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ABSTRACT

The Theory of Intelligent Machines has been recently reformulated

to incorporate new architectures that are using Neural and Petri

nets. The analytic functions of an Intelligent Machine are imple-

mented by Intelligent Controls, using Entropy as a measure. The
resulting hierarchical control structure is based on the Principle

of Increasing Precision with Decreasing Intelligence. Each of the

three levels of the Intelligent Control is using different archi-

tectures, in order to satisfy the requirements of the Principle:

the Orqaniza_ion level is modeled after a Boltzmann machine for

abstract reasoning, task planning and decision making; the

_Qordination level is compose d of a number of Petri Net Transducers
supervised, for command exchange, by a dispatcher, which also

serves as an interface to the Organization level; the Execution

level, includes the sensory, planning for navigation and control

hardware which interacts one-to-one with the appropriate

Coordinators, while a VME bus provides a channel for database

exchangeamong the several devices. This system is currently

implemented on a robotic transporter, designed for space
construction at the CIRSSE laboratories at the Rensselaer

Polytechnic Institute. The progress of its development will be

reported.
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1. INTRODUCTION

In the last few years Intelligent Machines, proposed by the

Saridis (1979), have reached a point of maturity to be implemented

on a robotic testbed aimed for space assembly and satellite mainte-

nance. They feature an application of the theory of Hierarchically

Intelligent Control, which is based on the principle of Increasing

Precision with Decreasing Intelligence (IPDI) to form an analytic

methodology, using Entropy as a measure of performance. The origi-

nal architecture represented a three level system, structured ac-

cording to the principle, and using an information theoretic

approach (Saridis and Valavanis 1988). The three levels, (Fig.l):

Orqani_ation level

Coordination level and

Execution level

representing the original architecture of the system, have not been

changed, but their internal architectures have been recently

modified to incorporate more efficient and effective structures

dictated by experience (Fig.2).

This paper discusses these new architectures for each one of

the levels separately, and justifies their effectiveness by

presenting some implementation results from the robotic transporter

in CIRSSE at RPI.

2. THE ORGANIZATION LEVEL

2.1 The Architecture

A Boltzmann machine type neural net, originally proposed for

text generation, has been used for the structure that implements
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the Organization level of an Intelligent Machine(Saridis and Moed

1988, Moed and Saridis 1990). This machine would connect a finite

number of letters (nodes) into grammatically correct words (rules),

by minimizing at the first layer the total entropy of connections.

Replacing the letters at the nodes with words, at second layer,

sentenses are created. At the third level the words are replaced by

sentenses at the nodes and so on and so forth until a meaningful

text is created.
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The functions of the Organizer, following the model of a knowledge

based system, comprise of representation, abstract task planning

(with minimal knowledge of the current environment), decision

making, and learning from experience. All those functions can be

generated by a Boltzmann machine similar to the text gene-rating

machine, by considering a finite number of primitive elements at

the nodes, constituting the basic actions and actors at the

representation phase. Strings of these primitives are generated by

the Boltzmann machine at the planning phase with the total entropy

representing the cost of connections. The selection of the string

with minimum entropy is the decision making process, and the

upgrading of the parameters of the system by rewarding the

successful outcomes through feedback, is the learning procedure.

The next to minimumentropy string may be retained as an alternate

plan in case of failure of the original or errors created by the

environment.

This bottom-up approach, characteristic of natural languages, is

extremely simple and effective, utilizing intelligence to replace

the complexity of the the top-down type task decompositions. The

tasks thus generated, are practically independent of the current

environment. Information about the present world should be gathered

at the Coordination level. An appropriate world model is

constructed from sensory and motion information available at that

level. However, there the structure of the Dispatcher, designed to

interpret the Organizer's strings, monitor and traffic commands
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among the other Coordinators is highly dependent on the strings

which represent the planned tasks.

2.7 The _nalytic Model

To specify analytically the model of the organizer, it is

essential to derive the domain of the operation of the

machine for a particular class of problems (Saridis and

Valavanis 1988). Assuming that the environment is known, one

may define the following functions on the organization level:

a. Machine Representation and Abstract Reas0ninq, (RR) is

the association of the compiled command to a number of

activities and/or rules. A probability function is assigned

to each activity and/or rule and the Entropy associated with

it is calculated. When rules are included one has active

reasoning (inference engine).

In order to generate the required analytic model of this

function the following sets are defined:

The set of commands C = {ci,c2, ...,Cq} in natural language,

is received by the machine as inputs. Each command is compiled

to yield an equivalent machine code explained in the next

section.
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The task domain of the machine contains a number n of

independent objects.

The set E = {el,e2, ..., em} are individual primitive events

stored in the long-term memory and repesenting primitive tasks

to be executed. The task domain indicates the capabilities of

the machine.

The set A = {al,a2, ...,al} are individual abstract actions

associating the above events to create sentenses by
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concatenation. They are also stored in the long-term memory.

The set S = {sl,s2, ..o,Sn} = E U A, n=m+l,is the group of

total objects which combined, define actions represent complex

tasks. They represent the nodes of a Neural net.

A set of random variables X = {x I, ...,Xn} representing the state

of events is associated with each individual object s i. If the

random variable x i is binary (either 0 or I), it indicates whether

an object s i is inactive or active, in a particular activity and

for a particular command. If the random variables x i are continuous

(or discrete but not binary) over [0,i], they reflect a membership

function in a fuzzy decision making problem. In this work, the xi's

are considered to be binary.

A set of probabilities P associated with the random variables X is

defined as follows:

P = {Pi = Pr°b[xi = I]; i=l,...n} (i)

The probabilities P are known at the beginning of the

representation stage. In order to reduce the problem of

dimensionality a subset of objects is defined for a given command

Ck:

S k = {si; P£ Z a: i=l...n} C S (2)

L

b. M_chine Planninq,(P), is ordering of the activities.

The ordering is obtained by properly concatenating the

appropriate abstract primitive objects s i _ S k for the

particular command Ck, in order to form the right abstract

activities (sentences or text).

The ordering is generated by a Boltzmann machine which measures the

average flow of knowledge from node j to node i on the Neural-net
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by

Rij =-_ij -½E{wijxixj} = -_ij -½wijPiPj > 0 (18)

The probability due to the uncertainty of knowledge flow into node

i, is calculated as in (9):

P(Ri) = exp( - _i - ½ZjwijPiPj) (19)

where

Wij _ 0 is the interconnection weight between nodes i and j

wij = 0

_i > 0 is a probability normalizing factor.

The average Flow of Knowledge Ri into node i, is:

Ri= ui + ½E{ Yj(wijxixj)} = Gi + ½Y'j(wijPiPj)

with probability P(Ri) , (Jaynes' Principle) :

P(Ri) = exp[-_£ - ½_j (wijPiPj) ]

The Entropy of Knowledge Flow in the machine is

H(R) = - Z i [P(Ri) In[P(Ri) ] =

Y i[u i + ½_.j(wijPiPj) exp[-_ i - ½Zj(wijPiPj) ] (20)

The normalizing factor Gi is such that ½n S P(R i) S i.

The entropy is maximum when the associated probabilities are equal,

P(Rii) = ½n with n the number of nodes of the network. By bounding

P(Ri) from below by ½n one may obtain a unique minimization of the

entropy corresponding to the most like sequence of events to be

selected.
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Unlike the regular Boltzmann machines, this formulation does not

remove _i when Pi = 0. Instead, the machine operates from a base

entropy level _iexP(-_i) defined as the Threshold Node Entropy

which it tries to reduce (Saridis and Moed, 1988).

L

c. Machine Decision Making, CDM) is the function of selecting the

sequence with the largest probability of success.

This is accomplished through a search to connect a node ahead

that will minimize the Entropy of Knowledge Flow at that node:

H(Ri) = (ai + ½7_9wijPiPj) exp[-_i-½7"gwijPiPj]

A modified genetic algorithm, involving a global random search,

has been proposed by Moed and Saridis (1990) as a means of

generating the best sequence of events that minimized the

uncertainty of connections of the network expressed by the entropy

(20).This algorthim, proven to converge globally compared favorably

with other algorithms like the Simulated Annealing and the Random

Search.

d. Machine Learninq, CML) (Feedback). Machine Learning is obtained

by feedback devices that upgrade the probabilities Pi and the

weights wij by evaluating the performance of the lower levels

after a successful iteration.

L

For Yk representing either Pij or wij, corresponding to the command

Ck, the upgrading algorithms are:

Yk(tk+l) = Yk(tk) + 6k(tk+l ) [F(tk+l ) - Yk(tk) ] (21)

Jk(tk+l) = Jk(tk) + ak(tk+l)[Vkobs(tk+l) - Jk(tk) ]

=

where Jk(tk)

value and

is the performance estimate, Vkob s is the observed

h



P£ : Fk(tk+l) = X(tk)

1 if J = rain Je
wlj : Fk(tk+l) = e

0 otherwise

(22)
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e. Memory Exchange (ME), is the retrieval and storage of

information from the long-term memory, based on selected

feedback data from the lower levels after the completion of the

complex task.

The above functions may be implemented by a two level Neural net,

of which the nodes of the upper level represent the primitive

objects s i and the lower level of primitive actions relating the

objects eai of a certain task. The purpose of the organizer may be

realized by a search in the Neural net to connect objects and

actions in the most likely sequence for an executable task.

Since it was agreed to use Petri Net Transducers (PNT) to model the

coordinators at the next level, a Petri Net generator is required

to create the Dispatcher's PNT for every task planned. This can be

accomplished by another Boltzmann machine or a part of the existing

plan generating architecture.

A graph of the Boltzmann machine with the appropriate symbols is

given in Fig.3.
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3. THE COORDINATION LEVEL

3._ _he A;cbitecture

The Coordinatiion level is a tree structure of Petri Net

Transducers as coordinators, with the Dispatcher as the root(Wang

and Saridis 1990). Fig.4 depicts such a structure. The Petri Net

Transducer for the Dispatcher is generated by the Organizer for

every specific plan and is transmitted, asynchronously, to the

Coordination level along with the plan to be executed. The function

of the Dispatcher is to interpret the plan and assign individual

w
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tasks to the other coordinators, monitor their operation, and

transmit messages and commands from one coordinator to another as

needed. As an example, a command is sent to the vision and sensing

coordinator to generate a model of the environment, the coordinates

of the objects for manipulation to be tabulated, and then

transmitted to the motion coordinator for navigation and motion

control. This command is executed by having each transition of the

associated Petri Nets to initialize a package corresponding to a

specific action (Mittman 1990). These packages are stored in short

memories associated with each of the coordinators.

The rest of the coordinators have a fixed structure with

alternatate menues available at request. They communicate commands

and messages with each other, through the Dispatcher. They also

provide information about reception of a message, data memory

location, and job completion.

w
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No data is communicated at the Coordination level, since the task

planning and monitoring may be located in a remote station, and

such an exchange may cause a channel congestion. A preferred

configution for such situations is that the coordinators with a

local dispatcher may be located with the hardware at the work site,

while a remote dispatcher, connected to the organizer, interacts

with local one from a remote position. Fig.9 depicts this archi-

tecture. This concept simplifies the communication problem

considerably, since only short messages are transmitted back and

forth through a major channel between local and remote stations,

requiring a narrow bandwidth. An example of the effectiveness of

such an architecture may be demonstrated in space construction,

where robots work in space while task planning and monitoring is

done on earth.

Eventhough, there is no limitation to the number of coordina-

tors attached to the Dispatcher, only the following ones are

planned for an Intelligent Robot for space applications.
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Vision and Sensory Coordinator. This device coordinates all the

sensory activities of the robot, with cameras and lazers, and

generates information of the world model in cartesian coordinates.

Motion Control Coordinator. This device receives control, object

and obstacle information and uses it to navigate and move multiple

robotic arms and other devices, for object manipulation and task

execution. It also assigns the appropriate operations on the data

aquired for the desired application.

Planninq Coordinator. The task plans, optimal and alternate gene-

rated by the Organizer are stored in this device for proper monito-

ring of execution and possible error recovery in cases of failure

of the system.

GrasDinq Coordinator.This device coordinates the grippers of the

armsand interfaces the proximity sensors for effective grasping.

Entropy measures, are developed at each coordinator such that they

may be used to minimize the complexity and improve the reliability

of the system (McInroy and Saridis 1990). A typical PNT system for

the Coordination level of an Intelligent Robot as proposed by Wang

and Saridis (1988) is given in Fig. 5.

3.2 The Analytic Model

Petri nets have been proposed as devices to communicate and control

complex heterogenous processes. These nets provide a communication

protocol among stations of the process as well as the control

sequence for each one of them (Peterson 1977).

Abstract task plans, suitable for many environments are generated

at the organization level by a grammar (Wang and Saridis 1990):

G = (N, Z o, P, S)

where

N = {S, M, Q, H} = Non-terminal symbols

Z o = {AI, A2,...An} = Terminal Symbols (activities)

P = Production rules

Petri Net Transducers (PNT) proposed first by Wang and Saridis
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(1990) are Petri net realizations of the Linguistic Decision

Schemata introduced by Saridis and Graham (1984) as linguistic

decision making and sequencing devices. They are defined as

6-tuples:

where

M = (N, Z, 8, G, _, F)

N = (P, T, I, O) = A Petri net with initial marking _,

= a finite input alphabet

6 = a finite output alphabet

a = a translation mapping from T x (_ U {\}) to finite

sets of 6* and F C R(_) a set of final markings.

A Petri Net Transducer (PNT) is depicted in Figure 6. Its input and

output languages are Petri Net Languages (PNL). In addition to its

on-line decision making capability PNT's have the potential of

generating communication protocols, learning by feedback, ideal for

the communication and control of coordinators and their dispatcher

in real time. Their architecture is given in Figure 7, and may

follow a scenario suitable for the implementation of an autonomous

intelligent robot.
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Figure 8 depicts the Petri Net Structure of a typical Coordination

Structure (CS) of an intelligent robot. This structure is a

7-tuple:

CS = (D, C, F, RD, SD, R c, Sc)

where

D = (Nd, Zo, 6o, Gd, _d, Fd) = The PNT dispatcher

C = {Cl,...Cn} = The set of coordinators

Ci= (Nic, zic, 6ic, Gic , Fic ) = the ith PNT coordinator

' ' i
F = uni=l{fii, f_sI' f_o' f SO} = A set of connection points
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RD,R c = Receiving maps for dispatcher and coordinators

SD,S c = Sending maps for dispatcher and coordinators

Decision making in the coordination structure is accomplished by

Task Scheduling and Task Translation, e.g., for a given task find

a an enabled t such that o(t,a), is defined and then select the

right translation string from a(t,a) for the transition t.

The sequence of events transmitted from the organization level is

received by the dispatcher which requests a world model with

coordinates from a vision coordinator.

The vision coordinator generates appropriate database and upon the

dispatcher's command communicates it to the planning coordinator

which set a path for the arm manipulator. A new command from the

dispatcher sends path information to the motion controller in terms

of end points, constraint surface and performance criteria. It

also initializes the force sensor and proximity sensor control for

grasp activities. The vision coordinator is then switched to a

monitoring mode for navigation control, and so on.

The PNT can be evaluated in real-time by testing the computational

complexity of their operation which may be expressed uniformly in

terms of entropy. Feedback information is communicated to the

coordination level from the execution level during the execution of

the applied command. Each coordinator, when accessed, issues a

number of commands to its associated execution devices (at the

execution level). Upon completion of the issued commands feedback

information is received by the coordinator and is stored in the

short-term memory of the coordination level.

This information is stored in the short-term memory of the

coordination level. This information is used by other coordinators

if necessary, and also to calculate the individual, accrued and

overall accrued costs related to the coordination level.

Therefore, the feedback information from the execution to the
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coordination level will be called on-line, real-time feedback

information.

The performance estimate and the associated subjective

probabilities are updated after the kij-th execution of a task

[(ut,xt)i,Sj] and the measurement of the estimate of the observed

cost Jij:

Jij(kij+l) = Jij(kij)+6(kij+l) [Jobs(kij+l)-Jij(kij) ] (23)

m

2

m

Pij (kij+l) -- Pij (kij)+_(kij+l) [Fij (kij+l)-Pij (kij) ]

where

I 1 if Jij = MinFiJ = 0 elsewhere

and 6 and _ are harmonic sequences. Convergence of this

algorithm is proven in (Saridis and Graham 1984).

=

w

The learning process is measured by the entropy associated to the

subjective probabilities. If

H(M) = H(E) + H(T/E) (24)

where H(E) is the environmental uncertainty and H(T/E) is the pure

translation uncertainty. Only the latter may be reduced by

learning.

L_

w

4. THE EXECUTION LEVEL.

4.1 The STstem and the Architecture

The Execution level contains all the hardware required by the

Intelligent Machine to execute a task. There is a one-to-one

corresondence between hardware groups and coordinators. Therefore
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their structure is usually fixed. This level also contains all the

drivers, VME buses, short memory units, processors, actuators and

special purpose devices needed for the execution of a task. After

the successful completion of a job feedback information is gene-

rated at this level for evaluation and parameter updating of the

whole machine. Complexity dominates the performance of this level.

Since precision is proportional to complexity, it also defines the

amount of effort required to execute a task. It has been shown that

all the activities of this level can be measured by entropy, which

may serve as a measure of complexity as well. Minimization of local

complexity through feedback, may serve as local design procedure.

The localization of data exchange at this level provides a means of

efficient remote control of the Intelligent Machine, (see Fig.9)

m
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m

Because of the diversity of the hardware in a general purpose

Intelligent Machine, this work will focus on the special case of a

robot designed for space constrution like the CIRSSE transporter.

The following hardware groups are available:

The Vision and Sensory System. This systems consists of two cameras

fixed at the ceiling of the lab., two penlight cameras on the wrist

of one PUMA arm, and a lazer rangefinder. They are all controlled

by a Datacube with a versatile menu of various hardwired functions

and a VME bus for internal communications. The functions assigned

to them, e.g. create a world model in cartesian space, find the

fiducial marks on the object to be manipulated, or track a moving

object are supported by software specialized for the hardware of

the system. Calibration and control of the hardware is an

important part of the system. Since we are dealing with information

processing the system's performancecan be easily measured with

entropy. Actual data for visual servoing can be generated on the

VME bus and transmitted through the Dispatcher to the Motion

Control system. Direct connection of the VME bus with the Motion

Control System is planned in the future.

The Motion Control System. This system is a unified structure for

cooperative motion and force c0ntrol for multiple arm manipulation.

Since mtion affects force but not vice versa, motion control is

designed independent of the constraint forces, and force control by

treating inertial forces as disturbance. Integral force feedback is
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used with full dynamics control algorithms. The resulting system,

named CTOS, was developed as a multiple-processor, VME-bus based,

real time robot control system for the CIRSSE 18-degree-of-freedom

transporter. It hierarchically integrates the execution algorithms

in planning, interaction, and servo control. It works together with

the VXWORKS software and provides most of the transformations, and

other kinematics and dynamics tools needed for servoing and

manipulation. In earlier work it was shown that the control

activities can be measured by entropy (Saridis 1985b). Therefore

the measure of performance of the Motion Control System is

consistent with the rest of the architecture of the Intelligent

Machine.
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The Graspinq System. This system is planned to be separate from the

Motion Control System. It would involve the grasping operations,

the information gathering from various proximity sensors, and

integration of these activities with the gripper motion control. It

will be driven by a special coordinator, and provide information

back of proper grasping for job control purposes. However at the

present time it is only a subsystem of the Motion Control System

and isfollows commands issued by the its Coordinator, for purposes

of expediency.

4,,2 Entropy Formulation of Motion Control.

The cost of control at the hardware level can be expressed as an

entropy which measures the uncertainty of selecting an appropriate

control to execute a task. By selecting an optimal control, one

minimizes the entropy, e.g., the uncertainty of execution. The

entropy may be viewed in the respect as an energy in the original

sense of Boltzmann, as in Saridis (1988).

Optimal control theory utilizes a non-negative functional of the

state of the system x(t) _ _x the state space, and a specific

control u(x,t) _ n u x T; _u C n x the set of all admissible feedback

controls, to define the performance measure for some initial

conditions Xo(to) , representing a generalized energy function, of

the form:

V(x0,to) = E{ 0 L(x,t;u(x,t)) dt} (25)
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where L(x,t;u(x,t)) > 0, subject to the differential constraints

dictated by the underlying process
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dx/dt = f(x,u(x,t),w,t) ;

z = g(x,v,t) ;

x(t0) = x 0

x(tf) _ Mf (26)

where x0, w(t), v(t) are random variables with associated

probability densities P(X0), p(w(t)), p(v(t)) and Mf a maninfold in

n x. The trajectories of the system (26) are defined for a fixed but

arbitrarily selected control u(x,t) from the set of admissible

feedback controls n u.

In order to express the control problem in terms of an entropy

function, one may assume that the performance measure

V(Xo,to,U(x,t)) is distributed in u according to the probability

density p(u(x,t)) of the controls u(x,t) _ n u. The differential

entropy H(u) corresponding to the density is defined as

r

H(u) = - ]nu p(u(x,t))inp(u(x,t)) dx

and represents the uncertainty of selecting a control u(x,t) from

all possible admissible feedback controls _u- The optimal

performance should correspond to the maximum value of the

associated density p(u(x,t)). Equivalently, the optimal control

u*(x,t) should minimize the entropy function H(u).

This is satisfied if the density function is selected to satify

Jaynes' Principle of Maximum Entropy (1956), e.g.,

p(u(x,t)) = exp{-_ - _V(x0,t0;u(x,t )) } (27)

where _ and _ are normalizing constants.

It was shown by Saridis (1985b) that the expression H(u)

representing the entropy for a particular control action u(x,t) is
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given by:

H(u) = Jnu p(x,t;u(x,t))V(xo,to;U(x,t )) dx =

= _ + _V(xo,t0;u(x,t)) (28)

17
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This implies that the average performance measure of a feedback

control problem corresponding to a specifically selected control,

is an entropy function. The optimal control u*(x,t) that minimizes

V(x0,t0;u(x,t)) , maximizes p(x,t;u(x,t)), and consequently

minimizes the entropy H(u).

u*(x,t) : E{V(x0,t0;u*(x,t)) }

= minJn u V(x0,t0;u(x,t ))p(u(x,t))dx

(29)

This statement is the generalization of a theorem proven in

(Saridis 1988) and establishes equivalent measures between

information theoretic and optimal control problem and provides the

information and feedback control theories with a common measure of

performance.
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4.3 EntroPyMeasure of the Vision System.

The optimal control theory designed mainly for motion control, can

be implemented for vision control, path planning and other sensory

system pertinent to an Intelligent Machine by slightly modifying

the system equations and cost functions. After all one is dealing

with real-time dynamic systems which may be modeled by a dynamic

set of equations.

A Stereo Vision system of a pair of cameras mounted at the end of

a robot arm, may be positioned at N different view points to reduce

problems with noise, considered one at a time due to time

limitations. The accuracy of measuring the object's position

depends upon its relative position in the camera frame.

Consiquently, each viewpoint will have different measurement error
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and time statistics. These statistics may be generated to define

the uncertainty of the measurement of the Vision system as in

McInroy and Saridis (1991).

For a point c of the object, the measurement error of its 3-D

position in the camera coordinate frame epc is given by:

epc = Mc n a (30)

where n c is the 3-D image position errors, and M c an appropriate

3x3 matrix, depending on the position of the object.

The linearized orientation error is given by:

6 = (MTM)-IMTM'Fn (3l)

i

L-

i

m.

where

6 is the orientation error in the camera frame,

M is a matrix formed from camera coordinate frame positions,

M' is a constant matrix,

F is the matrix formed from the camera pameters and measured

positions,

n is the vector of the image position errors at the four points.

A vector containing the position and orientation errors due to

image noise is given by:

ec = [eTpc6T] T = Ln (32)

where L depends on the camera parameters and the four measured

camera frame positions of the points. The statistics of the image

noise n, due to individual pixel errors are assumed to be

uniformely distributed. Assuming that feature matching centroids is

used by the vision system, its distributions tend to be independent

Gaussian, due to the Central Limit Theorem.

n = N(0,Cv) and e c = N(0,LCv LT) (33)
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The time which each vision algorithm consumes is also random due to

the matching period. Therefore the total vision time, for the ith

Algorithm that includes camera positioning time, image processing

time, and transformation to the base frame, is assumed Gaussian:

tvi --"N(_tvi,_2tvi) . (34)

Once the probability density functions are obtained, the resulting

Entropies H(tvi), and H(ec), are obtained in a straight forward

manner for the ith Algorithm (McInroy and Saridis 1991):

H(tvl ) = In/2_ea2tv%) _ (35)
i

H(ec) = in/(2_e)6det[Cv] + E{in[detLi]}

The total Entropy, may be used as a measure of uncertainty of the

Vision system (imprecision), and can be minimized wrt. the

available system parameters:

H(V) = H(tvi ) + H(ec).

_, APPLICATION TO ROBOTIC SYSTEMS.

(36)

w

The theory of Intelligent Controls has direct application to the

design of Intelligent Robots. The IPDI provides a means of

structuring hierarchically the levels of the machine. Since for a

passive task the flow of knowledge through the machine must be

constant, it assigns the highest level with the highest machine

intelligence and smallest complexity (size of data base), and the

lowest level with the lowest machine intelligence and largest

complexity. Such a structure agrees with the concept of most

organizational structures encountered in human societies.

Application to machine structures is straight forward.

Even at the present time there is a large variety of applications
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for intelligent machines. Automated material handling and assembly

in an automated factory, automation inspection, sentries in a

nuclear containment are some of the areas where intelligent

machines have and will find a great use. However, the most

important application for the author's group is the application of

Intelligent Machines to unmanned space exploration where, because

of the distance involved, autonomous anthropomorphis tasks must be

executed and only general commands and reports of executions may be

communicated (see Wang Kyriakopoulos et al. 1990).

Such tasks are suitable for intelligent robots capable of executing

anthropomorphic tasks in unstructured uncertain environments. They

are structured uncertain environment.

They are structured usually in a human-like shape and are equipped

with vision and other tactile sensors to sense the environment, two

areas to execute tasks and locomotion for appropriate mobility in

the unstructured environment. The controls of such a machine are

performed according to the Theory of Intelligent Machines

previously discussed (Saridis and Stephanou 1977), (Saridis 1983,

1985a, 1985b, 1988a), (Meystel 1985, 1986). The three levels of

controls, obeying the Principle of Increasing Precision with

Decreasing Intelligence, are presently tested on a testbed composed

of two PUMA 600 robot arms with stereo vision and force sensing,

with the structure of Figure I0.

Recent research has been focused in the application of the Theory

of Intelligent Machines to design robots for autonomous

manipulation and locomotion in space. Satellite maintenance,

construction of the space station and autonomous planet exploration

vehicles are typical examples. A testbed for earth simulation of

such activities in space has been built in the Center for

Intelligent Robotics for Space Exploration at Rensselaer and

graphically depicted in Figure Ii.
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The architecture described in this paper does not differ

substantially from the architecture originally proposed by Saridis

(1979). The details have been more elaborated and more efficient

internal structures have been used. The main contribution though is

that this system is been successfully implemented and that the

resulting structure is extremely efficient, effective, versatile,

capable for remote operation as compared to other proposed

architectures. Evaluation results will be reportd in a follow-up

paper.
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