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Abstract:

We describe a simple analytic representation of the ArH_ potential energy sur-

face which well reproduces the results of extensive ab initio electronic structure

calculations. The analytic representation smoothly interpolates between the disso-

ciated H_ and strong bonding limits. In the fitting process, emphasis is made on

accurately reproducing regions of the potential expected to be important for high

temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond

length dependence of the analytic representation well reproduce the input data.
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I. Introduction

In this paper we present a new potential energy surface (PES) for ArH2. This

PES is specifically tailored for use in high temperature (ca. 3000 K) energy transfer

studies involving dissociation and recombination of H2. This potential will be used

to help understand the recombination process

H +H + M -+ H2 +M.

The recombination rates for M -- H2 [1], Ar [2] and H20 [2] have been computed

as a function of temperature using potential energy surfaces from the literature

[3-5]. The result is that within a factor of 1.4 over the temperature range 1000 -

5000 K, the recombination rate is independent of the third body M. This contrasts

with the prevailing experimental interpretation [6] which assigns the efficiencies

5:1:0.3 for H20, H2 and Ar at 2000 K. There are several potential sources for this

disagreement: inaccuracies in the potential energy surfaces used, limitations in the

dynamics/kinetics calculations (see Ref.[1] for a description of the techniques we

use to compute the recombination rate given a PES), or experimental uncertainties.

Certainly of the three third bodies, the PES for M=Ar was the least well known.

In this paper we give a PES of comparable quality to the potential energy surfaces

for the other third bodies we have studied.

When constructing a PES, many different strategies are possible. One can com-

bine data from various sources, both theoretical and experimental, and attempt to

produce a function which reproduces this information. This procedure is hampered

by the possibilities of inconsistency between the various input data. An alternate

approach, which is used here, is to just consider data from one source, namely high

quality ab initio electronic structure calculations. This strategy can be criticized

in that certain features of the PES, such as the weak van der Wadis minimum, are

obtainable more easily from experimental analysis than from theoretical calcula-

tions. However, in our opinion, this drawback is more than counterbalanced by the

consistency of the input data which should give rise to a PES which may more accu-

rately reflect the shape of the accurate PES over wide regions of configuration space.

We also anticipate that the features of the PES likely to be given most accurately

by the electronic structure calculations, namely regions of moderate repulsion, will

be predominately responsible for governing the outcome of the high temperature

energy transfer processes which are of primary interest to us.



In fitting a PES for which a wide range of different interactions are possible,

one has to choosebetweena simple function which can be expected to be accurate

only in the mean or a more complicated function with many parameters. For a

simple function, it is often easy to ensure that it is well behaved in extrapolated

regions, while for more complicated functions it may be very difficult to ensure that

extrapolation to geometries not included in the fitting procedure will give rise to

physically reasonable results. In the present work we begin by using a very simple

function to represent the Ar + H2 interaction and then carefully modify it to ensure

that it is well behaved globally yet accurately reproduces the input data. This is

achieved using only eight parameters optimized to fit 71 energy points.

II. Electronic structure calculations.

The Ar basis set starts with a (17s12p6d4f) primitive set. The two outermost s,

p, and d and the outermost f primitives are left uncontracted and the inner functions

are contracted using an atomic natural orbital (ANO) scheme [7] to [5s4p2dlf]. In

addition a (2s2pldlf) set of even tempered diffuse functions is added. The resulting

basis is denoted as [5+l+ls 4+l+lp 2+l+ld l+lf] + (2s2pldlf).

The H basis set starts with a (8s6p4d) primitive set. The outermost s and p

primitives are left uncontracted and the inner functions are contracted based on

ANO's to [3s2pld]. TWs basis is denoted as [3+1s 2+1p adj.

The energy calculations were designed to give an accurate description of the

process H + H + Ar _ H2 + Ar. The most important nondynamical electron

correlation effects were taken into account by means of complete active space, self

consistent field (CASSCF) calculations, and the dynamical correlation effects were

estimated using the approximately size-extensive averaged coupled pair functional

(ACPF)[8] method. The CASSCF configurations correspond to a single configura-

tion description of Ar and a two-electron two active orbital description of H2. The

full CASSCF reference space was used in the ACPF calculations. AH calculations

were carried out using the MOLECULE-SWEDEN [9] program system on the Ames

Research Center Advanced Computation Facility CRAY Y-MP/864.

The ANO basis for H2 was optimized at the equilibrium bond length (Re) [7].

This makes the basis set superposition error much smaller at Re than at other H2

bond lengths. To help correct for this systematic error, we corrected all our energies

by means of the Boys and Bernardi function counterpoise method[9.1]. Specifically,



we computed the following energies:

EArHs(G), the energy of the ArH: supermolecule at the ACPF level at geom-

etry G,

EHs(G), the energy of the H2 molecule at the all single and double excitation

configuration interaction (SDCI) level at geometry G including the Ar one-

electron basis functions,

EAr(G), the energy of the Ar atom at the ACPF level at geometry G including

the H atom one-electron basis functions.

Let G °° be a geometry approximating Ar not interacting with H2 but having the

same H: bond length as in geometry G. In practice, not interacting means any two

atom-atom distances greater than 30 a0. Then we take the energy of interaction

between Ar and H2 to be

Ei'_t(G) = EArH:(G)-EArH:(G_')+EH_(G_)-EH_(G)+EAr(GCC)-EA_(G). (1)

It should be noted that, since the SDCI and ACPF methods are not exactly size-

extensive, it is important to use Eq.(1) rather than EArH_(G) --EH2(G) - EAr(G)

to compute the interaction energy since EArH2(G _) ¢ EAr(G °°) ÷ EH_(GC¢).

In Tables I and II we give the values of E in: computed in the course of this

work. The geometries are specified by the Jacobi coordinates r, R, and X, where r

is the distance between the Ar and the center of mass of the H:, R is the H2 bond

length, and X is the Ar-center of mass H2 - tt angle.

III. Fitting the PES

We will optimize the parameters (if) in our fitting function [Vi_t(G, ff)] by

minimizing the least squares function

= (2)
i

An important aspect of the present work is the choice of the weights wi. Pre-

vious work [10] has shown strong correlations between the force along the diatom

bond evaluated at the classical turning point for relative translation and vibrational

energy transfer rates, thus we wish to concentrate our interest to regions where

V _'_ ,'_ E_l. At 3000 K, ksT = 10-: Eh. Also wh for H_ is about 2 x 10 -2 Eh,

so we want to focus in most closely on energies in the range 5 - 50 mEu. We will



identify the weights as an acceptableerror in the fit for each point. In the most

interesting region, a 5%error is reasonable,thus we take

= { 10- E .{0"0375[l°g + 0.05} (3)

This is a parabola in % error as a function of the order of magnitude of the energies,

centered on 10mEh, except at very weakly interacting geometries, where we let the

acceptable error be as large as 0.1mEh. With this weighting scheme, reporting the

root mean square deviation between the fit and the input data is not meaningful

-- the important quantity is ¢(ff), which is unitless. A value equal to one means

that on the average, we have attained our goal in fitting the points.

The first step in our fitting process is the determination of an ArH poten-

tied curve, V ArH. We will use this in a zeroth order representation of the ArH2

interaction energy, i.e.

Vi,,* = vA'H(R+) + vA'_(R-), (4)

where R± are the two ArH distances, i.e.

R+= +(R/2) ±,'Rcosx] (5)

This simple form will give physically reasonable results for all geometries provided

V ArH is well behaved. We choose to parameterize the potential curve as

vA'H(x) = Aexp[-bX] - X6 + d6 -.(X 4 + d4)2 (X _ + d 2)s'
(6)

where C6ArH - C_ rH are taken from Ref.[ll]. The three parameters A, b, and d

are determined by nonlinear least squares using the weights of Eq.(3) and the data

given in Table I. The final value of ¢ for this fit is 0.23 with maximum weighted

difference of 0.45. The final values of the fitting parameters are given in Table III

where they are labeled A0, b0 and do. With these parameters, V A*H is well behaved

for all atom-atom distances.

We now turn to geometries where the two H atoms are interacting with the Ar.

We start with the simple sum of pairwise interactions, Eq.(4). This simple form

has several deficiencies. We correct for these deficiencies by introducing additional



dependence on the coordinates r, R, and X other than that implicit in Eq.(5). In

introducing the additional coordinate dependence, one has considerable flexibility.

However, since in the limit R goes to oo, Eq.(4) is exact, we require that the

corrections to Eq.(4) vanish in this limit. The easiest way to enforce this limit is to

have the corrections depend only on R and not on r or X. We thus considered an

intermediate step in the fitting process, namely fitting the ab initio data for fixed

bond lengths. This will yield parameters fully optimized as a function of R. In the

final step, we will fit the dependence of the parameters on R. The intermediate

step involves fewer points and parameters than the final step and provides excellent

initial guesses for nonlinear parameters. It will also tell us whether or not it is

possible to obtain a satisfactory fit with only R dependent parameters. In the

present case, we will see that it will be possible to obtain accurate fits with this

restriction.

The first correction to Eq.(4) concerns the long range attractive term. The

leading contribution from c_rH/(R_ + d 6) expanded in terms of the Jacobi co-

ordinates is 2c_rH/r 6 + O(r -8) which can be compared with the more accu-

_ArH2rate form cArH2(R)[1 +_6 (R)P2(cosx)]/r 6 + O(r-S). Our hypothesis requires

that we neglect the P2 term, however this is not a bad appro_mation since

FArH2 (R) ~ _0_ for R ne_ R, [13].Wethus sc_e the long rangepart orEq.(4)
by the factor g(R) -= c_'H2(R)/2C_ "H and we fit the data of Varandas [13] to

g(R) = {/3exp[-a(R- R0)] + 1} -1 with a = 2 %1,/3 = 0.437 and R0 --= 1.449a0.

As R becomes large, g(R) becomes unity and we recover the ArH long range inter-

action.

The next deficiency we address is the anisotropy of the sum of pairwise inter-

actions, e.g. the X dependence. Using Eq.(4) with the scaled long range potential

results in too much anisotropy. We interpret this as a manifestation of the migra-

tion of charge density toward the center of the H2 bond, thus we introduce the shift

p, i.e. we replace R+ in Eq.(5) with

'-5-- ±_(R-p)cosx , (7)
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thus we take

Vi'_*(r,R,x,A,b,d,p) = A[exp(-b/_+) + exp(-b/__)]

- g(a){C_'_ [(k__+ d°)-_ + (__ + d_)-_] + C_*'-'[(__ + d_)-_ + (k__+ d_)-_]

+ c_'" [(k_ + d_)-_ + (k__+ d_)-_]}.
(s)

Finally we optimize the four parameters A, b, d, and p for each value of R. The value

of ¢ for each value of R is given in Table IV under the column marked optimum. A

satisfactory fit is obtained for all H2 bond lengths.

To complete our fit, we must parameterize A(R), b(R), d(R), and p(R). We

first consider p(R). Since this parameter is based upon the idea of charge flow,

we will tie it to a molecular property which reflects this, namely the quadrupole

moment. Specifically we take

p(R)-- + }, (9)

where q(R) is the quadrapole moment of H2. We will use the fit of Ref.[3] to

generate q(R) at all R. This contains the single parameter 5. Originally, we tried to

parameterize p(R) as the displacement of a fixed point charge required to reproduce

q(R), but we were not successful. Equation (9) represents the displacement required

to reproduce q(R) for a R dependent point charge with R dependence leading to a

constant discrirninant in the quadratic equation for which p(R) is a root.

The remaining functions are represented as an expansion in terms of even

tempered exponentials, i.e.

'_m n,x, ..X"

X(R)= E Xi[-exp(axR)]i' (10)
i-_O

where X = A, b, or d, with the i --- 0 coefficient fixed by the fit to the ArH

interaction. In our final fit we use imax,A -----2 and imax,b = imax,d : 1. The

parameters for the fit are given in Table III and the weighted errors as a function of

R in Table IV. The maximum weighted error is 2.7 and the number of geometries

with weighted errors greater than one is five. With these parameters, the fit seems

to be globally well behaved.

IV. Discussion



We first consider the ArH interaction. The fit is quite good, however it does

not well reproduce the empirical ArH potential from Ref.[ll]. SeeFig. 1. The

present ArH potential curvehasvan der Waalsminimum parametersRmi= = 7.13 a0

V_n = -0.102 mEh compared to Rmi_ = 6.68 a0 V_n = -0.175 mEh for the Tang-

Toennies potential including up to Cls. The Tang-Toennies potential is also much

more repulsive at distances less than Rmin. The reason for this discrepancy is not

clear, for improving the theoretical calculations by both expanding the one-electron

basis set and changing the electron correlation treatment does not significantly

change the present result [12].

We can also compare to empirically determined values of the functions in the

expansion

Vi'_t(r, n = 1.449 a0, X) = vo(r) + P2(cos X)V2(r) (11)

given in Ref. [14]. This is done in Fig. 2 where we also give v0 and v2 computed

from the ab initio data and the current fit. These functions for the fit do not change

significantly between R = 1.401 and R = 1.449, so it is meaningful to compare

the functions for the two distances. The comparison between the v0 term is very

similar to the ArH potential: the fit well reproduces the ab initio data and the

minimum for the Tang-Toennies function is deeper and closer in: Rmln = 6.77 a0

and V_n = -0.232 mEh versus Rmln = 7.10 a0 and Vml, = -0.157 mEh for the

fit. In contrast, for the v2 term, the Tang-Toennies function fits the ab initio data

better than the fit in the well region. The failure of the fit to reproduce the ab

initio result is presumably due to the fact that the leading long range anisotropic

contribution is proportional to r -s. However, since v2 is not large, the absolute

magnitudes of the deviations are not large.

Now consider the consequence of stretching the H2 bond. The most interesting

orientation to consider is that for X = zr/2, the T-shaped geometries. In Fig. 3 we

compare the fit to the ab initio data for repulsive geometries. On the whole we see

very good agreement between the fit and the data. This particular orientation is

interesting because the ab initio data and the fit predict that at Re, V im will increase

as R increases whereas a simple pairwise additive model would give the reverse

trend. It is the inclusion of the R dependent shift p(R) which is primarily responsible

for the correct sign of the slope for the present fit. Eventually as R increases, the

slope changes sign and the fit appears to do a reasonable job at predicting the

position of the sign change. However, in this figure, larger deviations appear for
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R = 3 than for the other geometries. This is also shown by the weighted errors in

Table IV. This is probably an indication that a more sophisticated treatment of the

anisotropy is required.

In the course of the present work we considered several variants of the present

fit. All of these were attempts to improve the description of the anisotropy of the

PES. An obvious place to start is to replace the function g(_R) used to scale the

dispersion terms with the function of Ref.[13] which includes X dependence and a

more accurate R dependence. We also considered introducing P2 (cos X) anisotropy

into the functions A(R), b(R), d(R) and 5(R). By doing so, it was possible to

substantially reduce the weighted errors for R = 1 and 1.401, but the improvement

for R = 3 and 5 was much more modest. These fits also yielded more complicated

R dependence for A(R) etc and so it was very hard to produce functions which gave

rise to a globally well behaved PES. On the whole, the present fit was outstanding

in its ability to accurately predict the global shape of the PES.

IV. Conclusions

In this paper we have presented a simple yet accurate function to interpo-

late/extrapolate the interaction energy of Ar+H2. In conjunction with an accurate

Ha potential curve, such as that from Ref.[3], this defines a global PES suitable

for studying energy transfer and dissociative collisions. The function does not well

reproduce empirical estimates of the van der Waals well region, but does reproduce

reasonably well the ab initio data in that region. The force along the H2 bond is

well represented globally without recourse to switching functions.
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Table I. ArH interaction energies.

RArH(a0) E i_ (mEh) V ArI-I (mZh)

2. 215.740 205.625

3. 50.853 49.295

4. 11.278 11.505

5. 1.912 1.885

6. 0.119 0.110

7. -0.095 -0.101

8. -0.072 -0.078

9. -0.040 -0.044

10. -0.021 -0.024
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Table II. ArH2 interaction energies.

E in' (mEh)

r(ao) R = 1 ao R = 1.401 R=3 R=5

3. 158.061

4. 25.707

5. 3.202

6. 0.089

8. -0.094

10. -0.025

3. 144.256

4. 23.772

5. 2.981

6. O.O98

8. -O.O82

10. -0.020

3. 133.271

4. 22.015

5. 2.765

6. 0.097

8. -0.077

10. -0.021

x=O

182.810

32.480

4.546

0.219

-0.129

-0.035

X = lr/4

154.744

28.272

3.937

0.190

-0.112

-0.031

X = zr/2

136.783

24.734

3.404

0.164

-0.097

-O.027

535.157

73.251

16.575

2.757

-0.218

-0.082

151.256

41.471

8.873

1.175

-0.185

-0.062

97.310

23.799

4.233

0.340

-0.145

-0.045

a

522.077

90.337

22.709

0.533

-0.103

150.373

62.092

18.126

4.016

-0.088

-0.068

29.719

8.183

1.444

-0.016

-0.119

-0.037

Very repulsive so not computed.
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Table III. ArH2 PES parameters (in atomic units).

X X0 X1 X2 c_X

A 18.06 58.63

b 1.653 0.3874

d 2.339

-90.61

5 = 0.2369

0.7662

0.7662
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Table IV. Root mean square errors for ArH2 PES fit.

R Optimum Fit

1.0 0.20 0.32

1.401 0.29 0.46

3.0 0.85 0.98

5.0 0.55 0.82

all 0.54 0.70
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Figure captions:
Figure 1: The ArH potential curve from ab initio calculations (symbols), from the

present fit, Eq. (6) (solid line), and from Tang and Toennies [11]. Note the switch

between a linear and log scale at 0.1 mEh.

Figure 2: The first two terms in a Legendre expansion of the ArH2 PES. Circles,

v0 from ab initio points; squares v2 from ab initio points; solid llne fit; dashed fine,

the fit of Tang and Toennies [14]. Note the switch between a linear and log scale at

0.I mEh.

Figure 3: The dependence of the potential energy on the H2 bond length for X =

¢r/2. The symbols are the ab initio points with squares for r = 3 a0, circles for

r = 4, triangles for r = 5, and crosses for r = 6. The solid lines are the fit at the

corresponding values of r.
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