
I 
I 
I 
I 
I

S73 i p	 04.04-5200 

release date 

DISTRIBUTED FINITE ELEMENT ANALYSIS 
"°'NG A TRANSPUTER NETWORK 

Final Report 
July 1989 

'?ASA—CR-1 90888 

NASA SBIR #NAS3-25422 

SPARTA 
James Watson


James Favenesi 

Albert Danial 


Joseph Tombrello 

Dabby Yang


Brian Reynolds

Ronald Turren tine 

I 
I 
I 
I 
I 
I 
I 
I 
I

CY 

--  C 

rC) 

w
	 V) 

JW
Rensselaer Polytechnic Institute 

Mark Shephard

Peggy Baehmann 

Prepared For

NASA LEWIS RESEARCH CENTER


CLEVELAND, OH 44135 

I 
I 
I 
I 
I

Advanced Data Processing Laboratory

SPARTA, Inc.


4901 Corporate Drive

Huntsville, AL 35805 

T?SF

	 (205) 837-5200

MULTIPROCESSOR 

ARTA, INC.
DEVELOPMENT


GROUP



DISTRIBUTED FINITE ELEMENT ANALYSIS 
USING A TRANSPUTER NETWORK 

Final Report 
July 1989 

NASA SBIR #NAS3-25422 

SPARTA 
James Watson


James Favenesi 

Albert Danial


Joseph Tombrello 

Dabby Yang


Brian Reynolds

Ronald Turren tine 

Rensselaer Polytechnic Institute 
Mark Shephard


Peggy Baehmann 

Prepared For

NASA LEWIS RESEARCH CENTER


CLEVELAND, OH 44135 

I	 Advanced Data Processing Laboratory 
SPARTA, Inc. 

i	
4901 Corporate Drive 
Huntsville, AL 35805 

i	

(205) 837-5200

MULTIPROCESSOR

DEVELOPMENT I	 "SPARTA, INC.  GROUP 

I



I 
I TABLE OF CONTENTS 

p
Executive Summary	 ................................... 1 

Introduction	 ........................................ 4 

I II System	 Design	 ................................... 6 
Hardware	 ................................... 6 

I Configuration	 ..............................
Communication	 ..............................

7 
7 

Ill	 Distributed Finite Element Method 	 ................... 1 3 I The Sparse Solver	 .............................. 1 4 
The	 Profiler	 .............................. 1 5 
Parallel Assembly of the 

Global Stiffness Matrix	 .............. 1 6 
Boundary Conditions	 ................... 18 
Parallel Jacobi-Conditioned 

I
Conjugate Gradient Solver 	 ......... 1 8 

Effects of Bandwidth 	 ................... 19 
The Out-of-Core Solver	 ......................... 24 

I The Substructures Method 	 .............. 25 
Steps to Solution for Substructuring 

on Transputers	 ................... 27 

I
Secondary Storage Hardware Considerations .... 30 

IV	 Pre- And Post-Processing	 ......................... 35 

I Finite Quadtree	 ..............................
NASTRAN Interface	 .........................

35 
36 

XPPOST................................... 36 

I
Adaptive Analysis	 .............................. 37 

V	 XPFEM: A Transputer Based Finite Element Workstation 	 .... 50 

I VI Conclusions and Recommendations 	 ................... 65 
Enhancements to Pre-Processor 	 .............. 65 

I Improved Boundary Conditions	 ..............
Three-Dimensional Mesh Generation 	 .........

65 
66 

Parallel Mesh Generation 	 ................... 66 

I

Node Renumbering	 ...................
Enhancements to the Solver	 ...................

66 
67 

Increasing Solver Capacity	 .............. 67 

I

Fine-Tuning the Solver	 ...................
Enhancements to Post-Processing 	 ..............

68 
70 

Plasticity and Zero Stress Contours	 ......... 70 
Parallel Contour Computation	 .............. 70 

I
Three-Dimensional Stress Contours 	 ......... 70 

Additional	 Features	 .............................. 71

I 
I 



I 
I VII	 References	 . 73 

I	 Appendix A: XPFEM Users Manual 	 .........................75 
XPFEM Options	 ...................................77 

New Problem	 ..............................77 
Recover Old Problem 	 .........................

Problem Type
	 ..............................

77 
77 

Workspace Grid	 .............................. 77 
FINITE QUADTREE Geometric Modeler	 ......... 77 
Material Properties	 .............................. 78 
Analysis Attributes	 .............................. 78 
FINITE QUADTREE Mesh Generation 	 .............. 80 
Outputfor Analysis 	 .............................. 80 
Read	 NASTRAN File 	 ......................... 81 
2D/3D	 Solver	 .............................. 81 
2DPost Processor	 .............................. 82 
3D Post Processor 	 .............................. 84 
Exit........................................ 85 

Converting Binary Files to Text Files and Vice Versa 	 ......... 86 
Binary Input Files to Text Input Files	 .............. 87 
Text Input Files to Binary Input Files 	 .............. 88 I	 Binary Solution Files to Text Solution Files	 .........89 
Problems with EXE convert.tsr	 ..............90 

I Appendix B:	 Solver Limitations	 ...............................
Primary Memory Parameters 	 .........................

91 
91 

Memory Usage as a Function of 

I
the Primary Memory Parameters	 ...................

Reconfiguring the Solver for Larger Problems 	 ..............
93 
93 

Minimum Problem Size	 ............................. 94 

Appendix C: Jacobi-Conditioned Congugate Gradient Algorithm ..... 95 

I Appendix 0:	 XPDOS User's Manual	 .........................
XPDOS Command Shell 	 ..............................

98 
98 

Wildcards	 ........................................ 99 

I Listing	 Directories	 ...................................
Deleting	 Files	 ...................................

99 
100 

Copying	 Files	 ................................... 100 

I Renaming and Moving Files and Subdirectories 	 .........
Creating	 Directories	 ..............................

101 
101 

Removing Directories 	 .............................. 102 

I Changing Default Directory 	 .........................
Changing Default Disk	 ..............................

102 
103 

Displaying	 Free Space	 .............................. 103 
Displaying	 a	 File	 ...................................
Obtaining	 Help	 ...................................

103 
103 

Transferring Files between XPDOS and MS-DOS	 ......... 103 

I Executing MS-DOS Commands	 ......................... 104

I



Exiting from XPDOS	 . 105

Appendix E: XPDOS Disk Library Routines and Error Codes.........106 

System Routines	 ...................................106 
Directory Access Routines 	 .........................107 
File Opening	 ...................................110 
General Routines 	 ...................................111 
Direct Access	 ...................................112 
Binary Access	 ...................................112 
Status Codes	 ...................................117 

Appendix F: XPGRAPHICS Users Manual 	 ...................124 
System Routines	 ...................................124 
Color Routines	 ...................................124 
Point, Line, Polygon and Curve Routines 	 ..............126 
Screen and Window Routines	 ........................129 
Text Routines	 ................................... 134 
CRT Routines	 ...................................137

Error Codes ........................................139 

Appendix G: Keywords Recognized by the 
NASTRAN Interface Module	 .........................140 

Appendix H: Parallel Mesh Generation with 
FINITE QUADTREE	 ..............................141 

I 
I 
I 
I 
P 
I 
I 
[1 
ri

LIST OF FIGURES 

Figure 1, Deliverable Hardware 	 ............................. 10 
Figure 2, XPFEM Communication Scheme 	 ................... 11 
Figure 3, Matrix-Vector Multiply Benchmark	 ................... 12 
Figure 4, Sample FE Model and Global Stiffness Matrix 	 ......... 21 
Figure 5, P-Vector Overlap for Matrix-Vector Multiplication 	 ......... 22 
Figure 6, P-Vector Dependence between Processors 	 ......... 23 
Figure 7, Out-of-Core Configuration	 ......................... 31 
Figure 8, A 167,000 Degree of Freedom Model 	 .............. 32 
Figure 9, Equations for Partitioning Large FE Problems 	 ......... 33 
Figure 10, The Large Model Condensed to Superelements ......... 34 
Figure 11, Quadtree Theory: Model Sectioned into Quadrants........ 39 
Figure 12, Geometric Model	 .............................. 40 
Figure 13, Boundary Discretization 	 ......................... 41 
Figure 14, Quadrants	 ................................... 42 
Figure 15, Repositioning Quad Nodes Using Smoothing 	 ......... 43 
Figure 16, XPFEM Input Files	 .............................. 44 
Figure 17, 2-D Post-Processing	 .............................. 45 
Figure 18, 3-D Post-Processing	 .............................. 46 
Figure 19, Adaptive Analysis Algorithm 

Implemented in XPFEM	 .............................. 47 
Figure 20, Bubble Functions 	 .............................. 48

I 
I 
I 
I 
I 
I 
Li 
I
I



Figure 21, Error Analysis	 ...................................49 
Figure 22, Main Menu	 ...................................53 
Figure 23, Geometric Model with Mesh 

Parameters, Grid and Menu 	 ......................... 54 
Figure 24, Mesh with Refinements	 ......................... 55 
Figure 25, Time to Assemble Global Stiffness Matrix 	 .............. 56 
Figure 26, Time to Solve System of 

Finite Element Equations 	 .............................. 57 
Figure 27, Total Solution Time 	 .............................. 58 
Figure 28, Speed-Up for the Turbine Blade 	 ................... 59 
Figure 29, Space Shuttle Main Engine Turbine Blade 	 ......... 60 
Figure 30, Deformed and Undeformed 

SSME Turbine Blade	 .............................. 61 
Figure 31, Stress Contours in Ring	 ......................... 62 
Figure 32, Principal Stresses in Ring 	 ......................... 63 
Figure 33, Adaptive Analysis 	 .............................. 64 
Figure 34, Commercial XPFEM Workstation 	 ................... 72 
Figure H.1, Twelve Colors Identify Independent Quadrants 	 ......... 144 
Figure H.2, Minimum of Eight Colors Needed 	 ................... 145

I 
I 
I 

I 
I 
I 
I
I 
Ti 
I 
I 
I 
I 
I 
I 
I 
I 
I



1 
EXECUTIVE SUMMARY 

The principal objective of this research effort was to demonstrate the 

extraordinary cost effective acceleration of finite element structural analysis problems 

using a transputer-based parallel processing network. This objective has been 

accomplished in the form of a commercially viable parallel processing workstation. 

The workstation is a desktop size, low-maintenance computing unit capable of 

supercomputer performance yet costs two orders of magnitude less. 

To achieve the principal research objective, a transputer based structural 

analysis workstation termed XPFEM was implemented with linear static structural 

analysis capabilities resembling commercially available NASTRAN. Finite element 

model files, generated using the on-line preprocessing module or external 

preprocessing packages, are downloaded to a network of 32 transputers for 

accelerated solution. The system currently executes at about one third Cray X-MP24 

speed but additional acceleration appears likely. For the NASA selected 

demonstration problem of a Spade Shuttle main engine turbine blade model with 

about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 

required 23.9 seconds to obtain a solution while the transputer network, operated from 

an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the 

$80,000 transputer network demonstrated a cost-performance ratio about 60 times 

better than the $15,000,000 Cray X-MP24 system. . 

A number of significant developments were required to achieve the 

demonstration objective. These developments included: 

Parallel Hardware System 

A network of thirty-two densely interconnected transputers, a large screen color 

graphics system and a network mass storage system were designed, separately 

implemented and integrated into an inexpensive host computer. The complete system 

fits on a desktop, yet delivers the computational power of a supercomputer. 

I 
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Parallel Sparse Finite Element Solver 

A parallel, sparse implementation of the Jacobi-conditioned Conjugate Gradient 

(JCG) algorithm was implemented for solution of the finite element equations on the 

transputer network. The memory-efficient algorithm enables problems with over 

I
20,000 degrees of freedom to be solved in the 32 Mbytes of distributed core memory. 

In addition, an out-of-core solver has also been defined for larger problems which 

I
cannot reside in the collective core memory of the transputer network. 

Adaptive Analysis 

Adaptive analysis is an automated mesh refinement procedure for reducing 

I finite element mesh discretization errors to a given tolerance. It consists of a series of 

solutions to the finite element problem, each with successively more refined meshes in 

I
regions of large error. The adaptive analysis capability implemented as part of this 

research effort has been demonstrated to converge efficiently on two-dimensional I	 models. A three-dimensional capability would involve a similar implementation path. 

A suitable 3D mesh generator is in development and a 3D error criterion for driving the 

- solution convergence is available. The three-dimensional capability was not defined 

as a part of this research as no new insight was apparent that would justify its 

significant implementation time. 

I
Pre/Post Processing 

Graphic visualization of the finite element model, boundary conditions and I	 applied loads, and the resulting deformed model and stresses are invaluable to 

engineering analysis. A graphics presentation capability has been implemented for 

I this purpose. The graphics system permits visual, interactive creation and 

manipulation of models during preprocessing, shows the discretization of the model 

into elements during mesh generation, and displays the deformed model, stress 

I contours, and principal stresses during post processing. Three-dimensional structures 

can be analyzed but model development and 3D stress contouring must be performed 

with third party software. 

I 
I
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Validation 

Accuracy of finite element software implemented on XPFEM was verified with 

I three tests:

I1.
Element stiffness matrices computed by XPFEM were compared 

to the matrices produced by COSMIC NASTRAN. I

	

	 Result: stiffness terms match COSMIC NASTRAN to five 

significant figures. 

I2. The displacement solution for a NASA-provided 3D turbine blade 

problem, as computed by a Cray X-MP24 running COSMIC 

I
NASTRAN, was compared term-by-term to the solution 

produced by XPFEM. 1

	

	 Result: solutions are identical to five significant figures when the 

tolerance on XPFEM's iterative solver is 1 .OE-7 or lower. 

3.

	

	 Rectangular models were deformed along one axis. The amount of 

lateral contraction computed by XPFEM was compared to the value 

predicted by linear elastic theory and to the value produced by COSMIC 

NASTRAN. 
Result: Lateral contraction agreeing with Poisson's ratio was 

computed by both XPFEM and COSMIC NASTRAN. 

These tests do not rigorously prove the accuracy of XPFEM solutions, but do give 

sufficient confidence that the basic element generation, stiffness matrix assembly and 

solution algorithms function properly. 

I 
I 
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The Phase I feasibility study of a transputer based finite element solver 

concluded that a network of transputers, coupled with efficient parallel finite element 

code, could result in an engineering analysis tool of tremendous power [1]. The 

objective of this Phase II research effort was to design, develop, and implement a 

transputer-based finite element workstation with the extraordinary performance 

predicted by the Phase I study. This objective was achieved. 

The performance of local-memory distributed processors depends to a large 

extent on how efficiently the processors can communicate. For this reason, the first 

task in the development of the finite element workstation involved designing a network 

that would allow the processors to communicate optimally. The other pieces of the 
workstation, namely the host interface, high-resolution graphics and fast external 

storage, were then integrated into the network to form a complete hardware system. 

The hardware in XPFEM and its arrangement is described in Section II, System 

Design. This section also explains the transputer communication scheme and how it 

evolved. 

Much research on parallel finite element solvers has been done in recent years 

[2-5]. This research provided significant insight and guidance to the design of XPFEM; 

however, many of the proposed parallel solvers had limitations that precludes their 

use in a viable engineering workstation. The goal for XPFEM was to create a parallel 

solver that was fast, efficient and could solve large finite element problems. Several 

new methods had to be developed to achieve this goal. Section III, Distributed Finite 

Element Method, consists of two parts: The Sparse Solver and The Out-of-Core 

Solver. The Sparse Solver describes algorithms developed for and implemented in 

XPFEM which subdivide a finite element problem, assemble the stiffness matrix in 

parallel without communication, and solve the resulting finite element equations in-

core using a conjugate gradient solver. The Out-of-Core Solver discusses a concept 

for implementing an out-of-core capability into XPFEM. 

A finite element solver is of limited value to a structural analyst unless he or she 

has a convenient means of entering and modifying problems, and interpreting the 

results. Section IV, Pre/Post Processing, describes the mesh generator, NASTRAN 

I 
I 
I 
I 
I 
El 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I



U
interface and post processor modules which provide input, output and interpretation 

ucapabilities. 

Section V describes the integrated XPFEM workstation. It contains screens 

from a sample work session including model creation, mesh generation, and post-

processing. 

Many new ideas occurred to the researchers during the development of 

I	 XPFEM. They include such diverse subjects as faster and more efficient parallel 

solvers, better storage schemes, methods of implementing advanced structural 

I	 analysis features, and parallel pre- and post-processing. Although beyond the scope 

of this research effort, these ideas would be invaluable in a commercial structural 

analysis workstation. They are discussed in Section 6, Conclusions and 

I
Recommendations. 

I	 The eight appendices give detailed information on the topics presented in the 

report. They contain User's Manuals for the XPFEM workstation and the XPDOS 

I	 transputer disk operating system, a description of the Jacobi-conditioned conjugate 

gradient solver, limitations of the solver, descriptions and interfaces of XPDOS and 

XPGRAPHICS, the graphics library for XPFEM, a report of a parallel mesh generation 

I method, and limitations of the NASTRAN interface. 
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1 

Designers of parallel programs must thoroughly consider all aspects of system 

hardware, configuration and communication details as preliminaries to developing 

efficient parallel software. Significant effort was devoted to each of these preliminaries 

during this research project. 

Hardware 

Figure 1 shows the hardware components of the delivered prototype transputer 

based workstation. The original design concept proposed a system of forty transputers 

but due to innovations in the network topology, a system of thirty-two T800-20 

transputers configured in two tetrahedra was determined to be more cost-effective. 

Each transputer has four 20 Mbit/second bi-directional links, operates at 20 MHz, is 

rated at 1.5 Mflops, and has 1 Mbyte of RAM. The thirty-two transputers were mounted 

on eight PC-XT/AT sized plug-in cards with four transputers per card. 

Highresolution graphics capabilities were also incorporated into the 

workstation. These graphics capabilities were developed using INMOS B408 and 

B409 transputer modules as a graphics unit. The B408 module functions as a drawing 

and image storage unit. It contains a T800 transputer and 2.25 MBytes RAM and is 

linked to the B409 module via a pixel bus. The B409 module functions as a display 

and synchronization driver. The combined 13408/13409 modules are capable of 

resolutions of 512 x 512 with five pages of memory, 768 x 768 with two pages of 

I
memory or 1024 x 768 with one page of memory. 

I

Mass storage was made available to the transputer network via a pair of SCSI 


disk drives. This capability was necessary to implement effective out-of-core solution 


techniques. The SCSI drives were designed by a third party OEM exclusively for this 
I project. They are 100 MByte Winchester Conner hard disks mounted on one PC-AT 


plug-in card. The disks are controlled by T222 transputers and interface to the network 


I through transputer links. Transfer times are in the range of 0.25 MBytes/sec. A 


SPARTA-developed transputer disk operating system permits directory, file, and 


I
read/write operations to be performed with convenient routines (Appendices D and E). 

I 
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1
Configuration 

I Three different configurations--pipeline, doubly re-entrant grid, and linked 

tetrahedra--were considered as viable candidates for the workstation network. The 

I
pipeline was of interest because of the simplicity in its communication scheme. The 

merits and potential of the doubly re-entrant grid were determined during the Phase I I	 feasibility study [1]. The tetrahedral connection scheme, first suggested by Rodgers 

[6], evolved as a viable configuration for iterative solution methods. Results from 

matrix-vector multiplication benchmarks indicated that the linked tetrahedra concept 

provided potential expandability, communication flexibility, optimized link usage, and 

resulted in the shortest average communication path for global scalar summations and 

vector exchanges, the dominant communication operations in conjugate gradient-

based iterative solution methods. Because of these results, the tetrahedral scheme 

was chosen as the workstation network topology. 

A schematic of the tetrahedral configuration is shown in Figure 2. In this 

configuration transputers are linked into clusters of four. Each transputer is attached to 

the remaining three transputers in a cluster using three of its integrated links. The 

remaining free link on each transputer is used to join clusters into tetrahedra with four 

clusters constructing one tetrahedron. At each vertex of a tetrahedron one transputer 

exists with a free link. These free links permit multiple tetrahedra to be networked, 

thus providing network expandability. As indicated by Figure 2, the workstation 

network consists of two interconnected sixteen-processor tetrahedra. 

Results from matrix-vector multiplications performed on the tetrahedral network 

are displayed in Figure 3. These results show that the network is capable of 

sustaining 35.5 MFlops during matrix-vector multiplication. 

Communication 

I
Conjugate gradient-based iterative techniques for solving linear systems are 

1 dominated by matrix operations such as matrix-vector multiplies and dot products. 

Due to global scalar summations and global vector exchanges, local-memory process-

ing networks require significant communications to perform matrix operations. These 

communication requirements impose a system overhead that must be minimized to 

achieve maximum speed-up. The communication scheme developed for the 

[1 
I 
1 
I 
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I
transputer based workstation was coordinated with the system configuration and 

appears to provide extremely efficient global summations while maintaining flexibility 
for improvements and expandability. 

I
The communication scheme as implemented on the two tetrahedra network is 

outlined in Figure 2. This design, which requires five communication exchanges for I	 global scalar summation, was the result of two revisions to earlier methods which used 

dynamic switching. Dynamic switching involves the use of specialized link hardware 

' to change the link connections while the processors are running. It was thought to 

have advantages over a static network because messages between widely separated 

processors could be routed in a single step by directly joining the two remote I processors whenever they needed to communicate. 

The dynamic communication scheme consisted of three static exchanges 

among transputer clusters on the same tetrahedron and one dynamic exchange 

between corresponding transputers on different tetrahedra. A series of INMOS C004 

link switches were used to dynamically alter the link connections at the vertices of the 

tetrahedra. The dynamic scheme was implemented but resulted in slow matrix-vector 

multiplication due to the delays needed to prepare each reconfigure. These results, 

and predictions from INMOS representatives that future transputers would be able to 

route messages in static configurations much faster than current transputers [7], led to 

a revision of the communications code so that only static exchanges took place. 

The first revision needed seven communications steps to find global sums. It 

used the unmodified configuration with only one link between adjacent tetrahedra. 

This communication plan was implemented and used to achieve an early prototype 

distributed JCG solver on the two tetrahedra network; however, the seven 

communication exchanges at each iteration of the solution process resulted in an 

average computation-to-communication ratio of 1:2. 

The final five-step communication scheme was a hybrid of the dynamic 

switching and seven-step schemes. Like the dynamic switching scheme, it fully 

utilizes all links in the network, including all four links of the vertex transputers of the 

tetrahedra. Like the seven-step scheme, all links are statically configured. Using the 

five-step scheme and the JCG algorithm, the average computation-to-communication 

ratio increased to 2:1. 

I 
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The five step global communication scheme works equally well for vectors as 

well as scalars. However, it was observed during the development of the solver that 

global vector communication is superfluous if the finite element model bandwidth does 

not extend across the full matrix. Since banded matrices are the norm in finite 

elements, local rather than global vector exchange methods were investigated. An 

interesting result surfaced: pipeline communication between nearest neighbors is 

much faster than a global vector exchange. The number of communication steps for 

vector exchanges now becomes a function of the bandwidth and differs from problem 

to problem--tightly banded models will need fewer vector communication steps than 

poorly banded models. For reasonably banded problems, local vector exchanges on 

a pipeline increased the average computation-to-communication ratio to 8:1. A 

fortunate consequence of the tetrahedral topology is that it contains a pipeline within it, 

so no hardware modifications were necessary to gain the benefits of local pipeline 

communication. 

Two primary conclusions were reached during the communications research. 

Firstly, as mentioned above, the experiences at SPARTA suggest that static, rather 

than dynamic, configurations result in a more efficient communication design. 

Secondly, local pipeline communications are more effective than tetrahedral 

communications when exchanging vectors to adjacent or nearly adjacent transputers.



I
10 I 

I 
Component Description Quantity 

INMOS IMS B403-3 T800 Transputer 
(20 Mhz - 1 Mbyte - 3 cycle DRAM)

32 

INMOS INS B008 Motherboard 10 

INMOS IMS 13405-3A T800 Transputer 
with 8 Mbyte DIT module

1 

CSA SCSI Winchester Drive Control 2 

100 Mbyte SCSI Winchester Disk 2 

INMOS IMS B403-3 T800 Graphics Tram 1 

INMOS IMS B409 Graphics Controller 1 

NEC Multisync II Color Monitor 1 

Expansion Chassis 2

I 
I 
I 
I 
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Finite element analysis consists of four distinct tasks: 

1. Pre-processing (problem definition, geometric modeling, 

and mesh generation), 

2. Generation of finite element equations, 

3. Solution of the system of finite element equations, 

4. Post-processing (calculation of stresses, stress contours, 

strain energy density, etcetera). 

Each of these tasks has varying degrees of inherent parallelism available for 

exploitation on a distributed network. 

The core of the finite element method consists of the computation, assembly 

and solution of the system of finite element equations. The computation of the finite 

element equations can be done either an element at a time by computing and 

assembling element stiffness matrices, or a node at a time by computing and 

assembling stiffness terms corresponding to individual nodes. The nodal approach 

enables the stiffness terms to be computed and assembled entirely in parallel without 
communication, and results in near linear speed-up (Speed-up is defined as the 

computation time for one processor divided by the computation time for N processors.) 

for any problem size if the workload is distributed evenly. For solution of the resulting 

system of finite element equations, direct methods based on Gaussian elimination are 

more general but iterative methods such as the conjugate gradient and Lanczos 

methods are more adaptable to distributed networks and are applicable to a majority 

of finite element problems due to the symmetric, positive definite characteristics of 

finite element matrices. 

A relevant issue to the solution of the resulting system of equations is the 

distinction between in-core and out-of-core techniques. For moderate size (20,000 

degree of freedom) problems, the available network core memory of 32 Mbytes is 

enough to store the entire model. However, as problems increase in size, only a 

fraction of the model can reside in-core; therefore, techniques for employing out-of-

core memory during the solution process become necessary. In the remainder of this 

section, the development and implementation of an in-core sparse solution technique 
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and the desi . of an out-of-core substructuring technique on the tetrahedral network 

are described. 

THE SPARSE SOLVER 

I
This section describes parallel algorithms which were designed to solve 

I
moderate size finite element problems in-core efficiently and with minimal storage. 

The algorithms are necessarily more complex than conventional, sequential finite 

I element (FE) algorithms, but the increase in performance more than justifies the 

additional complexity: a single transputer with 8 Mbytes of memory can solve 

problems with over 10,000 degrees of freedom, and a network of 32 transputers with 1 1

	

	 Mbyte each can solve problems with over 38,000 degrees of freedom. The collection 

of algorithms which analyze, assemble and solve the FE problem in-core is referred to 

I as the sparse solver. The following sections describe the profiler, the assembler and 
the solver, which comprise the main parts of the sparse solver. These sections will I

	

	 refer to Figures 4-6 which illustrate a sample model and show the form of the model's 

global stiffness matrix (GSM). 

I Node Rows versus Degree-of-Freedom Rows 

I All mention of rows and columns of the GSM, both in this section and in the 

occam code, refer to nodes, not to the actual degrees of freedom. For example, for a 

3D FE model with 12 nodes, there will be 36 degrees of freedom organized in 

consecutive sets of x, y and z displacement terms for each node. The notation used I

	

	 here, however, will consider the GSM as having 12 rows, not 36. Each "row" actually 

consists of x, y and z displacement vectors, so one row contains 3 different arrays. For 

I a three-dimensional problem, the intersection of a row and a column consists of a 

submatrix with nine terms (x, y and z from the row times x, y and z from the column) 

referred to as a "patch." The size of a patch differs with the dimensionality of the FE I model: two-dimensional patches have four terms (the square of the problem 

dimension) and three dimensional patches have nine terms. This view of the GSM 

I simplifies many factors related to maintaining information on sparsity. An incidental 

benefit is that short integers can be used as indices for problems with up to 65,534 

I
degrees of freedom in two-dimensional problems, and up to 98,301 degrees of 

freedom in three-dimensional problems. If degrees of freedom were indexed directly 

(rather than indirectly through nodes), short integers could handle problems with only 

I
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32,767 degrees of freedom. Due to the heavy reliance on indexing tables, short 

integers liberate significant amounts of memory that would otherwise be occupied by 

the more conventional 32 bit integers. 

The Profiler 

In order to write a sparse solver, general characteristics of the GSM such as the 

extent of sparsity, the patterns of non-zeros, variations in bandwidth, and the effect of 

node and element numbering on sparsity must be identified. To assist in determining 

characteristics of FE models, a program was written to search through model 

connectivity information to determine where non-zeros will appear. In addition, since 

renumbering codes create models numbered in an orderly fashion, this program, 

called a profiler, was designed to recognize patterns that appear due to node 

numbering. The profiler produces information about non-zeros in each row of the 

GSM. (A non-zero refers to a non-zero patch, not a single term. A non-zero will occur 

wherever one node shares the same element with another node. Figure 4 shows that 

nodes 6 and 9 are both in element 6, so there will be a non-zero patch in row 6, 

column 9 and row 9, column 6. Row 6 will contain zeros in columns 1, 2, 3, 4, 8 and 10 

since node 6 does not share a common element with nodes 1, 2, 3, 4, 8 or 10.) The 

profiler keeps track of the position of each non-zero and, if consecutive patches are 

non-zero as well, it will group them together in a "segment" (Figure 4). There are two 

segments in row 6: the first one starts in column 5 and is 3 patches long and the 

second one is a singleton and is in column 9. The profiler revealed some interesting 

properties of the NASA turbine blade model (1575 nodes, 1025 eight noded brick 

elements). Although numbered well in most regions, the model has a bandwidth 

spanning 90% of the matrix in certain regions. The turbine blade model node 

numbering also results in many consecutive patches, indicating that storage of 

segment information (i.e., the starting column number and the length) is sufficient to 

index the entire GSM. 

Profiling is performed in parallel. The host processor serving the network 


I evenly divides the nodes among the remote processors. Remote nodes compute 


profiling information on their nodes and return the data to the host. From the profiling 


I
data, the host processor determines how to subdivide the finite element problem so 


that equation solving, the most time consuming step, is optimally load-balanced. The 

I 
I



16 
problem is then redistributed to the network for assembly and solution of the finite 

element equations. 

Parallel Assembly of the Global Stiffness Matrix 

Computation of the element matrices and their subsequent summation into the 

GSM are computationally intensive scalar operations. Most of these operations, 

however, are independent processes and are thus readily adaptable to parallel 

processing. Element stiffness matrix computations, for example, are independent 

tasks and can be performed in parallel with linear speed-up. Summation of the 
element matrices into a GSM, however, is not inherently parallel because of the data 

dependencies of GSM terms; a single term in the GSM typically receives contributions 

from several elements. Rather than distributing elements to processors, a new 

approach was taken: routines were devised to compute patches of the GSM directly, 

rather than computing and assembling element matrices. In this manner, processors 

can work independently without performing redundant calculations and without 

communicating. The only penalty is in the slight redundancy of storage of element 

data since some elements' parameters and node coordinates may be stored on more 

than one processor. 

Computation of the GSM by Patches -- Example 

The computation of stiffness terms and their assembly into the global matrix will 

be illustrated by an example. Consider the FE model and its related GSM in Figure 4. 

Assume that there are four processors, and that processor 0 (P0) has rows 1 - 3, 

processor 1 (P1) has rows 4 & 5, processor 2 (P2) has rows 6 - 8 and processor 3 (P3) 

has rows 9 & 10. Each processor simultaneously begins to compute the first patch on 

that processor, i.e., P0 computes the patch for node 1 on itself; P1 computes the patch 

for node 4 against node 2; P2 computes the patch for node 5 against node 6; and P3 

computes the patch for node 9 against node 4. 

A patch of the GSM is computed in the following manner: First, data for all 

elements which use the two nodes involved (one node representing the row, and the 

other representing the column) is needed. P0 will need element 1 for data on node 1, 

P1 will need element 2 for data on nodes 2 and 4, P2 will need element 6 for data on 

nodes 5 and 6, and P3 will need elements 4 and 5 for data on nodes 4 and 9. Next, for
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I
each element involved, the local node corresponding to the global node must be I determined. With the local node numbers, special element stiffness routines are 

invoked which return only those stiffness terms relating the two local nodes. For 

example, P0 must determine which local node the global node 1 represents in I element 1. If global node 1 is element l's local node 3, for example, P0 would then 

call the special element stiffness routine which will compute only the stiffness terms 

related to local node 3 acting on itself. P3 would have to determine the local node 

numbers for global nodes 4 and 9 in element 4 (and element 5). If global node 9 is 

element 4's local node 1, and global node 4 is element 4's local node 2, processor P3 

will call the element stiffness patch routine which computes only the stiffness terms 

relating local nodes 1 and 2. 

In this example, P3 is the only processor with more that one element affecting 

the processors first patch. After finding the stiffness terms from element 4, P3 repeats 

the procedure for element 5 (determine which local nodes the global nodes 4 and 9 

correspond to, then compute the stiffness terms only for those two local nodes acting 

on each other) and sums the stiffness terms from elements 4 and 5 together into one 

patch.

Processors compute all the patches on one row, then proceed to their next row. 
I Since processors are load balanced by the number of patches, processors will take


approximately the same amount of time to compute and assemble their portions of the 

I	 GSM.

At first glance, the nodal assembly approach appears to have substantially 

higher indexing overhead than element assembly. Benchmarks, however, have shown I	 that overhead differences between the two methods are negligible in terms of 

assembly times. The high efficiency of this method for the scalar operation of stiffness I	 matrix assembly is evidenced in the fact that XPFEM generates and assembles global 
stiffness matrices nearly two times faster than a Cray X-MP24. The benchmark turbine 

blade model took 13.9 seconds to assemble on the Cray, and only 7.4 seconds on 

I	 XPFEM. 

I 
I 
I
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Boundary Conditions 

The sparse solver supports applied loads and prescribed displacements. 

Boundary condition information is stored in two ways: first, the rows and columns of 

constrained degrees of freedom are zeroed, and the diagonal term is assigned unity. 

Second, a table of boolean variables is maintained to tell whether or not a degree of 

freedom is constrained. Using this information, the matrix-vector multiply routine can 

skip entire rows which would otherwise be wasted on multiplies involving only zero 

terms. 

Parallel Jacobi-Conditioned Conjugate Gradient Solver 

The Jacobi-Conditioned Conjugate Gradient (JCG) method uses the inverse of 

the GSM's diagonal as a preconditioning matrix for the Conjugate Gradient iterative 

technique. Jacobi preconditioning is desirable in parallel systems for several reasons: 

the preconditioning matrix is trivial to obtain (other preconditioning methods such as 

Incomplete Cholesky Decomposition use derivatives of Gaussian elimination-based 

direct solvers which are difficult to load balance efficiently in parallel), takes little extra 

storage (the diagonal matrix need only be stored as a vector), and provides good 

convergence for a minimal computational expense. 

There are several ways of decomposing the JCG method on multiple, local 

memory processors. To find the task distribution appropriate for the application, the 

implementer must make decisions which strike a balance between memory usage, 

computation, communication, problem size, and the number of processors anticipated. 

For small systems of equations to be solved on few processors, for example, each 

processor can store complete copies of each of the six working vectors thereby saving 

on communication, but performing redundant computations. The trade-off between 

communication and computation changes with problem size; time taken by redundant 

computations grows more quickly than time taken by communication. 

The design goal for the sparse solver was to solve very large problems on many 

processors. For this reason, the intermediate variables in the JCG method were 

distributed so that only one working vector is stored in its entirety on each processor, 

no redundant computations are performed, and three global sums are exchanged at 
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I,
each iteration (two scalar sums and one vector sum). Appendix C outlines the 

-	 algorithm and variables. 

I

Effects of Bandwidth 

Conventional banded matrix solvers such as those used by NASTRAN attempt 

I
to simultaneously minimize both storage and computational requirements by storing, 

and operating on, only the stiffness terms that fall within the bandwidth of the FE 

I matrix. The scheme works well for models like beams and cantilevers which can be 

made with tight bands, but often results in wasteful storage and computation of zero 

terms when complex models are built. 

1
Bandwidth Has Minimal Affect on Storage Requirements 

-	 Unlike conventional banded solvers, the storage requirements of the sparse 

'	 solver in XPFEM is only marginally affected by bandwidth. Only non-zero terms of the 

GSM are stored, regardless of the bandwidth, so the memory required by stiffness 

I terms remains constant. The pointer tables, however, may require proportionately 

more memory (typically 25% of the GSM memory requirements) when the bandwidth 

is excessively large since the rows in a poorly banded matrix are usually highly 

I segmented. 

Bandwidth Does Not Affect Computational Requirements 

I
The computational effort in the sparse solver, like the memory required by the 

GSM, is also independent of bandwidth since operations are carried out only on non-

zero terms. The number of floating point operations required for a poorly banded 

matrix identically equals the number required for a tightly banded matrix. 

I Bandwidth Determines Amount of Communication 

I
Although the amount of computation does not increase, bandwidth does govern 

overall solution time. At one point in the JCG iteration loop, processors exchange 

I portions of the projection vector, {p}, before they perform the matrix-vector multiply 

(Figure 5). If the bandwidth is large, the distance, i.e., the number of processor links, 

each portion of {p} must travel is also large and the amount of communication time 

11
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L
increases (Figure 6). The dependence of solution time on bandwidth is critical. Tightly 

banded problems usually run at speed-ups of 28 (XPFEM has 32 processors), but I problems whose band extends across more than half of the matrix rarely achieve 

'	 speed-ups higher than 18. 

The original NASA turbine blade model had an enormous bandwidth (it I

	

	 extended across 90% of the matrix in places) and resulted in unsatisfactory parallel 

performance--the resulting solution time of 96 seconds corresponds to a speed-up of 

I only 14--well below 50% parallel efficiency. After a crude renumbering algorithm cut 

the bandwidth to 32% of the matrix, equation solution time dropped to 73 seconds 

corresponding to a speed-up of 23. NASTRAN's highly effective renumbering code 

I reduced the bandwidth on this problem to just 13% of the matrix. Since XPFEM does 

not have a similar algorithm, NASTRAN's renumbering of the turbine blade model was 

I
used by XPFEM to further demonstrate bandwidth effects. With NASTRAN's 

renumbering the turbine blade problem took 64 seconds to solve giving a speed up of 

27. Renumbering had negligible effects on matrix assembly times. 
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COMPUTE NEW VALUES FOR 
TERMS 1, 2 9 3 

PROCESSOR	 1 (P1) NEEDS TERMS 2, 3 9 4 9 59 69 9 9 10 
TO COMPUTE NEW VALUES FOR 
TERMS 4 AND 5 

PROCESSOR	 2 (P2) NEEDS TERMS 5, 6 9 7 9 89 99 10 TO 
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FIGURE 5
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THE OUT-OF-CORE SOLVER 

Out-of-core finite element solution methods for networks of microprocessors 

pose significant design and implementation problems. The most severe restriction is 

the relatively slow access time of external storage devices which are on the same cost 

scale as the microprocessors themselves. Extremely fast external storage devices, 

I
such as the solid-state secondary storage used in Cray computers, are available but 

are prohibitively expensive for workstation-level computer systems. 

To obtain reasonable performance from an out-of-core solver using common 

I	 external storage devices such as SCSI hard disk drives, the use of an efficient parallel 

solution method that minimizes disk access is required. These requirements directly 
conflict with each other: Iterative solvers are efficient in parallel but require frequent I access to the externally-stored stiffness matrix; iterative block solvers need a moderate 

amount of disk access but are less efficient on multiple processors due to load 

I
balancing difficulties; finally, direct solution methods need less disk access than 

iterative methods but are also less efficient in parallel. To resolve these conflicts, a 

I	 substructuring technique adapted from [8] is proposed which takes advantage of 

XPFEM's in-core conjugate gradient solver, can solve hundred thousand degree-of-

freedom problems efficiently, and requires only minimal disk access. 

The proposed out-of-core parallel solution method is a variant of the 1	 substructuring technique used by regular sequential solvers to increase solver 

I

capacity. It exhibits three desirable features needed by a network of microprocessors: 

1. Disk access time is a small fraction of total solution time, enabling 

I
relatively slow, low-cost disk drives to be used. 

2. The method can be made extremely efficient in parallel by having 

I

processors decompose individual substructures. 

3. An iterative solver can be used to solve the condensed finite element 

I

problem efficiently on the distributed network. 

The substructure concept and its implementation on a network of transputers are 

I
described below. 

I 
I
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The Substructure Method 

The substructure method is a technique for solving a large finite element problem 

by replacing it with a set of equivalent problems, each with a much smaller number of 

degrees of freedom [9,10]. The method consists of partitioning the full finite element 

model into substructures, then eliminating degrees of freedom internal to each 

substructure. The substructures can then be viewed as superelements which have 

only boundary nodes. If the substructures contain many internal nodes relative to 

boundary nodes, the size of the reduced set of equations will be several orders of 

magnitude smaller than the original equations. The displacements of a 

superelement's boundary nodes can be determined by solving the reduced system of 

equations with appropriately modified boundary conditions. Once these 

displacements are calculated, each substructure can be treated as a separate finite 

element problem with applied displacement boundary conditions. 

'

	

	 To see how this reduction can be accomplished, suppose that a finite element 


problem has been subdivided into a number of substructures. Letting the superscript a 

I

	

	 denote a particular substructure, the finite element equations for the node


displacements of the substructure have the familiar form 

I	 Kaxa = 

where xa is the displacement vector, fa is the force vector, and Ka is the stiffness 

matrix of the substructure. Assembling these sets of equations over all the 

substructures yields the complete set of equations for the displacements in terms of the 

applied forces: 
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Kx=f 

Now consider the matrix equation for the substructure a. Let the subscript 1 denote 

boundary nodes and subscript 2 denote interior nodes of the substructure. Then the 

equations for the displacements xa can be written in the form 

K11 xai + K12 xa2 = a1	 (1) 

K21 xai + K2 xa2 = fa2	 (2) 
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Solving (2) for the interior displacements, xa2 , and substituting into (1) yields the 

following matrix equation for the boundary nodes of the substructure: 

[ K 11 - Ka12( K22 )-1 K21 j Xal = fa l - Ka12( K2 )-1 fa2 

Note that xa2, the interior displacements, have been removed from the finite element 

equation. Assembling these equations over all substructures yields a matrix equation 

K' x' = 

in which the unknowns x' are the displacements at the boundaries of the substructures 

and K' and f' are the modified global stiffness matrix and applied force vector. 

Once the displacements for the boundaries of the substructures are calculated, 

the displacements for the interior nodes of each substructure can be determined by 

one of two methods. Either use the explicit formula 

xa2 = (Ka22)-1 (fa2 - Ka21 xa1) 

or solve the substructure finite element equations 1	 Ka xa = 

using the boundary solution as applied displacements. The second method appears 

to be more appropriate since ( K22 )1 may be too large to store for each 

substructure. At this stage, the condensed substructures, or superelements, can be 

treated as independent finite element problems and can be distributed to a network of 

processors to be solved concurrently. If the superelements themselves are too large to 

be solved in-core, the entire substructunng procedure may be reapplied to groups of 

superelements to reduce the problem sizes even further. 
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Steps to Solution for Substructuring on Transputers 

The steps below outline the out-of-core substructure solution method for the 

network of 32 transputers in XPFEM. In addition to the 1 Mbyte of RAM on each 

processor, eight 200 Mbyte hard disk drives, each with a 2 Mbyte RAM buffer, are 

required. Each cluster of four transputers shares one disk drive. Further, dynamic link 

switching is used to alternate between the pipeline/cluster-to-disk configuration 

(Figure 7) and the tetrahedral configuration (figure 2) needed for solution. Note that, 

unlike in the sparse solver, dynamic switching will not hinder solution for out-of-core 

problems because the durations between reconfigures are orders of magnitude 

greater (i.e. several seconds) than those in the in-core solver. 

To more fully explain the substructuring concept, an example problem will be 

described in detail. The example consists of a 2D finite element model of a square 

plate with 288 linear quadrilateral elements in 288 rows. There are 83,521 nodes 

(167,042 degrees of freedom) and 82,944 elements (Figure 8). 

Step 1: Subdivide the original model into substructures. This step is 

done by the host processor. Ideally, each substructure will have a high ratio of 

interior nodes to boundary nodes. For the example model, a substructure with 

ideal dimensions would be a square with 18 elements to a side, giving 361 

nodes and 324 elements. The full model would then be subdivided into 

82,944/324 = 256 substructures. A substructure will then have 289 interior 

nodes and 72 boundary nodes. One substructure is sent to each processor. 

After distributing the substructures found in Step 1, the host processor becomes idle, 

and the remote processors perform the remaining steps in parallel: 

Step 2: Compute a stiffness matrix for the substructure. 

Step 3: Reorder the stiffness matrix to separate Internal and 

external (boundary) degrees of freedom (Figure 9). 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I
I 
I 
I



28 
Step 4: Compute LU decompositions of the K23 internal stiffness 

submatrix. An LU decomposition requires (1/6)(n x n) (half -bandwidth) matrix 

operations, where one matrix operation consists of a floating point multiply and a 

floating point add. For n = 578 internal degrees of freedom and a half-

bandwidth of 60, the number of matrix operations is 3.3E+6. A T800 can sustain 

0.5 Mflops on matrix operations, so each processor will take about 7 seconds for 

decomposition. 

Step 5: Eliminate internal degrees of freedom by assembling a 

superelement with nodes only on the boundary. This step consists of 

finding the inverse to an upper triangular matrix and two matrix-vector multiplies 

(refer to the equation at the bottom of Figure 9). This step takes n 2m + bmn + n2b 

matrix operations where b = the half-bandwidth, m =external degrees of freedom 

and n = internal degrees of freedom. In the example problem, n = 578, m = 144 

and b = 60; therefore, the number of matrix operations is approximately 7.3E+7 

and will take about 146 seconds on one T800. 

Step 6: Send the superelement stiffness matrix to the transputer 

disk Interface to be written to disk. The superelement stiffness matrices 

for the example problem have (144) 2 = 20,736 terms, or 165,888 bytes. During 

this phase, one link from each transputer in a cluster of four is joined to the 

transputer disk controller. All four transputers simultaneously send their data to 

the disk controller which stores the data in its 2 Mbyte buffer. The transputers are 

then delayed only by the amount of time it takes to transmit the decomposed 

matrix over a link, which is less than 1 second. The disk controller starts writing 

as soon as it begins to receive data, and will continue to do so after the 

transputers have resumed computations. 

I	 Steps 2-6 are repeated until each substructure has been condensed into a 

superelement. With 82,944 elements in the original model, 256 elements per 

superelement and 32 processors, 10 cycles of Steps 2-7 are needed to condense the 

I entire model into superelements. The time for each cycle includes: 

I 
I 
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5 seconds for assembling a substructure stiffness matrix 

7 seconds to perform a LU decomposition on the internal node submatnx 

146 seconds to compute the superelement stiffness matrix by eliminating 

internal degrees of freedom 

1 second to write the superelement stiffness matrices to disk 

Each cycle then takes about 159 seconds, and 10 cycles take 1590 seconds. 

I	 Step 7: If the condensed problem Is small enough, solve it In-core 

with XPFEM's sparse solver.	 If it Is still too large, form


substructures out of the supereiements, condense them into a next I higher level of superelements and repeat Steps 1-7. After eliminating 

interior nodes in the example problem, there will be 19 rows and 19 columns of 

I nodes in the model (Figure 10). Rows and columns have 289 nodes each, so 

there are now 9,537 nodes (nodes at intersections of a row and column are I

	

	 counted only once). This problem can be solved in the collective core memory of 

all 32 processors with the sparse solver described in Section 111.1. It is important 

I

to note, however, that global stiffness matrices (GSM) generated from 

superelements will be much more full than the GSM's generated from regular 

elements. This reduces the size of the problem which can be solved in-core with I the sparse solver. Solution time for the relatively dense in-core problem with 

9,537 nodes is estimated at 1200 seconds. 

I
Step 8: Write the displacement solution to disk. 

Step 9:	 Compute displacements of eliminated nodes one 

I

	

	 substructure at a time. Each processor recomputes the stiffness matrix and 

sets up a finite element problem using the known displacements from Step 7 as 

I applied displacements to the boundary of the substructure. The separate 

substructure finite element problems are small (between 300 and 400 nodes) 

and are computed quickly on each processor. Solution time for such small 

I problems on one processor is estimated to be less than 40 seconds. 

I
Total solution time for the sample problem of 167,042 degrees of freedom, using a 

substructure/superelement solution technique on 32 transputers with 8 hard disk 

drives is then estimated to be under 2900 seconds, or 48.3 minutes. 
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Secondary Storage Hardware Considerations 

In order to implement the out-of-core substructunng technique as described 

I above, it will be necessary to use a more advanced transputer disk drive interface. The 

new interface would contain a 32-bit T800 with 2 Mbytes of memory, 4 bidirectional 

I
transputer links for communication with the network and a SCSI controller for 

communication with a SCSI compatable disk drive. With 2 Mbytes of onboard memory 

I the interface could accommodate a fully functioning disk operating system program 

and have approximately 500 Kbytes of memory per transputer link to be used as I/O 

buffers. The disk operating system would be capable of executing disk access I requests received from any of the four transputer links. With this configuration, as 

many as four transputers can simultaneously access buffered I/O from a disk drive at 

I rates approaching 2 Mbytes/second. For the purposes of the substructure solver, one 

interface and one 200 Mbyte Winchester disk drive would be required for every four 

transputers in the solver network. The basic configuration is illustrated in Figure 7. 
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I 
__ J

SCSI COMPATABLE 
DISK DRIVE 

FIGURE 7 

NETWORK DISK DRIVE CONFIGURATION for OUT-of-CORE SOLVER 

DISK DRIVE ATTRIBUTES 

• 1.0 Mbyte I s transfer rate 

- 16 ms access time 

• 16 Kbyte cache buffer 
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The FE matrix equation [K](x) = {F} 
may be partitioned as follows:

I 
Ii 

I 

I 
Interior variables, * , can be eliminated 
by rewriting the partitioned equations as: 

-1

--IN.	 -i	 _._,p. 

[K11 - FK12 (K22) K21 ]x=F - K 1 2(K22) I 

Figure 9 
Matrix Partitioning 
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Each substructure has 
19 x 19 = 361 nodes and 
18 x 18 = 324 elements. 
There are 72 nodes on 
the boundary; the 289 
interior nodes are 
eliminated.

xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx

I 
I 
I 
I

J Boundary node (72) 

Interior node (289) 

18 columns of superelements 
horizontally (3 shown) 

00000000000000000000000000000000 000000000' 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
00000000000000000000000000000000000000000' 
0 0 0 0 
0 0 0 0 

l8rowsof : 
superelements : : 0- 

vertically 0 0 0 
0

__ 
0 
0 0 0 

(3 shown)
00000000000000000000000 000000000000000000' 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
00000 0000 000000000 000000000 0 00000 00 000 000 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0

FIGURE 10 

The full model condensed into 
9,537 Nodes, and 256 superelements. 
This problem CAN be solved in-core. 
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Pre- and post-processing modules were developed for XPFEM to achieve an 

end-to-end transputer based finite element workstation. The pre-processing tasks 

involved implementing FINITE QUADTREE, an automated 2-D finite element mesh 

generator, in occam on the transputer development system, linking QUADTREE with 

the solution procedures, and developing a NASTRAN interface for the network. Post-

processing tasks included procedures for displaying undeformed and deformed 

models, calculating stresses, and displaying principal stresses and stress contours. 

Additional post-processing procedures included a library of adaptive analysis routines 

for identifying mesh areas requiring refinement. These adaptive analysis routines 

consist of error calculations and mesh refinement operators. 

FINITE QUADTREE 

FINITE QUADTREE is a complete 2-0 finite element pre-processing program 

which employs quadrants to develop a finite element mesh. Included in FINITE 

QUADTREE are modules for geometric modeling, creating a materials library, defining 

a physical problem using constraints and forces, meshing the geometric model, 

refining the mesh, and writing model files to disk. 

FINITE QUADTREE meshes geometric models by enclosing the model in a 

rectangle and successively subdividing the rectangle into quadrants until the 

designated level of refinement is obtained. (Figure 11) This quadrant method results 

in extensive tree structures within QUADTREE. The lowest level of the tree is 

associated with the elements of the finite element mesh. 

Geometric models created in QUADTREE are based on the geometric entities 

vertex, edge, and face (Figure 12). Using edge types such as lines, quadratics, and 

arcs, the geometry of an object can be specified precisely and manipulated easily in 

contrast to element based modelers. Figures 13, 14 and 15 demonstrate the 

QUADTREE meshing process before elements are constructed. In Figure 13 the 

boundary of the geometric model is discretized. Following this discretization, 

boundary quadrants and then interior quadrants are identified and inserted. Figure 14 

shows the model sectioned into quadrants. These quadrants are repositioned, as in 

Figure 15, to simplify the creation of robust finite elements. The finite elements are 
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created with 9i the quadrants using the quadrant vertices, midpoints, and quarter-

points as nodes. 

FINITE QUADTREE was developed in FORTRAN by researchers at Rensselaer 

Polytechnic Institute. The maturity of the occam compiler for transputers, the goal of 

implementing QUADTREE on transputers, and the concept of eventually developing a 

distributed mesh generator for a transputer network necessitated a translation of 

FINITE QUADTREE to occam. Using a FORTRAN-to-occam translator and 

restructuring the program by eliminating GO TO's and substituting the occam construct 
RETYPES for common blocks permitted FINITE QUADTREE to be implemented in its 

entirety on a 4 Mbyte T800 transputer development board. Graphics output from 

QUADTREE is accomplished either through the network graphics system (13408/13409 

modules) or an EGA/VGA graphics card. 

A conceptual design for distributed mesh generation was completed in this 

research effort. The design, which requires adaptation of FINITE QUADTREE using a 

coloring scheme, is described in Appendix H. 

NASTRAN Interface 

To facilitate use of XPFEM, a NASTRAN interface was completed and 

integrated into the system. The interface receives a fixed-format COSMIC or MSC 

NASTRAN bulk data deck, analyzes the included cards, translates the data to XPFEM 

format, and generates the standard XPFEM input files for connectivity and constraints, 

nodes, and forces (Figure 16). 

The current version of the NASTRAN interface is designed only for 

displacement solutions. Data deck cards recognized by the interface are listed in 

Appendix G. Unrecognized cards are echoed to screen but not written to file. 

XPPOST 

Quantities of primary interest in finite element analysis (e.g., stresses) are often 

derived quantities, i.e., quantities which must be calculated from computational data. 

In structural analysis, the stresses are derived from the displacements, which are 

obtained from the solution of the finite element equations. Because of the derived 
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I
nature of relevant quantities and the discretized nature of finite element analysis, post-
processing of results is required. This post-processing not only includes calculating 

derived quantities but also smoothing and effectively displaying data. XPPOST uses 

distributed processing and the .enhanced graphics capabilities of the transputer 

network to provide several options for viewing models and stresses (Figures 17 and 

18).

XPPOST requires connectivity, nodal coordinate, force, constraint and 

I displacement data. Models are displayed in normalized coordinates at one-half to 

three-fourths screen size. Undeformed and deformed 2-D and 3-0 models are 

displayed as wire-frame models. A homogeneous transformation matrix permits I scaling, translation, and rotation of the displayed model. Orthogonal or perspective 

I

viewing is also implemented using the transformation matrix. 

Stress options for 2-D models in XPPOST include principal stresses, maximum I	 shear stress and stress contours for normal and shear stresses. The principal stress 

and stress contour routines are based on analytical equations for stresses at a point. 

I For the principal stress option, normal and shear stresses at the centroid of each 

element are calculated and transformed to obtain the principal stresses, maximum 

shear stress, and angle of orientation. Using stress bars to indicate relative I magnitude, these stress values and orientation can be displayed with or without the 

model. Options enable principal tensile, compressive, combined tensile and 

I
compressive, or shear stresses to be displayed. 

I
Stress contours are obtained by smoothing calculated stress values at the 

integration points to the nodes for each element. The smoothing matrices are derived 

' from a least squares analysis. Prior to nodal averaging the smoothed nodal values 

are used to calculate centroidal stress values. Contours are displayed by creating 

contour triangles consisting of two consecutive nodes of the element and the element 

centroid. A color look-up table provides the necessary fill information. 

Adaptive Analysis 

I
The adaptive analysis capability implemented in XPFEM employs strain energy 

error analysis to successively refine a finite element mesh and reanalyze the resulting 

model until element errors meet a specified tolerance (Figure 19). The XPFEM 

I



adaptive analysis capability is a practical design tool due to the combination of 38 

acceptable solution turnaround times (a result of the computational speed of XPFEM), 

automated mesh generation available in FINITE QUADTREE, and advanced error 
analysis algorithms employing bubble functions. 

The error analysis algorithms of Baehmann [11] determine the areas of 

refinement. In these algorithms, errors within the interior of the finite elements are 

assumed significant and errors occurring at the finite element boundaries (i.e., "jump" 

errors) are assumed negligible. These assumptions permit cubic and quartic bubble 

functions which vanish on element edges (Figure 20) to be used in a higher order 

computation of element error (Figure 21). Element errors and total global error are 
computed in the energy norm. From the total global error and the calculated strain 

energy obtained from the finite element solution, an approximate relative error is 

computed (Figure 21). The exact relative error is unknown since, in general, the exact 
strain energy is unavailable. 

Mesh refinement is necessary if the approximate relative error exceeds a given 

tolerance. Areas of refinement are determined by comparing each element error to the 

average element error for the entire model. An element is identified for refinement if its 
error is larger than the average element error. 

A robust adaptive mesh refinement scheme must consider two situations: 

models with singularities, and large versus small global error. By controlling the level 

of refinement for different refinement areas, the implemented adaptive analysis 

scheme accounts for both of these refinement situations to distribute relative error 
evenly among the finite elements. 
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I	 QUADTREE THEORY 
I

SPARTA, INC. I 
I 
I 
I 
I 
I 
I 
I 
I 
I	 FIGURE 11 

I
	 MODEL SECTIONED INTO QUADRANTS 

I 
I 
I 
I	 UNCLASSIFIED 

I
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FIGURE 12 
Geometric model created with the 

geometry module in FINITE QUADTREE 
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I	 FIGURE 13 I	 Boundary Discretizat,on 
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I 
FIGURE 14 

Discretization of the 
geometric model into quadrants 
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FIGURE 15 
Re-positioning quadrant 
vertices using smoothing 
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CONNECTIVITY FILE 

# nodes, # elements 

Element #, Material #, Nodes 

# Constrained nodes 
Constraint #, DOF, Nodes 

GRID FILE 

Young's modulus 
Poisson's ratio 
# Nodes 

Node #, x, y, z 

FORCE FILE 

# Forces 

Force #, Magnitude, Directional Vector 

FIGURE 16 
Files output from NASTRAN interface in XPFEM input format
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READ DATA FILES 

*FRC *.xYZ 

*.CON *APD 

*SOL *.STR

DISPLAY STRESS CONTOURS
	 DISPLAY MODEL 

Undeformed 
Sigma X	 Scaling	 Deformed 
Sigma V	 # of Contours	 Both 
Sigma XV

DEFORMATION SCALE 

DISPLAY PRINCIPAL STRESSES 

Compressive Stress	 TRANSFORM MODEL 
Tensile Stress 

Both
	 Rotation	 Scaling 

Translation	 Zoom 
Maximum Shear Stress 

FIGURE 17 
Capabilities of XPPOST.2d, 


the two-dimensional post-processing module of XPFEM 
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READ DATA FILES 

*FRC *.xYZ 

*CON *APD 

*SOL *.STR

DISPLAY MODEL


Undeformed 

Deformed 

Both 

I DEFORMATION SCALE 

TRANSFORM MODEL 

Rotation	 Scaling 

Translation	 Zoom 

PROJECTION 

Orthographic 

Central 

FIGURE 18 
Capabilities of XPPOST.3d,


the three-dimensional post-processing module of XPFEM 
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GENERATE MESH 

SOLVE FE EQUATIONS 

ALCULATE STRAIN ENERG 
OF TOTAL MESH 

OMPUTE ERRORS IN 
ELEMENT INTERIORS 

HECK GLOBAL RELATIVE ERRO 

CHECK ELEMENTS AGAINST 
Unacceptable	 REFINEMENT CRITERIA 
Errors

STOP 

FIGURE 19 
Adaptive Analysis algorithm implemented in XPFEM
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0 -2 	 -) 

03 = ^201 = mlo - ^ I -) 

E j = CiIi1 + C2 /i 2 + C33 

FIGURE 20 
Bubble functions used for error 

interpolation in the adaptive analysis module 
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Element errors calculated in energy norm : 

IlEill = (f,, (BEi)' D BE 1 dxdy1"2 

Total error: 

N UEII 2 =
1=1

IlEill 
N = number of elements 

Approximate relative percent error: 

(U+E) — U 
!k100<l	 (U+E)	 Ilk 

FIGURE 21 
Error calculations for adaptive analysis
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The primary objective of this effort, a turnkey transputer based finite element 

workstation, required integration of the previously described pre-processing, solution, 

and post-processing modules. Success towards achieving this objective may be 

measured by the capabilities of the resulting prototype system. The integrated 

prototype enables an analyst, using mouse and keyboard input, to create and mesh a 

geometric model, or interface and input a NASTRAN displacement model, compute 

and solve the resulting finite element equations and post-process resulting data to 

display deformed geometry, principal stresses, and stress contours or perform error 

calculations for adaptive analysis. 

Integration of the various components of XPFEM on the transputer network was 


I
accomplished using menu driven procedures. A main menu (Figure 22) enables 


various analysis modules to be selected. Each module contains a system of checks to 


I
insure that the proper data files are available; if not, control is returned to the main


menu and another selection is required. Detailed use of XPFEM is discussed in 1	 Appendix A, XPFEM Users Manual. 

Screens from FINITE QUADTREE are shown in Figures 23 and 24. In Figure 

23, the mesh generation menu with a geometric model is displayed. This figure not 

only displays the various utilities available for generating a mesh, but also displays the 

general working menu format for pre- and post-processing in XPFEM. Also seen in 

Figure 23 are the markers indicating the mesh control parameters for the vertices, 

edges, and face of the geometric model. The optional background grid can be refined 

and the workspace scale adjusted in module WORKSPACE GRID. Figure 24 displays 

a mesh and refinements produced using the mesh generation module. The initial 

mesh was created with default modeling parameters for the vertices, edges, and face 

of the geometric model. The refinements were achieved by varying the modeling 

parameters of specific vertices and edges. Relative and absolute mesh control points 

unrelated to the geometry are also available for mesh refinement. For a relative 

control point, the mesh refinement level at the point equals the sum of the point's 

modeling parameter and the modeling parameter of the surrounding face. For an 

absolute control point, the modeling parameter of the point is the level of mesh 

refinement. 
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I
Computational times for computing, assembling, and solving finite element 

equations on the 32 processor network are shown in Figures 25-28. Figure 25 is a 

comparison of the computational and assembly times of the global stiffness matrix of 

the NASA SSME turbine blade model. The blade model contains 1025 8-node brick 

I elements and 4500 independent degrees-of-freedom. The results show that, for the 

scalar operation of computing and assembling the global stiffness matrix, the XPFEM 

I
system outperforms the NASA/Lewis Cray X-MP24 by a factor of two. A comparison of 

the solution times for the system of finite element equations of the blade model is 

I	 shown in Figure 26. In this vectonzable operation, COSMIC NASTRAN on the Cray X-

MP24 was six times faster than the XPFEM system. Overall, the total solution time 

I	 (computation, assembly and solution of the finite element equations) of the turbine 

blade model on the XPFEM system was one-third the speed of the Cray X-MP24 and 

I

70 times faster than a VAX 11/780 executing COSMIC NASTRAN (Figures 27 and 28). 

Results from XPPOST, the post-processing module of XPFEM, are displayed in 

Figures 29-32. Figure 29 shows the undeformed turbine blade model displayed in 

wire-frame mode and Figure 30 shows both undeformed and deformed models 

concurrently. The display of the deformed model also depicts the applied constraints 

and forces. Figure 31 consists of stress contours in a two-dimensional C-clamp 

constrained at three points on the lower right and loaded with a point load at the upper 

right corner. The contours displayed in Figure 31 are those for shear stress. Normal 

stress contours in the x and y directions are also available in XPFEM. The number of 

contour levels in Figure 31 is 30; this parameter is set by the user and may range from 

2 to 224. 

Principal stresses for the two-dimensional C-clamp model are shown in Figure 

32. This figure displays the calculated tensile and compressive principal stresses at 

the element centroid. The stress bars indicate the stress orientation with respect to the 

x-axis. Their lengths are normalized so that the greatest principal stress is equal to the 

averaged side length of the largest element. XPFEM options also permit tensile, 

compressive, or maximum shear stresses to be displayed separately with or without 

the finite element model. 

Adaptive analysis results are presented in Figure 33. The sequence of meshes 

displayed in Figure 33 indicates the future capability of the XPFEM adaptive analysis 

module to significantly refine a mesh -at a singularity and to distribute mesh error 
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following this singularity refinement. Currently, this module, which has been tested 

and implemented on a MicroVAX, is implemented in XPFEM but a mesh generation 

error prevents it from being fully robust. 
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XPFEM 
version 89.1 

PROMPT/ERROR: 

CURRENT PROBLEM: SPECIFIER: 

ISPARTA	 I IEXAMPLE1 I 

I	 NEW PROBLEM	 I I	 OLD PROBLEM	 I 
PROBLEM TYPE	 I I	 WORKSPACE GRID 

FINITE QUADTREE MODEL GEOMETRY J 

I MATERIAL PROPERTIES II ANALYSIS ATTRIBUTES_I 

FINITE QUADTREE MESH GENERATOR 

I	 ADAPTIVE ANALYSIS 

[OUTPUT FOR ANALYSIS	 READ NASTRAN FILE 

2-D SOLVER 	 SOLVER 

2-D POST PROCESSOR
	

POST PROCESSOR 

I	 EXIT -
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FIGURE 22 

Li
	 Main menu for XPFEM 
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U	 FIGURE 33 
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The structural analysis system developed in this Phase II SBIR effort 

demonstrates the vast potential of a transputer based workstation. The essential 

foundation has been laid for a class of application-specific coprocessing hardware 

and software which can provide supercomputing analysis capability at dramatically 

lower cost (Figure 34). The major objective of demonstrating highly efficient parallel 

computation for problems common to demanding industrial-level applications was 

clearly achieved. This confirms the forecasted potential and strongly supports a 

recommendation for commercialization. 

The delivered prototype version of XPFEM is limited to solving static, linear finite 

element problems with 20,000 or fewer degrees of freedom. Although the major 

foundation of an end-to-end parallel finite element workstation has been achieved, 

additional work is needed to expand XPFEM's capabilities to the full level expected by 

industrial users. It is recommended that additional key capabilities be incorporated 

that would require about twelve man-months of effort. These include non-linear, 

dynamic and thermal analyses, and the use of alternate out-of-core solvers for 

problems with hundreds of thousands of degrees of freedom. 

During the development of XPFEM, a number of additional features were 

identified which could further expand or improve the capabilities of the workstation. It 

is further recommended that these enhancements and features be implemented to 

make XPFEM a fully capable, dramatically more cost-effective alternative to the finite 

element analysis systems currently running on existing supercomputers. Additional 

conclusions and a summary description of recommended enhancements and 

improvement features are provided below. 

Enhancements to Pre-Processing 

Improved Boundary Conditions 

The current user interface demonstrates transputer based implementation 

concepts but permits only the constraint and loading of vertices. Edge and face 

constraints are necessary additions to XPFEM and can be implemented easily. In 
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addition, the menu for boundary and initial conditions is being evaluated to determine 

if inputs can be made with fewer menu selections. 

Three-Dimensional Mesh Generation 

As defined in the SBIR Phase II Statement of Work, the current mesh generator 

runs only on two dimensional models. SPARTA recently received from RPI the FINITE 

OCTREE code (in FORTRAN) for 3D mesh generation, and is evaluating portions of it 

to determine how best to implement the code in occam. A three dimensional capability 

is important to many applications and either direct integration or bundling of a third-

party 3D mesh generator is recommended. 

Parallel Mesh Generation 

A peculiar aspect of XPFEM is that it takes longer to mesh large problems than it 

does to solve them. This discrepancy can be corrected with the use of parallel mesh 

generation, a new concept being investigated by the RPI researchers (Appendix H). 

Three dimensional models in particular will benefit from distributed mesh generation 

since 3D models require much more time to mesh. 

Node Renumbering 

Large bandwidths have an adverse effect on nearly all linear equation solvers.. 

Although not affected by bandwith in the typical manner of increased storage and 

computational requirements, the JCG solver demonstrated that large bandwidths 

sharply increase communication, and therefore, solution times. 

Renumbering routines can reduce bandwith to near optimum levels and are 

essential in finite element programs. XPFEM has an excellent renumbering algorithm 

but it is integrated into the mesh generator and therefore only works on models 

generated with FINITE QUADTREE. Externally created models are solved with their 

original numbering schemes. In order to efficiently solve models built on other 

systems, a stand-alone renumbering routine must be added to XPFEM. Renumbering 

codes are common so this addition would not require intensive effort. 

I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
[I 
[j 
I 
I
[1 
I 
I



ra 

Enhancements to the Solver 

The sparse Jacobi-conditioned Conjugate Gradient (JOG) equation solver 

developed in the Phase II research is innovative, fast and efficient but is limited to 

solving symmetrical systems of equations that reside entirely in core memory. 

Different solution techniques must be added to handle more complex boundary 

conditions and marginally stable problems. Also, despite the sparse storage 

implementation, FE models can always be made to exceed in-core memory capability, 

so the out-of-core solver described in Section III must be added. Some alternative 

large-capacity solution methods are described in Increasing Solver Capacity. Finally, 

a number of minor modifications to the sparse JOG solver were identified during the 

development of XPFEM which would markedly increase its performance. These 

modifications are described under Fine-Tuning the JCG Solver. 

Increasing Solver Capacity 

Methods are available to raise the current in-core FE problem size limit from 

20,000 degrees of freedom to well over 100,000 degrees of freedom. Several of these 

methods need some form of external storage to save intermediate results and can be 

considered hybrid in-core/out-of-core methods. Some methods involve advanced 

concepts in FE analysis and could take considerable coding effort while other, more 

pedestrian approaches could be easily implemented but would not be efficient. 

Recomputing the GSM 

The simplest method of expanding capacity is to compute, rather than store, 

terms of the global stiffness matrix as they are needed in the computations. This 

approach is highly inefficient--large problems will require tens of thousands of 

redundant GSM computations--but is also easy to implement in XPFEM and provides 

for a quick link to extremely large FE problems. 

Mu Itig ridding 

Multigridding, originally proposed to accelerate finite difference solutions, has 

tremendous potential for speeding up FE analysis. In this method, a densely meshed 

model is solved by iteratively solving increasingly coarser meshes on the same model, 

and carrying solution approximations back and forth (via interpolation and 

I 
I 
I 
I 
Li 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I
I



Li
68 I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
Li

extrapolation) between the different mesh granularities. Order of magnitude 

improvements in solution times can be realized with multigndding. Disadvantages are 

that memory requirements are doubled, and that software development is difficult. 

In the context of increasing solver capacity, a multigrid-like approach can be 

used to solve very large problems by remeshing the model coarsely so that it can be 

solved entirely in-core, then extrapolating the coarse solution to the full mesh. The 

extrapolated solution will then be an excellent guess to the actual solution, so time 

consuming out-of-core iterations will be minimized. 

Block Iterative Methods 

The usual calculate versus communicate dilemma in parallel programming 

becomes even more complicated with the addition of external storage devices. Mass 

data storage devices such as tapes and disk drives are, by their physical (rather than 

electronic) natures, extremely slow on a microprocessor's time scale and therefore 

introduce stringent design parameters to parallel equation solvers that use them. The 

programming question expands to calculate v. interprocessor communicate v. external 
storage communicate. The method described in Recomputing the GSM abandons all 

form of communication and calculates everything repeatedly. The multigrid method 

uses external storage only as an intermediate step between relatively long in-core 

compute cycles. Fully out-of-core methods use external storage as an integral part of 

the solution process. 

Alternative fully out-of-core methods to the one presented in Section Ill are the 

parallel block Conjugate Gradient methods described in [12,13]. These methods 

preserve the iterative nature of the current XPFEM solver and would therefore 

integrate perfectly with adaptive analysis and multigridding. However, several load 

balancing issues remain to be resolved. 

Fine-Tuning the JCG Solver 

The current implementation of the JCG solver is fast and efficient but a few 

modifications can improve it even further. Perhaps the most significant modification 

would be an improved preconditioner. More powerful preconditioners generate larger 

preconditioning matrices which result in more floating point operations per iteration, 

yet maintain the identical number of communication steps per iteration. As a 

I
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consequence, the calculate-to-communicate ratio and, therefore, efficiency, increases. 

In addition, improved preconditioning reduces the number of iterations. These 

features combine to make a vastly more efficient parallel solver. Other refinements 

include adding an efficient renumbering scheme, investigating more uniform load 

balancing methods, and rewriting the pointer tables to use less memory. 

Preconditioning by Blocks 

The JCG solver operates on a term-by-term basis in which degrees of freedom 

are operated on one at a time. More importantly, the Jacobi preconditioning matrix 

has only one term on each row. If the solver were to operate on small blocks of terms, 

and the preconditioning matrix consisted of blocks of terms rather than just one term 

on the diagonal, a much stronger preconditioning would occur. 

It is suggested that the blocks be multiples of the dimension of the problem (a 

multiple of a patch) since the code already stores data in this manner. The small block 

method would incur a minimal penalty in storing the larger preconditioning matrix. 

Blocks on the order of 4 times the dimension will need an additional 20 Kbytes per 

processor to store the preconditioning matrix. 

Polynomial Preconditioning 

Most Conjugate Gradient preconditioners rely on some form of Gaussian 

elimination to create a preconditioning matrix. Unfortunately, these schemes are not 

efficient on banded or sparse matrices when distributed over many processors. The 

polynomial preconditioning method as described in [14], however, is based on a 

sequence of matrix-vector multiplies (as the JOG method itself is) which are highly 

efficient on multiprocessor systems. This preconditioning method appears ideally 

suited for XPFEM. 

Improved Load Balancing 

Despite the term-wise load distribution, some processors do as much as 5% 

more work than other processors. This slight discrepancy reduces speed-ups, since 

the unloaded processors become completely idle while their more loaded 

counterparts finish their tasks. The nature of the load imbalance can be revealed by 

placing timing calls after each math routine. 
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I Rewriting Pointer Tables 

I
The pointers required for the sparse matrix assembly and matrix multiplication 

routines take nearly 20% of each processor's memory. This value can be reduced 

I	 sharply if some of the tables were written as one dimensional vectors with entry 

pointers rather than the current two dimensional arrays. This rewrite, however, could 

I	 slightly increase overhead and would take several weeks of coding. 

Enhancements to Post-Processing 

I The interpretation of finite element solutions depends on a large extent to the 

form in which the solutions are presented. Proposed enhancements include 

I
illustrating structurally critical stress contours, and speeding up portions of post-

processing with parallel computation. 

Plasticity and Zero Stress Contours 

To assist the structural designer in determining whether or not the model in 

question can withstand design loads, specially colored contour bands can be added 

which indicate regions of plasticity. Other special contour bands can indicate regions 

in the model which experience negligible stresses (within a user-defined tolerance). 

The addition of these features would involve a minimal implementation effort and 

would be immensely practical. 

Parallel Contour Computation 

The calculation of stress contour levels can take a considerable amount of time 

(20 seconds or more) for large models. These computations are currently done on the 

host transputer, but can easily be distributed since the computations are element-

based and therefore completely parallel. The addition of parallel contour computation 

would make this portion of post-processing appear virtually instantaneous. 

Three Dimensional Stress Contours 

Current post processing can only display stress contours on two dimensional 

models. Stress contours are such a vital part of the FE analysis, however, that one of 

the first additions recommended for XPFEM is a three dimensional stress contour 

capability. 
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Although XPFEM currently solves only static, linear FE problems, the software 

foundation for a comprehensive structural analysis workstation is firmly in place. 

Additional capabilities such as thermal, non-linear and time dependent solutions can 

be added directly since the techniques used to solve these problems can be written as 

straight-forward extensions to the existing static, linear solver. Significant additions to 

input and output routines will have to be made to accomodate new material properties 

and initial conditions, but the core structure (and performance) of the solver will remain 

unchanged. 

Additional features have been divided in two classes, based on how quickly 

they can be implemented on XPFEM. The first class of features includes transient, 

modal and thermal analyses. It is recommended that these be incorporated into 

XPFEM as an immediate follow on effort to produce a commercial product. 

The second class of features includes non-linear analysis, frequency response 

and computational fluid dynamics. These features involve substantial software 

modifications. It is recommended that these be added after XPFEM is introduced to 

the market. 

In summary, a clearly significant capability for parallel acceleration of linear, 

static structural engineering analysis is in hand. A critical evaluation of the 

implemented system relative to industrial application requirements has been made 

and a number of enhancements identified to meet the needs of over 95% of the 

structural analysis user base. A phased implementation approach has been outlined 

based on a summary description of each additional feature. 

I
If accomplished in a timely manner, the resulting system can provide affordable, 

desktop supercomputing for finite element analysis to a wide segment of the ten billion 

I	 dollar structural analysis market place. The impact of dramatically improved turn-

around and wider availability on engineering productivity is potentially revolutionary. 
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APPENDIX A 

I XPFEM USER'S MANUAL 

Execution of XPFEM is initiated from the IBM PC-AT compatible host 

i
computer by performing the following steps: 

1. At the MS-DOS prompt C: \>, move to the XPFEM directory: 

I C:\> cd	 \fes12\disk 

C: \FES12\DISK> 

I 2. Invoke the Transputer Development System (TDS): 

I C:\FES12\DISK> 

XPFEM.TOP 

3. Enter the XPFEM top level fold: 

I <7 on the numeric keypad> 

1 4. Move the cursor to the XPFEM executable code fold: 

I
<down arrow several times, until the cursor is 

On . . .EXE XPqtree> 

5. Load XPFEM into the host transputer's memory: 

I 
I 6. Run 

I F6 

I 
I



I	 Vroi 

XPFEM has two monitors, both of which are active during operation. The 

graphics screen is the primary display device (displays menus, finite element 

models and all graphics information), and the PC's monitor is the secondary 

display (for showing status information, descriptions of file transactions, and a 

run-time display of the error norm during solution). 

At the start of XPFEM, the user is prompted with a title page on the 

primary screen. To proceed, the user moves the mouse. This action causes the 

main menu of XPFEM to be displayed (Figure 22). The main menu contains 

fifteen options. Menu options are selected using the left or middle buttons on 

the mouse. The right mouse button is reserved for controlling mouse speed. 

The main menu , also contains title, specifier, and prompt/error display 

boxes. XPFEM automatically loads the latest model into memory (assuming 

there is a TITLES.DAT file containing the latest model). The title and specifier of 

the current problem appear in the appropriate boxes. Possible errors include 

NO GEOMETRY DEFINED and NO FACES ASSIGNED. 

Clicking the right mouse button from within a program module will make 

visible a bar chart of the mouse rate. Moving the mouse up and down increases 

and decreases the rate, respectively. Note that a high mouse rate causes the 

mouse to move several screen pixels for each input and therefore prohibits the 

user from refined point selection required for vertices or edges of a model. 

Erasing the workspace within a program module is accomplished using 

the CLEAR WRKSPCE option. Since segmentation is not available on the 

INMOS 8409 board, erasing the workspace is completed by blanking the 

viewport coinciding with the workspace; therefore, to re-display selected model 

features, each feature must be re-toggled. 

The fifteen options available from the main menu are described below. 
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I 
I 

1.

NEW PROBLEM 

Executing module NEW PROBLEM initializes XPFEM for a new problem. 

The user is prompted for the problem title and specifier; both identifiers must be 

legal file names without . extensions, and must contain fewer than ten 

characters. Data arrays for scaling, geometric modeling, and mesh generation 

are set to default values. 

RECOVER OLD PROBLEM 

Module RECOVER OLD PROBLEM permits retrieval of a problem stored 

on disk. The user is prompted for the problem specifier. Existence of the 

requested problem is checked. If the problem exists, it is placed in core as the 

current problem; otherwise, a warning bell is sounded and the current problem 

is unaltered. 

PROBLEM TYPE 

Module PROBLEM TYPE not implemented in XPFEM, version 89.1. 

WORKSPACE GRID 

Options for defining the user workspace are provided in module 

WORKSPACE GRID. Options include grid size, grid scale, origin location, and 

grid line additions. Details for defining the workspace parameters are 

discussed on pages 4.2 - 4.4 of the FINITE QUAD TREE Mesh Generator User's 

Manual. 

FINITE QUADTREE GEOMETRIC MODELER 

Executing module FINITE QUADTREE GEOMETRIC MODELER provides 

a menu interface for geometric modeling using vertices, edges, and faces. 

Details for creating a geometric model are discussed in Chapters 3 and 4 
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(pages 3.1 - 4.12) of theFINITE QUADTREE Mesh Generator User's Manual. 
The user is required to declare model faces in this module (using ASSIGN 

FACE) prior to material assignment or mesh creation. Module options currently 

unavailable include SPLINE, ELLIPSE, AIRFOIL, CONCATENATE EDGE, 

CLOSED EDGE, WITH VERTEX, and RESET EDGE. 

MATERIAL PROPERTIES 

Module MATERIAL PROPERTIES provides a menu interface for creating, 

editing, and assigning material properties. Details for using this feature of 

XPFEM are discussed on pages 4.12 - 4.15 of the FINITE QUADTREE Mesh 
Generator User's Manual. Currently options ORTHOTRO P IC MATERIAL, 

ANISOTROPIC MATERIAL, SCROLL UP, SCROLL DOWN, LINEAR 

THICKNESS, SORT ON INDUSTRY, and SORT ON INTERNAL are not 

implemented. 

ANALYSIS ATTRIBUTES 

Executing module ANALYSIS ATTRIBUTES provides the user with a 

menu interface for assigning boundary conditions. Permissible attributes 

include those associated with two-dimensional static analysis; therefore, menu 

options currently unavailable include INITIAL CONDITION, U' (velocity), and 

FACE.

The user initializes the attribute data arrays by selecting DEL ALL 

ATTRIBS. To assign a boundary condition, the user is required to select 

BOUNDARY CONDITION, specify the type (U for displacement and F for force), 

identify the geometric entity to which the condition is applied (VERTEX or 

EDGE), and input the boundary condition (1ST COMP ONLY, 2ND COMP 

ONLY, SCALAR, or VECTOR, and UNIFORM, LINEAR, or QUADRATIC). Two 

user prompts appear during the definition process - one for identifying the 

location of the geometric entity and one for inputting the magnitude of the 

boundary condition. To define a boundary condition with two components, the 

options 1ST COMP and 2ND COMP remain deselected. Following definition, 

the boundary condition is stored using STORE ATTRIB. Prior to selecting 

STORE ATIRIB, selected options may be altered without affecting the database. 
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Using CLEAR ATTRIB, all active options may be deselected. Boundary 

conditions can also be labeled using LABEL. 

In summary, a boundary condition is assigned by activating one option in 

each of the listed groups: 

1. BOUNDARY CONDITION 

2. U (displacement) 

F (force) 

3. VERTEX (prompted to identify geometric entity) 

FORCE 

4. 1 ST COMP ONLY (no selection indicates both components) 

2ND COMP ONLY 

5. SCALAR 

VECTOR 

6. XIY 

TANGENT/NORMAL 

7. UNIFORM (prompted for coefficients) 

LINEAR 

QUADRATIC 

8. STORE ATTRIB
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As an example of applying attributes, a vertex may be constrained using 

the following sequence of selections: 

DEL ALL ATTRIB
	

(for the first attribute only) 

BOUNDARY CONDITION 

U 

VERTEX
	

(identify vertex when prompted) 

VECTOR 

X 

UNIFORM	 (enter 0.0, 0.0 as two separate entries when 

prompted) 

STORE ATTRIB 

FINITE QUADTREE MESH GENERATION 

A menu interface for meshing geometric models is contained in module 

FINITE QUADTREE MESH GENERATION. Options enable the user to specify 

mesh parameter sizes, element types, and refinement points. Detailed use of 

this module is discussed in Chapters 3 and 4 (pages 3.7 - 3.8, 4.16 - 4.25) of 

the FINITE QUADTREE Mesh Generator User's Manual. 

OUTPUT FOR ANALYSIS 

Module OUTPUT FOR ANALYSIS is a menu interface for outputting data 

files. Options include viewing the model, mesh, attributes, and various 

parameters. Options for creating higher order elements, specifying faces of 

plane stress or plane strain, and displaying the renumbered nodes and 

elements also exist. Currently, the only output format available is XPFEM 

format. Selecting the option for XPFEM output causes four standard XPFEM 

input files for connectivity and constraints (*.con), nodes (*.xyz), forces (*.frc.) 
and applied displacements (* . apd) to be written to disk. These four files are 

used as input to the solver modules. 
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READ NASTRAN FILE 

Module READ NASTRAN FILE is the NASTRAN interface for XPFEM. 

Executing this module results in a prompt for the name of a NASTRAN file. The 

designated NASTRAN file is read by XPFEM, analyzed, and translated to 

XPFEM input format. Three standard XPFEM input files for connectivity and 

constraints, nodes, and applied forces are written to disk and used as inputs to 

the solver modules. 

2D/3D SOLVER 

Modules SOLVER 2D and SOLVER 3D compute a displacement solution 

for an XPFEM finite element problem. The solvers are based on the conjugate 

gradient method, an iterative solution for solving systems of linear equations 

with positive definitive coefficient matrices. 

Following a selection of one of the solver modules, the user is prompted 

for a tolerance level. Iterations cease when all terms of the residual error vector 

have magnitudes lower than this tolerance. Typical values for the tolerance 

range from 1 .OE-6 to 1 .OE-9. As the solver runs, the secondary display shows 

the error norm at every tenth iteration. 

The completed solution (nodal displacements) is written to a file on 

XPDOS in the directory of the user with filename <problem name>.sol. This 

file is used for post-processing in XPPOST. 

The delivered prototype version of XPFEM can solve problems with 

10,000 nodes in two dimensions (for 20,000 degrees of freedom) and 6,000 

nodes in three dimensions (for 18,000 degrees of freedom). Other limitations 

govern the number of elements used, and the complexity of the elements. See 

Appendix B, Solver Limitations, for further details about solver capacity. This 

appendix also shows how the solver can be modified to handle over 35,000 

degrees of freedom if simple elements are used. 
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2D/3D POST PROCESSOR 

I Executing modules 20 POST PROCESSOR/313 POST PROCESSOR 

permits finite element displacement solutions to be interactively post-processed 

I using a menu interface. Separate menu interfaces are available for two-

dimensional and three-dimensional models. 

2D POST PROCESSOR 

1. DISPLAY MODEL: This option allows the user to view the model. 

I	 The user can choose to display the undeformed model, deformed model, or


both by selecting UNDFRM, DFRM, or BOTH, respectively. 

1	 2. DEFORM SCALE: This option allows the user to input the 

deformation scaling factor. The default value is unity. The user should type in a 

I
real number and the model will be updated according to the new scale. Either 

DFRM or BOTH must be selected in the DISPLY MODEL in order to observe the 

scaled deformed model. 

I

	

	 3. KEY IN: This option allows the user to enter the transformation parameters 


from the keyboard. The following items are available: 

I SCALE: When this option is selected, the current x scale value will 

appear in the message box (top center of the screen), and the user will 

I
be prompted to input the new x scale (REAL). The program repeats the 

same procedure for y scale. 

TRNSLT: When this option is selected, the current x translation value will 

I appear in the message box and the user will be prompted to input the 

new x translation value (REAL). The program repeats the same 

procedure for y translation. 

ROTATE: The current rotation angle value appears in the message box 

I when this option is selected. The user is prompted to input the new 

rotation angle (REAL). 

I 
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EXIT: Exit the KEY IN option. 

4. CHANGE DISPLAY: This option allows the user to change the 

transformation parameters by 1 unit using mouse input. The user can select the 

following items: 

SCALE: When this option is selected, a pop up window will appear with 

options for direction (X or* Y), increment (+ or -), and EXIT. 

TRNSLT: When this option is selected a pop up window will appear with 

options for direction (X or Y), increment (+ or -), and EXIT. The user can 

continue in this option until EXIT is hit. 

ROTATE: When this option is selected a pop up window will appear with 

options for rotation angle (THETA), increment (+ or -), and EXIT. 

ZOOM IN: This option allows the user to zoom in the view of the model. 

ZOOM OUT: This option allows the user to zoom out the view of the 

model. 

EXIT: Exit the CHANGE DISPLAY option. 

5. CONTOUR: This option allows the user to view stress contours. The user 

may choose to display normal stresses in the x and y direction, and shear 

stresses by selecting SIG X, SIG Y, or SIG XY, respectively. The user also has 

option to input the number of contours by selecting NUM CONTOUR. 

Acceptable integer values range from 2 to 224 with 224 being default. Another 

option, SCALE, allows the user to enter the scale of the model from 0.5 to 0.75 

with 0.5 being default. At the bottom of the work space, the color bar will be 

displayed along with the type of the contour, maximum stress value, and 

minimum stress value. 

6. PRINCIPAL STRESS: This option allows the user to view the principal 

stresses. The user can choose to display compressive stresses, tensile 

stresses, both, or maximum shear stress using COMPASS, TENSILE, BOTH, 
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and SHEAR MAX, respectively. Displays with or without the model are obtained 

selecting DISPLAY MODEL. At the bottom of the work space, the green line 

represents the length of the maximum principal stress, the magenta line 

represents the length of the maximum shear stress, the orange line indicates 

compressive stress, and the cyan line indicates tensile stress. 

3D POST PROCESSING 

1. DISPLAY MODEL: This option allows the user to view the model. The user 

can choose to display the undeformed model, deformed model, or both by 

selecting UNDFRM, DFRM or BOTH, respectively. 

2. DEFORM SCALE: This option allows the user to input the deformation scale. 

The default value is unity. The user should type in a real number and the model 

will be updated according to the new scale. Either DFRM or BOTH must be 

selected in order to observe the scaled deformed model. 

3. KEY IN: This option allows the user to enter the transformation parameters 

from the keyboard. The following items are available: 

SCALE: When this option is selected, the current x scale value will 

appear in the message box, and the user will be prompted to input the 

new x scale (REAL). The program repeats the same procedures for y 

scale and z scale. 

TRNSLT: When this option is selected, the current x translation value will 

appear in the message box and the user will be prompted to input the 

new x translation value (REAL). The problem repeats the same 

procedures for y translation and z translation. 

ROTATE: The current rotation angle value about the x-axis will appear in 

the message box when this option is selected. The user is prompted to 

input the new x rotation angle (REAL). The program repeats the same 

procedures for rotation angles about the y and z axes. 
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ZOOM: When this option is selected, the current viewpoint distance will 

appear in the message box. The use is requested to input the new I viewpoint distance (REAL). 

I	 EXIT: Exit the KEY IN option. 

I
4. CHANGE DISPLAY: This option allows the user to change the 

transformation parameters by 1 unit using mouse input. The user can select the 

I
following items: 

I SCALE: When this option is selected, a pop up window will appear with 

options for direction (X, Y, or Z) increment (+ or -), and EXIT. The user 

can continue in this option until EXIT is hit. 

I
TRNSLT: When this option is selected, a pop up window will appear with 

I
options for direction (X, Y, or Z) increment (+ or -), and EXIT. The user 

can continue in this option until EXIT is hit. 

ROTATE: When this option is selected, a pop up window will appear with 

options for rotation angles (THETA-X, THETA-Y, THETA-Z), increment (+ 

or -), and EXIT. The user can continue in this option until EXIT is hit. 

ZOOM IN: This option allows the user to zoom in the view of the model. 

The user can continue in this option until EXIT is hit. 

ZOOM OUT: This option allows the user to zoom out from the model. 

The user can continue in this option until EXIT is hit. 

EXIT: Exit the change display option. 

5. ORTHO PROJ: This option allows the user to toggle between an 

orthographic or central projection. 

I	 EXIT 

I	 Executing module EXIT returns the user to the PC operating system. 

I 
I 
I 
I 
I 
I 
I 

I



I	 86 

I	 I ;1 II [e :] I LI ;' I *	 ill	 II *WI I 'A'A	 A I 

I All disk files used by XPFEM are in binary format for fast input and output. 


Although most of these binary files are of no interest to the user, six of them


I
contain data which the user may wish to examine or modify. These six files 


consist of four finite element input files (connectivity [* . con], node coordinates 

I	 [* . xyz], applied forces [* . frc] and applied displacements [* . apd]) and two 

output files (node displacements [* . sol] and solution residual [* . res]). EXE 

•	 convert .tsr, a binary/ASCII conversion program, enables the user to 

I	 examine, in standart text format, the data contained in binary files, and 

conversely, to convert text input files into binary files cabable of being read by I	 XPFEM. 

I Running convert.tsr 

I
The file conversion program is given as a standard occam EXE.	 It is 

accessible through the XPFEM.TOP. Load the program by hitting F5 while the 

cursor is on the . . . 	 EXE convert. tsr fold, and run it with F6. 

iOptions 

Convert.tsr has three options. 	 The first two perform bidirectional 

I conversions on the four input files (with suffixes of . con, . xyz, . frc and . apd), 

and the third does a one-way conversion of the solution files (with suffixes . sol 

I
and . res) from binary to text. Note that solution files may not be converted from 

text format to binary format. The options appear as: 

1.	 Convert input files from Binary to ASCII 

I 2.	 Convert input files from ASCII to Binary 

from	 ASCII 3.	 Convert solution files 	 Binary to 

<quit> 

i

4. 

After each option the program prompts for a user name, the source file name, 

I
the destination file name and the dimensionality of the problem.

I 
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I Binary Input Files to Text Input Files 

I For example, if the user wishes to convert binary input files for the 2D 

beam example to text, he would select option 1 and reply with the following 

I
prompts (bold-face letters represent user input): 

I
Enter user name	 DEMO 

Enter binary filename	 BEAM 

I	 Enter text filename	 BEAM_TXT 

Enter the Dimension (2/3, quit = 1) 2 

1	 The user name DEMO was selected because the example beam problem (and 

several others) was created with that user name. Note that only the root 

I
filename is given for both binary and text files; i.e., the suffixes .con, et cetera, 

are not added. After providing the four inputs above, the program will I	 automatically convert all four (.con, . xyz, . frc and . apd) files using the 

filenames given: 

binary file file text 

(old files) (new files) '

beam.con beam_txt.con 

I beam.xyz 

beam.sol beam_txt.frc 

I
beam.apd beam_txt.apd

I
It is important to give a root destination filename that indicates what the 

file format is. For Option 1, the destination file will be in text format. For Option 

I	 2, the destination file will be in binary format. Typical conventions are to add 

_TXT or _TX for new text files and _BIN or _BN for new binary files. 

I The newly created text files may be examined with the 'type' command 


by entering XPDOS (Appendix D) and moving to the DEMO subdirectory. The 


I
text files can also be transfered to the host PC disk via the 'dosput' command 


where the files can be viewed or edited with any ASCII based wordprocessing 

I program. 

U



I	 88 

P 
L

Text Input Files to Binary Input Files 

If the user manually creates input files for XPFEM, or edits an input file 

I which was converted from binary to text, it is necessary to convert the text files to 

binary before XPFEM can use them. Any kind of user-created or modified input 

I
file must reside on the host PC disk (since XPDOS does not provide a means 

for users to edit files) and must therefore be moved to XPDOS so that the 

I	 conversion program can reach them. See Appendix D, "Transferring Files 

between XPDOS and MS-DOS," on the 'dosget' command. 

I Once the text files are in the proper user subdirectory on XPDOS, the 

second option of the conversion program can be used to create binary input 

I files. The inputs are similar to those for Option 1. The example below continues 

from the example in Section 1.3: assume the user first created text input files 

I
from the 2D beam problem, then moved the files to the PC hard disk where the 

beam_txt.frc file was edited. After the text editing session, the user moved the 

I	 four input files back to the DEMO subdirectory of XPDOS. The user then left 

XPDOS and ran the conversion program. The following inputs to the 

I	 conversion program would produce valid XPFEM input files with rootname 

BEAM—BIN: 

I Enter user name	 DEMO 

Enter text filename	 BEAM TXT 

I Enter binary filename	 BEAM—BIN 

Enter the Dimension (2/3, quit = 1) 2 

This produces the following new files from the four input files: 

I text file file binary 

files) (new files) 

I

(old 

beam_txt.con beam_bin.con 

I beam_txt.xyz 

beam_txt.frc beam_bin.sol 

I beam_txt.apd

I 
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I
Note there are now two binary input files for the 2D beam example: the 

I input files with rootname BEAM and the modified input files with rootname 

BEAM—BIN. When running XPFEM, the user has the choice of running either 

I
the original beam problem by specifying BEAM as the problem name, or 

running the modified problem by specifying BEAM—BIN as the problem name. 

Binary Solution Files to Text Solution Files 

I The third conversion option, converting binary solution files text files, 

permits inspection of the numerical finite element displacement solution and the I error residual produced by that solution. In addition to the inputs for user name, 

problem name and dimensionality, this option also requires input for the 

I
number of nodes in the problem. If the user does not know how many nodes 

the problem has, and if the connectivity file (* . con) for that problem exists in the I same subdirectory as the solution files, the user can let the conversion program 

find the number of nodes from the .con file. If user opts for the program to 

search for the connectivity and the file does not exist, the program will crash. 

The conversion program reads the solution (sol) and residual files (res) and I writes them in text format to the file name specified by the user. The following 

sample session continues from the previous examples: I
Enter user name	 DEMO 

I
Enter text filename	 BEAM BIN 

Enter binary filename	 BEAM_TXT 

Enter the Dimension (2/3, quit = 1) 2 

I

i. Enter number.of.nodes 

2. Get number.of.nodes from .CON file 

I There are 72 nodes in BEAM BIN.CON. 

I 
I 
1



I 
I This produces the following new files from the two solution files: 

I	 binary file
	

text file 

(old files)
	

(new files) I	
beam_bin.sol
	

beam_txt.sol I	 beam_bin.res
	

beam txt. res 

The text solution files can by examined via the 'type' command of XPDOS, or 

can be transfered to the host PC disk with 'dosput.' 

Problems with EXE convert . tsr 

The most frequently encountered problem with the conversion program is the 

'File Not Found' error which, at this stage of development, causes the program 

to crash. Whenever the conversion program fails to work properly, enter 

XPDOS and verify that the expected input files are in the appropriate 

subdirectory. 

If input files are modified in a manner that violates the file format, the text to 

binary conversion will crash. Known errors include: 

I
1. Rather than exiting cleanly, a null string for a user or filename will cause the 

program to crash. Hitting 'Enter to quit at a name prompt will exit as the 

program says, but will also cause a crash. 

2. The code cannot recognize the difference between 2D and 3D problems, so 

if the dimensionality is entered incorrectly, the program will crash. 

I 
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APPENDIX B 
I
I 

SOLVER LIMITATIONS 

Due to the many variables which govern memory usage in the parallel 

finite element equation solver, defining a capacity limit is difficult. In general, 

the solver is limited to solving problems with up to 20,000 degrees of freedom 

(d.o.f.), both in two and three dimensions. It is possible, however, that one FE 

problem with 20,000 d.o.f. will run, but another equally large problem will not. It 

is also possible to make minor modifications to the solver libraries and raise the 

limit to 38,000 d.o.f. but this will incur several other limitations. This section 

describes the primary memory parameters, how they influence memory usage, 

and how the system can be reconfigured to solve the absolute largest problems 

possible. 

In addition to restrictions on the maximum problem size, there is also a 

limit on the minimum problem size. This problem and a simple solution are 

explained at the end of this appendix. 

Primary Memory Parameters 

Eight parameters determine how much memory a given solver 

configuration requires. They are, in order of signifigance: 

1. Problem Dimension (2 or 3) 

2. Number of nodes 

3. Number of elements 

4. Maximum nodes per element 

5. Maximum elements using any one node 

6. Average nodes of influence 

7. Average segments per row 

8. Maximum fully constrained nodes
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The number of degrees of freedom in a finite element model equals the 

product of the first two parameters, the problem dimension and the number of 
nodes. Since memory usage is a function of six other parameters, the 

dimension and number of nodes define only a subset of the critical variables. 

The third most significant parameter, the number of elements, is closely 

coupled to the number of nodes and the model type. If only 3 noded triangular 

elements are expected, the number of elements must be atleast twice as large 

as the number of nodes. If, on the otherhand, the FE model consists of 20 

noded brick elements, the number of elements need only be one third of the 

number of nodes. The fourth parameter, the maximum number of nodes per 
element, follows directly from the same argument: lower order, two dimensional 

elements will have fewer nodes per element than higher order, three 

dimensional elements. 

Unless the user manually creates the FE model, he or she may have little 

control over the fifth parameter, the maximum number of elements sharing a 
common node. A value large enough to include the worst case expected must 

be assigned. Typically, triangular elements rarely result in more than 10 

elements sharing any one node. Three dimensional tetrahedral elements may 

have as many as 20 elements clustered about a single node. 

Nodes of influence for a particular node are those remaining nodes 

contained in the elements which share that particular node. For example, 

imagine that six equilateral triangular elements fit together to form a hexagonal 

structure. The nodes of influence for the central node are all the remaining 

nodes in the structure, since all these nodes share an element with the central 

node. The central node therefore has six nodes of influence. The average 

number of nodes of influence for all nodes will be a function of the number of 

nodes in each element, and how the elements are joined. Long slender 

structures will result in a lower value for the average nodes of influence while a 

densly packed structure will have a higher value. 

The last two parameters, average segments per row and maximum fully 
constrained nodes have minor effects on memory usage. Segments on a row 

refer to the number of consecutive non-zero terms on a given row of the global 
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stiffness matrix. Tightly banded problems typically have fewer than eight or ten 

segments per row, while poorly banded problems can have up to thirty. Fully 
constrained nodes are those which do not permit motion in any degree of 

freedom. Although most FE models have only a small portion of their nodes 

constrained in this manner, a relatively large value (e.g., equal to 50% of the 

total number of nodes) may be assigned to Maximum fully constrained nodes 

without excessive memory penalty. 

Memory Usage as a Function of the Primary Memory Parameters 

The expression which defines the amount of memory used by the solver as a 

function of the eight memory parameters is complex. To assist the user in 

finding values yielding increased solver capacity, a Pascal program 

memopt .pas is given (in both source and executable form) which takes as 

input trial values for the eight variables and computes the number of bytes 

required by the remote transputers. Each of the 32 remote processors has 1 

Mbyte of memory, so the number returned by memopt . pas should be less than 

980,000 bytes. The remaining 24,000 bytes are required by the solver code 

itself and other minor working variables. 

Reconfiguring the Solver for Larger Problems 

I The current version of the solver is configured for 10,000 nodes, 10,000 

elements, and a maximum of 8 nodes per element for 2 dimensions and 6,000 

nodes, 5,000 elements and a maximum of 20 nodes per element for 3 

dimensional problems. The remaining parameters are set for structures of I average density and robustness of element connectivity. If the user expects to 

solve models with simple elements, the parameters may be altered to nearly 

double the solvers capacity. 

-	 Note that only an experienced occam programmer should attempt to I reconfigure the solver. The following steps briefly describe the modification 

process. Full detail is intentionally omitted to encourage interested users to 

I contact SPARTA before considering a reconfiguration. 

i 
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1. The user must obtain a set of memory parameters which will bound the 

•	
largest problems expected and still fit in memory. The memopt .pas program 

I	 can be used to assist in the search. 

1	 2. The appropriate VAL's in the libraries 2Dvals .tsr and 3Dvals .tsr are 

I

changed to new values. 

3. A global recompile is performed. M2Dvals.tsr" and "3Dvals.tsr" affect virtually 

I	 every library and SC so that even code unrelated to the solver must be 

recompiled. 

1	 4. check memory usage by remote processors to ensure that the memory 

I

required by the code fits on each transputers 1 Mbyte of RAM. 

5. check memory usage by the host transputer to ensure that enough 

I
workspace is being passed to the solver host routine. 

Minimum Problem Size 

I

A minor drawback to the prototype version of XPFEM is that it cannot 

solve problems with fewer than about 40 finite element nodes. Small problems 

can leave one or more processors without work to do, resulting in a 

I communications hang. Simple models can always be solved by meshing with 

smaller elements to introduce additional nodes. I 
I 
I 
I 
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APPENDIX C 

JACOB I-CONDITIONED CONJUGATE GRADIENT ALGORITHM 

Notation: 

{a}	 vector 

(a')	 partial vector 

[a]	 matrix 

[a]	 partial matrix 

The Problem: 

solve [A]{x} = (b) 

Variables: 

[A] the horizontal slice of the stiffness matrix 

{x'} the displacement vector (divided up among processors) 

(b) the force vector (appears only in initialization and is 

not used explicitly) 

[M.inv'] the preconditioning matrix (the inverse of the diagonal 

of [A']) 

{p} the projection vector (each processor gets a full copy) 

{Ap'}, 

{s'} working vectors

Memory usage on each processor: 

[max.degrees.of.freedom] REAL64 p: 	 -- {p} 
[max.degrees.of.freedom.per. processor] REAL32 x, r,s,Ap, Mi fly: 

{x'}, {r'}, (5'), (Ap'), [M.inv'] 

REAL64 pAp, rs, rs.new, a, c: 
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Initialization: 

1. Extract [M.inv'] from [A']. Note that this is not straight forward, since 

[A] is stored in sparse form. 

2. Assume initial guess of {x} = {0}, making {r} = {b'}. Load the force 

vector directly into jr) 

3. Matrix-vector product: 	 {s'} = [M.inv']{r'} 	 (actually a vector outer 

product since [M.inv'] 

is stored as a vector) 

4. Dot product:
	 rs' = {r}{s'} 

5. Assignment:
	

{p'} = {s'} 

6. Vector global sum:
	

{p'} becomes {p} 

7. Scalar global sum:
	 rs' becomes rs 

I 
I 
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Iteration Loop: 

8. Matrix-vector product: 

9. Dot product: 

10. Scalar global sum: 

11. Scalar division: 

12. Vector scale and add: 

13. Vector scale and add: 

14. Matrix-vector product:

{Ap'} = [A']{p} 

pAp' = {p}{Ap'}	 (use only {p'}). 

pAp' becomes pAp 

a = rs/pAp 

{x'} = {x'} + alp) (use only {p'}) 

{r} = {} - a{Ap'} 

{s'} = [M.inv']{r}	 (a vector outer product for 

Jacobi conditioning) 

I 
I 
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15. Dot product:
	 rs.new' = {r'}{s'} 

16. Convergence test:
	

is Ia{Ap'}l small? 

17. Scalar global sum:
	 rs.new' becomes rs.new, also exchange 

results of convergence test 

18. Scalar division:	 c = rs.new/rs 

19. Scalar assignment:	 rs = rs.new 

20. Vector scale and add:	 {p'} = {s'} + c(p) (use only {p'}) 

21. Vector concatenation:	 {p'} becomes {p} 

22. Terminate on convergence test of Step 16, otherwise go to Step 8. 

Communication occurs at steps 10, 17 and 21. The scalar sums at steps 

10 and 17 are performed using the tetrodal configuration. The vector sum at 

I 
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step 21 is a nearest-neighbor pipeline exchange of only the portions of {p} that 

I	 processors need for the [A]{p} multiplication--this shadow of affectivity of {p} 

between processors equals the bandwidth of [A]. 
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APPENDIX D 

IXPDOS USER'S MANUAL 

[^^ M 1 0 2 k
v, I LVA Ul ^ I DWI; 1:4 q q 

I
The XPDOS shell allows the user to directly manipulate the directory and 

file structure on the transputer disks using commands similar to UNIX' and MS-

DOS. To execute the XPDOS Shell from the transputer development system 

(TDS), first enter the XPFEM top (see Appendix A, XPFEM User's Manual) then 

I	 use the arrow keys to position the cursor over the line which reads 

"...F comshell -- XPDOS Command Shell," press the F5 key (Get Code), 

then the F6 key (Run Code). The screen will clear and the XPDOS header will 

Ibe displayed. 

I
The XPDOS shell recognizes two disk drives, noted "a:" and "b:". 	 The 

primary, or "root" directory of each disk is denoted by a lone slash ("I"). 	 This 

I directory can contain up to 255 files and subdirectories. 	 Each subdirectory can 

also contain 255 files and subdirectories, and so forth ad in finitum. 	 Files and 

subdirectories are assigned names up to 16 characters in length, which may I consist of numbers, letters, dashes, underbars, and other miscellaneous 

symbols.	 The "." character may be included in a filename to provide 

Icompatibility with MS-DOS file extensions. 

IROOT 

DIRECTORY	 SUBDIRECTORY	 FILES (+ SUBDIRECTORIES) 

I

DRIVE

materials	 example.Iib ("a:/materials/examples. lib") 

("a/materials")	 problem.Iib ("a/materials/problem.Iib") 

I a:	 ("af)	 John	 example.con ("a/john/example.con") 

example.xyz ("a/john./example.xyz") ("aJjohn") 

IRick problem.con ("aJnck/problem.con") 

I
1 UNIX is a trademark of AT&T

I 



I
("a:/rick")	 problem.xyz ("a:/rick/problem.xyz ") 

I	 old problem 

("a:/rick/old problem") 

1	 old.con ("a:/nck/old 

I
Any file subdirectory on a disk may be specified by its "full pathname," 

which lists the drive name, directory names, and filename associated with that I	 file. File and subdirectory names should be separated by slashes. The 

diagram above shows a sample directory structure and the full path name of 

i

each entry. 

XPDOS also recognizes a "current" or "default" directory. Files and 

I subdirectories in this directory may be specified by filename alone. The current 

directory is automatically displayed at each prompt; when XPDOS boots, the 

I
default path is the "root" directory, so the prompt displayed is "Af indicating that 

these characters may be omitted from the start of any path name. In the above I

	

	 diagram, for instance, if the default directory were set to a: /rick, then its two


files could be specified as problem. con and problem.xyz, and old. con 

I

	

	 could be specified as old problem/old.con. The default directory can be 


changed with the cd or chdir command. 

I Most XPDOS commands allow the user of	 and "?" wildcards in


filenames to match a series of files instead of just one. the "a" wildcard matches I

	

	 any number of characters inserted at its location; the "?" matches any single 


character. Thus, copy a:/john/ * b:/joe/ * copies all files in directory john 

•	 on drive a: to directory joe on drive b:, del Problem. * deletes all files relating 

•	 to problem, and rename * .dat * .old renames all files ending in .dat 50 

I

	

	 that they end in . old instead. The command del * which deletes all files in a 


directory should obviously be used with great care. 

F
1 
I
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The dir (or is for those who prefer Unix) will display a list of all files in a 

single directory. A directory pathname may be specified, or if it is omitted, the 

current directory will be displayed. The filesize in bytes is displayed next to 

each filename. A ` to the left indicates that this is a subdirectory rather than a 

file. Example: 

I 
I 
L

a:/>drrick 
Directory :	 a:/rick 

problem.con	 32768 

problem.xyz	 15000 

old problem	 4096 

Total of 51864 blocks in 3 tiles.

a:/>.dir 
Directory :	 a:/ 

• materials	 4096 

'john	 4096 

• rick	 4096 

Total of 12288 blocks in 3 files. 

I 
I 
I 
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The del (or rm) command may be used to delete files. The file or files 

specified are permanently removed from the disk (there is no way to "undelete" 

a file). Examples: 

aijohn> del example.' 

a:/john> del bijoef'.' 

COPYING FILES 

The copy (or cp) command will duplicate a file or files. The copy 

command looks like this: 

"copy source files destination files" 

Where the "source files" are the original files and "destination files" are the 

names of the new files. 

Wildcards and full or partial path names may be used with the copy command. 

Examples: 

ai> copy x.dat y.txt	 (copies the file "x.dat" to "y.txt" in the current directory) 

a/> xfjoef'.	 (copies all files in "b/joe" to the current directory) 

I 
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a/> copy *.txt ".doc

	

	 (copies all files in the current directory with the extension ".txt" 

into files w/extension ".doc") 

The rename (or my) command will rename a file or subdirectory, and may 

even move it to a different directory. It is specified as "rename old name new 

name", and wildcards may be used for either old name or new name. Note that 

if a directory path is specified in new name which is different from that of old 

name, the file will be moved to the new directory as part of the renaming 

process. Directories themselves may also be renamed, and if they are moved, 

then all of the files inside of them move too. For example, if the command my 

a: /rick/old problem a:! is executed, then the subdirectory old problem 

will be entered in the root directory alongside rick; thus, its full path name 

changes from a: /rick/old problem to a: bid problem, and its file 

old. con is now specified a: /old problem/old. con. Other examples: 

aijohn> rename example.* useful.

	

	 (renames all "example: file 

to the name "useful", 

preserving the file extensions) 

a/john> rename /

	

	 (moves all files from the current 

to the root directory) 

Note that the rename command may never be used to create circular path 

names; for instance, if old problem is a subdirectory of a: /rick, then the 

commandmv a:/rick a:/rickboid problem will be rejected. 

1	 CREATING DIRECTORIES 

I

The md (or mkdir) command will create a new subdirectory, which is then 

capable of holding other subdirectories or files. If a full pathname is specified, 

then XPDOS will create a directory which has that full pathname; otherwise it 

I will create a subdirectory of the current directory. Examples: 

I 

I 
I 
I 
U 
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a:/john> md stuff	 (creates "a:/john/stuff") 

aJjohn> md bJjoe/other 	 (creates "bJjoe/other) 

REMOVING DIRECTORIES 

I
The rd (or rmdir) command will remove (delete) an existing 

I
subdirectory. Note that a subdirectory must be completely empty in order to be 

removed; if it has any files or subdirectore is of its won, XPDOS will reject the rd 

I	 command. The del, rd, and rename commands may be used to eliminate the 

files from a subdirectory prior to deletion. Examples: 

a:/nck> del old problem/* 

a/rick> rd old problem 	 Removes all files in "rick" and "rick/old problem," and then 1 ainck> del*	 removes the directories themselves. 

a/rick> cd/ 

I
aJ> rd rick

CHANGING DEFAULT DIRECTORY 

I

The cd (or chdir) command will change to a different default directory 

and/or  disk. the XPDOS prompt will change to match. If the full pathname is 

specified, that path will be used exactly; otherwise it will be computed based on I the current default directory. Note also that the dot.dot ("..") specifier can be 

used to specify the current directory's "parent". Examples: 

I
a/>cdrick 

I
a/rick> Cd old problem 

aJrick/old problem> Cd.. 

I	 a/rick>cd.. 

aJ> cd bijoe/stuff 

l	

bJjoe/stuff> Cd aJ 

aJ> 

I 
I 
I
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I 
I

	

	
The default disk may be changed by simply typing the name of the disk 

"a:" or "b:") that you wish to change to. Examples: 

I
a:/rick> b: 

bJ> a: 

a/rick> 
I 
I 
I 
I 
I 
I 
I 
I 
I

The free command will display information about current disk space 

usage.

The type command will display a file on the screen. During the display, 

the SPACE bar can be used to pause and restart the display. To abort the 

display, press any other key. Example: 

aJ> type nckiproblem.con 

OBTAINING HELP 

The help command will list the XPDOS commands available. 

I 
I

The dosget, dosput, dosgetbinary and dosputbinary commands 

exists to transfer files between the transputer disks and the local PC/AT hard 

I drive. The standard command (dosget/dosput) will convert between XPDOS 

and MS-DOS ASCII formats for text files; the binary versions (dosget 

binary/dosput binary) will duplicate binary and executable files precisely. All 

I four commands work like the copy command, except that the source and 

destination files reside on different machines. 

I
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I 
I

	

	
The dosget commands load a file from MSDOX to XPDOS; the "binary" 

extension specifies exact duplication rather than ASCII conversion. The 

I	 command is "dosget <MS-DOS file> <XPDOS file>." 

a/> dosget c:Itextfile.txt mytext.txt 

aJ> dosgetbinary file.bin ainckJproblem.xxx

(the MSDOX file "c/texttile.txt" is loaded, 

converted, and placed on the transputer disk in 

the current directory as "mytext.txt") 

(the MS-DOS file "file.bin" from the current 

MS-DOS default drive and directory is loaded 

into a:/iickIproblem.xxx with no ASCII 

conversion) 

I 
I 
I 
I

The dosput commands write a file from XPDOS to MS-DOS; the "binary" 

extension specifies exact duplication rather than ASCII conversion. The 

command is dosput <XP file> <MS filex 

aJ> dosput data.txt cJdata.txt 

aJ> dosputbinary problem.xxx file .bin 

IMPORTANT: No wildcards may be used for dosget and dosput commands. 

Also, the source and destination filenames must be completely specified (there 

is no "default filename"), although the default disk and directory are both 

recognized. The following commands are incorrect: 

a/> dosput data.dat a:	 (correct: dosput data.dat a:data.dat) 

a/> dosget textfile.txt 	 (correct: dosget textfile.txt textfile.txt) 

The dos command will allow the execution of MS-DOS commands from 

within the XPDOS shell. This is sometimes useful during file transfers (to obtain 

I 
I 
I 
I 

I 
I 
I 
I
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directories and prepare files for transfer). When the dos command is entered, 

I you will immediately be returned to MS-DOS. Type your MS-DOS commands, 

and when you are finished, type exit to return to XPDOS. Note that some 

larger programs will cause XPDOS to be overwritten in memory, in which case 

I the exit command will cause the TDS to reboot w/the message "Transputer 

Error Flag Set" rather than returning to XPDOS. In this case, simply reload 

XPDOS as if starting from power up; no harm is caused by this procedure. 

I

To exit the XPDOS shell, simply type the command exit; you will be 

returned to the TDS. 

I 
I 
I 
1 
I 
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I APPENDIX E 

I XPDOS DISK LIBRARY ROUTINES AND ERROR CODES 

I
The following text describes the procedures available in XPDOS, the 

transputer disk operating system developed for the network disks in XPFEM. I	 This disk operating system is a stand-alone, separately compiled occam library 

module which can be linked to by user-developed occam programs. Programs 

I	 which call XPDOS must include the statement #USE "disk.tsr", and be 

written in the c:\fesl2\disk directory so that the linker finds the XPDOS 

library. 

SYSTEM ROUTINES 

I
Variables 

I  
bios link host transputer link (0-3) which is connected to file server; this is 

I	 declared as a VAL in disks.tsr and can thus be passed as a


constant when using this library 

I disknum	 the disk to be initialized (0 or 1) 

status	 variable to receive return status from routine. 

(1 = everything Ok, negative = an error occurred) 

I
Procedures I
PROC BoostDisks	 (VAL INT bioslink) 

Boots the file server if necessary (has no effect if already booted) 

PROC Initialize	 (VAL INT bioslink, disknum, 	 INT status) I Initializes the file structure on a new disk drive.

I WARNING!!! This routine will erase ALL data on the disk, and thus 

should not be called except the very first time a disk is used. If it is 

desired to actually initialize the disk drive, the recommended procedure 

106 
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I is to use the"initialize" command from the XPDOS She!!, rather than 

I

invoking this procedure from a program. 

DIRECTORY ACCESS ROUTINES 

The following routines are used to manipulate the file and directory 

I	 structure of an XPDOS dis. Each routine corresponds to an XPDOS Shell 

command of the same name, and is in fact called by the Shell in order to 

I	 perform its function. These routines may be included in user programs in order 

to perform directory and file operations. 

I PROC MakeDirectory (VAL INT bioslink, VAL []BYTE pathname, 


INT status) 

I Attempts to create a new directory (called by mdJmkdir command). 

pathname = the full or partial path of the directory to be created. 

No wildcards are permitted for this command. 

I	 PROC RemoveDirectOry (VAL INT bioslink, VAL [] BYTE pathname, INT status) 

I	 Attempts to remove a directory (Called by rdlrmdir command). 

pathname = full or partial path of the directory to be removed. 

No wildcards are permitted for this command. 

I
PROC ListDireCtOry (VAL INT bioslink, VAL []BYTE pathname, 

[]BYTE dirpath, INT dirsize, 

[dirmax*dlistlen]BYTE dir.buffer, INT status) 

I
Lists the directory specified by pathname into a buffer which can then be 

examined by the user routine. Variables are as follows: 

I	 pathname = full or partial path of directory or files to be listed. 

Wildcards of any kind are allowed here (* and ?). 

I

-

	

	 dirpath = BYTE buffer to receive the full path name of the directory 

being listed. The maximum length is 80 characters. 

dirsize = INT variable to receive the number of entries in this 

I directory. The maximum number of entries is 255. 

dir.buffer =	 BYTE buffer to receive the directory entries. This 

I
buffer must be of exactly length dirmax*dlistlen, each of which is 

I
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declared as a constant in this library. The entries are packed into the 

buffer and can be read as follows: 

I [dirmax*dlistlenJBYTE dir.buffer 

(dlistlen)BYTE list.entry 

I
(filenamemax]BYTE list.filename RETYPES 

list.entry FROM 7 FOR	 filenamemax] I	 INT list.size RETYPES [list.entry FROM 0 FOR 4] INT list.dirflag RETYPES [list.entry FROM 4 FOR 4] I	 SEQ index = 0 FOR dirsize SEQ

list.entry := [dir.buffer FROM (index*dlistlen) FOR 

dlistlen] 

Examine directory entry (list.filename, list.size, 

list .dirflag) 

I	 list.filename = the name of the file 

list . size	 = the size in bytes of the file 

list . dirf lag	 =flag: 1=subdirectory, 0=file 

PROC ChangeDirectory (VAL INT bioslink, VAL [] BYTE 

pathname, INT disknum, [] BYTE returnpath, INT status) 

Changes the current working directory (called by cd/chdir). After the 

working directory is changed, the new disk and path is returned. 

pathname = BYTE Array containing path to be change to. If pathname 

is empty, ChangeDirectory simply returns the current path. 

disknum	 = INT variable to receive the disk number (0,1) of the new 

default path. returnpath = BYTE array to receive the new default path. 

PROC MoveFile (VAL INT bioslink, VAL [] BYTE sourcepath, I	 .destpath, INT status) Renames files & subdirectories and/or moves them from one directory to 

another. (Called by mv/rename) 

I sourcepath	 = pathname existing files to be moved or renamed. 

Wildcards of all kinds are permitted. 

I 
I
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I destpath = new pathname for files. Wildcards of all kinds are 

permitted. I
PROC CopyFile (VAL INT bioslink, VAL []BYTE sourcepath, 

I
destpath, INT status) 

Copies files from one place to another. (called by cp/copy) 

I	 sourcepath	 = pathname of existing file(s). Wildcards are 

permitted. 

destpath = pathname to copy to. Wildcards are permitted. 

PROC DeleteFile	 (VAL INT bioslink, VAL []BYPE pathname, 	 INT I status) 

Deletes the file or files specified (Called by mi/del) 

I
pathname = the name of the file(s) to be deleted.	 Wildcards are 

permitted here. 

I
PROC FreeSpace	 (VAL INT bioslink, disknum, 	 INT freetotal, I free.avail,	 free.reserved,	 free.used,	 status) 

Returns free space information for the disk specified. 	 All information is I provided in terms of 4096 byte blocks. 

disknum	 = the disk # (0 or 1) of the disk to be examined. 

free . total	 = the total number of blocks existing on the disk 

free. avail	 = the number of blocks not currently in use (i.e. free 

blocks) 

free . reserved = the number of blocks reserved for use by the file 

I system 

free. used = the number of blocks already allocated to files

PROC ErrorMessage (VAL INT status) 

Displays the error message that corresponds to a particular status code. I If a file routine returns a negative status, that status can be passed to this 

routine to display the appropriate error message on the screen. Refer to 

I
the end of this document for a list of error messages. 

I 
I
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I FILE OPENING 

I Variables 

I
bios link	 host transputer link (0-3) connected to fileserver 

I	 unit	 variable to receive the unit number assigned to the file. 

This variable must then be passed as unit to all subsequent 

I	 calls involving the file. XPDOS currently allows up to 4 files 

to be open at once. 

I filename

	

	 text (BYTE) string containing the name of the file to be 

opened, terminated either by a null (zero) byte or the 

I physical end of the byte array. 

status	
variable to receive the return status of the open routine. 

(1 = everything went OK, negative = error code) 

reclen	 (direct access only). INT value specifying the number of 

bytes in a fixed length record. 

Procedures I
PROC OpenFileBinaryRead (VAL INT bioslink, INT unit, 

1	 VAL []BYTE filename, INT status) 

Opens a file for readonly access as a stream of bytes (binary/ASCII) 

PROC OpenFileBinarywrite (VAL INT bioslin, INT unit, 

VAL

[1 BYTE filename, INT status) 

Creates a new file (overwrites any previously existing version) for write 

only access as a stream of bytes (binary/ASCII) 

PROC OpenFileBinaryAppend (VAL INT bioslink, INT unit, 

I VAL [] BYTE filename, INT status) 

Like OpenFileBinaryAppend, except that if the file already exists, it will 

I
be appended to rather than overwritten. 

I
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PROC OpenFileDirectReadWrite (VAL INT bioslink, INT unit, 

VAL (]BYTE filename, VAL INT reclen, INT status) 

Opens a file (creates it if it does not exist) for random read/write access 

with a fixed record length of reclen 

PROC OpenFileDirectReadOnly (VAL INT bioslink, INT unit, 

VAL []BYTE filename, VAL INT reclen, INT status) 

Like OpenFileDirectReadWrite, except that records may only be read; 

never written. 

GENERAL ROUTINES 

The following routines can be used for all types of files -- both binary and 

direct access. 

PROC FlushBuffer (VAL INT bioslink, unit, INT status) 

Flushes the file's i/o buffer to disk; any data currently being held in 

memory is now written out. This routine can be used to make sure that 

information from previous Put/F ilewrite calls has actually been output 

to the disk drive. This routine is called automatically by CloseFile. 

PROC EndoOfFile (VAL INT bioslink, unit, BOOL eof) 

Checks to see if the end of file marker has been reached for this file. If 

the end of the file has been reached, eof will return TRUE; otherwise, it 

will return FALSE. 

PROC CurrentPositiOfl (VAL INT bioslink, unit, INT curpos) 

Returns the current position of a readonly or direct access file. For direct 

access files, curpos returns the next record number; for binary files, 

curpos returns the byte offset from the beginning of the file. The first 

byte/record in a file is #0. 

PROC CloseFile (VAL INT bioslink, unit, INT status) 

Closes a file, flushes it i/o buffer, and frees its unit number for use by 

other files. Once CloseFile is called, no further i/o calls should be 

I 
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addressed to that unit # unless a new OpenFile call is issued. 

CloseFile terminates all file activity for that file. 

DIRECT ACCESS 

I
Variables Common to, and Visible from, all Direct Access Routines 

record	 array of length reclen, containing the fixed-length record to 

be written or to receive the one about to be read. 

recnum the logical record number to be read or written. The first 

record in a file is record 0. If a record is written beyond the 

current end of file marker, the file is extended so as to 

contain that record. If a record is read beyond the current 

end of file marker, an error is returned. 

Procedures 

PROC GetRec (VAL INT bioslink, unit, [] BYTE record, 

I

VAL INT recnum, INT status) 

Reads one random access record 

PROC PutRec (VAL INT bioslink, unit, VAL []BYTE record, 

VAL INT recnum, INT status) 

Writes one random access record 

BINARY ACCESS 

I	 PROC Get Byte (VAL INT bioslink, unit, BYTE item, status) 

PROC PutByte (VAL INT bioslink, unit, VAL BYTE item, status) 

Routines to read or write a single byte to the binary file.item - the byte to 1	 be read or written. 

I PROC Rewind (VAL INT bioslink, unit INT status) 

Rewinds a read-only file. The next byte read will be the very first byte in 

the file. This has the same effect as closing the file and reopening it. 

D
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PROC Position (VAL INT bioslink, unit, filepos, INT status) 

Positions a read-only file to the desired location 

filepos = the byte # in the file to position to. The very first byte in a 

file is #0, so a position to byte 0 produces the same effect 

as the Rewind routine. 

PROC BackSpace (VAL INT bioslink, unit, INT status) 

Positions a readonly file to one less than the current position. This 

essentially has the effect of "unreading the last byte read; thus, the next 

byte read will be the same as the last type read. Multiple BackSpaces 

can be used to produce multiple "unreads" ad infinitum. BackSpacing 

past the beginning fo a file produces an error code. 

PROC FileWrite (VAL INT bioslink, unit, VAL [] BYTE line, 

INT status) 

PROC FileWriteln (VAL INT bioslink, unit VAL [] BYTE line, 

INT status) 

Procedures to write a string of bytes; has the same effect as a series of 

calls to PutByte. FileWrite simply writes the string passed to it, while 

FileWriteln will append a carriage return (ASCII 13). 

line = BYTE array to be written. Every byte in line will be stored to the


file; the number of bytes written is thus equal to SIZE line. 

PROC FileWritelNT (VAL INT bioslink, unit, number, fieldsize, 

INT status) 

Writes an integer value in ASCII format into the file. 

number	 = tNT number to be written 

fieldsize = # of ASCII bytes to output. If fieldsize is greater than or 

equal to the number of bytes necessary for numeric output, 

spaces will be added to pad out the field. If fields ize is 

less than or equal to the number of bytes needed, or if 

fields ize is 0, then the number will be output followed by 

I	 a space. 

I 

I 
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PROC FileWriteREAL32 (VAL INT bioslink, unit, 

I

VAL REAL32 number, VAL INT leftfield, 

rightfield, INT status) 

1	 PROC FileWriteREAL 64 (VAL INT bioslirik, unit, 

VAL REAL64 number, VAL INT leftfield, rightfield, 

I
INT status) 

Procedures to write a single or double precision real in ASCII format to I	 the disk. The string written is guaranteed to begin and end with a blank 

space character and to have no internal blank spaces. 

I	 number	 = the REAL32 or REAL64 number to be written 

left field =field size to the left of the decimal point 

right field = field size to the right of the decimal point (as noted above, 

I the string will begin and end with a space) 

I
PROC FileRead (VAL INT bioslink, 	 unit,	 []BYTE line, 

VAL INT lentoget,	 INT lenwegot, status) 

PROC FileReadBlock	 (VAL INT bioslink, 	 unit,	 [] BYTE line,	 VAL 

INT lentoget,	 INT lenwegot,	 status) 

I Procedures to read an array of bytes from the disk. Much like a series of 

calls to GetByte. FileRead stops short if an end-of-line character I (carnage return) is encountered; FileReadBlock reads carriage returns 

V

as if they were regular bytes. 

I
line = BYTE array to receive the bytes read. Must be at least as 

long as lentoget. 

I
lentoget = number of bytes to read 

lenwegot	 = INT variable to receive the number of bytes actually read. 

1 Normally will be equal to lenwegot, but may be less if an 

end of line or end of file is encountered.	 In any event, this 

contains the number of bytes of line which are significant.

PROC FileReadNewLine (VAL INT bioslink, unit INT status) 

Can be used to position the file to the beginning of the next line of text 

(i.e. after the next end-of-line marker) I 
I 



PROC FileReadln (VAL INT bioslink, unit, []BYTE line, INT 

status) 

Much more useful than FileRead, this routine reads a series of bytes 

which is terminated when an end of line marker (carnage return) is 

encountered. On return, line will contain the bytes read followed by null 

bytes. The INT function StrLength has been provided in this library to 

determine the significant length of the returned string. Example: 

FileReadln (bioslin, unit, readme, status) 

len := StrLength (readme) 

write("String: ") 

writeln ([readme FROM 0 FOR len]) 

PROC FileReadINT (VAL INT bioslink, unit, INT number, status) 

Attempts to read an integer number (stored in ASCII format) from the file. 

Any spaces and end-of-lines between the current position and the 

number will be ignored, but any non-numeric or REAL data will produce 

an error status. This routine will leave the file positioned at the first byte 

following the integer data read. 

PROC Fi1eReadREAL32 (VAL INT bioslink, unit, REAL32 number, 

INT status) 

PROC Fi1eReadREAL64 (VAL INT bioslink, unit, REAL64 number, 

INT status) 

Attempts to read a single or double precision real (stored in ASCII 

format). Any spaces and end-of-lines between the current position and 

the number will be ignored, but any non-numeric or INT data will produce 

an error status. These routines will leave the file positioned at the first 

byte following the real data read. 

Packed Formats 

The following routines (also compatible with binary files) implement 

*packed* numeric output formats, as opposed to the ASCII formats of the 

previous routines. Whereas ASCII formats simply write out numbers in text 

format (e.g. "1.08E+07"), and then convert them back character by character 

during reads, packed formats write the information exactly as the program
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stores it in memory. These formats are much faster and much more compact 

I than ASCII formats, but are not compatible with ASCII read and write routines 

(they also produce files that are unreadable by human eyes, unlike their ASCII 

counterparts). Because packed formats ignore end-of-line markers, such I formats should not be used in conjunction with any of the FileRead or 

FileWrite routines, except for FileReadBlock and FileWrite, which can be 

I
safely used to read and write fixed length strings. 

I PROC PutINT	 (VAL INT bioslink, unit, number, INT status) 

PROC PutREAL32	 (VAL INT bioslink, unit, VAL INT REAL32 

number,	 INT status) 

I PROC PutREAL64	 (VAL INT bioslink, unit, VAL INT REAL64 

number,	 INT status) I Writes the specified value in packed format to the file. INT and REAL32 

values require 4 bytes, while REAL64 values require 8 bytes.

PROC GetINT

	

	 (VAL INT bioslink, unit, INT number, status) 

I
PROC GetREAL32 (VAL INT bioslink, unit, REAL32 number, 

INT status) 

'	 PROC GetREAL64 (VAL INT bioslink, unit, REAL64 number,


INT status) 

Reads the specified type number in packed format from the file. Note that 

the file must be positioned to the exact spot at which a number in the 

specified format was previously written, or an incorrect value will be I returned. Note also that though INT and REAL32's each require 4 bytes, 

the formats are NOT compatible, and cannot be used interchangeably. A 

number written as REAL32 must be read as REAL32. 

I 
I 
LI 
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I STATUS CODES 

I Positive Values 

1 =Operation successful. 

I
Negative Values 

I

-i = Resource not available. 

The resource which you have requested (probably disk space) has been 

exhausted. Check disk free space and delete some files. If disk already I shows free space, then the mode table has been exhausted; again, the 

-	 solution is to delete some files. 

1 -2 = File not found. 

The file which you have attempted to access does not exist, and the 

I routine which you have called cannot proceed without an already 

existing file. Check your filename and path to make sure they are correct. 

I You may be trying to access a file .which resides in another subdirectory, 

in which case you must either change directory to that subdirectory, or 

use the full pathname (from root) of the file. 1 -3 = Invalid path. 

You have specified an invalid path. 	 Note that in a long path such as 

I /usr/brian/stuff, every entry except the last one MUST exist already 

("MakeDirectory" cannot be used to create a whole tree of 

I subdirectories with a single command). 	 Only the last entry (i.e. stuff) 
can be non-existent, depending on the nature of the command. Check to 

I make sure that your pathname has been spelled correctly, and that each 

entry corresponds to an existing subdirectory. 

I You 

-4 = Directory full.

file	 in	 directory	 is have attempted to create a	 or subdirectory	 a	 which 

already full.	 Each directory can contain no more than 255 entries, so the I only solution at this point is to delete some files or move them to another 

directory. The best advice is to divide the current directory into a series of 

I
subdirectories anyway.

I
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1	 -5 = Not a directory. 

You have attempted to perform a directory operation (make, remove, 

I change) on a file. These functions can ONLY be used to modify directory 

structures. 

I
-6 = Pathname overflow. 

XPDOS has attempted to return a pathname which is longer than the I

	

	 maximum pathname allowed (80 chars). The solution is to keep


subdirectory trees to a reasonable depth and not go so hogwild that you 

I

end up with 85 character pathnames. 

-7 = File allocation overflow. 

A file has attempted to expand beyond the maximum number of blocks I which XPDOS is able to allocate to . a single file (slightly more than 8 

Megabytes in the current implementation). No more information can be 

1

	

	 added to this file, although a second file could be opened and


information added to it where the first left off. I	 -8 = Cannot create: already exists. 

You have attempted to create a directory with a pathname that is already 

' in use (i.e. the directory already exists or a file exists with the same name 

you had in mine for the directory). Rename the existing occupant of the 

name, or create your directory using a different name. 1	 -9 = No such' file(s). 

A wildcard file operation has failed to match any files. In other words, no 

I files matching your wildcard were found, and no operations were 

performed. 

-10 =Cannot remove: directory not empty. 

You have attempted to remove a subdirectory which still contains entries I (subdirectories or files of any kind, empty or not). Only directories which 

are completely empty (i.e. no entries except for II•N and "..") can be 

removed. 

-11 -11 = Cannot remove current directory. 

You have attempted to remove the directory which you are logged to (i.e. 

I your current default directory). Use ChangeDirectory to move to the 

parent directory and try the operation again. I 
I 
I
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-12 = Cannot remove root directory. 

You have attempted to remove the root (7) directory. This directory is a 

permanent part of the file structure and cannot be removed at anytime for 

any reason (after all, why would you want to?). 

-13 = Cannot OPEN a directory file. 

You have attempted to open a subdirectory for file access. The only way 

to modify a directory "file" is through the directory manipulation 

commands (MakeDirectory, RemoveDirectory, MoveFile, 

ListDirectory). File operations like OpenFile and CloseFile are 

never allowed. 

-14 = File is already open. 
You have attempted to open a file which is already open. To reopen a 

file using a different access method you must close it first. 

-15 = Record length does not match record size. 
You have attempted to perform a fixed length record operation (GetRec 

or PutRec) using a record whose SIZE does not match the record length 

(reclen) specified at the time you executed the OpenFile command. 

Alter your array dimensions so that they conform to the record size, or 

pass an appropriately sized substnng of a larger array. 

-16 = Read past end of file. 
Your read operation has requested more information than remains in the 

file, and is thus unable to proceed. No more information can be read 

from this unit # unless the file marker is repositioned using Rewind, 

Position, Backspace, or GetRec/PutRec, or until the file is Closed and 

the reOpened. 

-17 = Block not in file. 

Your GetRec command has attempted to access a record which has a 

higher id number than any which has previously been written to the file 

(in other words, you have attempted to read a record which does not yet 

exist). A record should not be read form until it has been written to at least 

once. 

-18 = Cannot read from writeonly file. 

You have attempted to perform a read operation on a file which has been 

opened for write-only access. To read from this file, you must close it and 

then reopen it for read access. 

I 
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-19 = Cannot write to readonly file. 

I You have attempted to write information to a file which has been opened 

for readonly access. To write to the file, you must close it and then 

reopen it in an access mode which permits writing. 

I -20 = File is not open. 

You have attempted to perform a file operation (Read, Write, Get, Put) on 

I
a unit # which has not yet been opened. You must use an OpenFile 

command to open a file and obtain a unit # before you can perform i/o 

I
operations on it. 

-21 - Not a binary file. 

I	 You have attempted to perform a binary i/o operation (FileRead, 

FileWrite, GetByte, PutByte, etc.) on a file which is opened for direct 

access. 1	 -22 = Not a direct access file. 

You have attempted to perform a direct i/o operation (GetRec, Put Rec) 

I
on a file which is opened for binary access. 

-23 = Buffer too small. 

I
A FileRead operation has retrieved more information than will fit into 

the buffer which you have provided. You should alter your array 

I	 dimensions to create a larger buffer, or check the file to be sure that it 

was really intended to be read in this manner (for example, a 

FileReadln command performed on a file which contains no carriage I returns, will simply try to return the whole files as one line--probably not 

what you had intended). Possibly a different form of access (such as 

I
GetByte) is called for. 

-24 = Not a file. I	 You have attempted to perform a file operation on something which is not 

a file. 

I	 -25 = Target file already exists. 

A MoveFile operation has attempted to change a file's name such that it 

I would be identical with the name of another already existing file. Since 

XPDOS does not allow identical filenames in the same directory, the 

operation has failed. Alter your MoveFile operation so that it will give 

I each file a unique name. 

I 
I
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1	 -26 = Cannot move root directory. 

You have attempted to move or rename the root directory.	 The root 

I directory cannot be moved, removed, renamed, replaced, deleted, 

folded, spindled, mangled, or mutilated in any way. 	 It is one of those 

I
constants in life which stands apart from time and space as we know it. 

-27 = Missing parameter. 

I You have attempted to execute an XPDOS shell command without 

supplying one or more required parameters (mkdir, for instance, 

requires that you supply the name of the directory to be created). Check I your command's syntax and supply the missing parameter. 

-28 = Cannot copy/move file to itself. I You have attempted to copy or move a file to the exact same location and 

filename which it already has. 	 Such an operation is not possible, and 

I
would do nothing useful anyway. Change your copy or move command 

so that it puts the file somewhere else or with a different name. 

I -29 = Cannot move parent to child. 
You have attempted to move a directory into its own subdirectory (or 

some subdirectory of which it is the parent, grandparent, etc.). 	 The I directory structure must always be a TREE; never a circle, tube, cylinder, 

or other aberration.	 No directory operation which would result in the I creation of a circular subdirectory structure, or in the severance of part of 

the structure from the rest of the tree is allowed.

I -30 = Cannot move logged directory structure. 

You have requested a MoveFile operation which would result in your I	 current default directory being moved. As this is not allowed, you must 

first use ChangeD irectory to move to a different directory (such as the 

I

root) and then try the operation again. 

-31 = Cannot move between disks. 

I	 You have attempted to move or rename a file so that it would end up on a 

different disk from where it started. Only the CopyFile command can 

transfer information between disks, so it is suggested that you use that. 

1	 -32 = Illegal unit number. 
You have attempted to perform an operation using an illegal unit number. 

I
You should use an OpenFile command to open a file and get a legal 

unit number before you attempt to perform any i/o operations. 

I 
I
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-33 = No unit #s available. 

You have attempted to open a file when no unit #s are available on I which to open it. This means that 4 files are already opened, and you 

must close one of them before you can open any more. 

I -34 = Device does not exist. 

You have specified a disk number which does not correspond to a disk 

I
existing in your system. Check to see how many disks you have and try 

again. 

1
-35 = Backspace past top of file. 

You have called the Backspace procedure when no information has yet 

been read from the file (or all information has already been "unread"). I Backspace cannot be used to move beyond the top of a file. 

-36 = Bad data on integer read. 

I A FileReadINT operation has encountered non-blank, non-numeric 

data before reaching any useful integer information. Check your data file 

I
to be sure that it has been written in the proper format. 

-37 = Integer conversion failure. 

I
A FileReadINT operation has encountered numeric data which it is 

unable to convert, probably because the number itself is too large to fit 

I into a 32 bit integer variable. Check your file to make sure that the data is 

not all crammed together with no spaces in the middle or something like 

that. I -38 = Conversion buffer overflow. 

A FileReadINT or Fi1eReadREAL operation has encountered numeric 

I
data so lengthy that it will not fit into the internal conversion buffer. This 

probably means either that your data has been run together without I	 spaces, is so large that it wouldn't fit into a variable anyway, or has more 

significant figures then even a REAL64 could represent. 

I	 -39 = Found REAL data on an INT read. 

A FileReadINT operation has encountered numeric data with a decimal 

point (".") in the middle of it. This probably means that you are reading I your file in the wrong order, or wrote REAL data where INT data 

belonged. The number was read anyway (& rounded off to INT), but any 

I further results from this file are dubious. 

I 
I
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-40 = Found tNT data on a REAL read. 

A Fi1eReadREAL operation has encountered numeric data with no 

decimal point ("."). This probably means that you are reading your file in 

the wrong order, or wrote INT data where REAL data belonged. The 

number was read anyway (& converted to REAL), but any further results 

from this file are dubious. 

-41 = Error opening host file. 

Your dosget or dosput MS-DOS transfer operation has failed to open 

the file on the host system. Either the file does not exist in the case of a 

dosget, or there is something wrong with the pathname. Examine your 

host directory structure to see what the problem is. 

-42 = Failed to execute host command. 

XPDOS has attempted to execute a command on the host system and 

has for some reason failed. 

-43 = Packed read failed. 

Your packed read operation (GetINT, GetREAL32, GetREAL64) has 

failed because there are not enough bytes left in the file to hold the 

specified variable. INT & REAL32 each occupy 4 bytes, while REAL64 

occupies 8. This error probably means that something is horribly wrong 

with your file format, or that you are reading it back in the wrong order. 

-44 = No wildcards allowed for this command. 

You have specified wildcards (hI* or "?") for a command which does not 

allow them. Commands which allow wildcards are ListDirectory, 

MoveFile, CopyFile, and DeleteFile. Commands which never allow 

wildcards are MakeDirectory, RemoveDirectory, ChangeDi rectory, 

and OpenFile. 
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APPENDIX F 

XPGRAPHICS USER'S MANUAL I '	 The following text describes XPGRAPHICS, a library of graphics 

primitives. XPGRAPHICS was developed as software support for the INMOS 

I	 B408/B409 graphics hardware system included in XPFEM. The library is a 

stand-alone module which can be linked to applications by including 

#USE "graphics.tsr" in the occam code. I One variable, link, occurs in each XPGRAPHICS routine. Its definition for 

I

all routines is given below: 

link = integer variable which defines the graphics channel number I	 between the TDS and the graphics disk server (13408). 

0	 link	 3 

I
SYSTEM ROUTINES 

PROC InitServer.XL (VAL INT link) 


Initializes the graphics server. 

PROC Terminate.XL (VAL INT link) 

Terminates the graphics server. 

COLOR ROUTINES 

PROC SetBkColor.XL (VAL INT link, color) 

Sets the background color. 

color = background color value. Default is  (BLACK). 

0 <= color <= 255 I 
I 

I 
I 
I 
1 
I 
I 

I
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PROC Set FgColor.XL (VAL INT link, color) 

Sets the foreground color. 

Input: color = foreground color value. Default is 15 (WHITE). 

0 <= color <= 255 

PROC SetColor.XL (VAL INT link, color.value, red, green, 

blue) 

Defines a new color value in the color look up table. 

Input: color .value = new color value identification number. 

o <= color.value <= 255 

red	 = value of red color. 

o <= red <= 63 

green	 = value of green color. 

o <= green <= 63 

blue	 = value of blue color. 

O	 blue	 63 

I	 PROC SelectColorTable.XL (VAL INT link, table.number) 

Selects a color table for drawing. 

I	 Input: table. number = number of desired color table. Default = 1. 

0 <= table.number <= 2 

PROC GetPixelColor.XL (VAL INT link, x, y, INT color, error) 

Returns the color value of an assigned pixel. 

Input:	 x, y = coordinates of desired pixel. 

(Monitor and frequency dependent.) 

Output: color = color value assigned to pixel at (x,y) 

error = error code. 

PROC GetBkColor.XL (VAL INT link, INT color, error) 

Returns the background color number. 

Output: color = current background color value. 

error = error code. I 
I 
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PROC GetFgColor.XL (VAL INT link, 	 INT color, error) 

I Returns the foreground color number. 

color = current	 color value. Output:	 foreground 

error = error code. I
PROC SetMaskReg.XL (VAL INT link, mask) 

I
Sets the mask register on the IMS G170. 

Input:	 mask =	 pixel mask register. The pixel mask register in the IMS 

I G170 is bitwise ANDed with the address register to give 

a masked address. This masking can be used to alter 

I displayed colors without altering the video memory or 

the look-up table contents.

Point, Line, Polygon and Curve Routines 

PROC SetDash.XL (VAL INT link, VAL INT16 dash.pattern) 

Sets dash pattern. 

Input: dash. pattern = desired dash pattern number. 

Default is  (__j. 
1 = ..... 

2=.. 

3 

4= ----

5 =..-..-

6 =__ 

7 =-..-..-

8=__ 

9=. . . 

PROC Line.XL (VAL INT link, xO, yO, xl, yl) 

Draws a line given two endpoints. 

Input: xO, yO = coordinates of the beginning point. 


xi, yl = coordinates of the endpoint. 
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PROC LineRel.XL (VAL INT link, del.x, del.y) 

Draws a line relative to the current cursor position. 


I Input: del. x, del. y = drawing increments in the x and y directions. 

I
PROC LineTo.XL (VAL INT link, x2, y2) 

Draws a line from the current cursor position to an specified endpoint. 

Input: x2, y2 = coordinates of the endpoint. 

I	 PROC LineFrom.XL (VAL INT lin, x2, y2) Draws a line from the current cursor position to a specified endpoint 

without changing the current cursor position. I Input: x2, y2 = coordinates of the endpoint. 

PROC Point.XL (VAL INT link, x, y) 

Plots a point at a specific position. 

I
Input: x, y = coordinates of the desired position. 

PROC Circle.XL (VAL INT link, xc, yc, rad) 

Draws a circle determined by the center and radius. 

Inputs: xc, yc	 = coordinates of the circle of the circle. 

rad	 = radius of the circle. 

PROC Arc.XL (VAL INT link, xl, yl, x2, y2, x3, y3) 

Draws an-arc of a circle between the three points specified. 

Input: 
xi, yl = coordinates of the beginning point of the arc. 

x2, y2 = coordinates of a point which lies on the arc. 

x3, y3 = coordinates of the endpoint of the arc. 

I	 PROC Rect.XL (VAL INT link, xl, yl, x2, y2) Draws a rectangle using the top left corner and bottom right corner. 

Input: xi, yl = coordinates of the top left corner of the rectangle. I x2, y2 = coordinates of the bottom right corner of the rectangle. 

I 
11
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PROC Polygon.XL (VAL INT link, number.sides, 

VAL () [] INT polygon) I Draws a polygon given a specified number of sides and the vertices. 

Input: number . sides = number of sides of the polygon. 

I [1 (] polygon = coordinates of the vertices of the polygon. 

I
PROC PolygonFill.XL (VAL INT link, number.sides, 

VAL []	 []	 INT polygon,	 VAL INT color 

I Fills a polygon with a specified color. 	 The polygon is specified by 

number of sides and vertices. 

Input:	 number . sides 	 =number of sides of polygon. I []	 []	 polygon =coordinates of the vertices of the polygon. 

color	 = define desired fill color. I
PROC FillPolygon.XL	 (VAL INT link,	 x,	 y,	 color) 

I
Fills a polygon with a specified color.	 The polygon is specified by an 

interior point. 

I Input:	 x, y	 = coordinates of a point inside the polygon. 

color	 = fill color.

PROC QuickFill.XL (VAL INT link, x, y, color) 

Fills a polygon that has simple convex shape. The polygon is specified 

I by an interior point. 

Input: x, y	 = coordinates of a point inside the polygon. 

I
color =fill color. 

I	 PROC MoveDraw.XL (VAL INT link, x, y) 

Moves the cursor to a specified position. 

Input: x, y	 = the coordinates of the desired cursor position. 

PROC MoveDrawRel.XL (VAL INT link, del.x, del.y) I Moves the cursor position relative to its current position. 

Input: del . x, del. y = incremental distances from current position. I 
I 
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PROC SetDrawMode.XL (VAL INT link, mode) 

'	 Sets drawing mode. 

Input: mode	 = define desired drawing mode. Default = 0 (normal). 

1 = and mode 

2 = or mode 

3=xormode 

1	 4 = foreground mode 

I	 PROC GetDrawingCursor.XL (VAL INT link, INT x, y) 

Returns the cursor position. 

I

Output: x, y = the coordinates of the current cursor position. 

SCREEN and WINDOW ROUTINES I
PROC ClearSelectedScreen.XL (VAL INT link, color, INT error) 

I
Clears the currently selected screen with a specified color. 

Inputs: color = screen color. Default = 0 (BLACK). 

0 <= color <= 255 

Output: error = error code. 

PROC ClearScreen.XL (VAL INT link, screen.nurnber, color, 

INT error) 

Clears a screen using a specified color. 

Input:	 screen. number = screen number to be cleared. Default =0. 

0 <= screen.number <= 1 

color	 = screen color, 

default =0 (BLACK). 

0 <= color <= 255 

Output: error	 = error code.

PROC SelectScreen.XL (VAL INT link, screen.number, INT error) 

Selects a screen for drawing. 

Input: screen.number	 = screen number for drawing. Default= 0. 

0 <= screen.number <= 1 

Output: error	 = error code. I 
I
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PROC DisplayScreen.XL (VAL INT link, screen.number, 

INT error) 

I Selects a screen to be displayed. 

Input: screen . number	 = screen number for display. Default =0. 

1 0 <= screen.number <= 1 

Output: error	 = error code. I
PROC FlipScreen.XL (VAL INT link, new. screen,	 INT error) 

I Deselects displayed screen and activates designated screen for drawing. 

Deselects any displayed windows. 

Input:	 new. screen	 = screen number to be selected. I 0 <= new.screen <= 1 

Output: error	 = error code. 

PROC CopyScreen.XL 	 (VAL INT link,	 from.screen,	 to.screen, 

I
INT error) 

Copies the contents of one screen onto another. I Input:	 from. screen	 = the screen to be copied from. 

0 <= from.screen <= 1 

I to.screen	 = the screen to be copied to. 

1 o <= to.screen <= 

Output: error	 = error code. 

I PROC CopyScrnSegToScrn.XL (VAL INT link, from.screen, 

to. screen, from. x, from. 

I
width, length,	 to.x,	 to.y,	 mask, 

INT error) 

I Copies a screen segment onto another screen. 

Input:	 from. screen	 = the screen to be copied from. 

I

0 <= from.screen <= 1 

to. screen	 = the screen to be copied to. 

0 <= to.screen <= 1 

I from. x,	 from. y = coordinates of the upper left corner of the 

segment to be copied. - 

I
width, length = width and length of the segment to be copied.

I
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to. x, to. y	 = coordinates of the beginning point on the 

I

screen to which the segment is to be copied. 

mask	 = copy mask mode. 

0 = normal copy 1

	

	 1 = only copy non-zero bytes 

2 = only copy zero bytes 

I	 Output: error	 = error code. 

I PROC CopyWindSegToWind.XL (VAL INT link, from.window, 

to.window,	 from.x,	 from.y,	 width,	 length, 

• to.x,	 to.y,	 mask,	 INT error) I Copies a window segment onto another window. 

Input:	 from. window =	 the window to be copied from. 1 0 <= from.window <= 14 

to . window =	 the window to be copied to. 

1 0 <= to.window <= 14 

• from.x, from.y = the coordinates of the upper left corner of the 

I
segment to be copied. 

width,	 length = width and length of the segment to be copied. 

. x,	 to . y	 = c000rdinates of the beginning point on the 

I

to

window to which the segment is to be copied. 

I mask	 =	 copy mask mode. 

o = normal copy 

1 = only copy non-zero bytes 

1 2 = only copy zero bytes 

Output: error	 =	 error code. 

PROC CopyScrnSegToWind.XL (VAL INT link, 	 from.screen, 

I
to.window, from.x,	 from,y,	 width,	 length, 

• to.x,	 to.y,	 mask,	 INT error) 

Copies a screen segment onto a window I Input:	 from. screen	 = the screen to be copied from. 

o <= from.screen <= 1 

I to . window =	 the window to be copied to. 

o <= to.window <= 14 

I
from. x,	 from. y = coordinates of the upper left corner of the

11 
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segment to be copied. 

= width and length of the segment to be 

copied. 

= coordinates of the beginning 

point on the window to which the segment is 

to be copied. 

define desired copy mask mode. 

0 = normal copy 

1 = only copy non=zero bytes 

2 = only copy zero bytes 

error code. 

1
width.length 

I	 to.x, to.y 

I	 mask	 = 

I 
I	 Output: error	 =

PROC SetWindow.XL (VAL INT link, wondiw.number, x, y, I INT error) 

Sets up a window with given width and length. 

Input: window. number= window number. 

0 <= window.number <= 14 

I
x, y	 =	 width and length of the desired window. 

Output: error	 =	 error code. 

PROC ClearSelectedWindow.XL (VAL INT link, color, INT error) 

Clears the currently selected window using a specified color. 

Input: color	 =	 window color. 

0 <= color <= 255 

Output: error	 =	 error code. 

PROC ClearWindow.XL (VAL INT link, window.number, color, 

INT error) 

Clears a set window to a specified color 

Input: window . number =

	

	 Id number of window to be cleared. 

0 <= window.number <= 14 

color	 = window color. 

0 <= color <= 255 

Output: error	 =	 error code. 

1 
I 
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PROC SelectWindow.XL (VAL INT link, window.number, INT error) 

Selects a set window for drawing. 1	 Input: window . number = window number for drawing. 

0 <= window.number <= 14 1	 Output: error	 = error code. 

I
PROC DisplayWindow.XL (VAL INT link, window.nurnber, x, y, 

INT error) I	 Input: window. number = window number for display 

0 <= window.number <= 14 

I

x, y	 = display position of the window. 

Output: error	 = error code. 

PROC ClearSegment.XL (VAL INT link, xi, yl, x2, y2, color, 

INT error) 

Clears a segment on a currently active screen/window. 

Input: xi, yl = the coordinates of the top left corner of the segment 

that is to be cleared. 

x2, y2 = the coordinated of the bottom right corner of the 

segment that is to be cleared. 

color = define desired segment color. 

0 <= color <= 255 

Output: error = error code. 

PROC ClearScreenSeg.XL (VAL INT link, screen.number, xl, yl, 

x2, y2, color, INT error) 

Clears a segment segment. 

Input: screen . number = screen which contains the segment. 

xl, yl	 = coordinates of top left corner of segment. 

x2, y2	 = coordinates of bottom right corner of 

segment 

color	 = segment color. 

0 <= color <= 255 

Output: error	 = error code. 

I 
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PROC ClearWindowSeg.XL (VAL INT link, window.number, xl, yl, 

x2, y2, color,INT error) 

Clears a window segment. 

Input: window. number = window which contains the segment to be 

cleared. 

xl, yl	 = coordinates of top left corner of segment 

to be cleared. 

x2, y2	 = coordinates of bottom right corner of 

segment to be cleared. 

color	 = segment color. 

0 <= color <= 255 

Output: error	 = error code. 

PROC GetCurrentScrnNum.XL (VAL INT link, INT screen.number) 

Returns the current screen number. 

Output: screen. number = current screen number 

PROC GetDisplayedScrnNum.XL (VAL INT link, INT screen.number) 

Returns the current displayed screen number. 

Output: screen. number = current displayed screen number. 

TEXT ROUTINES 

PROC DrawChar.XL (VAL INT link, char.number, INT error) 

Draws a character provided by the character number. 

Input: char . number	 = character number 

0 <= char. number <= 255 

PROC WriteStr.XL (VAL INT link, str.size, VAL [] BYTE text, 

INT error) 

Writes a string of text horizontally without justification. 

Input: str.size	 =	 string size. IF "0" is input, the program will 

calculate the size. 

text	 = character string to be drawn. 

Output: error = error code.

134 
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PROC WritesStrJustify.XL (VAL INT link, str.size, 

VAL [] BYTE text, INT error) I Writes a string of text according to the justification. 

Input:	 str.size	 =	 string size. IF ")" is input, I calculate the size. 

text	 = character string to be drawn. 

I
Output: error = error code.

the program will 

I	 PROC WriteNurn.XL (VAL INT link, number, INT error) 

Writes a given integer number on screen. 

I

	

	 Input: number = integer number to be drawn on screen. 

Output: error = error code. 

I PROC WriteRealNum.XL (VAL INT link, VAL REAL32 realnurnber, 

VAL INT Ip, Dp, INT error) 

I
Writes a given real number on screen. 

Input: realnumber = real number to be drawn on screen. 

I	 'p	 =	 number of digits to the left of the decimal point. 

Dp	 =	 number of digits to the right of the decimal 

point. 

Output: Output: error	 =	 error code. 

I PROC Scroll.XL (VAL INT link, INT error) 

Scroll currently selected window/screen by one line 

I
Output: error	 =	 error code. 

I	 PROC JumpScroll.XL (VAL INT link, INT error) 

Scroll currently selected window/screen. The number of lines is 

'	 determined by the y height multiplied by the character height. 

Output: error	 =	 error code. 

1	 PROC CarriageReturn.XL (VAL INT link, INT error) 

Returns the cursor to the left edge of the currently selected I screen/window. 

Output: error	 =	 error code. 

ii 

1



PROC LineFeed.XL (VAL INT link, INT error) 

Returns the cursor to the left edge of the currently selected 

screen/window. 

Output: error	 =	 error code. 

PROC LineFeed.XL (VAL INT link, INT error) 

Increases the cursor position by the height of the characters being drawn. 

Scrolling is automatic if issued at the bottom of the screen/window. 

Output: error	 =	 error code. 

PROC SetTextStyle.XL (VAL INT link, font, text,dirct, 

width, height) 

136 

Sets desired test style. 

Input: font	 = 

text.dirct = 

width	 = 

height	 =

font id Default= 0. 

Currently, only the default is available. 

text orientation. Default = 0. 

1 =vertical 

character width. Default = 1. 

character height. Default =1. 

PROC SetTextJustify.XL (VAL INT link, horiz, vert) 

Sets desired text justify. 

Input: horiz = horizontal text justification. Default = 0 (left justify). 

1 =center justify 

2 = right justify 

	

vert	 = vertical text justification. Default = 0 (top justify). 

1 =center justify 

2 = bottom justify 

PROC MoveTextTo.XL (VAL INT link, x, y, INT error) 

Moves the text cursor position to specific position. 

	

Input: x, y	 = the coordinates of the desired text cursor position. 

Output: error = error code.
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PROC MoveTextRel.XL (VAL INT link, delta.x, delta.y, 

INT error) 

Moves the text cursor position relative to its current position. 

Input: delta . x, delta. y = the distance from text current position. 

Output: error	 = error code. 

PROC Rotate.XL (VAL INT link, turn, INT error) 

Rotates all subsequent characters through 0, 1, 2, or 3 quarter turns in a 

clockwise direction. 

Input: turn	 = number of the turn. 

Output: error = error code. 

PROC ReflectX.XL (VAL INT link, INT error) 

Reflects the textual output in the x plane. Can be cancelled by issuing a 

second reflect command. 

Output: error = error code. 

I	 PROC ReflectY.XL (VAL INT link, INT error) 

Reflects the textual output in the y plane can be cancelled by issuing a 

I	 second reflect command. 

Output: error = error code. 

PROC GetTextSize.XL (VAL INT link, INT x.size, y.size) 

Returns the text size. X.size is text width, y.size is text height. 

Output: x. size = current text width. 

y.size = current text height. 

PROC GetTextCursor.XL (VAL INT link, INT x.axis, y.axis) 

Returns the text cursor position. 

Output: x ., y. axis = current text cursor position. 

CRT ROUTINES 

PROC Xwidth.XL (VAL INT link, width) 

Sets the pixel width. 

Input: width = define desired pixel width. Default = 1. 
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PROC Yheight.XL (VAL INT link, height) 

Sets the pixel height. 

Input: height = define desired pixel height. Default = 1. 

PROC SetLineFrequency.XL (VAL INT link, line.frequency) 

Sets the scan line frequency for CRT. 

Input: line. frequency= desired line frequency. 

PROC SetFrameRate.XL (VAL INT link, frame.rate) 

Sets the frame for CRT. 

Input: frame . rate = desired frame rate. 

PROC Interlace.XL (VAL INT link)


Toggles interlace ON/OFF. 

PROC SetPixelClock.XL (VAL INT link, pixel.clock) 

Sets pixel clock frequency. 

Input: pixel. clock= desired pixel clock. 

PROC Int.crt.XL (VAL INT link) 

Resets on receipt CRT controller. 

PROC BlankCrt.XL (VAL INT link) 

Blanks the monitor. 

PROC UnblankCrt.XL (VAL INT link) 

Unblanks the monitor.



Error Codes 

Below is a list of possible errors returned by XPGRAPHICS routines. If 

the requested action was completed successfully, an error status of 0 is 

returned; otherwise, one of the listed errors is specified. 

o = successful completion 

-1	 = coordinates out of screen/window range 

-2 =	 screen other than 0 or 1 selected 

-3 = window selected has not been set 

-4 =	 insufficient storage left for window definition 

-5 = the maximum number of windows has been exceeded 

-6 = drawing mode selected not in the range 

-7	 =	 rotations allowed only in quarter turns, i.e. (0-3) 

-8 =	 color selection out of range of color look up table (0-255) 

-9 =	 character requested was not in the range of character font table (0-

255) 

-10 =	 only 255 characters allowed in strings 

-11	 =	 color table requested does not exist (0-2) 

-12 = command set to graphics package does not exist 

-13 =	 invalid window dimensions 

-14	 =	 invalid window position 

-15 =	 invalid screen/window dimensions 

-16 = window has not been selected
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APPENDIX G


KEYWORDS RECOGNIZED BY THE NASTRAN INTERFACE 


MODULE 

The following list contains the NASTRAN keywords recognized by the 

NASTRAN interface module in XPFEM. Currently the interface module 

recognizes only keywords associated with the displacement solution method in 

MSC and COSMIC NASTRAN. 

MSC KEYWORDS	 COSMIC KEYWORDS 

CHEXA CIHEX1 

CQUAD8 CIHEX2 

CQUAD4 CQDEM1 

CQDMEM1 CTRIM6 

CTRIA6 CTRMEM 

CTRIA3 

GENERAL KEYWORDS 

$ PARAM 

CORD 1 R PBAR 

CORD2171 PIHEX 

ENDDATA PQDMEM1 

FORCE PSHELL 

GRID PSOLID 

GRDSET SPC 

MAT1 SPC1
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APPENDIX H 

PARALLEL MESH GENERATION with FINITE QUADTREE 1 
I

The FINITE QUADTREE mesh generator uses tree data structures which 

are not readily adaptable for parallel calculations due to the extensive amount 

of interprocessor communication needed to maintain trees which are evenly 

I balanced across processors. To adapt FINITE QUADTREE for parallel mesh 

generation, groups of independent elements, i.e., elements not associated 

I
through common degrees of freedom, must be identified. Such groups of 

independent elements can be identified using a coloring scheme. A coloring I	 scheme selectively assigns a color set to a group of dependent elements. The 

color set is repeated for each group of dependent elements; thus, all elements 

I	 of a specific color are independent of each other and available for parallel 

processing. 

I Two requirements of a coloring scheme are computational efficiency and 

minimization of the color set. Computational efficiency is a requirement 

I
because coloring schemes require large amounts of data and are not easily 

parallelized; therefore, one or a small number of processors will be employed I	 for the coloring. Minimizing the size of the color set is a requirement to maintain 

coarse granularity and hence reduce the frequency of synchronization and 

I communication. 

I

Algorithms to color arbitrary finite element meshes with a minimum 

number of colors are data- and CPU-intensive. Simple and efficient coloring 

algorithms, however, can be developed when elements have a regular pattern. 

I In FINITE QUADTREE, the quadrants used to generate the finite elements have 

such a regular pattern and thus will be the entities to be colored for parallel 

I
mesh generation. 

I
The simplest coloring procedure would color quadrants as sets of 

independent quadrants based on the level of the terminal quadrants in the tree. 

This form of coloring is quite efficient since it can be accomplished by 

1



I	 142 

performing one complete tree traversal in which each terminal quadrant is 

assigned the appropriate color based on level in tree and location of quadrants 

with respect to its parents. Each level requiring a separate set of colors uses 

four new colors. 

In the current implementation of FINITE QUADTREE, neighboring 

quadrants that share an edge are allowed a one level difference. This 

restriction allows quadrants that share a corner to have a two level difference. 

Therefore, it is possible for three different levels to be dependent on each other 

since they share common degrees of freedom. Thus a total of twelve colors are 

required to identify independent quadrants (Figure H.1). 

Clearly twelve colors is more than the minimum needed to ensure all 

quadrants neighboring a given quadrant have a different color. For example, it 

is possible to manually color the set of quadrants in Figure H.1 with six colors 

such that neighboring quadrants have different colors. If the one level 

difference were enforced across the nodes as well as the edges, the mesh 

could be colored with the above procedure using only eight colors. If the two 

level difference at corners were allowed in Figure H.1, dependent quadrants at 

such corners would color the same, which is not correct. However, at such a 

corner, if the quadrant at the lower tree level were given the color that would 

have been assigned to its parent quadrant, the coloring problem across the 

corner would be eliminated. Figure H.2 displays this concept applied to the set 

of quadrants in Figure H.1. As seen in Figure H.2, the resulting set of eight 

colors provides an acceptable set of colors. 

I	 The application of the procedure outlined above is more complex than 

assigning colors based solely on level during a tree traversal. It specifically 

I	 requires the identification of quadrant corners where a two level difference 

exists. However, this identification process can be done with reasonable 

I	 efficiency during an overall tree traversal process. Currently, stored information 

for each quadrant indicates if neighboring quadrants are one level smaller. A 

two level corner difference could be detected by determining quadrants with I neighbors of two different tree levels. When these cases are detected, a 

localized tree traversal can be applied to find the level of the lower corner 

I quadrant. 
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I 
I Further effort is required to ensure the functionality of the eight color 

scheme. Additionally, it will be necessary to develop procedures to undo color 

assignments during an adaptive refinement process which eliminates a two 

I level difference at a corner. 
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FIGURE H.1 
Use of twelve colors to 

identify independent quadrants 
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FIGURE H.2 
Use of eight colors to 

identify independent quadrants 
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