimental data against which the results

of real gas computational codes can be evaluated.

The goal of the particular task under which the

present work was performed is to provide a complete
characterization of the Boeing 30-in. Hypersonic

Shock Tunnel (B30HST) at a selected test condition.

Initial experimental results for the flow characteri-
zation have been reported in Refs. 1-3. The

measurement techniques utilized in these studies

consisted of the usual (or classical) physical probes
for determination of incident shock velocity, reflected

shock pressure, nozzle wall static pressure, test sec-

tion pitot and static pressure, and test section model

heating rate. In addition, a direct measurement of

free-stream velocity was made using a time- of-flight

vaporizing wire technique. Nonintrusive techniques

such as Rayleigh scattering for free-stream density
determination and laser-induced fluorescence (LIF)

for determination of nitric oxide concentration and

vibrational temperature were also used. A general
conclusion from these measurements was that addi-

tional nonintrusive measurements were required.

Other measurements identified for these additional

nonintrusive techniques were static density and

temperature.

At the request of Wright Laboratory, the

Calspan/AEDC electron beam fluorescence (EBF)

technique was used to measure nitrogen density,
nitrogen vibrational temperature, and the arrival time

of the helium component of the driver gas. Deter-
mination of helium arrival time was needed to help

define the usable flow duration. This paper describes

the Calspan EBF measurement system, data reduc o

tion methods, and the results of the measurements

which were performed under Task VI of the program,

"Electron Beam Density Measurement in Hypersonic

Flow." An analysis of these results are to be reported

by Boeing (Ref.4).

The EBF technique uses a narrow beam of high

energy (50 keV) electrons to ionize and excite all

species of gas atoms and molecules within the path
of the beam. As the gas atoms and molecules lose

the energy gained from their collisions with the beam

electrons, they emit radiation which is characteristic

of their particular species. From the intensity and

spectral distribution of the fluorescence, species
concentration and temperature(s) can be determined,

respectively. An overview of the EBF technique is

given in Ref. 5.

Molecular nitrogen (N2) is directly excited

electron impact to the N _ B 2_.; electronic state:

N2 X [Z;(v_ + e--+ N; B 2Z:(v) + 2e-

by

from which spontaneous radiation occurs by

+ X 2Z;(v ") + hv(F.N.)(v,v'_

where v, v', and v" denote different vibrational levels,

X are ground electronic states, and hv (F.N.) denotes

radiation from the N _ First Negative System.

The collisional de-excitation (quenching) process
deactivates excited state molecules before spontan-

eous emission can occur; its process is:

N; B2Z:(v) + NzX 1Z+(v')--+ N;(a)+ N2([3)g

in which the final states o and p are unknown. As the

number density of the gas increases, this effect
becomes more pronounced.

"The research reported herein was performed by the Arnold Engineering Development Center (AEDC), Air Force Systems
Command. Work and analysis for this research were cloneby personnel of Calspan Corporation/AEDC Operations, operating contractor
for the AEDC aerospace flight dynamics facdtt,es.Further reproduction is authorized to satisfy needs of the U. S. Government.
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In general, observation of an electron beam in a

gas with a detection system of efficiency s(_.) and
solid angle w results in a detector photon rate of

S = (_/4n)s(_)(I/e)o n LA.._./(1 + klein )g (1)g: g Uz

where I is the beam current, e the electronic charge,

Og i the excitation cross section for the ground state

level g to i transition, no the ground state number
density, L the observed length of beam, A+j the
Einstein spontaneous transition probability for the i to

j transition, _+ the radiative lifetime of state i, and k+
the quenching rate constant for level i. The photon
rate is directly proportional to the beam current and

the ground state number density, but modified by the
quenching term in the denominator, whose magni-

tude depends on the ground state number density.
Rather than assigning values to each of these param-

eters, density calibrations are usually accomplished
by using the detection system to measure the photon

rate in a gas of known density, while keeping the
same optical configuration, transition, etc., for the
calibration and test.

The excitation and emission of nitrogen's N_"
I_rst Negative System bands are modeled in AEDC's

EBFN2 computer program. Results from spectral
band measurements are compared to program

predictions to obtain rotational or vibrational tempera-
tures. The fluorescent intensity distribution within a

rotational band is a function of rotational temperature.
The relative fluorescent intensities of two vibrational

bands whose upper vibrational levels are different is

a function of the vibrational temperature.

Small angle scattering collisions between primary
electrons and gas molecules result in gradual

spreading of the beam as it traverses the gas. The
magnitude of beam spreading is primarily a function

of the gas species, the beam energy, the density of
the gas, and the distance from the exit orifice. Beam
spreading equations (Ref. 6) were invoked for the

B30HST setup and conditions; for a 50-keV beam a
maximum beam spread of 8 mm at the observation
volume was expected. Fields of view of the optical

detection systems were designed to encompass this
beam width and more.

THE BOEING 30-INCH HYPERSONIC SHOCK

TUNNEL (B30HST)

Principal elements of the B30HST are presented
in Fig. 1. f It consists of a 160-in.-Iong, 3-in.-diam

combustion driver, a 299-in.-Iong, 3-in.-diam driven

tube, a 175-in.-Iong, 30-in. exit diameter contoured
nozzle, a 40-in.-diam open jet test section, and a
vacuum dump tank. The driver is a combustible

mixture of nominally 75 percent helium (He), 16.7

percent hydrogen (H2), and 8.3 percent oxygen (02);
this mixture is ignited by the simultaneous firing of 21

spark plugs. At a time slightly after peak pressure in
the driver, a double diaphragm assembly which
separates the driver and driven sections is ruptured

by means of an electrical discharge in the argon gas
between the two diaphragms. After release of the

driver gas, an incident shock wave is formed which
travels down the air-filled driven tube and reflects off

the nozzle entrance to create the tunnel reservoir

conditions. A Mylare diaphragm which separates the
air in the driven tube from the evacuated nozzle, test

section, and dump tank is easily ruptured to allow the
flow to begin. The nozzle was designed for nominal

operation at Mach 16 and a range of operational
Mach numbers from 8.5 to 20; for this program a
0.601-in.-diam throat insert was selected to provide a
Mach 10 flow in the test section.

A program operational test point was chosen
having the following characteristics: stagnation condi-

tions of 5,130 psia pressure (measured) and 6,490 K
temperature (calculated from driven tube incident

shock speed measurements), free-stream static pres-
sure of 0.034 psia (measured) and 450 K tempera-
ture (calculated), free-stream density of 75 x 10-6
Ibm/ft3 (3 x 101s molecules/cm3), and a 6.5-in.-thick

boundary layer at the exit. The exit plane species

mole fractions were calculated to be 0.698 N 2, 0.147
02, 0.065 NO (nitric oxide), 0.090 O, 5 x 10-1o N,
and 8 x 10-8 NO* and e- (free electrons). The

mole fraction of Ar (argon) was not modeled.

Numerous pressure transducers are located

along the driver and driven tubes, the throat region,
and the nozzle, and are used for evaluation of tunnel

performance, nozzle flow-field characteristics and
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Fig. 1. Boeing 30-in. hypersonic shock tunnel.

t F'.gures 1-31 are cited in the text.
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test section conditions. The signal from a transducer
located one inch upstream of the nozzle throat is

used to provide a trigger pulse for critically timed
events occurring in the test section. To monitor the

test section pitot pressure, a two-transducer probe
was positioned at the nozzle exit plane such that no
interference with the electron beam would occur.

Forty transient data recorders (TDRs) are used
for the acquisition of pressure transducer and

diagnostic instrumentation outputs at sample rates of
up to 500 kHz per channel. For time correlation

during a run, all the TDR channels are triggered
simultaneously. Data are stored on the TDRs until

they are transferred to a PDP-t 1 hard disk. The data
system is capable of manipulating and reducing raw

data to standard engineering units. A moving average
routine can be applied to the data to filter out any

high frequency noise components. Any test specific
data reduction routines, such as heat transfer

calculations, can readily be included in the system.

Reduced parameters can be printed or plotted on a

laser printer. Files of raw and reduced data are
stored on magnetic tape.

ELECTRON GUN

The AEDC electron gun system was manu-
factured by Kimball Physics, Inc. The model EMG-

22B electron gun has an accelerating potential
variable up to 50 kV and delivers up to 10-mA

current. It is capable of being modulated at pulse
rates from 10 Hz to 10 kHz with pulse widths from 1

to 20 psec. The gun section, which must be main-
tained at a pressure of less than 0.1 mtorr, is

pumped by a 56-_'/sec turbomolecular pump and
has deflection and focusing coils that allow the
beam to be precisely directed through a 1.0-mm-

dJam orifice. The base pressure is 1 x 10-7
torr. The original thin-walled copper orifice plate

was replaced by a 4.8-ram-thick copper plate
having a 1.0-mm-diam orifice, allowing a greater
pressure differential and permitting operation in

chamber pressures up to about 10 mtorr. The
small, retractable, internal Faraday cup was
removed from its position near the back side of

the orifice. To enable evaluation of the gun
performance, the orifice plate was electrically
insulated and a lead was attached between it and

the former cup's electrical feedthrough to allow
external measurement of any orifice plate
current. Orifice currents of less than 1 p.A can be

detected. A pneumatic gate valve is located near

the back side of the orifice. After passing through
the orifice, another set of deflection and focusing
coils provides a steerable beam diameter of 1 to

2 mm at a distance of approximately 0.6 m. A 30-

ft-long cable assembly connects the gun with the

power supply.

The electron gun installation is illustrated in Fig.
2. An additional orifice and pumping section was

required to maintain the gun at an acceptably low
pressure (2 torr) during the flow duration of the

B30HST. Stainless steel pipe of 2.0-in. inside
diameter was used to construct this section. The

water-cooled copper orifice plate of this differential
pumping system was 2.9 mm thick, had a 2.0-mm-
diam orifice, and was located 34 in. from the first
orifice and 8 in. above the nozzle centerline.

Electrical insulation of the orifice was necessary to
enable measurement of orifice plate current. This

was accomplished by using a micarta flange and
other insulating components between the gate valve

and orifice assembly. All the gun system parts within

the test section were designed to prevent significant
misalignment of the electron beam as the impact of
the run occurred. A 50-_/sec turbomolecular pump

located outside the test cell pumped this section. To
protect the gun and pumping system from the post-

flow test section high pressure, an electro-pneumatic
gate valve was positioned 4 in. above the second

orifice. Immediately following each run, the operator

manually closed this valve, closing the system in 1
sec, and turned off the power to the electron gun. A
sharp-edged aluminum flow fairing was affixed to the

pipe section between the gate valve and orifice to
reduce the chance of tunnel blockage and minimize

disturbance of the beam alignment by dynamic flow-
field loads. To reduce flow distortions and pressure

at the orifice exit, a 6.0-in.-wide, 5.2- in.-Iong, sharp.
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WATER-COOl.ElBASE

INSULATOR

Fig. 2. Side view of B30HST with electron gun installation.
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edged flat plate was bolted to the bottom of the
orifice assembly.

Electron beam current was collected by a 2.25-

in. inside diameter, 9.5-in.-Iong, copper Faraday cup
whose entrance was 7 in. below nozzle centerline.

The cup was attached to a water-cooled copper base
which was firmly bolted to and insulated from the
bottom of the test section. A flow fairing was placed

upstream of the cup to reduce interactions with the
flow field.

OPTICAL INSTRUMENTATION

A plan view of the optical instrumentation layout

is given in Fig. 3. Molecular nitrogen number density
was measured by two identical AEDC systems. Fused
silica lenses were used in both assemblies to reduce

transmission losses. The north side system was tilted

at a 10-deg angle, to observe the nozzle centerline
downward through a window. This window was located

directly above the window which accommodated the
Boeing photomultiplier tube (PMT) detector system.
Fluorescence at 391 nm was collected by a 7.38-in.

focal length, 3.0-in.-diam lens at an object distance of
26.75 in. Before coming to a focus, the light was

collimated to a 0.55-in.-diam by a -1.92-in.-focal
length, 1.0-in.-diam, piano-concave lens. The colli-

mated light passed through an interference filter
before being focused onto the aperture of the PMT

by a 3.83-in. focal length, 1.0-in.-diam piano-convex
lens. Vignetting was minimized by reducing the
separation of the two small lenses as much as

possible. These optics projected the PMT aperture

NOITHDETECTORS
/ _ / All)( N2(NORTH)

0PTI01J.TklILE"_ I _ Ji_ PMT

/ _ OPTICALFILTER(N2)

IOEtNGPMTSYSTEM(NOTSHOWN)/"_ LENS

UNOEII_O( ___. (TWO.__.__}_)

PITOTPIOBE- r,_.___

OIISERVATIONVOLUME_ NOZZLE

WINDOW .
LENt_:_.------".':;.! :_,/'J/----. - . -- - OPTICALFILTER¢X,)

oe.o FILTEI(N,) H.

,,, _ 'AEIX N7(SOUTH)OlOOiAti_V _ ;_,_"

DETECTOR_ rmt R
OPTICALTABLE--_ SOUTHOETECTOS

Fig. 3. Plan view of B30HST and Boeing/AEDC optical
diagnostics installation.

dimensions onto the nozzle centerline by a
magnification factor of 1.31, giving a resultant field of
view of 30 mm horizontal and 10 mm vertical.
Collection of fluorescence from the total width of the

beam was assured by this arrangement. The south
side PMT system was centrally located and was level.

The north and south side AEDC nitrogen PMT
systems were designated AEDC N2 (North) and AEDC

N 2 (South), respectively, in Fig. 3 and in following
figures.Each 1.0-in.-diam nitrogen optical interference
filter has a 39-percent transmission at the peak

wavelength of 390.8 nm, a full-width half-maximum
(FWHM) bandpass of 3.85 nm, and an optical density

of four for blocking from 200 to 950 nm.

Similar optics were assembled for the AEDC
helium PMT detector system, located adjacent to the

south side nitrogen system. A 5.88-in. focal length,
3.0-in.-diam fused silica lens collected the light. A

glass piano-convex lens of - 1.96-in. focal length and
1.6-in. diam was placed before the focus to collimate

the light to a diameter of 0.8 in., thus accommodating
the 1.0-in.-diam helium interference filter. A glass
piano-concave lens of 4.0-in. focal length and 1.25-

in. diam focused the collimated light onto the PMT
aperture, which was rotated 90 deg with respect to

both nitrogen system apertures, allowing collection of
light from a longer length of beam. This optical
system provided a magnification factor of 1.74 of the
PMT aperture dimensions onto the nozzle centerline,
for a resultant field of view of 13 mm horizontal and

40 mm vertical. The helium optical interference filter
had 50-percent transmission at the peak wavelength
of 501.6 nm, a FWHM of 0.84 nm, and the same

blocking characteristics as the nitrogen filters.

For noise reduction, the RCA C31034A PMTs
were contained within thermoelectric coolers held at

a temperature of -20°C. These PMTs feature high
quantum efficiency and sensitivity, spectral response

from 200 to 930 nm, extremely low dark noise, and
fast time response characteristics. Each PMT
required a separate high-voltage power supply.

An Acton Research Corporation SpectraPro-275

spectrometer coupled with a linear diode array
detector was set up to measure nitrogen vibrational
temperature. The spectrometer has a 0.275-m focal

length, an f/3.8 aperture ratio, adjustable slits, and a
25-ram-wide focal plane. The three gratings which

were mounted on the triple indexable turret had the
following characteristics: 1,200 lines/mm holo-
graphic, 2,400 lines/mm holographic, and 3,600
lines/ram blazed at 240 rim. The 3,600 lines/ram

grating was not used because its efficiency at 425
nm wavelength was determined at AEDC to be too
low. A reciprocal linear dispersion of 3.0 nm/mm

occurs for the 1,200 lines/ram grating.
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Dispersed spectra were detected and processed

by an Optical Spectrometric Multichannel Analyzer
(OSMA) system. The detector was a Princeton Instru-

ments, Inc. proximity focused MCP image intensified
detector, model IRY-1024 S/RB. It is a gatable detector

with extended coverage in the UV and red wave-
length regions. There are 1,000 active 25-1_m-wide

by 2.6-ram-high diodes. The total array width of 25
mm matches the spectrometer's focal plane width.

The detector yields 0.13 counts/photon at 425 nm
wavelength, and its gain is not adjustable. Allowable

gate widths range from 200 p.sec to 6 msec. Control
of the detector was by means of Princeton Instruments
model PG-10 Pulse Generator and model ST-100

Detector Controller. Tap water was circulated through
the detector's thermoelectric cooler to reduce the tem-

perature to -20°C, thereby reducing the noise level.
A desktop computer running Princeton Instruments

software was used for data recording and processing.

A piano-convex fused silica lens collected the

fluorescence and focused it onto the spectrometer
slit. This 3.0-in.-diam lens had a 5.91-in. focal length

at the nitrogen First Negative System (0,1) band's
wavelength of 427 nm. The object and image

distances were 39.0 and 7.0 in., resulting in a
projection of the slit dimensions onto the observation
volume with a magnification of 5.6.

BOXCAR SYSTEM

Figure 4 shows a simplified block diagram of a

typical boxcar integrator channel which was used for
the basic data acquisition subsystem. The input to

the boxcar integrator was the signal from a single
PMT, and its output was passed to a single TDR
channel. The basic function of the integrator channel

was to sample the PMT signal and hold it for output

to the TDR. A single sample was obtained for each

trigger of the boxcar channel.

The signals from the PMTs were anode currents

whose amplitudes were representative of the signals
observed from the sample volume. These currents

were of sufficient magnitude that preconditioning was

not required before input to the boxcar integrator.
Because no external amplifier was used, sensitivity

was controlled by adjustments in PMT high voltage
and in the integrator time constant and gain. Settings
were made according to the anticipated PMT signal

levels and were manually recorded for use in posttest
calibration and data reduction.

Four boxcar channels were required for the four

PMT inputs. A fifth channel was used to obtain a
second, time-delayed sample of the He PMT signal

during a given data cycle. Dual sampling of the He

PMT signal was possible because each boxcar
channel gate could be independently triggered and
optionally delayed with respect to the trigger. The

delay capability was also used to obtain the gate for
the AEDC N2(North) PMT signal, coincident with the

second He PMT signal sample. Gating circuits and
timing diagrams are shown in Figures 5a and 5b.

During each data cycle the integrator circuit

sampled the PMT output. Concurrently the integrator
sample/hold circuit provided data read during the

previous cycle to the TDR. Thus, while the system
was recording a previously obtained sample, a new

data sample was being generated.

The system of five boxcar channels was paced
by the internal oscillator of the first channel [AEDC

TllIGGERIN
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(i) I \

TlllOOEll
(±)

(2)

GATED HOLD
INTEGRATOR _ AMPUFIEII

(31 \ 141 \ I

MOTES:

SHz < F < 20kXz

POSITIVELE.ADINGEDGEUTILIZED
25ns < m < 10Ores
2ns < Tw < 15_$

Fig. 4. Simplified block diagram for single gated integrator channel.
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Fig. 5. Block diagram and timing diagram for PMT gated integrators.

N2(South)] running at near-maximum
rate (16.7 kHz). The leading edge of

the pace integrator gate simultane-

ously triggered the other four
channels. The integrator gates for the
He and Boeing N 2 channels occurred

simultaneously with that of the pace
channel. The integrator gates for the

AEDC N2(North) and Hedej channels
were delayed by 30 psec. All gate
durations were set at 15 psec.

Following each integrator gate, a

period of 10 psec was required to
perform the integration and sample/

hold operations, during which the
output was invalid (Fig. 5b). The data

cycle time was set at 60 psec. This
yielded a 16.7-kHz sampling rate for
all channels. Because of dual samp-

ling, an effective rate of 33.3 kHz
was achieved for the helium PMT.

Each integrator channel output was
sampled several times during each

data cycle as a result of the signifi-
cantly higher sampling rate (500 kHz)
of the TDR data recording system.

DATA

RADIATIVE SPECIES

Spectra obtained by the

spectrometer/array detector system
during 14 of the runs listed in Table 1
are shown in Figs. 6-19. A variety of
atomic lines and molecular bands
were recorded and identifiedi they

are listed by occurrence in Table 1
and by wavelength in Table 2, and
their time history is plotted in Fig. 20.

Data were acquired using three com-
binations of spectrometer gratings

and central wavelength settings. The
spectra include spurious positive and

negative pulses and flat regions
which are artifacts of the detector

operation and should be ignored.

Wavelength scales were based
on calibrations obtained from both Hg

lamp spectra and other spectral fea-
tures that were subsequently identi-
fied. Numbers on the ordinates

correspond to detector output counts.
Intensity scales, expressed in detector
counts, were selected for optimum

viewing.
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RUN

8001

Table 1. Spectrometer/Array Detector Results

BEAM TRIG EXP GRAT

413

413

413

413

425

500

8002 ON +0.3 2.0 2400

8003 OFF 0.0 2.0 1200

8004 OFF 0.0 1.0 1200

8005 ON NO RECORD 1200

8006 ON O.O 1.0 1200

8007 OFF -0.5 1.0 1200

8008 OFF +0. I O.S 1200

8009 ON +0.3 0.5 1200

8010 ON 0.0 I.O 2400

ore, ON -'Ois o.s 24oo

8012 OFF +0.2 1.0 2400

8013 ON 0.0 1.0 2400

8014 ON O.O O.S 2400

8015 ON +4.0 1.0 2400

8016 ON 0.07 1.0 2400

WAVE SPECTILk

BOMBSHOT;DETECTORNOTIN SERVICE.

425 0 1 - THREELINES.FeI - ABOUTE_HT LINES.

413 C.rI. AJI - TWOLINES.MnI. MANYFeLINES.

413 LIKERUN8003.

413 SOMESATURATION;SOMEOIFFERENCEFROMRUNS8003
AND8004.

NOSPECTRUM;MISTRIGGERED.

LIKERUffS8003 AND6004 BUTVERYWEAK.

LIKERUN8007.

STRONGN_"FIRSTNEG.(0,0) AND(0,1) BANDS.

N_ (0,0) AND{0,2) OVERLAIDBYCrI ANDFe L

NOHe I 501.6 NM LINE.CU510.6 NM LINE. NITRIC
OXIDE(0,2) BANDS.

425 LIKERUN8002.

425 LIKERUN8010.

500 Cu$10,6 NM.

500 STRONGHeI. AIOGREENCO,I), (1,2), ANDTAILOFDELTA
Y., 0 BANDS.NONITRICOXIDEBANDS.

500 STRONGCui. MANYFeI LINESIN ORDERII. NOHeI. NO
NITRICOK1DEBANDS.

TRIG- TRIGGERTIMERELATIVETOPEAKPRESSUREAT
NOZZLEEXIT,IN MSEC.

EXP= EXPOSURETIMEIN MSEC.
GRAT= GRATINGLINES/MM(2400 ISHIGHRESOLUTION).
WAVE- SPECTROMETERCENTERWAVELENGTH,NM.

6OOO

5OO0

4ooo
i

3O0O

z

2O0OaK

lOal
410 415 420 42S 430 435

WAVELENGTH,NM

Fig. 6. Spectrometer/array detector spectrum for
Run 8002.

The higher resolution of the 2,400 lines/mm

grating with respect to the 1,200 lines/ram grating is

evident, for example, upon comparison of the three

chromium lines in Runs 8002 and 8003 (Figs. 6 and
7). To reduce scattered light, portions of the test

section were spray painted flat black. Residual

airborne particles from the paint apparently caused a

large increase in scattered light, resulting in satura-

2600-

2400 -m

i +
2OOO

1600

440 370 450

ir:kuOFF
12MLIMES/MMGI,ATING
2N _ SLIT
IIIGGEIITIME- 0.0 MK'( 1

/ EXPOgJIIETIME- 2.0MSIC,I

I, , il :!'!

• • L + I i I , l • I . I

380 390 400 410 420 430 440

WAVELENGTH,NM

Fig. 7. Spectrometer/array detector spectrum for
Run 8003.

tion of the spectra in Run 8005 (Fig. 9). Later, the

blackening seemed to be effective, as indicated by
the reduced background spectra of Runs 8007 and

8008 (Figs. 10 and 11). The effectiveness of the

blackening is also indicated in Run 8009 (Fig. 12) by

the strength of the electron beam-excited (0,0), (1,2),

and (0,1) nitrogen First Negative System bands with

respect to the background metal lines. Inexplicably,
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Fig. 8. Spectrometer/array detector spectrum for
Run 8004.
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Fig. 10. Spectrometer/array detector spectrum for
Run 8007.

spectra from the remaining runs with the center

wavelength set at 425 nm were again dominated by
the metal lines. For Runs 8010 and 8013 (Figs. 13

and 16), the (1,2) and (0,1) bands, which appear at

Fig. 12. Spectrometer/array detector spectrum for
Run 8009.

435 440

Fig. 13. Spectrometer/array detector spectrum for
Run 8010.

423 nm and 427 nm, respectively, are weak with

respect to the strong metal lines. Electron beam-
excited NO bands were recorded in the early part of

Run 8011 (Fig. 14), and Ale bands were recorded in
the latter part of Run 8015 (Fig. 18).
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Fig. 15. Spectrometer/array detector spectrum for
Run 8012.
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Fig. 16. Spectrometer/array detector spectrum for
Run 8013.

HELIUM ARRIVAL TIME

The spectrometer�array detector system was set
to record the helium 501.6-nm line in four of the last

six runs. With respect to the peak pressure at the

Fig. 17. Spectrometer/array detector spectrum for
Run 8014.
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Fig. 18. Spectrometer/array detector spectrum for
Run 8015.
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Fig. 19. Spectrometer/array detector spectrum for
Run 8016.

nozzle exit, the trigger time of the detector was

shifted as shown in Table 1. These data (see Fig.
20), in conjuction with other evidence, indicate that
the chemically pure test time of the B30HST lies
between 1.0 and 2.4 msec.
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Table 2. Spectral Features

WAVELENGTH,NM SPECIE5 WAVELENGTH,NM SPECIES
.°,

382.6 FeI 382.588 427.5 0 I 427.480

386,0 FeI 385.991 427.8 N_"FIRSTHEG.(0,1) BH

388.6 FeI 388.628 429.0 CrI 428.972

391.4 N_"FIRSTHE(;.(0,0)8H 430.8 Fel 430.791

432.6 FeI 432.576392.8 Fe
393.0

I 392.792
393.030

394.4 AII 394.403

396.2 .4,1I 396.153

403.1 MnI 403.075

404.6 FeI 404.581

435.3 FoI 435.274

437.6 FeI 437.593

438.4 FeI 438.355
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495.7
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ORDEWII

406.4 FeI 406.360 501.6 HeI 501.567
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Fig. 20. B30HST species time history.

DENSITY

Before each run, the PMT detection systems for

the nitrogen number density measurements were cali-

brated using a gas of known density. This was accom-

plished by evacuating the test chamber, readmitting
air.to a measured level of temperature and pressure,

and measuring the fluorescence collected by the
actual PMT optical systems, signal conditioning, and

data recording equipment. The detector collection

optics were configured to ensure complete collection
of the electron beam wide. The electron beam cur-

rent was manually recorded. Recorded fluorescent

signals were normalized with the Faraday cup current
values. Calibrations at pressures greater than 800

mtorr at 300 K (2.6 x 1016 cm-3 or 77 x 10-6
Ibm/ft3) could not be obtained because of poor gun

performance at higher pressure levels.

For each calibration pressure, the density calibra-

tion factor ANz is defined by

= _ted q,.-,cal.:ca]_
AN 2 nN2' /t.;_ /= ,% (2)

where Scaj is the detector's calibration signal, icaJ is
nCal,q

the beam current at calibration, and .. NZ is a modi-
fied nitrogen calibration density n'°J defined by

"N 2

ca]
nN2ca]'q_--nN2ca]/ (1 + nAirkd, (3)

where the quenching constant k¢ = 1.6 x 10-17
cm3/molecule (obtained from prior AEDC studies).

The quenched calibration signal is, therefore, coupled
with an equivalently reduced value of the nitrogen

calibration density. Application of the quenching
factor requires the product of k¢ and the air density,
not the nitrogen density. In air, it is assumed that the

oxygen and nitrogen quenching constants are equal.

For a given test, the modified nitrogen test
density is defined by

test, q _ A SteSt/i t_st,
nN2 -- N2

(4)
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and the actual nitrogen number density is

test n.t'est q,/[1 / test q_xtest_" ]
= --_nN '/_N ]z,],nN2 N2 [ 2 2

(5)

where M '_t is the nitrogen mole fraction in the test
N 2

gas.

All density data were corrected for the difference
in vibrational temperature between the calibration and
test conditions. The fraction of nitrogen molecules in

the lowest vibrational level (v = 0), which is the level
of the measured First Negative System (0,0) band,

decreases with increasing vibrational temperature as

higher vibrational levels (v = 1, 2 .... ) become more

populated. This fraction is given by:

n(v = 0)/n = I - exp(-3390frv), (6)

where "Iv is the vibrational temperature. The
measured value of Tv, 1,240 K (see next section),

yields a fraction of 0.935. Therefore, to correct for
the difference in vibrational temperature, the

measured densities were divided by this factor.

Reduction of the PMT detector system density

data required subtraction of background light. The

magnitude of the background light was assumed
equal to the magnitude of the light recorded during a

run having similar combustion characteristics and
with the electron beam off. Data for Run 8010 were

reduced using background light from Run 8008.
Similarly, background light from Run 8012 was used
to reduce the Run 8014 data. Runs 8012 and 8014

were classified as detonations (the diaphragms broke
because of high pressure instead of the electrical

discharge) as opposed to the preferred combustions,
but their stagnation and pitot pressure traces were
representative of the desired conditions. It was

necessary to use the value of beam current existing

just before each run, as the current data obtained
during each run were noisy (large harmonics with a
prominent superimposed beat structure). Among the
causes for this were electrical signals generated by

varying capacitance to ground, induced by shock and
vibration of the Faraday cup during the run.

No quantitative information was extracted from
either of the two south side AEDC PMT detectors.

Signals from these detectors were never above back-
ground levels. For each run, a strong, spurious burst

of signal was detected by both south side PMTs
beginning approximately 1 rnsec before any indication
of flow by the pitot probe. These bursts lasted for
about 1 msec, ending at nearly the same time that
flow was detected. The bursts could have been

caused by light originating in the high-temperature

stagnation region near the nozzle throat at the driven
tube end wall, then reflected by surfaces into the test
section. Another possibility was that the south side

signal cables were exposed to electrical interference
aS a result of their particular routing.

Through Run 8012, no useful He PMT data had
been acquired. To obtain another time-resolved
helium data channel, the AEDC N2(South) PMT was
converted to a helium detector after Run 8012.

Neither He PMT detector system ever recorded an

identifiable signal above background.

The respective calibration constants for Runs
8010 and 8014 were 2.43 x 1014 and 2.23 x 1014

molecules/cm3/(mV/mA) (average of two calibrations
for each run). Runs 8010 and 8014 were reduced

using, respectively, Runs 8008 and 8012 for the

background, and the vibrational temperature correc-
tion was applied. These results are presented in

Figs. 21 and 22. Theoretical frozen densities shown
in the figures were calculated under the assumption

of fully frozen flow in the nozzle expansion, while the
theoretical equilibrium densities assume full chemical

equilibrium during the nozzle expansion. The PMT
system results are presented in two ways: (1) using

the quenching constant k_ = 0 (no quenching in the
flow), and (2) k_ = 1.6 x 10-17cm3/molecule. For
Run 8010 most of the PMT system values using k_

= 1.6 x 10-17cm3/molecule are greater than the
frozen flow values. For Run 8014 more of the PMT

system values using k_ = 1.6 x 10- 17cm3/molecule
are less than the frozen flow values. It should be

noted that, at these high densities, even a slightly
smaller quenching constant would substantially
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Fig. 21. Measured and theoretical flow densities for
Run 8010.
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Fig. 22. Measured and theoretical flow densities for
Run 8014.

reduce the PMT system values. It is certainly
possible that, given the species content (N2, 02, NO,

O) and higher temperatures of the flow, a quite
different value of the quenching constant occurs.
Uncertainty bars on the PMT system results derived

from variations of background light levels.

Meaningful density results using the AEDC
N2(North ) PMT were obtained only for Runs 8010
and 8014. The reduced data for Runs 8013 and 8015

were well above the upper bounds set by theoretical
predictions. No PMT system data was obtained for
Run 8009 because of misalignment of the AEDC

N2(North) detector.

NITROGEN VIBRATIONAL TEMPERATURE

A vibrational temperature can only be extracted
from two spectral bands having different upper

vibrational energy levels. It is advantageous to select
two bands of close proximity in wavelength. The (0,0)

band is the strongest feature of the nitrogen First
Negative System, but its accompanying (1,1) band is
too weak at low vibrational temperaturss. For this

application, the optimum pair of bands was (0,1) and
(1,2). They appeared in the array detector spectra of
Runs 8009, 8010, and 8013 at their wavelengths of

427 nm and 423 nm, respectively.

Figure 23 shows a magnified spectrum obtained
during Run 8009. Although the spectrum was

recorded with the low-resolution grating, the (1,2) and
(0,1) bands were separated sufficiently. The back-

ground level was chosen as shown, tails were faired
in to the zero level by hand at both ends of each

band, and the band areas were measured using a

polar planimeter. The ratio of these areas, 6.27, was
the ratio of total band intensities. This ratio must be

corrected for spectral sensitivity of the spectrometer/
array detector system. A spectral sensitivity calibra-

tion using a standard tungsten strip lamp determined
that the sensitivity at 423.5 nm was 1.8 percent

greater than that at 427.8 nm when using the 1,200
lines/mm grating. Accounting for this higher sensi-

tivity, the area ratio became 6.38. Considering
possible errors in ascribing the tails and background
to the bands, a standard deviation of 0.53 (8.5

percent) was estimated for the area ratio.
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Fig. 23. Nitrogen (0,1) and (1,2) bands for Run 8009.

The 425.4- and 427.5-nm chromium lines occur

within the wavelength range of the (0,1) band. The
band can be observed convolved with these two lines

in the spectra of Runs 8010 and 8013 (Figs. 13 and
16, beam on), when compared with Run 8012 (Fig.
15, beam off). The relative intensities of the three

chromium lines remained reasonably constant in
Runs 8002, 8003, 8004, and 8012 (Figs 6, 7, 8, and

15). The 429.0-nm chromium line was used as a
reference line, since it does not fall within the (0,1)

band. After background correction the magnitude of
the 429.0-nm line of Run 8012 (Fig. 15, beam off)
was adjusted to match the magnitude of that line in

Run 8010 (Fig 13. beam on). Results are presented
in Fig. 24. The difference in area of the two spectra

between 424.8 and 428.4 nm represents the area of
the Run 8010 (0,1) band.

To obtain the area of the (1,2) band, a different

procedure was necessary because the (1,2) band
was convolved with the 422.7-nm iron line. The

intensity of the iron line was observed to be inde-
pendent of the intensities of the chromium lines from
run to run. The magnitude of the 422.7-nm line of

Run 8012 (Fig 15, beam off) was adjusted to become

only slightly smaller than the same line of Run 8010
(Fig. 12, beam on), especially on the low-wavelength
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Fig. 24. Matched spectrum for Run 8010 (0,1) band.

side of the line where the weak tail of the R branch

of the (1,2) band should be. This result is shown in

Fig. 25. The difference in area of the two spectra
between 422.0 nm and 424.3 nm represents the area

of the Run 8010 (1,2) band.
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Fig. 25. Matched spectrum for Run 8010 (1,2) band.
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Fig. 26. Nitrogen (0,1) and (1,2) bands for Run 8010.

Run 8012 (l_g. 15, beam off). These results are
given in Figs. 27-29. The resultant area ratio was
6.27, with an estimated standard deviation of 0.82

(13.0 percent).
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Fig. 27. Matched spectrum for Run 8013 (0,1) band.

700

The final deconvolved Run 8010 nitrogen band
spectrum is presented in Fig. 26. The (0,1) band por-

tion of the spectrum was obtained by subtracting the
spectra in Fig. 24. Similarly, the (1,2) band portion is
the difference between the Fig. 25 spectra. The two

portions were joined at 424.45 nm.

Areas of the (0,1) and (1,2) bands were measured

between their respective wavelength limits. The (0,1)
to (1,2) area ratio was found to be 5.81 with an
estimated standard deviation of 0.63 (10.8 percent),

mainly attributed to uncertainty in establishing the
relative magnitudes of the 422.7-nm iron line. Based

on a tungsten strip lamp calibration, no spectral
sensitivity correction was needed when the 2,400
lines/rnm grating was used at these wavelengths.

The same matching procedure was carried out
for Run 8013 (Fig. 16, beam on) in conjunction with

600 ...... RUN8012 _,,

==,. l\

'00i" ,.'_ /";', _-/ /''. \ _.;" _-

I"
I , I _ i . I , . ! _ I i I , ! , I . l-100

421 422 423 424 42J 42_ 427 428 429 430

WAVELENGTH,HAl

Fig. 28. Matched spectrum for Run 8013 (1,2) band.

Theoretical calculations of electron beam fluores-

cence for nitrogen are performed by an AEDC com-

puter program designated EBFN2. Although quite
comprehensive, the program does not include second-
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Fig. 29. Nitrogen (0,1) and (1,2) bands for Run 8013.

ary electron effects, collisional and resonant photon

excitations, convective and diffusion populating/
depopulating mechanisms, and variations in quench-

ing rate with rotational-vibrational level. The program
was used to predict the ratio of the (0,1) and (1,2)
band intensities as a function of vibrational tempera-

ture. The result of the prediction is given in Fig. 30,
with the ratios normalized to 1.0 at a vibrational tem-

perature of 300 K. For the reported measurements,
the tails of each band were faired in before integra-

tion of the areas with the polar planimeter. For com-
parison with Fig. 30, the experimental area ratios
were divided by 8.5, the value of the (0,1) to (1,2)
area ratio measured in static conditions in the

B30HST at 300 K.
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VIBRATIONALTEMPERATURE,K

Fig. 30. Normalized intensity ratio of the (0,1) and
(1,2) bands as a function of vibrational
temperature.

Using the curve in Fig. 30, the measured band
area ratios for the three runs converted into vibra-

tiona/ temperatures of 1,180 K, 1,330 K and 1,210 K,

giving an average value of 1,240 K. Upon considera-
tion of measurement uncertainty and uncertainties of

parameter values used in the calculation by program
EBFN2, a standard deviation of 100 K (8.1 percent)
was estimated.

NITRIC OXIDE ROTATIONAL TEMPERATURE

A spectrum of the NO Gamma System's (0,2)
band was recorded by the spectrometer/array

detector system in Run 8011 (Fig. 14). Although both
tunnel diaphragms broke prematurely in this run,

resulting in unusable flow conditions, it was of
interest to determine the NO rotational temperature

from the band profile. To determine a free-stream
rotational temperature, an AEDC program designated

EBFNO was developed for predicting the electron
beam excitation and spontaneous emission process.
This new computational model assumed that the

excitation process was by primary beam electrons
and that optical excitation rules applied. Collisional

quenching was accounted for in the model, but
variation in quenching rate with individual rotational

levels was not included. Self-absorption of the
electron beam-excited fluorescence was neglected; it

is believed that this was a reasonable assumption
because of the relatively low population of the third

vibrational level of the ground electronic state. It is
almost certain that the neglect of the influence of the

beam's secondary electrons was not a good
assumption, but fiscal limitations prevented
development of a more complex model. The spectral

relations and parameters in the model were taken
from an existing program (LIFNO) developed at

AEDC for modeling the laser-induced fluorescence
process of NO Gamma, Beta, and Epsilon bands.

Run 8011's order II spectrum of the NO Gamma
System's (0,2) band was fit with an order I wave-

length scale and a normalized and background-
corrected signal strength scale. Figure 31 shows an

oveday of the EBFNO prediction with the spec-
trometer/array detector spectrum. The rotational and
vibrational temperatures used in this predictiort were

400 K and 1,200 K, respectively. The shape of the
spectrum was relatively insensitive to the value of

vibrational temperature over the range of values

1.0

0.9

0.8

0.7

0.6

0.5
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Fig. 31.
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NO experimental and model spectra for Run
8011.
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possible for the tunnel conditions. The shape was,
however, rather sensitive to the rotational tempera-
ture value. Overall, the 400 K value provided the best

fit to the spectrum. It is believed that a much better
fit could be achieved if time were available to fine

tune spectrometer/array detector parameters and to

account for spectral sensitivity variation over the wave-

length and physical pixel region utilized. This measure-
ment's uncertainty is a standard deviation of 50 K.

SUMMARY

The measurements obtained are summarized in

Table 3. Numerous self-emitting metallic species
were identified, many of which may be associated

with an aging/erosion process within the B30HST.
Because there were only 16 tunnel runs, it was only

possible to obtain spectral measurements over a

limited range of wavelengths and time sampling
periods. Many spectral features of the _ow remain
uninvestigated. Because flow self-emission is impor-

tant to all optical diagnostic techniques, it is recom-

mended that additional spectral studies be performed.

The three electron beam-excited species that

were identified are nitrogen, helium, and nitric oxide.
The high metallic radiation background interfered with

attempts to obtain the time-wise variation of N2 den-
sity and He radiation with the optical filter/PMT

channels. In the case of the N2 density measure-
ments the result of interference was increased uncer-

tainty. Unfortunately, the interference caused the
time-wise He measurement to fail completely. It is
recommended that the electron beam be modulated

to provide discrimination against the background
radiation in future N2 density measurements. Careful

data reduction produced useful measurements of N2

vibrational temperature, even though the high back-
ground from metallic species significantly increased

measurement uncertainty. Perhaps the recom-

mended additional spectral studies would reveal N
First Negative System band-pair regions having less

background. Detection of the He arrival (see Fig. 20)
was easily accomplished with the spectrometer�array

detector system. Because of this, it is recommended
that this means of detecting He arrival be used in the

future. With proper calibrations of the system an He
number density could be obtained. Although the flow
conditions were out of limits for the run in which the

NO spectrum was recorded, the usefulness of the
NO spectrum for determination of free-stream

rotational temperature was demonstrated and should
be exploited in future experiments. Indeed, based on

the strong NO signals, it is recommended that lower

resolution NO spectra be obtained to provide a
measure of NO vibrational temperature in the same

manner that the N2 vibrational temperature was
obtained.
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