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Nomenclature

A

Ac

Acl

AK

(A,B,C,D)

a

B

Bc

BK

CK

Cp

Cr

Cper

D

DK

Dr

di

dmax

dmin

E()

e

Cmax

G

Gp

Gr

c()

c'( )

ga()

H

Irxr

J

Jr

J

J

K

Kr

open-loop state matrix

state matrix for the dynamic dissipative compensator

closed-loop state matrix

state matrix for K(s)

nth-order minimal realization of T(s)

actuator bandwidth

control influence matrix (in state-space representation)

input influence matrix for the dynamic dissipative compensator

input influence matrix for K(s)

output influence matrix for K(s)

position measurement influence matrix (in state-space representation)

rate measurement influence matrix (in state-space representation)

influence matrix for the performance output

open-loop damping matrix

feed-through matrix for K(s)

open-loop damping matrix in modal coordinate

outer diameter of tubes associated with structural design variable i

maximum allowable outer diameter of tube

minimum allowable outer diameter of tube

expected value of ( )

pointing error vector

pointing error tolerance

gain matrix for the dynamic dissipative compensator

position gain matrix

rate gain matrix

transfer function from # to yp

transfer function from p to Yr

actuator dynamics transfer function

influence matrix for w

r x r identity matrix

inertia matrix

inertia matrix in modal coordinate

objective function

complex number identity

stiffness matrix

stiffness matrix in modal coordinate
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g(s)

K 1

k

L

LK

Lp

Lr

l

/_lact

Mma_

/_lst r

Mtot

m

m

n

nK

P

Pe

Pz

Pc

Pma 

Q

q

qr

Re( )

r

r

Sp

Sr

8

T()

t

compensator (controller) transfer function

alternate realization of K(s)

actuator parameter

Cholesky factor matrix

Cholesky factor of the weighting matrix Q

Cholesky factor matrix of the position gain matrix

Cholesky factor matrix of the rate gain matrix

number of position and rate measurements

actuator mass

upper bound value on mass

structural mass

total mass

number of input vectors

number of three-axis sensors

order of plant

order of L K

solution of the Kalman-Yacubovich equation

steady-state covariance matrix of the pointing error vector

steady-state covariance matrix of the closed-loop state vector

controlled performance

upper bound value on the steady-state average control power

weighting matrix

amplitude vector

modal amplitude vector

real part of ( )

number of modes in the control design model

reference signal vector

influence matrix for Vp

influence matrix for vr

Laplace parameter

rational matrix-valued function

time

u

Vp

Vr

Wp

trace of ( )

control input vector

disturbance vector at the position/attitude output

disturbance vector at the rate output

noise intensity matrix for vp
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Wr

W

X

Xa

XK

Yacc

YK

Yp

Yper

Yr

Z

0rxr

O_

Z

¢4
r

Ai

p

CI_ r

¢()

COi

()o

noise intensity matrix for vr

disturbance vector at the input

displacement vector

state vector for the dynamic dissipative compensator

state vector for K(s)

acceleration measurement vector

output vector for K(s)

position measurement vector

performance output vector

rate measurement vector

state vector

r × r null matrix

constant that relates the control effort to the actuator mass

trade-off parameter

damping ratio of the ith open-loop mode

control influence matrix in modal coordinate

ith eigenvalue of the closed-loop state matrix

damping ratio

retained open-loop eigenvector matrix

single-valued function

frequency of the ith open-loop mode

initial value of ( )

infinity norm of] ]

Abbreviations:

ADS Automated Design Synthesis

a.s. asymptotically stable

CMG control moment gyro

CSI controls-structures interaction

EPS Earth Pointing System

LaRC NASA Langley Research Center

LFSS large flexible space structure

LQG Linear-Quadratic-Gaussian

MBC model-based controllers

PR positive real

rms root mean square

SPR Strictly Positive Real

Dots over symbol indicate derivative with respect to time; tilde over symbol indicates
second-order representation; superscript T indicates a transposed matrix; and superscript *

indicates complex conjugate.

V



=

i

C



Abstract

An approach for an optimization-based integrated controls-structures

design is presented for a class of flexible spacecraft that require fine

attitude pointing and vibration suppression. The integrated design problem

is posed in the form of simultaneous optimization of both structural and

control design variables. The approach is demonstrated by application to

the integrated design of a generic space platform and to a model of a

ground-based flexible structure. The numerical results obtained indicate

that the integrated design approach can yield spacecraft designs that have

substantially superior performance over a conventional design wherein the

structural and control designs are performed sequentially. For example,

a 40-percent reduction in the pointing error is observed along with a

slight reduction in mass, or an almost twofold increase in the controlled

performance is indicated with more than a 5-percent reduction in the

overall mass of the spacecraft (a reduction of hundreds of kilograms).

Introduction

Current spacecraft design customarily involves an

iterative sequence of designs performed separately

within the structural and control disciplines. Struc-

tural design is performed first and is based on loading
considerations such as would occur during launch, re-

boost, or component operational maneuvers. Sizes

and masses of mission-related components are esti-
mated and a structure that maintains the desired

component relationships during operations is de-

signed. A controller is next designed for the fixed

structure to orient, guide, and/or move the space-
craft to obtain the required performance. The con-

trol design must also provide satisfactory closed-loop

stability and robustness properties. If the nominal
structure does not admit an adequate control de-

sign, it is returned to the structural discipline for

modification. After modification, the structure is re-
turned to the control discipline for redesign. This

iterative process continues until a satisfactory com-

promise is found between the mission and control re-

quirements. This separate-discipline approach has

been successfully used in the past and works well
in cases wherc a relatively high-stiffness structure is

attainable and where nonstructural components are

concentrated masses and inertias, or where perfor-

mance requirements are not stringent. However, fu-

ture space structures and performance requirements

do not fit this category.

A number of future space missions will use largc

flexible structures in low-Earth and geostationary or-

bits. Possible structures include space science plat-

forms, space processing facilities, and Earth observa-

tion systems. Such structures typically require large
distributed-mass components such as booms, solar

arrays, and antennas whose dimensions range from a

few meters to possibly hundreds of meters. To mini-
mize the costs of construction, launching, and opera-

tions, it is necessary to make the structure as light as

possible. However, the combination of large size and
low structural mass leads to increased flexibility and
makes more difficult the control of the structure and

its components to a specified precision in attitude

and shape.

The combination of flexibility and low mass cre-

ates a special dynamical interaction problem that is

characteristic of large flexible space structures. In

the design of controllers for physical systems, some
trade-off almost always has to be performed between

design-model accuracy and mathematical complex-

ity. The more accurate analysis models often re-
quire computational time that is too excessive to

qualify them as design models for control purposes.

Also, many of the most widely-used multivariable

controller design techniques work best for moderate-

order, linear, time-invariant design models. Typi-

cally, in practice, high-order nonlinear models are
lincarized about some operating condition and have

their model order reduced to produce design models

that conform to computational limitations or com-

pensator implementation constraints. These prac-
ticalities introduce modeling errors in the form of

unmodeled dynamics that must be accounted for in

the controller design process. Space structure con-

troller design models are generally found through

some order-reduction procedure applied to a high-

order analysis model obtained from finite element

techniques. The order-reduction process essentially
deletes a portion of the finite element model to pro-

duce a lower-order controller design model. Although



no longercontainedin the designmodel,the un-
modeleddynamics,representedby thedeletedpor-
tion, still appearin the measurementvectorand
thereforecanbeaffectedby model-basedcontrolin-
puts.Care must be taken in the design of controllers

for lightly damped systems that the control inputs

do not spillover into the unmodeled dynamics with

disastrous destabilizing effects (ref. 1).

Controls-structures interaction (CSI) in the form

of destabilizing spillover has been verified in sim-

ple Earth-based laboratory experiments as well as in

the design, analysis, ground development and test,
and/or flight operation of space systems in industry

(ref. 2). The current approach to solving CSI prob-

lems is to design the spacecraft to avoid undesired

dynamical interaction. This approach generally re-

quires either stiffening the structure or slowing down
the control system response. Stiffening the structure

simplifies the control design problem in that the pre-

dominant dynamics tend toward rigid body but is

costly in terms of mass as well as launch packaging
and weight, leading to increased fuel consumption.
Slowing down the control response produces control

inputs that have less of a chance of producing de-
stabilizing effects but is costly in terms of reduced

performance capability. Neither approach is com-

pletely satisfactory. What is needed is a new design
approach that is capable of avoiding the damaging as-

pects of CSI while identifying and taking advantage
of any beneficial aspects.

The development and experimental validation of

such an approach is a primary purpose of NASA's

CSI program (ref. 3). Fundamentally, the CSI pro-

gram recognizes the high degree of coupling that ex-

ists between the control and structural disciplines

when dealing with flexible structures. For example,

controllers designed to be robust to unmodeled dy-
namics may need very low gain (and therefore, pro-

duce low performance) (ref. 4). In order to main-

tain high performance, it would then be necessary
to redesign the structure to increase the frequen-

cies of the higher modes likely to be affected by
spillover. If the thickness of a structural member

is changed, the dynamics will change, which would

then change the control law and the required ac-
tuator sizes (and masses). These changes would,

in turn, again change the structural model. One

of the goals of the CSI program is to integrate the
structures and controls design disciplines. Rather

than design control and structural aspects of space

structures separately in the sequential manner de-

scribed earlier, approaches are being developed for

a unified controls-structures modeling, analysis-and-

design method that would allow a complete iteration

on all critical (control and structure) design variables
in a single integrated computational framework.

This paper considers missions that include flex-

ible spacecraft with no articulated appendages and

require fine attitude pointing and vibration suppres-
sion (e.g., large space antennas). Missions that in-

volve flexible spacecraft with articulated multiple

payloads, missions requiring large-angle slewing of

spacecraft without articulated appendages, and mis-
sions that include general nonlinear motion of a flexi-

ble spacecraft with articulated appendages and robot

arms are not considered. Two controller strategies

are considered, namely, the static and dynamic dis-
sipative controllers, which are well known for their

stability robustness in the presence of unmodeled dy-

namics and parametric uncertainties (refs. 4 and 5).
The approach selected for the development of inte-

grated controls-structures design methodology is an

optimization-based procedure employing mathemat-
ical programming techniques. The optimization ap-

proach allows freedom and variety in selecting the
potentially large number of design variables. The op-

timization approach is also the one commonly used

in the field of structural design. In fact, many papers

describing optimization-based integrated design have

appeared in the literature during the last 12 years.
An excellent literature survey can be found in ref-

erence 6. However, only recently have applications

gone beyond analytical studies with fictitious models,
relatively simple laboratory apparatus, or unrealistic
control designs. Some of the recent efforts include

the works by Balakrishnan using infinite-dimensional
models (ref. 7); by Bossi, Hunziker, and Kraft us-

ing Q-parameterization theory along with shape op-
timization (ref. 8); the studies by Maghami et al.

on the integrated design of large structures (with

thousands of degrees of freedom) using dissipative

compensators (refs. 9-11); and a paper by V_oodard

et al. on integrated optimization with varying actu-
ator mass (ref. 12). One of the unique features of

thc CSI program is that integrated designs will be

fabricated and the methodology validated in the lab-
oratory. This feature places the constraint of realism

on the design process, which is not normally found
elsewhere.

The purpose of this paper is to describe a por-

tion of the integrated design methodology and results
from the CSI program. This work differs from past

studies in several ways. The design treats large re-

alistic applications: a derivative of a geostationary
platform designed in support of Earth observation

sciences (ref. 13) and the initial phase of an evolution-

ary laboratory structure in the CSI program (ref. 14).
A design similar to the integrated design reported
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hereinandthat usestheCSImodelisactuallybeing
constructedat theLangleyResearchCenter(LaRC)
for the purposeof validatingthe integrateddesign
methodology.Also,wcrecognizethat the effectof
the controlsystemon thestructuralmassandcon-
straintscanbesignificantwhenthemagnitudeof the
controleffortdeterminesthemassof thecontrolsys-
temandits powersupply(rcf.15).Thisrealisticef-
fectisaccountedforby theinclusionof amathemat-
icalexpressionthat couplestheactuatormassesand
the controllergains. Finally,the controllerformu-
lationusesrecentlydevelopedtheoryfor dissipative
controllersnot previouslyemployedin applications
of thissize.

Webeginwith adescriptionof themathematical
modelofthestructureandcontrollerdesignmethods.
Next,weofferanoverviewoftheoptimization-based
integrateddesignprocedureemployedin thispaper.
Afterwards,descriptionsofthestructure,designvari-
ablesandconstraints,andintegrateddesignproblem
statementsaregivenforeachof theapplications.Fi-
nally,resultsfromtile integrateddesignprocessare
discussed.An appendixgivingthe fundamentalsof
thedissipativecontrollertheoryisprovided.

Mathematical Model of the Plant

The linear, time-invariant, mathematical model

of a flexible space structure is given by

J_ + D± + Kx = Bu (1)

yp = Cpx /
Yr = t_rX ) (2)

where x is an n × 1 displacement vector, J is the

positive-definite inertia matrix, D is the open-loop

damping matrix, K is the nonnegative-definite stiff-

ness matrix, B is an n x rn control influence matrix,

u is an m x 1 control input vector, yp and Yr are,

respectively, I x 1 position and rate measurements,

and Cp and _Jr are the corresponding output in-
fluence matrices. The second-order representation

of the structure given in equation (1) is obtained

through finite element modeling. The order of a
large flexible space structure (LFSS) can be quite

large. For design and analysis purposes, the order

of the system is reduced to a design size. This re-

duction is accomplished by using a modal truncation

approach wherein every mode in the controller band-
width is retained and the remaining modes are trun-

cated. The system equations in modal coordinates
for the retained modes are written as

JrClr + DrClr + Krqr = 'I_rTfiu --=FTu (3)

where qr is an r x 1 vector of modal amplitudes;

Jr, Dr, Kr are, respectively, the generalized iner-

tia, damping, and stiffness matrices; and Or is an
r × n matrix whose columns are the r open-loop

eigenvectors associated with the included modes. If
the mode shapes are normalized with respect to
the inertia matrix, and modal damping is assumed,

then Jr = Irxr. Dr = Diag (2_lWl, 2_2w2,..., 2_rWr),

and Kr = Di"ag (Wl2,W2,...,Wr2}, where wi and

¢i (i = 1, 2,..., r) are the open-loop frequencies and
damping ratios, respectively. Here, the sensors
are collocated and compatible with the actuators,

whereby

yp = rqr "_ (4)
Yr = FOr J

Note that the collocation of the sensors and actuators

is necessary for the implementation of the dissipative

controllers. (See the appendix.) This collocation
guarantees the system to be minimum phase (i.e.,
all transmission zeros are in the left-half plane) and

will enhance the stability robustncss of the overall

system.

In defining the state vector z,

Z = ( qr Clr )T (5)

the dynamics of the system, assuming no appreciable
sensor and/or actuator dynamics, can be written in
a first-order form

= Az + Bu (6)

where

and

[ 0rxr Irxr ]A = [_Kr -Dr

yp=[r 0]z-- C;z

Yr=[0 F]z-Crz

The general configuration of the controlled structure
is illustrated in the block diagram shown in figure 1.

In this figure, w, Vp, and Vr represent disturbances
at the input, position output, and the rate output,

respectively; r denotes the reference signal vector;

and Yper refers to those outputs that are used for
performance evaluations and not in the feedback

loop. In this configuration, the system equations are
written as

= Az + Bu + Hw (7)



yp= Cpz+ SpvpI

Yr Crz + S,.vr / (8)
Yper CperZ

where H, Sp, and Sr are influence matrices for the

disturbances w, vp, and Vr, respectively, and Cpe r

is the output influence matrix associated with Yper.

It is assumed that w, vp, and vr are uneorrelated,
zero-mean stationary white-noise processes with unit
intensities.

Controller Design Methods

Control system design for LFSS's is a challenging

problem because of their special dynamic character-

istics, which include the following a large number
of structural modes within the controller bandwidth;

low, closely spaced structural mode frequencies; very

small inherent clamping; and lack of accurate knowl-

edge of tile parameters. To implement the con-
troller, it must be of a reasonably low order and must

also satisfy the performance specifications (i.e., root

mean square (rms) pointing error and closed-loop

bandwidth). It must also have robustness to non-
parametric uncertainties (i.e., unmodeled structural

modes), and to parametric uncertainties (i.e., errors

in the knowledge of the design model). Two ma-
jor categories of controller design methods for LFSS

are model-based controllers (MBC's) and dissipative
controllers. An MBC generally consists of a state

estimator (a Kalman-Bucy filter or an observer) fol-

lowed by a linear-quadratic regulator. The state esti-

mator uses the knowledge of the design model (con-

sisting of the rotational rigid-body modes and a few

elastic modes) in its prediction part. Using nmlti-
variable frequency-domain design methods, such con-
trollers can bc made robust to unmodeled structural

dynamics; that is, the spillover effect can be over-

come (ref. 4). However, such controllers generally
tend to be very sensitive to uncertainties in the design

model in particular, to uncertainty in the structural

mode frequencies (refs. 4 and 5). An analytical ex-

planation of this instability mechanism may be found
in reference 5. Achieving robustness to real paramet-

ric uncertainties is, as yet, an unsolved problem, al-

though considerable research activity is in progress
in that area.

Static Dissipative Controller

In view of the sensitivity problem of MBC's, dissi-

pative controllers, which use collocated and compat-
ible actuators and sensors, offer an attractive alter-

native. Details of dissipative controller theory may

bc found in the appendix. Dissipative controllers

use special passivity-type input/output properties of
the plant and offer robust stability in the presence

of both nonparametric and parametric uncertainties

(refs. 4 and 5). The simplest controller of this type

is the constant-gain dissipative controller. Using col-
located torque actuators and attitude and rate sen-

sors, the constant-gain dissipative control law is given

by:

u = --Gpyp -- GrYr (9)

where yp and Yr are the measured (3_ x 1, where
is tile number of three-axis sensors) attitude and rate;

Gp and Gr are 3_ x 3_ symmetric, positive-definite
gain matrices. This control law has been proven to
give guaranteed closed-loop stability despite unmod-

eled elastic modes, parameter errors, certain types

of actuator and sensor nonlinearities (such as satura-
tion and dead zone; see the appendix for details), and

first-order actuator dynamics (ref. 4). Robust stabil-

ity is generally not guaranteed if the actuator dy-
namics are second or higher order, or in the presence

of digitization, time delays, and control hysteresis.
However, if acceleration feedback is permissible, it

is possible to obtain guaranteed stability for second-

order actuator dynamics (refs. 5 and 16). For practi-
cal space implementation, rate measurements may be

obtained from rate gyros and attitude measurements

may be provided by star sensors. However, if linear

velocity is required (e.g., in the case of ground-based
experiments) velocity signals can be obtained by inte-

grating accelcrometer signals with the aid of washout

filters to asymptotically remove the accelerometer
bias. The inclusion of washout filters would, how-

ever, hinder the dissipativity of this control design.

Finally, the drawback of this controller is that the

achievable performance is inherently limited because
of its simple mathematical structure.

Dynamic Dissipative Controller

To obtain higher performance and still retain the

highly desirable robust stability, dynamic dissipative

compensators can be used. The main characteris-

tic of all dissipative controllers is that they do not

rely on the knowledge of the design model to ensure
stability, although they use it to obtain the best pos-

sible performance. An nc-order (two-level) dynamic

dissipative controller is given by:

Xc = Acxc + Bcyr (10)

Uc = -GXc - GrYr - Gpyp (11)

where Ac, Bc, and G are the compensator system,
input, and output matrices, respectively, and Gr and



Gp aresymmetric,positive-definiterate gain and
positiongainmatrices.Furthermore,Ac is strictly
Hurwitz,andtheKalman-Yacubovichrelationshold
(ref. 17):

ATp + PAc= -Q (12)

G=BTp (13)

whereP=pT>0and Q=QT>_0.

Equations(10) (13) representa two-levelcon-
troller whereinthe inner loop consists of static

position-plus-rate feedback and the outer loop con-

sists of a dynamic compensator. This controller
assures robust asymptotic stability regardless of

unmodeled structural dynamics or parametric un-

certainties (refs. 5 and 16). In the absence of zero-

frequency rigid-body modes (e.g., for a ground-based

experiment), Gp and Gr can be null matrices with-
out destroying the robust asymptotic stability; that

is, the inner loop is not required. Further results

for systems with zero-frequency modes are given in
the appendix. As with the static dissipative con-

troller, this control law has been proven to give guar-

anteed closed-loop stability despite unmodeled elas-

tic modes and parameter errors. However, robust
stability is generally not guaranteed if the actuator

dynamics, nonlinearities, and time delays are present

or if digital implementation is used. Also as with the
static dissipative controller for practical space im-

plementation, rate measurements may be obtained

from rate gyros and attitude measurements may be

provided by star sensors. However, if linear veloc-

ity is required (e.g., in the case of ground-based ex-

periments), velocity signals can be obtained by inte-
grating accelerometer signals with the aid of washout

filters to asymptotically remove the accelerometer
bias. The inclusion of washout filters would, however,

hinder the dissipativity of this control design.

Optimization-Based CSI Design

The methodology employed in this study uses op-
timization techniques to integrate the separate disci-

plines of control and structural design. Fundamen-

tally, the integrated design goals and requirements

are formulated as a nonlinear programming prob-
lem wherein selected control-structure design vari-

ables are chosen, subject to structural and perfor-

mance constraints, to optimize an objective function

whose construction captures the essence of the inte-

grated design problem. It is felt that this approach
takes advantage of the highly-developed optimization

technology in both the controls and structures fields

and provides the designer an opportunity to obtain
nonintuitive results.

Nominally, an initial structure-control configura-

tion defines a set of design variables that are avail-

able for modification. Typical controller design vari-

ables are size and location of sensors and actuators,
and elements of dynamic compensator system ma-

trices. Structural design parameters could be the di-

mensions of structural members along with mass and

densities of materials. An example of a realistic inte-

grated design problem would be, for some given input
or maneuver, to design a spacecraft that provides the

best possible reductions in dynamic response ampli-

tude (below the amplitudes of a nominal spacecraft)

with no increase in structural mass or control system

energy requirements. As indicated by the preced-
ing examples, most integrated design objectives and

constraints can be expected to be dependent func-

tions of the design variables that are obtained as the

outputs of some separately developed computer con-

trol synthesis (ref. 18) or structural analysis pack-
ages (ref. 19). Integrated design is then a compu-

tationally intensive process requiring supercomputer

technology.

A flowchart summarizing the process for optimi-

zation-based integrated design is given in figure 2.

A user-provided executive program drives an opti-

mization module that, at each stage, (1) uses the
current values of the design variables to compute the

objective function and constraints, (2) evaluates the

objective function and constraints for optimality and

feasibility, and (3) if necessary, generates a new set
of design variables defining a structure-control con-

figuration with better integrated-design characteris-

tics. Aspects of the computer implementation of this

process are discussed in reference 20.

A version of the integrated design software tool

CSI-DESIGN, which is under development at the

LaRC, was used to perform the numerical studies re-
ported herein. CSI-DESIGN is intended for research

purposes and is composed of public domain software.

It uses in-core data transfer and is ultimately limited

in the size of problems it can successfully treat. The

package has linked control, structural, and optimiza-
tion modules as shown in figure 2. The control com-

pensator models used in this study were static and

dynamic dissipative. The benefits and motivation for

using this control strategy for the control of flexible
structures are discussed in the appendix. A descrip-
tion of the contents of the CSI-DESIGN structural

module may be found in reference 20. Integrated

optimization was performed with a four-processor

Alliant FX/80 digital computer that used the Au-

tomated Design Synthesis (ADS) software (ref. 21).
The interior penalty function method of ADS was

used to solve the nonlinear programming problems.



In this method,the constrainedoptimizationprob-
lem is transformedinto an unconstrainedproblem
throughcreationof a pseudo-objectiveflmctionthat
is thesumof theoriginalobjectiveflmctionandan
imposedpenaltyfunction,whichis afunctionof the
constraints(ref.22).TheReverse-Cuthill-McKeeal-
gorithmforminimizingthebandwidthofthebanded
stiffnessandmassmatriceswasusedto reducecom-
putationalrequirements(ref.23).Additionally,ana-
lyticalexpressionsforeigenvalueandeigenvectorsen-
sitivity (with respectto the structuraldesignvari-
ables)(ref. 24)wereusedin the integrateddesign
processto approximatetheeigenvaluesandeigenvee-
torsat designpointsthat arein theneighborhoodof
tilenominaldesignpoint.Thisapproximationwasin
theformof a first-orderTaylorseriesapproximation
andresultedinsubstantialcomputationalsavingsbe-
causeit removestheneedfor costlycomputationof
structuraleigenvaluesandeigenvectorsat manyof
theoptimizationmoves.

Integrated Design of the EPS Model

The Earth pointing system(EPS), a generic
modelof the geostationaryplatformis a multiuscr
conceptand consistsof a 10-bay,30-m-iongtruss
structurewith two radial rib antennas(7.5m and
15m diameter)at theends(fig.3). All themembers
(i.e.,constitutingthetruss,theantennas,andthean-
tennasupports)areassumcdtobehollowtubeswith
circularcrosssectionsand thickncsscsoY_159ram.
Theantennasarcfixedwith respectto the trus_;so
the problemis that of controllingthe pointingand
vibrationof theentirestructure.It is assumedthat
a three-axiscontrolmomentgyro(CHIC)andcollo-
catedattitudeandratesensors,locatedat thecenter-
of-massof the structure,areusedfor accomplish-
ing the control. No sensorandactuatordynamics
areconsidered.The modalfrequenciesfor thefirst
10flexiblemodcsaregivenin table1.Thc first flex-
iblemodehadafrequencyof 0.58Hz,corresponding
toamodeofthelargeantennasupportstructure,and
thefirst flexiblemodeofthetrussstructure(mode7)
hada frequencyof about6.6Hz. A designmodel
consistingof threerigid-bodymodesand the first
10 flcxiblemodcsof the structurewasusedin thc
dcsignprocess.An open-loopmodaldampingratio
of 0.5percentwasassumedfor theflexiblemodes.

Theintcgratcddesignproblemwasformulatedas
a single-objectiveoptimizationproblcm.Thestruc-
tural designvariablesusedwereouterdiametersof
the trussand antennasupportmemberswith the
thicknessesfixed. In particular,the trusswasdi-
videdinto threesectionsshownin figure3, andthe
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outerdiametersof the longerons,battens,anddiag-
onalswithineachsectionconstitutedninestructural
designvariables.Two additionalstructuraldesign
variableswcrcthe outerdiametersof the support
membersfor the twoantennas,thusconstitutinga
total of 11structuraldesignvariables.The num-
berof controldesignvariabicsvariedanddepended
on the typeof controllerused.For thestaticdissi-
pativedesign,the elementsof the Choleskyfactor-
izationmatricesof thepositive-definitepositionand
rategainmatricesGp andG_ arechosenasdesign
variables: ":

Gp = LpLpT / (14)JG_ LrL T

In dynamic dissipative designs, the elements of the

Compensator matrices Ac and Be, the elements
of weighting matrix Q, and the elements of the

ChoIesky factorization matrices Lp and Lr are used
as design variables. Within this configuration, the

following two design problems are considered.

Design Problem !

The system configuration for the first design prob-

lem is illustrated in the block diagram shown in fig-

urc 4. ttere, white-noise disturbances of unit inten-
sity are applied to the structure at the same locations

as the control inputs, and no disturbanccs at the out-

puts are considered. The system equations are given
aN

i = Az + Bu + Bw (15)

yp = Cpz i )Yr = Crz (16

J
Yper =- e = CperZ

In this design problem, the closed-loop performance

measure is the steady-state rms pointing error vec-

tot e at the large antenna due to white-noise distur-
bance of unit intensity at the inputs. To achieve a

realistic design, constraints are placed on the steady-

state average control power and the total structural
mass. Additional side constraints are placed on the

structural design variables for safety and practicality

reasons. Lower bounds are placed on these variables

to satisfy structural integrity requirements against
buckling and stress failures. On the other hand, up-

per bounds are placed on these variables to accom-

modate manufacturing limitations. The first design

problem is described as follows.

Minimize the steady-state rms pointing error at

the large antenna

J=tli_n(Tr{E[e(t) eT(t)]}) 1/2 (17)



with respectto the tube outer diametersdi(i =

1,2,..., 11), and the elements of Lp and Lr (where

Lp and Lr are 3 × 3 lower-triangular Cholesky factors
of Gp and Gr given in cq. (14)), subject to the
constraints:

/_Jstr _< /_fmax (19)

drain <_ di < dmax (20)

where e is the 3 × 1 attitude vector at the large

antenna, Tr( ) denotes trace of (), E( ) represents
expected value of (), and J_str denotes the structural

mass. The subscripts min and max define the range
of allowable values.

The steady-state covariance of the pointing er-
ror vector Pe is computed from the steady-state

covariance of the state vector; that is,

Pe =- lira Tr[E(eJ l=Tr(CperPzCPTr L, ,._ ,, _, (21)

was performed, wherein both the structural and con-

trol design variables were allowed to change simulta-

neously. This integrated design resulted in an rms

error of 16.8 #rad, which represented a 37-percent

reduction over the conventional design. The struc-
tural mass was slightly lower than the nominal de-

sign. The upper and lower bound values, initial val-

ues, and the optimal values of the structural design

variables are summarized in table 3 and figure 5. The

integrated design redistributed the structural mass
from the battens and diagonals of the last two sec-

tions of the main bus (closest to the small antenna)
and small antenna support members to the larg e an-

tenna support members and the section of the main

bus closest to the large antenna, thus increasing the
stiffness of these sections. This behavioral trend may
be attributed to a trade-off between structural con-

trollability and observability and its excitability by

disturbances. In other words, the stiffness (or flexi-
bility) of the structure is redistributed to establish a

balance between the ability of the control system to

fine-point the structure efficiently and the ability of

the structure to reject disturbances.

where Pz = lim E(zz T) denotes the steady-state
t--_ oc

covariance of the state that is determined from the

solution of the following Liapunov equation (ref. 25):

AclPz + PzA T = -BB T (22)

in which Acl is the closed-loop state matrix and B is

the control (input) influence matrix.

The results for this design problem are summa-

rized in table 2. An initial control design was first ob-

tained for the nominal structure. Using a pole place-
ment technique, a decoupled controller was designed

to provide adequate performance for each of the threc

rigid-body modes, with no consideration given to the

flexible modes. That is, the static-dissipative control
gain matrices were diagonal, with elements chosen

to give satisfactory closed-loop frequency and damp-

ing for the rigid-body dynamics and to maintain the

RMS pointing error within the required tolerance.

The nominal structural mass was 442.04 kg and the
actuator mass was assumed constant at 150 kg.

With the average control power Pmax constrained

at 3 N2-m 2, the initial design gave an rms point-

ing error of 73.6 #rad. The conventional design ap-

proach was then followed, wherein the control gains

(12 elements of the two Cholesky factors Lp and
Lr) were optimized for the fixed nominal structure.

This control-optimized design yielded an rms point-

ing error of 26.8 /_rad. Next, an integrated design

The modal frequencies of the first 10 flexible

modes of the redesigned EPS structure (redesigned

through the integrated design process) are presented
in table 4. The data indicate that the first three

frequencies (modes 1 3) associated with the small

antenna support structure have been reduced sub-

stantially, mainly because the pointing performance

of the small antenna was not included in the per-
formancc metric. On the other hand, the frequency

of the modes associated with the large antenna sup-

port structure has increased considerably (for exam-
ple, the first modal frequency increased from 0.58 Hz

(table 1) to 2.75 Hz (table 4)), thus making the

large antenna and support structure less sensitive to

disturbances at the inputs or the outputs. At the
same time, the first flexible frequency of the main

truss (mode 7) decreased from about 6.6 Hz (ta-

ble 1) to about 6.0 Hz (table 4), making the main
truss more sensitive to disturbances but more con-

trollable (observable). The elements of the 3 x 3

lower triangular Cholesky factorization matrices Lp
and Lr are given in table 5 for the nominal con-

troller design, the control-optimized design, and the
integrated controls-structures design. The attitude

and rate gain matrices may be computed from the

Cholesky matrices by using equation (14).

To evaluate the effect of varying the actuator mass
in the integrated design process, the actuator mass

was allowed to vary by relating it to the infinity



normsof the gainmatrices(aworst-casescenario);
that is,

= t !Matt a [ut_ =-_ (IC, I_ lyr[,_¢ + lCpf_, ,Y,,io_) (23)

in which a is a constant scalar taken to be 1.005

and I ],c denotes the infinity norm of I ]. It is noted

that ]Yp]cc and ]YrI_ were assumed fixed a priori to
be 0.1 tad and 0.1 rad/sec, respectively. For this case,

the actuator mass increased from 150 kg to 298.7 kg,
whereas tile rms pointing error and the structural

mass were essentially unaffected, which is because

the structure is rather stiff and is not affected by
small masses.

Design Problem II

The system configuration for the second design

problem is illustrated in the block diagram shown
in figure 6. Here, the attitude and rate sensors arc
assumed to be polluted with noise modeled as zero-

meanl white-noise processes. Fhrthermore, no dis-

turbances at the inputs are considered. With this

configuration, tile system equations become

= Az + Bu (24)

yp = Cpz + Spvp )

Yr = Crz + SrVr i (25)
Yper --= e = CperZ

where Vp and vr denote the attitude and rate sen-
sors noise vectors, and e represents the rms pointing

error vector at the large antenna. In this design prob-

lem, a dual-objective formulation is pursued, wherein

both the total mass (structure plus actuator) and

a measure of the closed-loop performance are opti-
mizcd. The closed-loop performance measure is cho-
sen a_s the sum of tile time constants of the closed-

loop eigenvalues (the reciprocals of the absolute value
of the real part of the closed-loop eigenvalues), which

represents a measure of the transient performance

of the system (i.e., the smaller the time constants

are, tile faster the system dissipates transient distur-

bances). The closed-loop or controlled performance
Pc is the inverse of the sum of the time constants of

the system, such that

1
Pc - (26)

Now, to minimize the total mass and maximize

the closed-loop performance, an objective function

J consisting of a convex combination of the total

mass and the inverse of Pc is minimized. The design

problem is to minimize

/l/Istr + _1act 1/PcJ = + (1 - -- (27)
Ms_ r +/_l"°ct 1/P_

with respect to structural and/or control design vari-

ables, subject to a constraint on e

lira (Tr{E[e(t) eT(t)]})_<emax (28)
t--+ _:_

as well as side constraints on structural member sizes

drain <- di <- dmax (29)

Note that both the mass term and the term for the

controlled performance in equation (27) are normal-

ized with respect to their corresponding initial values.

In equation (27), _[str and Mact denote the structural
(truss) mass and the actuator mass, and the super-

script o denotes the initial value of the corresponding
variable. The covariance of e is computed from the

steady-state covariance of the state vector; that is,

Pe =- lira Tr[E(eeT)] =Tr(CperPzCpLr) (30)t-_

where Pz = lira E(zz T) denotes the closed-loop
t ----,_<_

steady-state covariance of the state that is deter-
mined from the solution of the following Liapunov

equation (ref. 25):

AclP z + Pz AT = BGpWpGTB T - BGrWrGTB T (31)

in which the attitude measurement noise intensity

matrix, Wp = E(vpVpT), and the rate measure-

ment noise intensity matrix, Wr = E(vrvrT), are as-

sumed to be diagonal (i.e., Wp = I3× 3 (arcsec) 2 and

Wr = 2 × I3× 3 (arcsec/sec)2). The pointing tolerance

emax in equation (28) is taken as ll #rad.

The parameter /3 allows for a trade-off between

the two objectives. As fl is varied from one to zero,

more emphasis is placed on the closed-loop perfor-
mance and less on the total mass or the cost. Further-

more, to satisfy certain fine-pointing requirements,
an upper bound constraint is placed on the rms error

at the large antenna clue to white measurement noise
in the attitude and rate sensors. Additional side

constraints are also placed on the structural design

variables for safety and practicality concerns. Fig-

ures 7(a) (d) show, respectively, the behavior (nor-

malized relative to the nominal design) of the objec-
tive function J, controlled performance (a measure



of transientperformance),structuralmass,andac-
tuator massasa functionof the trade-offparame-
ter _. As _ approacheszero,the designbecomes
performance or control dominated, as evidenced by

the sharp increase in the controlled performance

(fig. 7(b)) and the substantial increases in the struc-
tural and actuator masses (figs. 7(c) and (d)). On

the other hand, as _ approaches one, the controlled

performance diminishes considerably, and the struc-
tural mass and actuator mass decrease, giving a mass

or cost-dominated design.

One may use these trade-off results to obtain

a design that gives a good controlled performance

with acceptable cost levels by choosing a right value

for _. For example, at _ = 0.50, table 6 gives
the corresponding integrated design with a control-

optimized (conventional) design. An initial design to

achieve good rigid-body performance (same as design

problcm I) was first obtained. This design required
an actuator mass of about 171 kg (computed from

eq. (23)), which along with the nominal structural

mass of 442.04 kg and payload mass of 5168 kg, re-
sulted in a total spacecraft mass of 5781.04 kg. The

controlled performance measure Pc was about 0.003.

Then, a control-optimized design was performed by

optimizing the control variables only. This design
resulted in a 44-percent increase in the control per-

formance, but also increased the total mass by 1 per-

cent (57.17 kg). An integrated design was next car-
ried out, which resulted in a 234-percent increase

in the control performance along with lower total
mass over the initial design (6 percent less than

the total mass of the control-optimized design, or

about 353 kg). Integrated design reduced the struc-

tural mass by 53 percent and decreased the actuator

mass by 24 percent.

The optimization data and results for the struc-

tural design variables are given in table 7 and fig-
ure 8. It is observed that the structural mass was

reduced and redistributed (i.e., mass was taken from
the main bus structure and was added to the an-

tenna support members). In other words, most of

the longerons, battens, and diagonals of the main bus
structure were reduced to lower bound values, while

the antenna support members increased drastically

in size. The open-loop modal frequencies of the re-

designed EPS structure (obtained through integrated

design process) are presented in table 8, where it is
seen that the first flexible frequency corresponding

to the large antenna support structure increased to

near 1.8 Hz, with a reduction of truss flexible frequen-

cies by as much as 50 percent at the higher end of
the spectrum. In this configuration, the antennas are

less susceptible to disturbances at the inputs or the

outputs, whereas the overall structure has become

more controllable (observable).

The closed-loop eigenvalues are presented in

figures 9 41 for the nominal design, the control-

optimized design, and the integrated controls-

structures design, respectively. These figures indi-

cate that integrated design is more effective than the
conventional design in moving the closed-loop eigen-

values of the system farther into the left-half plane

(such that the system can dissipate transient distur-
bances faster), thus clearly demonstrating the advan-

tage of the integrated design. Also, the Cholesky fac-

torization matrices Lp and Lr (associated with tile
attitude and rate gain matrices) are given in table 9

for the nominal design, the control-optimized design,

and the integrated design.

Summarizing the results obtained from design

problems I and II, both clearly show the advantage of

integrated design over the conventional approach in

that the integrated design produces a better overall

design. The main advantage of integrated design
is its ability to obtain a better overall design and

not necessarily just a reduction of the total mass.

Moreover, a comparison of the behavioral trends of

the structural design variables for the first and second

design problems indicates that such trends could vary
considerably depending on the design objectives and

constraints of the integrated design problem.

Integrated Design of the CSI

Evolutionary Model

This section considers the application of the inte-

grated design methodology to the CSI Evolutionary
Model. The discussion on the application is in En-

glish units to be consistent with the formal model of

the structure (ref. 14). The Phase-Zero Evolution-

ary Model, shown in fignrc 12, basically consists of a
62-bay central truss (each bay 10 in. long), two ver-

tical towers, and two horizontal booms. Using two

cables as shown, the structure is suspended from the

ceiling (about 840 in. above the main truss). A laser
source is mounted at the top of one of the towers, and
a reflector with a mirrored surface is mounted on the

other tower. The laser beam is reflected by the mir-
rored surface onto a detector surface 660 in. above

the rcflector. Eight proportional bidirectional gas

thrusters, with maximum output force of 4.4 lb each,

provide the input actuation, and collocated servo ac-

cclerometers provide output measurements. The fi-
nite element model of the system has 3216 degrees

of freedom; therefore, the bulk of the computational

effort is required for the solution of the structural

eigenvalue problem of that size.



Thedesignmodelconsistedof thefirst 20modes
of thestructure,including6 suspensionmodes(i.e.,
modesdue to the suspensionof the structureand
gravity)and 14 flexiblemodes.A modaldamping
ratioof0.1percentwasassumed.Thefirst 20modes
of the nominalPhase-0Modelarepresentedin ta-
ble 10.Thefirst sixmodesthat rangefrom0.12Hz
to i.16 Hz are the suspensionmodes(or non'zero-
frequencyrigid-bodymodes).Thefirst,twobending
modes(lateralandvertical)andthe first torsional
modesof tile structurearemodes7, 8, and 9. The

system configuration for this design problem is il-

lustrated in block diagram shown in figure 13. Here,

white-noise disturbances of unit intensity are applied
to the structure at the same locations as the con-

trol inputs, and no disturbances at the outputs are
considered. With no appreciable sensor and actua-

tor dynamics considered, the system equations are
written as

= Az + Bu + Bw (32)

yr = Gz
(33)]Yper --=e = Cpz

where the performance vector Yper is an 8 x 1 vec-
tor corresponding to the displacements at the eight

aceelerometer locations. Here, only velocity measure-
ments are used for feedback, and they are obtained

by integrating the accelerometer signals with the aid

of wash-out filters. It is noted that position feedback

is not necessary for asymptotic stability because the
structure is open-loop stable.

To perform the integrated design, the structure

was divided into seven sections (see fig. 12), three
sections in the main bus, and one section each for
the two horizontal booms and the two vertical towers.

Three structural design variables were used in each

section, namely, outer diameters of the longcrons,

the battens, and the diagonals, making a total of
21 structural design variables. The design was posed

in the form of a nonlinear optimization problem,

wherein the steady-state average control power in the
presence of a white-noise input disturbance with unit

intensity (i.e., Standard deviation intensity = 1 lbf)
is minimized, with the steady-state rms position error
vector at the eight accclerometer locations and total

mass constrained to required values. That is, the
problem solved was:

Minimize

lira Tr[E{u(t) uT(t)}] (34)
t--*_

subject to

1

lim (Tr{E[e(t) eT(t)]}) _ <emax (35)
t__:X)

and a constraint on the total mass

]_'/-tot _ A_max (36)

Here, emax was taken to be 1.7 in. and A/max was
chosen equal to the total mass of the nominal Phase-0

structure at 2.0 lb-sec2/in.

Static Dissipative Controller

As mentioned earlier, only velocity measurements

are used for feedback, which are obtained by pro-
cessing the aceeleromcter outputs. Thus, the static

dissipative controller is given by

u = -GrYr (37)

Here, the rate gain matrix was an 8 x 8 diagonal
matrix (i.e., eight control design variables, along with
the 21 structural design variables, resulted in a total

of 29 design variables for the design optimization).

The results of the design optimization are sum-
marized in table 11. A conventional or control-

optimized design was first performed (with the struc-
tural design fixed at the nominal values), which

required an average steady-state control power of
19.34 lb 2.

Next, an integrated design was performed, where-
in the average control power was minimized with re-

spect to both control and structural design variables.

The results (table 11) indicate an average control
power of 11.41 lb 2, a reduction of about 40 percent

in the average control power over the conventional
design. The initial and final values of the structural

design variables, along with the corresponding lower

bound and upper bound values, are presented in ta-
ble 12 and figure 14. Keeping in mind that the tube

diameters of the nominal CSI Evolutionary Model

structure are 0.367 in. for the longerons and battens
and 0.349 in. for the diagonal, it is observed from ta-

ble 12 and figure 14 that sections 1 and 2 of the main

bus (farthest away from the reflector) and the laser

tower are considerably stiffened, whereas the hori-
zontal booms and the reflector tower became more

flexible, partly to satisfy the mass constraint. Gener-
ally, in those sections that showed an increase in stiff-

ness, the longerons increased in size more than the

diagonals and the battens, because they were most
effective in changing the stiffness of a section.

10



The trendsin table 12maybe attributedto a
trade-offbetweenstructuralcontrollability,observ-
ability,andexcitability.Theareasnearthesources
of disturbance(actuatorlocations)werestiffenedin
orderto reducethesensitivityof thestructureto ex-
ternaldisturbancesat thoselocations,whileensur-
ingthat noappreciablelossof controllabilityand/or
observabilityoccurred(asobservedfrom the tran-
sientcontrolledperformancevaluesin table11).The
small reductionin the transientcontrolledperfor-
manceofthe integrateddesignovertheconventional
designin table 11is mainlybecausenomeasureof
the transientperformancewasincludedin the op-
timizationprocess.Moreover,althoughthe tran-
sientcontrolledperformancewaslowerin the inte-
grateddesigncase, it is still quite acceptable. The

modal frequencies of the first 20 modes of the re-

designed Phase-0 structure (redesigned through the

integrated design process) are presented in table 13.
These frequencies indicate that the first six frequen-

cies associated with the suspended structure have

not been changed significantly, mainly because the

changes in the structure can affect these frequencies

only through changing the location of the center of
mass of the structure and not directly as is the case

for the flexible modes• On the other hand, the fre-

quencies of the flexible modes, particularly the sec-
ond and third flexible modes, have increased consid-

erably (as much as 40 percent). The second flexible
mode frequency increased from 1.68 Hz to 2.33 Hz

(mode 8 in table 13) and the third flexible mode

frequency from 2.08 Hz to 2.65 Hz (mode 9 in ta-

ble 13), making these modes and the structure less
sensitive to disturbances at the inputs. The diagonal

elements of the rate gain matrix are given in table 14

for the control-optimized design and the integrated
controls-structures design.

Dynamic Dissipative Controller

The next two designs that were performed for the

CSI Evolutionary Model were conventional (control-

optimized) and integrated designs with a dynamic
dissipative controller. Because the system has no

zero-frequency modes, (]p and Gr were taken to be
zero. The dynamic dissipative controller represented

by equations (10) and (11) was used with block-

diagonal compensator state matrix Ac (consisting
of eight second-order blocks) and compensator input

influence matrix Bc as follows:

A C 7--

Acl 0 ... 0 ]
0 Ac2 ... u

0 0 ... Acs

(38)

Be1 0 ... 0
0 Bcl -.- 0

Bc = . . .. . (39)

0 0 . .. Bcs

where Aci and Bci (i = 1, 2,..., 8) are, respectively,

2 × 2 matrices and 2 × 1 vectors, defined as

Ac _[0 1]}
--o_ i --/3 i

(40)

Furthermore, the weighting matrix Q in equation (12)
is assumed to be diagonal; that is,

Q=Diag (ql,q2,.-., q16) (41)

Here, the scalar variables o_i,_, i (i = 1,2,...,8),

and qj (j = 1,2,...,16) were chosen for the con-
trol design variables. Thus, the number of control
design variables was 32, making the total number of

design variables 53. Table 15 shows the results of

the designs with the dynamic dissipative controller•

The conventional design reduces the control power
by over 50 percent (to 8.31 lb2), compared with the

static dissipative case. The integrated design reduces

the average control power by approximately another
30 percent (over the conventional design) to 5.91 lb 2.
Table 15 also indicates that the transient controlled

performance is slightly lower for the integrated design

case. Similar to the static dissipative design, this re-

duction in performance is because the optimization
process did not include any measure of transient per-

formance. Moreover, although tables 11 and 15 show

that the transient controlled performance of the dy-
namic dissipative design was quite lower than the

static dissipative design, one should keep in mind

that in the dynamic dissipative design, this perfor-
mance measure includes contributions from the com-

pensator poles, and thus it is not readily comparable

with the static dissipative values.

The optinfization data and results for the struc-

tural design variables are summarized in table 16 and
figure 15. The trends are quite similar to the static

dissipative design given in table 12. In fact, the two

optimal structures are within 20 percent of each other

(i.e., the structure that is optimal for the static dis-

sipative design is also optimal for the dynamic dis-

sipative design). The modal frequencies of the opti-
mal structure for the dynamic dissipative design arc

summarized in table 17. These frequencies are also

close (within 5 percent) to their corresponding values

11



for the staticdissipativedesign.Finally,the singu-
lar valueplotsfor the input-to-outputtransferfunc-
tionsofthedynamicdissipativecompensatorarepre-
sentedin figures16(a)(h) for thecontrol-optimized
designandtheintegratedcontrols-structuresdesign.
Thesingularvalueplotsforthecontrol-optimizedde-
signandtheintegrateddesignaresomewhatsimilar
exceptfor input/output channelnos.1 and 7 (see
figs.16(a)and(g)), whereconsiderablereductionin
thesingularvalues,mainlyin the lowerendof the
frequencyspectrum,andincreasein thebandwidth
arc observedin the integrateddesigncaseoverthe
conventionaldesign.The elementsof the compen-
satorstatematrix Ac arcgivenin table 18for the
control-optimizeddesignandtheintegratedcontrols-
structuresdesign.Also,theelementsoftheweighting
matrixQ arepresentedin table19forbothdesigns.

The resultsobtainedfor both the static and
dynamicdissipativecontrollersclearly showthat
integratedcontrols-structuresdesignmethodology
can yield an overall design that is substantially supe-

rior than the conventional sequential design scenario.

Concluding Remarks

An optimization-based approach has been devel-
oped for performing integrated controls-structures

design of a class of flexible spacecraft. The approach

formulates the problem as a constrained optTfi_ization
problem, wherein the set of design variables consists

of both control and structural design variables. The

approach uses static and dynamic dissipative control

laws, which provide robust stability in the presence

of parametric and nonparametric uncertainties in the

model. The approach was demonstrated by appli-
cation to integrated designs of a generic model of

a space platform concept, as well as to a model of

the Controls-Structures Interaction (CSI) program,s
Evolutionary Model, which is a ground-based experi-

mental tcstbed developed and constructed at Langley
Research Center:

The numerical results obtained indicate that the

integrated design approach can yield substantially

superior spacecraft design as compared with tile tra-
ditional sequential design approach. For example, a

40-percent reduction in the pointing error is observed
along with a slight reduction in mass, or an almost

twofold increase in the controlled performance is in-

dicated with more than a 5-percent reduction in the

overall mass of the spacecraft (a reduction of hun-

dreds of kilograms). Furthermore, the automated
nature of the integrated design approach can accom-

modate a wide Variety of design specifications and re-

quirements. A practical software tool (CSI-DESIGN)

is being developed for performing integrated designs.
Research is presently in progress for incorporating

other types of control methods (such as//2 or Hoc)

into the integrated design process. Future plans also

include hardware validation of the integrated design

approach by constructing a laboratory test article
based on the redesigned CSI Evolutionary Model

and Comparing the performance of the redesigned
structure with the original CSI Evolutionary Model.

NASA Langley Research Center
ttampton, VA 23681-0001

October 14, 1992
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Appendix

Dissipative Controllers

This appendixbriefly presentsthe mainresults
concerningdissipativecontrollersfor flexiblestruc-
tures.Dissipativecontrollersusethepassivityprop-
ertiesof thesystemthat resultfromtheuseof col-
locatedandcompatibleactuatorsandsensors,such
astorqueactuatorsandattitudeandratesensorsor
forceactuatorsandpositionandvelocitysensors.In
general,dissipativecontrollersaredesignedto con-
trol both rigid andelasticmodes.In certaincases,
thezero-frequencyrigid modesmaynot bepresent.
Thismayoccur,for example,whenpairedtorquers
areusedin a balancedconfigurationto controlonly
theelasticmotion(ref.4) or in thecaseof ground-
basedtestarticles.In suchcascs,nopositionfeed-
backisrequired;onlyvelocityfeedbackissufficientto
accomplishrobuststability,andthedissipativecom-
pensatordegeneratesto a positivity controller. In
thefollowing,both the staticanddynamicdissipa-
tivecontrollersarediscussed.Theconceptsandthe
underlyingtheoryarebasedlargelyon the original
workof Popov(ref.26).

Static Dissipative Controllers

Theconstant-gainorstaticdissipativecontrollaw
isgivenby:

u = -Gpyp - Gryr (A1)
whereGp and Gr arem x rn symmetric, positive-

definite, position and rate gain matrices, and yp and
Yr represent the m x 1 position and rate measurement

vectors. This control law is known to give guaranteed

asymptotic stability of the entire system consisting of
both rigid and flexible modes regardless of unmod-

eled elastic modes or parameter uncertainties. (It
was also shown in ref. 4 that stability is maintained
even if small imprecision exists in the collocation

of the actuators and sensors.) _-klrthermore, if Gp
and Gr are diagonal, this robust stability property

is carried over in the presence of:

(1) Monotonically increasing actuator nonlineari-

ties, rate sensor nonlinearities belonging to the
[0, c_) sector, and position sensor nonlineari-

ties belonging to the (0, oc) sector (a single-
valued function _(_) is said to belong to the

(0, oc) sector if ¢(0) = 0 and ,¢(,) > 0 for

v _ 0; ¢ is said to belong to the [0, _) sector
if ,¢(L,) > 0), and

(2) Stable actuator dynamics ga(s) = k/(s + a),

provided that gp/gr < a, where gp and gr de-

note the appropriate diagonal elements of Gp

and Gr. A possible drawback of these con-

trollers is that the performance can be lim-
ited because of the structure of the controller.

The matrices Gp and Gr can bc designed
to minimize a quadratic performance function
or to obtain closed-loop eigenvalues close to

the desired locations in the least-square sense

(ref. 4).

When the zero-frequency modes are absent, Gp

can be zero, and Gr = Gr T > 0 is sufficient for

asymptotic stability. Furthermore, the closed-loop

system is robust to [0, c_)-sector actuator and sen-

sor nonlinearities and first-order actuator dynamics

(ref. 4).

Dynamic Dissipative Controllers

To obtain better performance while still retain-

ing the guaranteed robustness to unmodeled dynam-

ics and parameter uncertainties, a class of dynamic
dissipative controllers was considered. The case in

which both zero-frequency rigid modes and flexible
modes are present is considered first.

Assuming for simplicity that the plant has three

(one per axis) torque actuators and collocated atti-

tude and rate sensors, the 3 x 3 transfer function from

the torque input to the attitude rate output is given
by:

G'(s) = -- + __, s 2J-1 "_i'_Ts (A2)
s d- 2picdis d- w 2

where J is the moment-of-inertia matrix and ¢D_,Pi,
and wi denote the rotational mode shape vector,

damping ratio, and natural frequency of the ith

structural mode. The transfer function Gr(s) is
positive real (PR), as defined as follows (ref. 27):

Definition

A rational matrix-valued function T(s) of the

complex variable s is said to be PR if T(s) is real

when s is real, and T(s) + TT(s *) > 0 for Re(s) _ 0,

wherc * denotes the complex conjugate.

Scalar PR functions have a relative degree (i.e.,
the difference between the degrees of the denomi-

nator and numerator polynomials) of -1, 0, or 1
(ref. 28). It can also be shown that PR matrices

have no transmission zeros or poles in the open right-
half of the complex plane and that the poles on the

imaginary axis are simple and have nonnegative def-

inite residues. By applying the maximum modu-
lus theorem, it can be shown that it is sufficient to

check the positive semidefiniteness of T(s) only on
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the imaginaryaxis (s = jw, 0 _< w < cx_). Suppose
(A, B, C, D) is an nth-order minimal realization of

T(s). From reference 27, a necessary and sufficient

condition for T(s) to be PR is that there exists an
n × n symmetric positive-definite matrix P and ma-
trices W and L such that

ATp + PA = -LL T

C=BTp+wTL / (A3)
wTw D + D T

This result is generally known in the literature

as the Kalman-Yacubovich lemma. A stronger con-

cept along these lines is strictly positive-real (SPR)
systems. However, there are several nonequivalent
definitions of SPR, all of which require the system to

have all poles in the open left half plane (ref. 29). For
the purpose Of this paper, we define a less restrictive

class of strongly PR systems as follows:

Definition

A rational matrix-valued function T(s) of the

complex variable s is said to be strongly PR if T(s)

is real when s is real, and T(s) +TT(s *) > 0 for
Re(s) __0.

The obvious difference between this definition and

the definition of PR systems is that _> has been

replaced by strict inequality. The difference between

the strongly PR and SPR systems is that the latter
have poles only in the open left half plane, whereas

the former can have poles on the jw-axis.

The transfer function from u to yp is given by:

G(s)- G'(s) (A4)
8

It can be seen that G(s) is not PR. However, G'(s),
the transfer function from u to Yr, is PR.

Definition

The compensator K(s) is said to stabilize a plant

G(s) if the closed-loop system consisting of stabiliz-
able and detectable realizations of K and G in the

standard feedback configalration is asymptotically
stable (a.s.).

Suppose a controller K(s) is represented by the

nKth-order minimal realization:

_¢K = AKXK + BKYp (A5)

YK = CKXK + DKYp (A6)

The input to the plant is given by:

u = --YK (A7)

Define

A [A K 0] ]_= [CK 0]

Cz=[0 I3×3]

We present the following stability result that was
proved in reference 16.

Theorem 1

Suppose

(i) The matrix AK is strictly Hurwitz

(ii) There exists an (n K + 3) × (n K + 3) matrix

Pz = pT > 0 such that

ATpz+PzAz -Qz -diag T: : (LKLK, 03×3) (A9)

where L K is a 3xn matrix such that (LK, AK)
is observable, and LK(SI - AK)-IBK has no

transmission zeros in Re(s) _> 0

(iii) The matrix Cz is defined as

Cz = BTpz (A10)

(iv) The equation K(s) = CK(SI - AK)-IBK +

D K has no transmission zeros at the origin.

Under these conditions, the controller K(s)
stabilizes G(s).

Remark 1. In theorem 1, ifL K is an n K xnK

nonsingular matrix, then the observability and
minimum-phase properties in condition (ii) are
satisfied and the closed-loop system is a.s.

Remark 2. The controller K stabilizes the full

plant (i.e., the system consisting of the rigid modes,
the elastic modes, and the compensator state vector

(XK) is a.s.). The asymptotic stability is guaranteed
regardless of the number of modes in the model or

parameter uncertainties. The order of K can be

chosen to be any number > 3. In other words, this

result enables the design of a controller of any desired

order, which robustly stabilizes G. A procedure

for designing K is to choose Qz = diag (QK, 0ax3),

where QK = QT > 0, and to choose a stable A K

and matrices B K and C K so that equations (A9)
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and (A10)aresatisfied.Usingequation(A8) and
defining

[Pzl Pz2]
Pz= [PzT2 Pz3]

where Pzl is an n K x n K matrix and Pz3 is a 3 x 3

matrix, conditions (ii) and (iii) of theorem 1 can be
expanded as:

T T : _LTLKPzlAK + ATpzl + Pz2CK + CKPz2

T
Pz2AK + Pz3CK = 0

T T T
BKPzl + DKPz2 = 0

T T
BKPz2 + DKPz3 = I

(All)

In addition, Pz must be positive definite. Because of
the large number of free parameters (i.e., AK, BK,

CK, DK, LK) it is generally not straightforward to

use equation (All) to obtain the compensator, and

this problem remains an area of continuing research.
Another method is to use the following s-domain

equivalent of theorem 1. (See reference 16.)

Theorem 2

The compensator K(s) stabilizes G(s) if K(s)

has no transmission zeros at s = 0 and K(s)/s is

strongly PR.

The condition that K(s)/s be strongly PR
is sometimes much easier to check than the

conditions of theorem 1. For example, let

K(s) = diag [Kl(s), K2(s), K3(s)], where

s 2 + flli s -4-/30i

Ki(s) = kis2 -k all s + oeoi
(A12)

It is straightforward to show that K(s)/s is strongly
PR if (for i = 1,2,3) ki,(_oi,_li,BOi, and /31i are

positive, and

cqi --/_li > 0 (A13)

°qi/30i -- _Oi_li > 0 (A14)

For higher order Ki's, the conditions on the poly-

nomial coefficients are harder to obtain. One sys-

tematic procedure for obtaining such conditions for
higher order controllers is the application of Sturm's

theorem (ref. 28). Symbolic manipulation codes can
then be used to derive explicit inequalities. The con-

troller design problem can be subsequently posed as

a constrained optimization problem that minimizes

a given performance function. For the case of fully

populated K(s), however, there appear to be no
straightforward methods.

The controller K(s) (eqs. (15) and (16)) is not

strictly proper because of the direct transmission

term Dk. From a practical viewpoint, it is sometimes

desirable to have a strictly proper controller because
it attenuates sensor noise as well as high-frequency

disturbances. Furthermore, the most common types

of controllers, which include the Linear-Quadratic-

Gaussian (LQG) as well as the observer-pole place-

ment controllers, are strictly proper (i.e., they have
a first-order roll-off). In addition, the realization in

equations (A5) and (16) does not use the rate mea-

surement Yr- The following result from reference 16

states that K can be realized as a strictly proper

controller wherein both yp and Yr are used.

Theorem 3

The plant G(s) is stabilized by the controller K p

given by

5¢K = AKXK + [BK - AKL L] [ yp]yr (A15)

U K = CKX K (A16)

where L is a solution of

D K - CKL = 0 (A17)

There are many possible solutions for L. The
solution that minimizes the Frobenius norm of L is:

= Dh" (A18)

For the case with no zero-frequency modes, the dy-

namic dissipative controller degenerates to a positiv-
ity controller that uses the feedback of only the veloc-

ity. For this case, the robust stability is guaranteed

with an SPR dynamic compensator (rcfs. 30 and 31).

In terms of the state equations, it is sufficient for

robust stability that the compensator satisfies the

Kalman-Yacubovich condition (iii) with (A,L) ob-
servable. A simpler sufficient condition, which also

involves fewer parameters, is that D K = 0 and L is

a (lower or upper) triangular matrix.

The problem of designing dissipative controllers

that also provide optimal performance has been a

subject of active research. It has been shown that

the static dissipative controller minimizes a certain

quadratic performance index (ref. 4). Methods based

on eigenstructure assignment with dissipativity con-
straints have also been recently proposed (ref. 32).
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For the casewith nozero-frequencymodes,it was
shownin reference33 that the selectionof LQ reg-
ulatorandestimatorweightingmatricesin a certain
mannerresultsinanLQGcontrollerthat isalsoSPR,
andthereforerobustlystabilizestheplant. For the
casewherezero-frequencymodesarepresent,de-
signmethodsbasedon numericalminimizationof
the "distance"betweena nominalLQG controller
and dynamicdissipativecontrollersweresuggested
in reference16.

Anotherapproachforthecasewithzero-frequency
modesisa two-levelcontrollerwhereinaninnerloop
staticdissipativecontrollerwith positionandveloc-
ity feedbackisused,andadynamicdissipative(SPR)
velocityfeedbackcontrolleris usedin theouterloop.
Thisapproachwasdiscussedin reference5.

In spiteofsomeprogress,theproblemofdesigning
optimal dissipative controllers remains an area of

continuing rescarch.
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Table 1. Open-Loop Modal Frequencies for

the Nominal EPS Model

Mode Frequency, Hz
1

2

3
4

5

6

7

8
9

10

0.58

0.73

0.91
2.40

2.99

3.18

6.65
7.36

16.31

17.73

Table 2. Integrated Design of thc EPS Model for Design Problem I

[Static dissipative controller]

Design

Initial design
Control-optimized design

Integrated design (without actuator mass)

Integrated design (with actuator mass)

RMS

pointing,

#rad
73.6

26.78

16.78
17.01

Structural

m ass,

kg
442.06

442.06

437.34
400.32

Actuator

mass,

kg
150

150

150
298.73

Control

p owe r,
N 2.m 2

2.98

3.00

3.00
3.00

Table 3. Optimization Data and Results for the Structural Design Variables

of the EPS Model for Design Problem I

Design variables

1 (longeron)
2 (batten)

3 (diagonal)

4 (longeron)

5 (batten)

6 (diagonal)

7 (longeron)

8 (batten)

9 (diagonal)

10 (support)

Section

Large antenna

Upper bound

values, m
0.15

.15
.15

0.15

.15

.15

0.15

.15

.15

Lower bound _

values, m
0.01

.01

.01

0.01

.01

.01

Initial Final

values, m values, m

0.01

.01

.01

0.051

.051

.051

0.051

.051

.051

0.051

.051

.051

0.15

11 (support) Small antenna

0.0510.01

0.01

0.107

.030

.025

0.066

.010

.010

0.066

.041

.058

0.149

0.15 0.051 0.010
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Table5.

Table4. ModalFrequenciesfor theRedesigned
EPS Model for Design Problem I

Mode Prequency, Hz
1

2

3
4

5

6

7

8
9

10

0.17
.22

.23

2.75

3.11

3.30
5.98

6.62

8.58

14.13

Elements of Choiesky Matrices for the Attitude and Rate (lain Matrices

of the EPS Model for Design Problem I

Design [ Nominal Control-optimized Integrated

variable [ design design design
Lp(1, 1)
Lp(2, 1)
Lp(3, 1)
Lp(2, 2)
Lp(3, 2)
Lp(3, 3)
Lr(1, 1)
L_(2, 1)
Lr(3, 1)
LT(2,2)
Lr(3, 2)
Lr(3, 3)

120.0

0

0

180.0
0

240.0

90.0

0
0

150.0

0

200.0

188.7

7.1
3.9

179.2

7.4

189.9

212.5
-17.4

15.3

272.1
-33.0

293.8

254.3
1.2

-1.7

245.0

0.6
255.7

223.2

-2.9

8.3
327.9

-1.0

403.3

Table 6. Integrated Design of the EPS Model for Design Problem II (Static Dissipative Controller)

[rms < 11 prad]

Design

hfitial design

Control-optimized design, _ = 0.50

Integrated design,/3 = 0.50

Normalized
controlled

performance

1.0
1.44

2.34

Normalized

structural

mass

1.0

1.0

.47

Normalized

actuator

mass
1.0

1.33

.76

Normalized

total

mass

1.0

1.01

.95
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Table7. OptimizationDataandResultsfor theStructuralDesignVariables
oftheEPSModelfor DesignProblemII

UpperboundLowerbound Initial Final
Designvariable Section values,m values,m values, m values, m

1 (longeron) 1 0.15 0.01 0.051 0.010

2 (batten) 1 .15 .01 .051 .010
3 (diagonal) 1 .15 .01 .051 .010

4 (longeron) 2 0.15 0.01 0.051 0.018
5 (batten) 2 .15 .01 .051 .010

6 (diagonal) 2 .15 .01 .051 .010

7 (longeron) 3 0.15 0.01 0.051 0.010

8 (batten) 3 .15 .01 .051 .010

9 (diagonal) 3 .15 .01 .051 .010

10 (support) Large antenna 0.15 0.01 0.051 0.114

11 (support) Small antenna 0.15 0.01 0.051 0.083

Table 8. Modal Frequencies for the Redesigned

EPS Model for Design Problem II

Mode Frequency, Hz
1

2

3

4

5

6
7

8

9

10

1.79

2.04
2.16

3.48

3.76

4.63

5.52
5.74

9.26

9.71

Table 9. Elements of Cholesky Matrices for the Attitude and Rate Gain

Matrices of the EPS Model for Design Problem II

Design Nominal
variable design

Lp(1, 1) 120.0
Lp(2, 1) 0

Lp(3, 1) 0

Lp(2, 2) 180.0

Lp(3, 2) 0

Lp(3, 3) 240.0
Lr(1, 1) 90.0

Lr(2, 1) 0
Lr(3, 1) 0

Lr(2, 2) 150.0

it(3,2) 0

Lr(3, 3) 200.0

Control-optimized Integrated

design design
201.9

1.2

1.5

254.3
1.8

254.6

184.0

4.3
-1.8

251.5

178.4
-.005

-.001

178.4

.012

178.3
206.0

.001

.002
205.5

-.006

200.9

21



Table10.ModalFrequenciesfor the
CSIPhase-0EvolutionaryModel

Mode Frequency,Hz
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.122
.126
.173
.680
.704

1.159
1.572
1.676
2.085
3.867
3.972
4.127
4.172
5.788
6.456
6.568
6.777
7.806
8.732
9.396

Table11.IntegratedDesignof theCSIEvolutionaryModel

[Staticdissipativecontroller]

Design
Control-optimizeddesign
Integrateddesign

rms

displacement, in.
1.70

1.70

Control

power, lb 2
19.34

11.41

Transient controlled

performance, Pc
0.0048

.0038
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Table12.OptimizationDataandResultsfortheStructuralDesignVariablesof the CSIEvolutionaryModel

]Staticdissipativecontroller]

Upperbound Lowerbound Initial Final
Designvariable Section values,in. values,in. values,in. values,in.

1(longeron) 1 1.0 0.12 0.3125 0.999
2 (batten) 1 1.0 .12 .3125 .633
3 (diagonal) 1 1.0 .12 .3125 .958
4 (longeron) 2 1.0 0.12 0.3125 0,124
5 (batten) 2 1.0 .12 .3125 .644
6 (diagonal) 2 1.0 .12 .3125 .144
7 (longeron) 3 1.0 O.12 0.3125 0.999
8 (batten) 3 1.0 .12 .3125 ,453
9 (diagonal) 3 1,0 .12 .3125 .658

10(Iongeron) 4 1.0 O.I2 0.3125 1,000
11(batten) 4 1.0 .12 .3125 .181
12(diagonal) 4 1.0 .12 .3125 ,407
13(longeron) 5 1.0 0.12 0.3125 0,425
14(batten) 5 1.0 ,12 .3125 ,143
15(diagonal) 5 1.0 .12 .3125 .138
16(longeron) 6 1.0 0.12 0.3125 0.122
17 (batten) 6 1.0 .12 .3125 .392

18 (diagonal) 6 1.0 .12 .3125 .145

19 (longeron) 7 1.0 O. 12 0.3125 O. 142

20 (batten) 7 1.0 .12 .3125 .183

21 (diagonal) 7 1.0 .12 .3125 .427
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Table13.ModalFrequenciesfor theRedesigned
CSIEvolutionaryModel

[Staticdissipativecontroller]

Mode Frequency,Hz
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.122
.127
.173
.625
.684

1.191
1.642
2.334
2.651
3.829
3.995
4.226
4.598
5.379
7.092

7.639

7.910
8.599

8.994

9.020

Table 14. Diagonal Elements of Rate Gain Matrix for the CSI Evolutionary Model

[Static dissipative controller]

Design Control-opt imized

variable design

Gr(1, 1)
G_(2,2)
Gr(3,3)
Gr(4,4)
G_(5, 5)
Gr(6,6)
G_(7, 7)
Gr(8,8)

1.525

.409

1.234
.448

2.126

2.122

.352

.680

Integrated

design
1.263

.477

1.203

.440

1.674

1.671
.869

.626
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Table15.IntegratedDesignof the CSI Evolutionary Model

[Dynamic dissipative controller]

RMS Control Transient controlled

Design displacement, in. power, lb 2 performance, Pc

Control-optimized design 1.70 8.31 - 0.0026

Integrated design 1.70 5.91 .0024

Table 16. Optimization Data and Results for Structural Design Variables of the CSI Evolutionary Model

[Dynamic dissipative controller]

Upper bound Lower bound Initial Final
Design variable Section values, in. values, in. values, in. values, in.

1 (longeron) 1 1.0 0.12 0.3125 0.999

2 (batten) 1 1.0 .12 .3125 .547
3 (diagonal) 1 1.0 .12 .3125 1.000

4 (longeron) 2 1.0 0.12 0.3125 0.120

5 (batten) 2 1.0 .12 .3125 .540

6 (diagonal) 2 1.0 .12 .3125 .120

7 (longeron) 3 1.0 0.12 0.3125 1.000

8 (batten) 3 1.0 .12 .3125 .354

9 (diagonal) 3 1.0 .12 .3125 .579

10 (longeron) 4 1.0 0.12 0.3125 1.000
11 (batten) 4 1.0 .12 .3125 .138

12 (diagonal) 4 1.0 .12 .3125 .367

13 (longeron) 5 1.0 0.12 0.3125 0.357

14 (batten) 5 1.0 .12 .3125 .120

15 (diagonal) 5 1.0 .12 .3125 .120

16 (longeron) 6 1.0 0.12 0.3125 0.120

17 (batten) 6 1.0 .12 .3125 .308

18 (diagonal) 6 1.0 .12 .3125 .120

19 (longeron) 7 1.0 0.12 0.3125 0.120
20 (batten) 7 1.0 .12 .3125 .135

21 (diagonal) 7 1.0 .12 .3125 .332
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Table17.ModalFrequenciesfor theRedesigned
CSIEvolutionaryModel

[Dynamicdissipativecontroller]

/vlode Frequency, Hz
1

2

3

4

5

6
7

8

9

10
11

12

13
14

15

16

17
18

19

20

0.122

.127

.173

.629

.690
1.186

1.578

2.238

2.576

3.761
3.782

4.174

4.320
5.196

6.443

7.351

7.876
8.549

8.922

8.982

Table 18. Control Dcsign Variables for the CSI Evolutionary Model

[Dynamic dissipative controller]

Design Control-optimized Integrated

variable design design
Ac(2, 1)

Ac(2, 2)

Ac(4, 3)

Ac(4, 4)
Ac(6, 5)

Ac(6,6)

At(s, 7)
Ac(8,8)
ic(lO,9)

hc(lO, 10)

A (12, 11)
Ac(12, 12)

Ac(14, 13)
Ac(14, 14)

Ac(16, 15)

Ac(16, 16)

11.400

66.351
82.667

92.846

20.989

70.983
89.514

92.700

27.749

42.645

21.I09
50.887

21.495

100.329
22.814

81.224

45.204

107.918
72.342

80.691

35.454

94.716
74.961

79.441

43.161

88.555

44.916
91.610

38.261

86.221

29.081
90.669
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Table19.Control Design Variables for the CSI Evolutionary Model

[Dynamic dissipative controller]

Design Control-optimized Integrated
variable design design

Q(1, 1)
O(2,2)
Q(3,3)
Q(4,4)
O(5,5)
Q(6,6)
Q(7, 7)
Q(8,8)
Q(9,9)
Q(IO, 10)
q(11,11)
Q(12,12)
Q(13, 13)
Q(14, 14)
Q(15,15)
Q(16,16)

1903.7

3585.4

3126.9
3155.5

3704.8

3054.8

3008.7

3047.9
4088.5

2279.1

3018.3

3302.3
4205.1

2455.0
3711.6

2917.6

13 117.1

10156.0

2632.3

2472.4

8693.4
5610.7

2292.9

2254.9

12 123.5

8 354.5
11 099.9

9 466.5

6 252.3
3 939.0

4 858.3

3 167.5
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Figure 2. Flow diagram for the integrated controls-structures optimization.
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