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ABSTRACT

There is a need to simulate the near-Earth-orbit environmental conditions, and it is useful

to be able to monitor the changes in physical properties of spacecraft materials. This document

presents two different methods for simulating the vacuum-ultraviolet (VUV) and soft X-ray near-

Earth-orbit flux. Also, methods for monitoring the changes in optical ultraviolet transmission

and mass loss are presented. The results of exposures to VUV photons and charged particles on

these materials are discussed.

INTRODUCTION

The electromagnetic environment for near-Earth-orbit spacecraft is probably the most

difficult to characterize since it ranges from the Earth's magnetic field through the radio-

frequency, infrared, visible, ultraviolet (UV), X-ray, vacuum-ultraviolet (VUV), and extreme-

ultlaviolet (EUV) parts of the electromagnetic spectrum and out as far as high-energy cosmic

rays. The 22-year solar cycle accounts for the wide variation in the EUV, X-ray, and particle

environment. These fluxes can vary by orders of magnitude. Reference 1 contains a review of

the trapped-radiation environment.

The recent return to Earth of the Long-Duration Exposure Facility (LDEF) has provided

the opportunity to observe the effects of a 5-year exposure. Damage to spacecraft organic
thermal blankets and to metallic surfaces has been observed. Simulation of these effects has

been attempted by many different laboratories throughout the world.

This document reports on recent work at JPL that has resulted in two methods of

exposure and two methods of in situ monitoring of changes in the sample undergoing exposure.

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the

Jet Propulsion Laboratory, California Institute of Technology.
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SIMULATION METHODS

The VUV photon source in the present work is provided by the Cathodeon 1 deuterium

model VO1 lamp. Its spectrum and long-term performance have been studied by Hindsberg and

Kanazawa (Ref. 2) of the British National Laboratory.

Reference 2 covers a study by the British National Laboratory of the spectrum and long-

term performance of the Cathodeon deuterium model V01 lamp. Figure 1 is a plot of the solar

spectral irradiance between 100 to 300 nm; Figure 2 is a comparison of the V01 lamp radiance to

other available reference vacuum ultraviolet sources. The 124-nm line from the deuterium gas

simulates the solar Lyman alpha line. The system shown in Figure 3 has been in use during a

recent 9-month period. Figure 3 is a section view and block diagram of the 124-nm irradiation

source. The system has been used to expose various polymers. A 20-day cycle has been found

to be useful in that changes in weight and UV transmission can be measured. The changes in the

characteristics of the sample undergoing 124-nm irradiation can be monitored by the change in

transmission versus time for partially transparent samples or by the use of a quartz crystal

macrobalance (QCM) for opaque materials.

During the Grand Tour work, a 2-ft diameter aluminum disc was installed in a 1.8-m

vacuum chamber and charged up to 1 kV. This isolated disc retained its charge for 18 hours with

only a 200-volt drop. When the 254-nm (low-pressure mercury vapor) source was used to

illuminate the disc through a quartz window, the charge was dissipated in less than 1 hour.

Based upon this effect, a second type of near-Earth-orbit simulator was developed. A sample of

the material under test was installed in a 0.61-m-diameter vacuum chamber. A 4-watt, ozone-

producing, mercury lamp was used to illuminate the sample. At the same time, a brush corona,

at approximately 2 kV, was generated, which also illuminated the sample. The roughing pump's

base pressure to approximately 1.4 ° 10 -2 Pa. A small gas leak sets the nominal chamber pressure

during exposure to approximately 3.4 • 10 -2 Pa. This combined irradiance (254-nm and corona)

has been used to irradiate several samples. Figure 4 is a plot of the approximate corona current

at the sample location versus chamber pressure. Figure 5 is a block diagram of the system.

Figure 6 is a photograph of the open tank showing the QCM and 10-cm-by-10-cm corona

reference plate, while Figure 7 is a photograph showing the source details.

IN SITU MONITORING

Concurrent with the development of the sources, two different techniques to monitor

changes in the material under test were developed. For the 124-nm source, a Hamamatsu 2 model

R1132 phototube (spectral sensitivity from 115 to 160 nm) was found to be effective. Since the

specified bias is 15 volts, a battery bias supply is not a source noise and can be used without

special precautions to avoid Paschen breakdown. A downward "drift" in sensitivity of the R1132

detector has been reported by Hamamatsu. Their source is a Krypton capillary discharge, and it

1 Cathodeon Ltd., Nuffield Rd., Cambridge, England.
2 Hamamatsu Corp., San Jose, CA
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developsa6-nA currentin thediode. In thesystemat JPL,thediodecurrentis 0.05nA.
Monitoring the254-nmirradiationis accomplishedusingeithera7-54 nickel-cobaltglassfilter
or a260-nmfilter in conjunctionwith aHamamatsuGaAsPmodelG1126-02photovoltaiccell.

Recently,theIBM New AlmadenResearchCenter3 hasdevelopeda techniquefor driving
quartzcrystalswhosemechanicalloadhasdegradedtheQof thecrystalseveralordersof
magnitude(Ref.3). Theconversionfrom frequencychangeto masslossinvolvesmany
assumptions.In reportingsuchconversions,acarefullisting of theseassumptionswill avoid
falseinterpretationof thedata. References4 and5 discusssomefacetsof theseassumptions.A
testusingDykem,acellulose-acetate-baseddye,hasrevealedtheeffectsof irradiationby the
254-nmsourceon massloss,thecorona'smasslosscharacteristics,andthemasslossresulting
from thecombinedsources.Figure8 is aplot of frequencyversustimeandFigure9 is a
computedfrequency-change-per-hourfor thethreedifferentconditionsof exposure.Figure 10
showsthelossin weightandchangein transmissionof anFEPsampleexposedin the254-nm
andcoronasystem,while Figure11showsthechangein frequencyof aQCM for a whitedot of
thepaint suchasis usedfor spacecraftatJPL. Thisrepresentsthe lossin massof thepaint.

During thedevelopmentof theseirradiationsourcesandmonitoringtechniques,certain
procedureswerefoundto bevaluable. Measurementwithout thesamplesbeforeandafterthe
sampletestwill, 1), verify sourceanddetectorstabilityduring thesampleexposureand,
2),provideabaselineto quantify sampletransmission.Secondly,an 18-to 24-hourconditioning
periodbeforestartingirradiationallows theeffectsof evacuationor moisturelossto settledown.

SAMPLE EVALUATION TECHNIQUES

The major advantage to laboratory simulation rests in the fact that it is possible at any

time to interrupt the exposure and perform a variety of analytical measurements on the samples.

The following is a brief discussion of sample evaluation techniques, with some comments as to

their limitations and approximate resolution.

. The film samples are clamped between two aluminum rings whose dimensions are
2.54 cm for inside diameter and 3 cm for outside diameter. The films are nominally

0.0051 cm (0.002 in.) thick. The initial mass of the films is 0.1 gm and the weighing

resolution 0.0001 gm. The change in mass after an exposure can be measured.

2. The change in UV and visible transmission can be measured. Measurement in the

VUV would be more useful, but is much more difficult to accomplish.

o Infrared transmission (FTIR) was used to monitor any changes in the existing

absorption bands or the appearance of new absorption bands and to provide

information on changes in the molecular structure of the sample.

3 IBM New Almedan Research Lab., San Jose, CA

255



, Comparison of an unexposed sample with the exposed sample using a scanning

electron microscope can provide insight into the nature of the surface after exposure;

however, the application of the required conducting surface on the samples would

prevent additional exposures.

. Because of the ability to measure the 4-MHz basic frequency to 1 Hz and, under ideal

conditions, to 0.1 Hz, the QCM technique is used to measure sample changes during

exposure. Using the information from Ref. 2, the "K" for 4 MHz is 1.13 angstroms/

Hz. Assuming that the sample has a density of 1, the resolution is 10 E -8 gms. Since,

on occasion, the load is a small dot in the center of the crystal, the results indicated in

Ref. 5 should be considered. Thus, any quantitative calculations have an uncertainty

of +30 percent. Figure 12 is a comparison of the spectral transmission of a reference

versus a 40-day exposure of demetallized 0.5-rail Mylar. Figure 13 is the spectral

transmission of 2-mil FEP after a 40-day exposure. This was a repeat of the exposure

used for Figure 10.

o The Atomic Force Microscope (AFM) allows the measurement of the surface of

materials on an atomic scale. Figure 14 shows the AFM scan of an FEP sample from

the LDEF spacecraft and a similar sample which had been exposed for 40 days in the

254-nm and corona irradiation source. While the laboratory-exposed sample does not

exhibit a depth of erosion as great as the LDEF sample, the similarity is obvious. The

LDEF sample was exposed for approximately 5000 hours. The 254-nm and corona

exposure was 960 hours, an acceleration of approximately five times the near-Earth-
orbit environment.

CORONA CHARACTERIZATION

The corona voltage source is a 13.5-kV power supply with a 15-Mf_ series resistor to

control the current. It is possible to reverse the polarity of the corona electrode voltage with

respect to the chamber and sample ground. When the corona electrode is negative, its potential is

-4.4 kV. The voltage drop across the 15 Mf] is 9.1 kV. The corona electrode current is 0.6 mA.

With a positive electrode, the potential is only 2.3 kV and the current is 0.75 mA.

A description of the nature of the corona in terms of the energy distribution and particles

generated in the bleed air would be desirable. In the present system this is not feasible. Instead, a

2-cm-by-2-cm CRES electrode was installed in place of the normal samples and used as a

Langmuir probe by monitoring the current as the probe was biased between a plus and a minus

voltage (with respect to the chamber ground).

Figure 15 is a plot of electrode current versus bias voltage with the corona source at a

negative potential with respect to the chamber ground. This appears to be a normal diode curve,

except that if a bias voltage greater than 120 V is applied, the observed current exhibits

instability and appears to "run away". Figure 16 is a plot of the taA • cm -2 with a positive voltage

on the corona electrode. While this appears to be a "diode type" curve, it requires a bias potential

greater than 100 V before the current changes polarity. One plausible explanation for the nature
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of thepositive-biasedsourcecouldbethat thecollisionsbetweentheionizedgasandtheneutral
moleculesareproducingelectronsandgamma-rayparticles.With thepositivepotentialon the
coronasource,a blueglow is presenton thecoronaelectrodeandthereis al0-percentincreasein
thecurrentfrom aGaAsPdiode+7-54 filter monitor. Thepercentagedistributionin 20-V bins
is shownin Figure 17. Thisdatawasgeneratedby weighingthetotalcurveandtheweightof the
20-V segments.Apparently,anobservablepercentageof thecurrentbetween0 and+100 V still
arepositivelychargedparticles.

CONCLUSIONS

There is no claim that this system accurately reproduces the fields and panicles in the air

mass zero environment. Nevertheless, the ability to remove and evaluate samples from the

system, then continue the exposure has been useful. Changes in sample characteristics have been

observed for all of the materials except metallized Mylar.

The system is reasonably simple to set up and, when stabilized after the first 24 hours,

can function unattended except for a daily monitoring of the system parameters.
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