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I. INTRODUCTION

We adopt an idealized model of an intense tall axisymmetric vortex in a stratified "moist

atmosphere" above a ground plane, and then analyze the flow to ascertain whether the vortex could

be selfsustaining. The ultimate objective is the identification of (hopefully sateUite-accessible)

observables for anticipating tomadogenesis within a supercell thunderstorm.

In undertaking this work, we note the assessment of Rotunno (1986) that, while aircraft and

multi-Doppler radar with a resolution of few kilometers have increased understanding on the

10-50-km thunderstorm scale, the more difficult question of how the larger tornado cyclone

produces the smaller-scale tornado is unresolved. "Given the present state of computers, it is

impossible for three-dimensional cloud models, even with nested grids, to simulate both the

supercell on a domain large enough to include the undisturbed environment and the tornado with a

resolution fine enough to capture the significant dynamical processes. However, even if this were

possible, the results of such a calculation might be too difficult to handle." (Rotunno 1986,

p. 427.)

Supercell-spawned tornadoes have the highest wind speeds, the longest and widest paths, and

the longest life-span of any tornadoes, and, thus, from a practical point of view, are the most

important (Rotunno 1986). We know that severe weather arises in convectively unstable ambients

(i.e., tropospheric stratifications in which the low-level air is particularly warm and moist, so there

is a pronounced midtropospheric minimum in the total static enthalpy) (Darkow 1986). However,

convective instability only sometimes results in a supercell thunderstorm, and perhaps only one in

four supercell thunderstorms spawns a tornado. Thus, a tornado wamings based on mesocyclone

detection by dual-Doppler radar would seem likely to incur a significant false-alarm rate, although

mesocyclones often manifest some type of severe weather (Brown 1987).

Identifying a further discriminant for tornadogenesis in already well-developed, rotating,

severe local storms remains a worthwhile goal. Inquiring into the vertical-vorticity-amplification

mechanisms responsible for the pretornadic organization of the rotating thunderstorm seems

nonessential for this objective; the organization may be viewed as a _ "initial condition".

Rotunno notes that, in the present state of limited understanding of the asymmetric

heterogeneous flow in the storm, guidance often is sought from examining the axisymmetric

homogeneous flow in a cylindrically configured laboratory apparatus called a vortex chamber

(Maxworthy 1982). Fluid within such a chamber is drawn through it by suction applied at an

exhaust hole in one end wall, and rotation is added to new fluid, which enters through the lateral

surface of the chamber. Clearly, both the primary flow (circulation) and the secondary flow

(inflow-updraft-outflow) are very highly constrained in a vortex chamber, and the circulation
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added to entering air typically does not vary with height. Thermodynamically, there is no

condensation of water vapor, and no density stratification with altitude because of the limited

height of the chamber. The laboratory vortex chamber may be of value for investigating specific,

purely fluid-dynamical aspects, such as the mass exchange between contiguous "columns" of air

(with differential rotation) in a vortex, although artifacts of the apparatus could be misleading about

other properties of an intense atmospheric vortex. In our concluding remarks, we suggest a further

aspect of tornado dynamics that may be usefully pursued in a laboratory vortex chamber.

For elucidating the thermohydrodynamics of tornadogenesis, we adopt a model of rapidly

swirling flow that: extends over the vertical scale of the troposphere; is axisymmetric (for analytic

convenience); and involves moist air (with both static temperature and dew-point temperature

stratified in accord with atmospheric soundings) which undergoes idealized processes. In selecting

appropriate idealized processes, we note that the inferred peak swirl speed, relative to the axis of

rotation, in the exceptional, intense tornado (of interest here) may exceed 100 m/s. We believe

that the only plausible tropospheric mechanism for attaining the magnitude of lateral pressure

deficit (near ground level) consistent with such high swirl speed is the "two-cell", "eye"-within-an-

"eyewall" structure known to be associated with hurricane-stage tropical cyclones (Fendell 1974).

We suggest that some phenomena associated with the intensification of a tropical storm into a

hurricane-stage tropical cyclone also occur during tomadogenesis in a mesocyclone, albeit on

reduced lateral scale (Dergarabedian and Fendell 1970, 197 la, 197 lb, 1977; Walko 1988).

Specifically, we associate tornadogenesis with the (at least partial) insertion of a central column of

dry, only very slowly rotating, very slowly recirculating air, characterized by a nearly dry-adiabatic

locus of thermodynamic states, within an annulus of mostly saturated, rapidly rotating and

ascending air, characterized by a nearly moist-adiabatic locus of thermodynamic states (Figs. 1 and

2). Of course, the idealization of a nearly dry "eye" and an entrainment-free "eyewalr' is a

convenient simplification that assists both the exposition and the analysis below; relaxation from

this idealization may be the subject of subsequent studies. The compatibility of exceptional swirl

speeds with this just-described two-cell structure has been previously reported by considering

measured, convectively unstable ambients under simplifying cyclostrophic and hydrostatic

approximations.

2. OBJECTIVE AND MODEL

Our objective is to examine a further point about the above-described swirling flow by

applying the laws of dynamics and thermodynamics. We inquire whether only certain

stratifications of the ambient angular momentum at the periphery of the flow permit the two-cell

structure, requisite for intense swirl speeds of roughly 100 m/s, to persist. For example, perhaps
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a two-cell structure is plausiNy sustainable only if the low-level angular momentum at the

perimeter persists on a scale equal to the height of the troposphere.

We adopt the model in Fig. 3 for investigating the conjecture of the last paragraph. Although

we undertake no transient analysis, we believe that the adopted four-part quasisteady structure

might well evolve after spin-up from "reasonable" initial conditions. The top of the flow (say, near

15 km or so) is defined to be an isothermal isobaric horizontal plane, located at an altitude at which

the value of the ground-level total static enthalpy is virtually recovered, for the convectively

unstable stratification holding at the "lateral edge" (or periphery) of the flow field. At the

periphery, the static temperature, the dew-point temperature, and the angular momentum are

explicitly given (or are readily deducible) as functions of altitude above the ground plane. (As

noted, at the periphery, we typically shall adopt temperature and dew-point-temperature prof'tles

measured in temporal and spatial proximity to a tornadic thunderstorm.) The ground plane is an

impervious isothermal plane at which the no-slip boundary condition holds. In the next paragraph,

we provide more detail on the quasisteady four-part structure, depicted in Fig. 3; much of the

remainder of this investigation then seeks to identify the ambient conditions under which the four-

part structure is plausible, stable, and compatible with thermohydrodynamic principles.

Most of the flow (except near the ground plane and the axis of rotation) would consist of

warm moist air rotating in a potential vortex in a cyclostrophic, hydrostatic balance, such that

isobars would dip groundward as the (cylindrical) radial distance from the axis of symmetry (and

rotation) decreases (region I of Fig. 3). There is very little radial motion in the spun-up potential

vortex, and only a relatively slow downflux into a nonlinear frictional layer (region II), contiguous

to the ground plane. The frictional-layer thickness increases modestly (to, say, 50 m or so) with

decreasing radial distance from the axis. Rotating flux that descends into this frictional layer flows

radially inward within the layer; in fact, for an intense vortex, at smiler radial distances from the

axis of symmetry, frictional effects are significant only in an ever-thinning sublayer immediately

contiguous to the ground plane, and most of the irfflow-layer thickness can be described by

inviscid dynamics. The swirling inflow layer separates at a finite radial distance (say, at radius of

50-75 m) to become a swirling annular updraft of saturated air (the "eyewalr', region 111). The

very-low-altitude comer-like flow of region I11 is henceforth referred to as the turnaround, and is

treated separately below by specializing the relations holding more generally over the vertical extent

of the eyewall. In Fig. 3, the eyewall becomes thicker, and tilts away from the axis, with

increasing altitude; the updraft may well be sufficiently vigorous that little condensate falls out.

Within the updraft annulus is a central column (the "eye", region IV) of warm, dry, slowly

recirculating, only very slowly rotating air. For a finite amount of warm moist air available for

throughput, the swirling effectively dies (or at least is very diminished) after all the outer-vortex
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fluid has been "processed", owing to the frictional loss of angular momentum in the near-ground-

level-inflow layer.

3. A MODEL FOR THE ANNULAR ROTATING UPDRAFT

A transversely averaged model for the "eyewalr' (region I]/) is given by the following set of

coupled algebraic and differential equations [previously presented in more cumbersome form and

without solution (Carder et al. 1984)]:

conservation of mass (with entrainment from the eye into the eyewall),

p q R h = Po qo Ro ho + CtE f0 z peye(Zl) q(zl)[R(zl) " h(zl)] dzl ;
(I)

conservation of angular momentum,

Rv = Ro Vo ; (2)

conservation of radial momentum across the annulus,

13q2 h d2R_ p v 2 h

[I + (dPJdz)2]3/2 dz2 R[I + (dPJdz)2]I/2
+ Pamb - Pcy¢ = 0 ; (3)

Bemoulli's equation,

q2 + v 2 _pP d_ qo2 + %22 + gz + p-_ = 2 ; (4)
O

moist-adiabatic locus of thermodynamic states based on the ground-level state holding at the

periphery (previously tabulated and presented here formally),

p = F(p); (5)

definition of a "mean eyewall pressure",

2p = Pamb + Peye ; (6)

and selfconsistency of an isobar in the outer, potential vortex [see Eqs. (11)-(13) below and

Appendix C],

h(pamb) = _[1-(1" bz)] ex_" V°2 R°2 b)"2g R 2 (7)
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These seven equations are to be solved to yield the dependent variables q, v, p, p, Pamb, R, and h

as functions of the independent spatial variable z(> 0), with the starting conditions at z = 0:

R(0)=R ° dR(0_ N given (8)
• dz "-- t •

where we expect N = 0 to be of particular interest. That is, the above equations are taken to hold

for an initially vertical updraft, after the throughput has transversed the turnaround, and possibly

undergone a "vortex breakdown", in the very-low-altitude subdomain of region III. As yet, we

have not studied the selfconsistency of the conditions of Eq. (8) with the behavior holding in the

turnaround. In any case, the origin z = 0 is still "close" to ground level. Subscript o denotes

known values holding at z = 0. The function Peye(Z), which denotes the pressure as a function of

altitude z in the central dry, transversely invariant core, is known from preliminary

"thermohydrostatic" calculation, as is the tabulated, moist-adiabat-based relationship [Eq. (5)]

between p and p, the density and pressure, respectively, in the updraft annulus. For

completeness, this preliminary set of calculations is summarized in Appendix A.

The (cylindrical-)radial displacement of the "eyewalr' from the axis of rotation (and symmetry)

is denoted R; the thickness of the "eyewall", h; the swirl speed in the "eyewall", v; the flow speed

along the "eyewall", q; the pressure at the interface between the "eyewall" and the outer potential

vortex, Pamb; and the magnitude of the gravitational acceleration, g. Further, from Appendix A,

Vo-[2(Ap)/po].
where (Ap) is the near-ground lateral pressure deficit (between the axis of symmetry and the

periphery) for a two-cell structure. Also, if qo is the average radial velocity in the boundary-layer

flux, and Vo is the average swirl velocity in the boundary-layer flux,

V2o= qo2 + vo2 , (10)

a relation obtained in the course of the analysis of the higher-peak-speed, nearer-to-the-axis-of-

symmetry portion of the surface frictional layer (Appendix B), in which it is suggested that qo = Vo

in the frictional layer near separation. However, qo (but not %) _ be decremented in any

subsequent vortex breakdown, and the decremented value of qo would be appropriate for use in

Eqs. (1) and (4).

As developed in Appendix C, the swirl in the outer potential vortex is given by [r is recalled to

be the (cylindrical-)radial coordinate]

2 Vo 2 I% 2
Vouter = r2 f(z), (11)
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where at the outset we study the specific case of a linear distribution of the peripheral angular

momentum with altitude in the troposphere:

We let

f(z) - a - bz, (13)

so a = 1, b = (1 - _3)/ZT. That is, 13= 0 implies a peripheral swirl so stratified with altitude that no

swirl exists at the "lid" z = ZT, the known height of the "tropopause"; alternatively, 13= 1 implies a

distribution of swirl invariant with altitude. While variation of results with the parameter I] is of

key interest, we note here, and reiterate below, that if the swirl in the eyewall is smaller that the

swirl in the potential vortex near the potential-vortex/eyewall interface, the flow is unstable.

Hence, a selfsustaining vortex would not be expected for smaller values of the parameter 13-

Eq. (11) links the altitude h, at which a particular value of the pressure Pamb arises at the

periphery, with the (lower) height z at which that same particular value of the pressure Pamb holds

at the "eyewall"/potential-vortex interface. The function h(p), which gives the height associated

with pressure at the periphery, for the peripheral sounding under investigation, is obtained, of

course, by hydrostatics from the given data (static temperature and dew-point temperature as a

function of pressure).

A factor of 2x has been cancelled from each side of Eq. (1), in which the Taylor entrainment

constant C_E= 0.08 - 0.09 (Tumer 1969). While we anticipate entrainment of dry, warm, virtually

nonrotating air from the eye into the eyewall, we do not expect much entrainment into the eyewall

from the contiguous portions of the potential vortex, especially for those altitudes for which the

contiguous-potential-vortex fluid is rotating at a speed in excess of the transversely averaged swirl

speed holding in the eyewall. Since the mass entrained into the eyewall is taken to be detrained

from the eye, an axial downdrift Weye arises in the eye. If the eye/eyewall interface at altitude z

occurs at (cylindrical-)radial distance [R(z) - h(z)], we may estimate the downdrift by the

conservation of mass:

_O Z
Peye(Z) JR(z) - h(z)] 2 Weye(Z)=-2 ore pcy,.(zt) q(zl) [R(zl)- h(z,)] dzl,

where we have taken the downdrift to vanish at the impervious ground plane z = 0. We anticipate

the downdrift to be comparatively modest, for consistency with the slow recirculatory flow
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envisioned for the eye relative to the rapid updraft in the eyewall. The influx into the eye in the

upper troposphere is not within the scope of this discussion.

The appearance of the two principal radii of curvature in Eq. (3) may be noted. Equation (3)

is to be integrated by: (1) holding the product (ph) and the difference (Pamb - Peye) constant over a

small increment in altitude z; (2) using the modified value thus obtained for the "eyewall"

radius, R, to update the values for p, h, Peye, and Pamb at the slightly incremented altitude; and

(3) repeating steps (1) and (2) for a further, small increment in altitude, until one attains either the

highest altitude, ZT, for which the thermodynamic and dynamic state at the periphery is defined

(Appendix A), or until singular behavior intrudes.

We anticipate that, in general, the slope of the eyewall, Rz, is small. If not, then it becomes

noteworthy that, whereas all the other dependent variables are functions of the altitude z (as

previously stated), in fact the argument of the tabulated function Peye is z', where

z' - z + h R_

(1 + "'z/

For completeness, we note that we have regarded the eyewall/potenfial-vortex interface to be

the definition of the displacement R(z), for circumstances in which the nominal smallness of the

ratio h/R does not hold.

While the spatial scales Ro and ho may appear to be independently assignable, in fact, a thin-

layer-type, transversely averaged treatment of the eyewall is more appropriate for circumstances for

which the ratio (Ro/ho) > O(10). More specifically, the case (Ro/ho) = O(10) is more plausible

under the observation that the mass flux entering the eyewall, _, is given by

lileyewal I ----2n Po Ro ho qo ; (14)

the mass content of the eye, meye, is given by

meye = dz Peye(Z) 2n r dr = _t Re(z) Peye(Z) dz, (15)

dO

where Peye(Z) is available from preliminary thermohydrostatic calculation (Appendix A), and R(z)

is obtained from solution of the problem posed for the eyewall. If we envision the filling of the

eye from throughput detrained from the eyewall during a spin-up stage, which occurs prior to the

quasisteady mature stage under examination, then the time T required for such filling is given by

T - meye ]ri'leyewall • (16)
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The upper limit zT in the integral for mey e may be taken to be a somewhat lower value if, as z

approaches ZT, the eyewall displacement R slopes appreciably away from the axis of symmetry.

(The eye/eyewall structure probably needs re-examination in the form of an outflow-layer analysis

for the portion of the flow near the lid.) However, we anticipate that we shall find that the time for

filling, T, exceeds the observed lifespan of the tornado if Ro far exceeds ho; if so, such a

configuration seems implausible.
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4. RESULTS FOR THE ANNULAR ROTATING UPDRAFT

With a preliminary_ treatment in hand for the eyewall formulation (Section 3) specialized for the

turnaround (Appendix D), we now seek results to Eqs. (I)-(16) for the bulk of region HI (Fig. 3).

For brevity of reference, we henceforth define the following set of parametric and functional

assignments as "the nominal case." The thermohydrostatically derived input ZT, Vo, Peye(Z), Po,

and p(p)--the density-pressure relation for the eyewall--is based on the sounding given in Fig. 1;

for convenience, we note that ZT _ 11.6 kin, Vo _ 106.9 m/s, Po _ 1.12 kg/m 3, Peye(z) is given in

Fig. 14, and p(p) is given parametrically in terms of the altitude z by Figs. 14 and 16. Since the

gravitational acceleration g = 9.8 m/s 2 and Vo = Vo/21/2, the remaining quantities to be assigned

are 13,a dimensionless parameter related to vertical stratification of the peripheral angular

momentum [see Eqs. (11)-(13)]; M, a dimensionless parameter related to kinetic-energy loss in the

breakdown [see Eq. (B.36)]; N, a dimensionless parameter related to initial eyewall slope [see

Eq. (8)]; ho, the starting thickness of the annulus; and Ro, the starting radial displacement of the

eyewall (or equivalent data). For the nominal case, we choose

(XE = 0, _ = 0.99, M = 21/2, N = 0, ho = 35 m, and (Ro/ho) --- 10, (17)

where we discuss implications of the last assignment in the next paragraph. Operationally, we find

that an integration step size Az -- 0.5 m yields results that are effectively invariant with further

refinement of the discretization; with Az = 0.5 m, solving Eqs. (1)-(16) over 0 < z < ZT requires

roughly 15 min on a 486 PC.

If we let e = Rzz(0) for brevity of notation, then at z = 0, from Eq. (3),

eho- (1 + N2}3/2 1(1 + N2)-I/2 "P°V°2/_P" - 1 } (18a)
poc / Ro/

(18b)
poq2o/_ LRo/ho

for the case of primary interest, N = 0 ; 8p - Pamb(0) - Peye(0). Thus, in general, a finite positive

(but typically small) curvature exists at z = 0. By rearrangement of Eq. (18b),

R___o= poV2o/SP

ho (18c)
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We seethatasmaller(butstill positive)valueof the nondimensionalized curvature, eho, implies a

larger value of the ratio (Ro/ho); in fact, dlo = 0 typically implies an appreciably larger value of

(Ro/ho) than that given in Eq. (17), with possible further implications of implausible tomadic

structure [recall Eqs. (14) and (15)].

For the nominal case, Fig. 4 presents the radial displacement R(z) and the annular thickness

h(z); Fig. 5, the sa'eamwise velocity component q and the swirl v; Fig. 6, the pressure at the

potential-vortex/eyewall interface, Pamb(Z), and the height at the periphery, h(z), at which the

pressure Pamb(Z) occurs; and Fig. 7, the eye mass meye(Z) and the filling time T, where the upper

limit of the integral Eq. (15) has been changed from ZT to the general value z. The value of the

difference [Pamb(Z) - Peye(Z)] is quite small relative to the value of either contribution, and varies

from about 500 Pa near an altitude of 1 km to about 300 Pa at 3 km to about 100 Pa at 6 km; the

difference goes to zero at about 8.5 km and even very slightly negative above that altitude. The

filling time at z = 8.5 km is about 20 min, but increases rapidly for higher z because the

displacement R(z) becomes large at large values of z. The annular thickness h monotonically

increases from 35 m at z = 0 to about 64 m at 5.8 km, and then monotonically decreases for greater

height; correspondingly, the streamwise speed q decreases from 75.6 m/s at z = 0 to about 38 rrds

at 6.8 km, and then monotonically increases for greater height.

Figures 8 and 10 presents R(z) and h(z), respectively, for several values of the parameter 1_,all

other parameters and functions being held at their nominal values. For the more strongly stratified

profiles of the peripheral angular momentum, the eyewall remains very vertical. While a solution

may be obtained formally for the strongly stratified case 1__ 0, its stability warrants investigation.

Stability requires that the angular momentum should not decrease with radius, at fixed attitude.

Thus the solution is unstable if the inequality v(z) < Vouter [R(z), z] holds for any z, where Vouter is

defined by Eq. (11).

Figures 10 and 11 present R(z) and h(z), respectively, for three values of the parameter ho,

with all other parameters and functions fixed at their nominal values [e.g., (Ro/ho) = 10]. Thus,

for the nominal case ho = 35 m, Ro = 350 m (and E = 0.002); for ho = 17.5 m, Ro = 175 m (and

E = 0.004); and for ho = 70 m, Ro = 700 m (and E:= 0.001). Accordingly, the mass flux

Po ho Ro qo varies by a factor of 16, and the product Ro Vo by a factor of 4, over the three cases.

The time _ to fill the eye effectively does not vary for these three cases.

Further parametric investigation with the analytic framework already provided, and with the

extensions briefly noted in the next section, should permit additional insight into criteria for the

existence of selfsustaining intense vortices.
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5. CONCLUDING REMARKS

The observable under scrutiny as a possible predictor of tomadogenesis in a mesocyclone is

the vertical prof'de of the angular momentum at the periphery of the mesocyclone. This quantity is

closely related to the vertical profile of the circulation, and if indeed the rotation within a tornadic

mesocyclone is very roughly that of a potential vortex (except in the core), then the vertical profile

of the circulation should be invariant with the lateral distance from the axis at which the profile is

measured, for sufficiently large lateral distance. A single sounding is inadequate to obtain the

circulation as a function of altitude in the vicinity of a mesocyclone in the atmosphere, and

probably futuristic, continuously monitoring, geosynchronous-meteorological-satellite-based wind

sensors with vertical resolution would ultimately be required.

Among the future improvements and generalizations of the model is the desirability of

smoothing the transition of the total static enthalpy H at the interface of the eyewall (within which

H(z) --- I-leo) and the potential vortex [with which H(z) = He(z)].

Still another topic warranting further investigation is the upper-tropospheric radial outflow of

"processed throughput." In a closed system, this throughput would be compressionally heated as

it descended to accommodate the further processing of the convectively unstable fluid of the

potential vortex; while evaporative cooling afforded by small-sized condensate carried along by the

flow would somewhat counteract the compressional heating, still the descent would partly negate

the lightening effected by the presence of an eye. In fact, we believe that there is a high-level

lateral efflux of processed air.

However, we particularly emphasize the desirability of seeking further insight into turnaround

dynamics by use of a laboratory vortex chamber. A theoretical investigation of the complicated

turbulent flow of a compressible fluid in the unconventional geometry of the turnaround would be

assisted by experimental verification. Thermodynamics is not at issue in this particular region;

inability at laboratory scales to experimentally imitate the moist-air behavior of an atmospheric

storm is irrelevant.
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APPENDIX A. THERMOHYDROSTATICS FOR A ONE-CELL OR TWO-CELL VORTEX IN

CONVECITVELY-UNSTABLY-STRATIFED MOIST AIR

A.1 Objectives and Idealizations

By use of (1) the thermodynamics of moist air, (2) the conservation of vertical momentum in

the hydrostatic approximation, (3) a sounding (of the static temperature and the dew-point

temperature as a function of pressure for a convectively unstable atmosphere), and (4) a simplistic

axisymmetric quasisteady model of a one-cell vortex and of a two-cell vortex (Fig. 12), we obtain

the thermodynamic states holding within the flow. For a one-cell vortex, fluid at and near the axis

of symmetry is described by the locus of thermodynamic states associated with a moist adiabat,

based on the ground-level state at the periphery. The associated low-altitude lateral pressure deficit

from axis to periphery is relatively modest. For a two-cell vortex, the fluid ascending (nearly

vertically) on a moist-adiabatic locus rises in an annulus at a f'mite radial distance from the axis; the

fluid in region IV of Fig. 3 (or Fig. 12) has a locus of thermodynamic states associated with a dry

adiabat, based on the thermodynamic state holding at the top of the flow (at all radial distance from

axis to periphery). The eye-insertion-associated low-altitude pressure deficit from axis to

periphery is relatively large. Since perfectly entrainment-free ascent on a moist adiabat is an

idealization, as is slowly recirculatory flow in a perfectly dry eye extending from the top to the

bottom of the vortex, the pressure deficits computed for such idealized processes are upper bounds

on the corresponding pressure deficits that would be observed for real counterparts of the

processes.

The low-altitude peak swirl speed associated with the just-discussed axis-to-periphery

pressure deficits may be computed by use of (1) the cyclostrophic approximation to the

conservation of angular momentum; (2) an adopted dependence of the swirl on the radial

coordinate [the dependence being taken to be a Rankine (combined) vortex for one-cell structure,

and a rotationless core patched to a potential vortex for two-cell structure]; and (3) a radial profile

for the density [taken to be constant at the ground-level value for the moist-adiabatic column]. As

just noted, the lateral pressure deficit is appreciably smaller for a one-cell vortex, and half of the

pressure deficit is expended to maintain the rigidly rotating core of a Rankine vortex; thus, the

thermohydrostatically derived peak swirl speed for a one-cell vortex is relatively modest, say,

50 m/s or less. The lateral pressure deficit is appreciably greater for a two-cell vortex, and no

portion of the deficit need be expended to support rotation of the core, which is virtually

nonrotating; thus, the thermohydrostatically derived peak swirl speed for a two-cell vortex is

relatively large, say, 100 m/s or more.
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There is an altitude at which that total static enthalpy of the near-surface air at the periphery is

recovered in the upper troposphere. In fact, we may refer to the height of the lid as the tropopause,

though this is by no means the universally standard definition.

A.2 Collection of Standard Relations; Introduction of Notation

If subscripts a and v refer to dry air and water vapor, respectively, then, for convenience of

future reference, we recall that the pressure p and the density p obey

Also,

P = Pa + Pv, P = Pa + Pv. (A.1)

y =Pa, y v Pv,
a -- p -- _ SO Ya + Yv = 1 (A.2)

in the absence of condensed water substance. The equations of state for dry air and water vapor,

respectively, if R denotes the gas constant for dry air and a denotes the ratio of the molecular

weight of water vapor to that of dry air,

Pa = Pa RT, Crpv = Pv RT, so p - (1 - a) Pv = P RT, (A.3a)

and

Yv = (rpv/[p- (1- o) Pv]. (A.3b)

The saturation vapor pressure for water is denoted P(T), where a standard excellent curve fit

to data (Murray 1967) is given by, with P in Pascals and T in Kelvin,

where

P(T) = 6.1078 x 102 exp[a(T - 273.16)/(T - b)],

a = 21.87455851 over ice, a = 17.2693882[ over water.
b 7.66 I b 35.86 I

(A.4a)

(A.4b)
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By definition, the relative humidity RH and the dew-point temperature Td are related by the

following:

_=P(Td)
P(T) P(T) (A.5)

Thus, if the static temperature is given, RH is implied by Td, and vice versa.

The total static enthalpy H, by definition, is

where, in standard notation,

H=cpT+gz+LYv, (A.6)

Cp - Ya Cr_ + Yv Cp, -- Cp,, (A.7)

since (Yv/Ya) << 1 and Cp,/Cp_ = O(1) for all the circumstances of interest. [Incidentally, at ground

level in warm moist air, T - 300 K and (L Yv/cp) _- 40 K; for comparison, if we introduced a total

enthalpy (including dynamics), the typical _ tomadic-kinetic-energy contribution

V2o/ (2 cp) -- 4 K.]. We also ignore the variation of the specific latent heat L with temperature, and

take all condensed water vapor to remain as liquid water (so no heat of freezing is realized).

Finally we recall that, under hydrostatics,

_p
=" Pg, (A.8)

3z

dH = Cp dT - d__p_p+ L dYv. (A.9)
P

so Eq. (A.6) may be written as

For a constant-static-enthalpy process in unsaturated air, so virtually no condensation occurs and

dYv = 0, then, with Yv -- (Yv)ref, const.,

d_pp- pCp

Tref _Pref ! y

(A. 10a)

(A. 10b)

or, with (R/cp) -- (y- 1)/y,
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The other thermodynamic variables p, Pv, Pa, etc., follow directly.

static-enthalpy process in saturated air, so RH _ 1, and Pv = P(T),

dYv = {o[P'(T)] p dT- o P(T) dp} ]x2, x - p-(1- o) P(T),

and

Alternatively, for a constant-

(A.11)

LoP(T)RT +

dT= x x 2 (A.12)

dp Lo P'(T) p
¢p +

X 2

Again, the other thermodynamic variables follow by straightforward substitution. For (Yv)ref = 0,

Eq. (A. 10b) describes the locus of thermodynamic states on a "dry adiabat". The locus of states

on a "moist adiabat" is described by Eq. (A.10b) prior to saturation (RH < 1), and by Eq. (A.12)

after saturation, with the temperature T and pressure p continuous at saturation (RH = 1). In the

present approximation, none of the heat is shared with any condensate. Furthermore, even if the

condensate is carried along with the gas and exerts no interphase drag on the gas, the condensate is

regarded as unavailable for evaporative cooling, so reversal of the process is excluded.

A.3 Thermohydrostatics for a Model of a Vortex in Moist Air

At the periphery of the vortex, i.e., for r = re (>> ro), prof'des for T(p), and for Td(p)--or

RH(p), are taken as given, often in graphical form (e.g., Fig. 1), typically from a sounding of the

atmosphere in "close" proximity, temporally and spatially, to a severe tornado. From

straightforward use of Eqs. (A. 1)-(A.8), one may obtain all the dependent variables p, Pv, Pa, Pv,

Pa, P, T, and H as a function of altitude z, where z = 0 is approximately ground level. In practice,

we pursue the dependent variables over a range slightly in excess of 0 < z < z'r, where H (_T) =

H(0); for the convectively unstable sounding of interest, in which a pronounced midtropospheric

minimum in H(z) exists (see Fig. 13), ZT = O(10 km). Local anomalies may arise, such that H(z,)

= H(0) for 0 < z, << 10 km; such anomalies are ignored in that the sounding is still regarded as

convectively unstable overall (even if locally stable), and the value H(z,) is just an "ordinary" point

of the profile. We shall henceforth affix subscript e to indicate that a thermodynamic-variable

profde pertains to the vortex periphery.

For the moist-adiabatic locus of thermodynamic states holding for region lIl, Eq. (A. 10b) is

used, with the constants (Yv)ref, Tref and Pref associated with (Yv)eo, Teo, and Peo, respectively,

where the latter trio are _-level values holding at the periphery; Eqs. (A.1)-(A.7) are used to

associate Pa, Pv, P, Pa, and Pv with p, T, and (Yv)ref, for RH < 1. Upon satisfaction of the

condition RH = 1, we use Eq. (A.12) to find T for all higher values of p; in this regime, Pv = P(T),
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and the other thermodynamic variables follow as before. Eventually a pair (T,p) on the moist

adiabat matches a pair (Te,Pe) of the sounding; the height at the periphery associated with that

particular matching pair (Te,Pe) is henceforth denoted ZT(= z'r), and is adopted as the height of the

lid of the storm at all radial positions 0 < r _<re. Use of hydrostatics [Eq. (A.8)], the tabulated

locus of moist-adiabatic states [such that p(p) is known], and the known height of the "lid" state

permit an altitude z to be associated with each state of the moist-adiabatic locus, until z = 0 is

reached. The ground-level moist-adiabatic-locus values p(0), T(0), p(0), etc., are henceforth

denoted Po, To, Po, etc. In general, Po < Peo, with [(Peo - Po)/Peo] = O(0.01).

Use of hydrostatics, and of Eq. (A. 10b) with (Yv)ref = 0, Tref = Te(ZT), and Pref = pe(ZT),

gives the dry-adiabatic locus of states holding in the eye (region IV):

Z=ZT- s - '

where the subscript _ is introduced to distinguish thermodynamic variables holding in a fully

inserted, moisture-free eye. At z = 0, Eq. (A.13) typically yields a value for Peye(0) such that

[(Peo - Peye(0))/Peo] = O(0.1).

An implication of the above treatment, in terms of Fig. 3, is that higher-altitude fluid elements

in the potential vortex, although initially characterized by H < Heo, during downdrift into the

surface layer attain the state H = Heo, the ground-level value of the total static enthalpy at the

periphery, owing to enthalpy transfer across the ground plane; the total static enthalpy of these

fluid elements remains at the value Heo during inflow in the surface layer and ascent in the eyewall.

The value H = Heo also characterizes all fluid elements in the eye. If no such cross-boundary

enthalpy transfer occurs, the value of Heo decreases slowly in time.

A.4. The Thermohydrostatically Estimated Peak Swirl Speed

In the potential vortex, by conservation of radial momentum,

0p 2
V°uter (A.14)

Or

We apply Eq. (A.14) near the bottom of the vortex depicted in Fig. 12, and adopt p -- Po- For a

one-cell vortex (i.e., in the absence of region IV), we adopt the modified Rankine combined-vortex

model:

IVo(r/ro), 0 <r< ro I
Vout_r(r)= IVo(ro/r) n , ro < r < re, I (A.15)
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with re--->,o. Substitutionof Eq. (A.15)in Eq. (A.14)gives, uponintegration,

Vo-[I- 
[_n+l! Po J "

(A.16)

For a two-cell vortex (i.e., in the presence of region IV), we adopt:

0, 0-< r-< ro
Vo  o,(r)=

Vo(rdrp, ro _ r_< 00,
(A.17)

SO

Vo = [(2n)Peo- Pey_(O)lU2-p? ] . (A.lS)

In general, in Eqs. (A. 16) and (A. 18), we limit attention to the case n = 1.

For the sounding of Fig. 1, by use of the formulae presented in this appendix, we compute

results presented in Figs. 2 and 13-15. We note that at z = ZT = 11.6 km, the pressure is about

21.9 kPa; the temperature, about 220 K; the density, about 0.348 kg/m3; and the total static

temperature, H/cp, about 333 K. The pressure at the base of the sounding, Peo, is about 105 Pa;

the pressure at the base of the eyewall, Po, is about 98.7 kPa; the pressure at the base of the eye,

Peye(0), is about 93.6 kPa. Since the density at the base of the eyewall, Po, is 1.12 kg/m3, we

compute, for n = 1, that Vo - 33.4 m/s for a one-cell vortex and Vo = 106.9 rn/s for a two-cell

vortex. Incidentally, saturation in the eyewall occurs at z ---2.15 km, where p = 77.2 kPa, Pv =

1.39 kPa, T = 285 K, and p = 0.937 kg/m 3.
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APPENDIX B. ANALYSIS OF THE NEAR-GROUND WIND FIELD FOR AN INTENSE

POTENTIAL VORTEX

B.1 Introduction

The velocity field in the near-ground inflow layer (for an incompressible constant-molecular-

viscosity fluid) is examined over a closed domain of finite radial extent re, where (say) re =

10 ro(- Ro), ro being the (given) radius of boundary-layer separation. While the basic results and

flowfield structure for the surface boundary layer are long established (Burggraf et al. 1971;

Carrier 1971; McWilliams 1971), interest persists (e.g., Phillips and Khoo 1987). Here,

convenient approximate expressions, based upon appropriately modified "local similarity"

solutions, are presented for the near-ground flow under the high-speed portion of a potential

vortex. Conventional eddy-viscosity models for the swirling boundary layer also have been treated

in detail (Carrier and Fendell 1977).

In the high-speed portion of the potential vortex, the inward radial pressure gradient is

virtually in equilibrium with the centrifugal force (cyclostrophic balance); there is virtually no radial

inflow in the well-developed vortex, and there is only a weak downdraft into the surface inflow

layer. In the boundary layer, the no-slip boundary conditions retards the centrifugal force, such

that a "'favorable" pressure gradient drives an appreciable radial influx of swirling air toward the

axis of symmetry. Surface friction dissipates some of the angular momentum; in fact, in the

boundary layer, well described by the parabolic approximations to the equations for the

conservation of radial and azimuthal momentum, the radial velocity component is comparable to,

and locally even exceeds, the swirl. Once the radial and azimuthal velocity components are

known, the (relatively small) axial velocity component is obtained from continuity.

The overall boundary layer grows monotonically, but rather modestly, in thickness with

decreasing radial distance from the axis of symmetry. At larger radial distances from the axis of

symmetry, friction plays a role across the entire vertical extent of the near-surface inflow layer.

However, closer to the axis, the bulk of the radial inflow is described by inviscid analysis to good

approximation; only in a thin sublayer immediately adjacent to the wall does friction alter the radial

velocity component significantly, from a near-wall maximum value to zero at the wall (for

enforcement of the no-slip boundary condition). The radial velocity component has a larger

maximum at smaller radial positions, a maximum that can become as large as the swirl speed above

the surface inflow layer at the same radial distance from the axis. On the other hand, the azimuthal-
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velocity-component profile is shaped significantly by friction across the entire extent of the surface

inflow layer, at all radial positions. At any fixed altitude within the inflow layer, the circulation

becomes smaller at smaller radial positions. At a fixed radial distance from the axis, the swirl

velocity component decreases monotonically with decreasing altitude above the ground, from its

potential-vortex value to zero at the outer edge of the frictional sublayer. Nonoscillatory vertical

profiles hold for the radial and axial velocity components, and assertions (e.g., Lewellen 1976)

that the swirl within the inflow layer may appreciably exceed its asymptotic value outside the

inflow layer, at a timed radial position, are regarded as unlikely.

The thinning of the frictional sublayer with decreasing radial distance from the axis is

consistent with the generally expected behavior of a shear layer that is subject to a favorable (i.e.,

accelerating) radial pressure gradient; the frictional sublayer is subject to a more rapid radial

velocity at its outer edge for smaller radial distances.

In what follows we use these statements to obtain results via numerical integration of very

simple ordinary differential equations, rather than via numerical integration of the partial-

differential equations (Prahlad and Head 1976; Chi 1977; Shakespeare and Levy 1982).

B.2 Formulation

Under previously discussed approximation, if in cylindrical polar coordinates (r, O, z) the

corresponding velocity components are denoted (u, v, w), the conservation of mass, radial

momentum, and angular momentum may be expressed as follows (with subscripts r, z denoting

partial differentiation):

(r U)r + (r W)z = 0 ; (B. 1)

(r V) 2- (r v) 2- (r u) 2 --[v(r U)z]z - u(r u_- w(r u)z; (B.2)
r 2

the boundary conditions are

[v(r V)z]z - u(r v}_- w(r v)z = 0 ;

z_**: v_F/r;u_0;

(B.3)

(B.4)

z=0: u=v=w--0; (B.5)

r = re" u =0, v specified (- F/re). (B.6)

Here, re is an inferred const., and signifies the radial extent ("edge") of the flow domain. It is

anticipated that the formulation is to be applied only in the range ro < r < re, where ro is the (given,
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finite) radius of boundary-layer separation. Also, in the potential vortex, F is effectively given,

where (with Vouter - V, for brevity)

F - r V = ro Vo, const., (B.7)

and Vo is inferred from the given peripheral sounding (Appendix A). It may be noted that, as a

consequence of standard boundary-layer approximations, the cyclostrophic balance has been used

to identify the radial pressure gradient in Eq. 0].2):

1,, _ Y_?_
pVr- r " (B.8)

B.3 Constant-Viscosity Solution

If the kinematic viscosity v is const., then solution to Eqs. 03.1) - (B.7) is sought in the form

[the function 13(r) is to be distinguished from the parameter 13,introduced in Eq. (12)]

where

r u = -r I_r) g'(rl), r v = rf(rl), w = W(rl), (B.9)

(B.10)

The functions s(r) and b(r) are to be identified in solution. One does not expect Eqs. 03.9) and

03.10) to give an exact solution, but to capture the essence of the functional behavior in a very

useful form.

Substitution of Eqs. 03.9) - 03.10) in Eq. 03.1) gives

Fl/2[sl/213, g,_ _s' ,]Wn=(v ) r 2 rsi/-------'2 rig'

, 2 r s 1/2

g,] (B.11)

where, by Eq. 03.5),

g(O)= o.

Substitution of Eq. 03.9) - 03.10) in Eqs. 03.2) and 03.3) gives, respectively,

(B.12)
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4g" If; s"l ,,] ,(1- f_- [32 g,2) =- 1_ T ÷ gg " r
(B.13)

(B.14)

The terms in Eq. (B.13) derive, from left to right, from similarly positioned terms in Eq. (B.2).

For self-consistency, one must take

s _Y +s'13 =-1, (B.15)
r 2r

say; also, it is necessary, but not sufficient, to take

g,2 = 1 - t"2, (B.16)

1-1 
= (B.17)

r r2

From Eq. (B.6), _(re) = 0; hence, from Eq. (B. 17),

I_2 =re 2 - r2
r_ (B. 18)

Equation Eq. (B.15) may be written

(IB2 sf =-2 r 13= s = 2r_(r_- r2) ''2 (B.19)

by use of Eq. (B. 18).

The term in square brackets in Eq. (B.13) is O(_F2/s), while the other terms are O(1-'2/r2);

substitution of Eqs. (B. 18) and (B. 19) shows that the ratio of the bracketed to unbracketed terms is

0[(3 r2)/(2 r2)], so that, for r << re, the bracketed term is negligible. The neglect of the bracketed

term gives an inaccurate result where the motion is slow [i.e., where v = O(vmax/10),

u < O(vmax/10)], and an accurate result where the motion is fast. From Eq. (B.19), s It2 -

(re - r) TM, as r _ re; this is consistent with the more meticulous analysis of Stewartson,

Burggraf, and Belcher (1971). The flow structure remains less evident in other approaches (e.g.,

Kuo 1971, 1982).

The radial momentum equation for r_ >> r2, so that _ -_ 1, becomes a statement that the left-

hand side of Eq. (B.2) vanishes; i.e., V 2 = u 2 + v 2, such that the radial velocity component is
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inviscidly controlled. The two-point nonlinear third-order boundary-value problem, from Eqs.

03.13) - 03.16), becomes

f"+ g f'=0;

g'=(I- f_),a;

f[O)= g(O)= O, f(**) -'> I.

(B.20)

(B.21)

03.22)

The boundary conditions follow from Eqs. (B.4), (B.5), (B.7), (B.9), (B.10), and (B.12). The

problem is readily solved numerically by shooting; one f'mds

f'(0) - 0.7456, g(_o) - 1.941. (B.23)

Results are graphed in Figs. 17 and 18, where it is evident that f monotonically increases as 1"1

increases (so g' monotonically decreases). Note that g'(0) = 1 (cf. Rotunno I980).

Of course, the reduction to third order results from dropping of the frictional term in the

conservation of radial momentum Eq. 03.3), which has been taken in the inviscid form

Eq. 03.16). Enforcement of all of Eq. (B.5), specifically g'(0) = 0 so that u(x, z = 0) = 0,

requires restoration of the frictional term in a thin near-wall sublayer of the inflow layer.

For completeness, a brief sketch of the near-wall sublayer, in which u falls to zero, is

developed now. If [with the dimensionless function h(c) introduced here to be distinguished from

the eyewall thickness h(z), introduced in the main text]

__L[rl''2
ru =- F _r)h'(_), 6 =m(r)lvJ ,13 = 1 -(r/re) 2 , (B.24)

then from continuity

[(r w)o = _v] ''2 13'r h'- a r h" ,
1FI

(B.25)

or

(r w) = m(F}l'2 [lY F h - 13I_---'}(o h' - h)]. (B.26)

From the radial momentum equation,

I 1 (e)h'" h,2 13(lY+_m"m') h" 1 h ,2- + r " =a" (B.27)
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wherethelastterminvolvingt.2is droppedasnegligible. Thefunctionm is assignedby

demanding

f12m' =.1_
r m r2

If attention is concentrated on (r/re) << 1, such that 13---) 1, 13"_ o(1), then

m-r,

and

(B.28)

(B.29)

- h"' + (h h')' - 1, (B.30)

where all neglected terms are O (r2/r 2) or smaller. The boundary conditions are

h(0)= 0, h'(0) = 0, 1 ; (B.31)

these enforce w(x,z = 0) = 0, u(x,z = 0) = 0, and matching of the sublayer and outer-layer

solutions, respectively. One arrives at a Riccati equation

-h'+ h--22= _- - h"(0)a2 , h(t_ ---) *_) --_ a , (B.32)

where the boundary conditions conditions have been used to assign a constant of integration. The

results of Burggraf, Stewartson, and Belcher (1971) assure that a solution exists, and for present

purposes

h(o) - o + exp(-o)- 1 =, h'(o)= 1- exp(-o), (B.33)

captures its behavior adequately (see Fig. 19). Hence, a uniformly valid expression for r2 << re2 is

r u -- F _r)[h'(a) + h'(rl) - 1], (B.34)

where h'(t_) is given by Eq. 03.32), or, facilely, by Eq. (B.33), and h'(rl) is given by Eqs.

(B.20) - (B.22).

This modification to encompass the sublayer is regarded here as a detail from an engineering

point of view; the solution to Eqs. 03.20) - 03.22) would normally furnish an adequate

approximation by itself. However, completion of the surface-inflow-layer analysis does

emphasize the compatibility of separated-inflow-layer properties with the properties of contiguous

eye air on one side of the annulus, and with the properties of the contiguous potential-vortex fluid

on the other side. The fluid in the nonrotating sublayer of the inflow becomes contiguous to the
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nonrotating,slowly recirculatingair of the eye. The rapidly rotating fluid of the outer layer of the

inflow becomes contiguous to the rapidly rotating air of the potential vortex, and exerts very little

streamwise shear on the potential-vortex air.

B.4 Pertinence of the Surface-Inflow-Layer Solution

The quantities qo and Vo in Eqs. (4) and (8) are transversely averaged values (of the

streamwise and swirl velocity components, respectively) holding at z = 0, the bottom of the

eyewall, where the height z = 0 is after the turnaround. ]_ the kinetic energy is conserved through

the tumaround, then the relation V 2 = u 2 + v 2 , given just above Eq. 03.20), suggests the relation

V2o= q2o+ V2o,where, at separation of the surface-inflow layer, the streamwise-velocity component

q2 is identical with the radial inflow u 2. We adopt, at a f!,x_.c.dvalue of r << re, a flux-weighted

transverse average of the radial-inflow velocity component u and of the swirl component v, for the

purpose of establishing the value of the ratio (qo/Vo):

qo_ 2nrP_o**u2dz _o**(1-f2)drl

Vo - - ' (B.35)

I: f2xrp lu]v dz f(1- f2),/2 drl

by use of Eqs. 03.9), 03.10), and 03.21). Attention is confined entirely to the major, inviscid

portion of the inflow layer, described implicitly by the solution of Eqs. 03.20) - 03.22).

Substitution of the numerically derived solution for f(rl) in Eq. 03.35) gives (qo/Vo) = 1.07, or,

approximately, qo - Vo. If this relation between qo and Vo continues to hold through the

turnaround, Eq. (8) may be written as 372o= q2o+ vo2 - 2q2o - 2v2o. More generally, the streamwise

velocity component may be decremented owing to a vortex breakdown in the turnaround, whereas

the conservation of angular momentum plausibly holds across the turnaround, so Vo remains

unaltered. Thus, in general,

Vo Vo )_ __ = __ _._!._< V2o 03.36)
qo- M'V° 2I/2=_q2°+v2o=V +M 2 _ ,

where M(>_ 2I/2)isa factortobe assignedforparametricinvestigationinview of the limited

understandingof the"breakdown" of an annularcolumn with swirlingflow.

A motivationforregardingan abruptdecelerationof thestreamwise flow inthe swirling-

updraftannulusas plausibleisprovided by theduststriationsrecorded incertaintornado

photographs [e.g.,of the June 5, 1966 tornadoatEnid, OK (seeGwynne 1982, p.55; Lugt 1983,
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p. 192)],andby examiningtheresultsof photogammetrycarriedout for afew tornadoes(Grazulis

1991,pp. 100-101).Undertheapproximationthattheinterphasevelocityslip betweenthe

observedparticlesandthecolocatedair isnegligible,wenotethat,for the low-altitude,near-core

flow in thetornado,theangleof thevelocityvectorfor thefluid with respectto thegroundplane

typically tendsto beappreciablylessthan45°. Thus,theinequalityv > q is inferredin thepost-

turnaroundflow from photographicdata,althoughv -- q at separation of the surface inflow layer,

from the above analysis. This would be consistent with a nonentraining vortex transition (with

conversion of mechanical energy to heat) in the turnaround region.
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APPENDIXC. THE SELFCONSISTENTVORTICAL FIELD OUTSIDETHE EYEWALL

Derivationof Eq.(7) involvesexaminationof the isobars in region I, the outer potential

vortex, holding for R(z) < r < oo (for re --¢ -0). Under the cyclostrophic and hydrostatic

approximations, appropriate for region I,

Pr = pV2out,r/r, (C.1)

Pz = -Pg, (C.2)

where the notation is standard (except that we emphasize by subscript that the relevant swirl

pertains to the potential-vortex region only). On an isobar,

dp = Pr dr + Pz dz = 0, (C.3)

or

dr =. Pz _ gr
dz p--_- _---- (C.4)

Vouter

Under the family of spin-up states specified by Eqs. (11) and (12),

.. I z(';p)V2oRo2f d0= d(_
0 3 g f(¢)"

/r
d z(r;p)

(C.5)

For the linear profile for f(z) given in Eqs. (13),

V2o_ = g_ in [a_-.b_z(r;P)]
2r 2 b [a_bh(p) J' (C.6)

where a = 1, b = (1 - [])/ZT, and 0 _<13_< 1, with ZT obtained from Appendix A and with

specified as a parametric input. The pressure p takes on the value for which the integration is

performed; z(_;p) is the height of the isobar for pressure p at the periphery of the storm; and z(r;p)

is the height of the same isobar at some finite cylindrical-radial distance from the axis. We

henceforth denote z(oo;p) as h'(p), the altitude at which the unspun periphery has the pressure p

according to results of Appendix A. (The tilde is present because symbol h has been preempted for

another quantity.) If we let r = R(z), the locus of the eyewall displacement, then

V2oP_ gin [ 1 5 b_.z(R;P)"
2R2(z;p) -- b- [ 1- b h(p) ' (C.7)
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wherethepressurep atr = R is denotedPamb.By rearrangement,weobtainEq. (7), explicitly,

(C.8)

Upon f'txing the parameter b, each pair of values for z and R implies a value for _Pmb), and, then,

by interpolation in the thermohydrostatic tables, Pamb. For example, at z = 0, where R = Ro,

= {1- exp[- b V_2g)]}/b, so h > 0. As expected, the isobars dip groundward as the radial

distance from the axis of rotation decreases; only for R 2 >> (b V2o R_}/2g does h(P_anb) _ z, the

height of the isobar at the eyewaU/potential-vortex interface. Since thermohydrostatic results

typically are not tabulated for altitudes above ZT, tabulated values for h may be exhausted before

the top of the eyewall is attained in the integration described in Section 3.

If, instead of the linear relation for f(z) given by Eq. (13), we adopt the two-part expression

(say, 0 < 132 < 0.3)

0_<z_<zt
(C.9)

ZI_<z_<zT,

where (for the sake of an explicit choice) Zl may be taken to be the altitude at which the eyewall

becomes saturated. Substitution of Eq. (C.9) in Eq. (C.5) gives, for r = R(z),

V:oR 0<z< '<zl ;
2 g R 2 .... (C. 10a)

h(Pamb) " Zl _ 1_!_ 1 - Q

ZT- Z1 _12 1 + Q '
(C.10b)

where, if 82 - _l/2[(z - zl)/(ZT - zl)],

Q_

exp - ZT- Zl Lz g R 2

1 - 82 exp r- p--L-2al/2vor_-"2t,2 .[1

,1--_2 L g(zT- z,)R2J '

z<zl-<h'-<zT

Z 1 _< z_h<_ Z T . (C.10c)
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APPENDIXD. THE TURNAROUND

Weconsiderthevery-low-levelportionof region1"11,in whichthesurface-inflowlayer

separatesand"overshoots"its equilibriumposition,owingto dynamicforces;consequently,in the

"overshoot",underconservationof angularmomentum,thelocalswirl speedmaymodesdyexceed

thethermohydrostaticallycomputedpeakvalueVo. Eventually,restorativeforcesresultin an

"overcompensatory"locusfor thelowereyewall,suchthatthelocalswirl speedmay"undershoot"

its equilibriumvalue. In fact,anendlesscycleof overshootingandundershootingbehavioris

formallyobtainedasthesolutionfor theformulation(for theturnaround),which is translationally

invariantin theindependentvariable(thealtitudez). The limit-cycle behavior is of purely academic

interest because: (1) the translationally invariant formulation is inadequate (because, inter alia,

change of the eye pressure and of the gravitational potential energy with altitude cannot be

justifiably ignored), and, far more importantly, (2) the flow is likely to be unstable to breakdown

in view of the centrifugal forces acting in a flow with curved streamlines. Vortex-breakdown

theory (Hall 1972; Leibovich 1976) pertains to axis-enveloping swirling flow (with a stagnation

point on the axis), often (but not always) confined in a tube; the annular geometry of relevance here

is largely uninvestigated. Nevertheless, although we can provide no quantification, the existence

of a breakdown is highly plausible. We proceed with an analysis of the turnaround to confirm that

the equations and boundary conditions yield solutions consistent with the just-described

anticipations.

Equations (1) - (3) and (6) are unaltered from those given earlier, but Eq. (7) is modified

because we take p - Po in the very low portion of the potential vortex, and we adopt the

entrainment-free (O_E= 0) form of Eq. (1). Then, if Vouter denotes the swirl speed in the potential

vortex,

0p 2

Or =v° r =Po r3 ; (D.1)

hence, in the potential vortex,

P _ Po V2o IR21 + const. (D.2)
2 _r 2 !

At the separating-layer/potential-vortex interface, r _ R and p --_ Pamb, by definition:

2 + const. (D.3)
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If the frictional layer separates smoothly (the particular case to be examined here), since the

pressure is invariant, to lowest order of approximation, across a thin near-wall layer under the

classical arguments of Prandtl, then Pamb = Peye for R = Ro (see Fig. 3). Under this assignment

for the constant of integration,

P°V2°/I- (1 R2 ) , (D.4)P_b-P_ye=---y-_ R_)=Poq_ -

where the last equality arises from the fact that Eq. (9) may be rewritten (Appendix B) as

V2o= q2o + V2o= 2qo2 _ 2vo2 , (D.5)

prior to the occurrence of any possible breakdown phenomenon. The above derivation implies that

the potential-vortex behavior describes the swirl across the separating inflow layer.

Bernoulli's equation [Eq. (4)] becomes, upon neglect of the gravitational potential energy,

under Eqs. (6), (D.4) and (D.5),

v 2 + q2 dp___.__'= qo2 + Vo2 where p = Peye + p _ 1 P_ (D.6)
2 + p(p,) 2 ' -- "

eye

from Eqs. (6) and (D.4). Since v 2 = q_ R_/R 2, and since p(p) is tabulated from preliminary

hydrostatics, Eq. (D.6) provides an expression for (q/qo) as a function of (R/Ro).

We adopt the following nondimensionalization and parameter definition:

q 2 Peyeq-- , V--- _o, Ot -- Ro/ho, r--- • (D.7)
Po qo2

SO

v= ,and

R_ = _.;y]
(D.8)
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where

I12

(D.9)

(D.IO)

Since we anticipate that R-'-_--) +_ within the domain of integration, it is locally convenient to

interchange the roles of dependent and independent variables, so R.{_} --) _{R---):.

R_--(_R) .l , R_- _RR =
(_RR)2 (D.11)

Hence,

I +(++F -
R- _2 _'; T] 1"'_" + O_R--(_'2 " I)[1+ (_)211/2 _[R;,j] If2 " (D.12)

+,It

The symbol + before the term containing a square root implies that we may choose the physically

pertinent branch of the root, i.e., the physically pertinent curvature.

Starting conditions, holding at the position of the surface-inflow-layer separation, are taken to

be those for a smooth separation:

= 0, R = 1, _R = 0, (D.13)

such that Eq. (D. 12) is convenient for the initial incursion {R < 1) of the separated layer, until _R

becomes large. Then, with continuity of the values of _, R, and _I-I-_-(_)-1] at a convenient point

of transition (say, I-z_ = 1), we adopt Eq. (D.8) to proceed to R = Rmin and continue on until

R ---) 1 and RE ---) .o, so we revert to the use ofEq. (D.12) to begin the subsequent excursion

(R > 1), etc. If we denote Eq. (D.8) as formulation I and Eq. (D.12), formulation II, then Fig. 20

indicates which formulation is convenient for various portions of the incursion/excursion cycle;

Fig. 20 also indicates which trial-and-error choice of sign for the square root is physically

appropriate, where the choice of sign in formulation I _ be switched across a point at which

_R--I"--) _', i.e., across R = Rmin (< 1) and R = Rmax (> 1), and, correspondingly, the choice of sign

in formulation II _ be switched across a point at which [R_ ---) *_, i.e., across R = 1.
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Resultsarepresentedin Fig. 21for thephysicallyinterestingparametervaluesot= 5 and10,

T _-29.4,underthefollowing curvefit to thermohydrostatictabulationsfor the lowerportionsof

themoistadiabatfor a specificsounding(Figs.I and2) of atornado-proximityatmosphere

(AppendixA):

p'(p-'}---0.0654+ 1.066_'-0.1663 _ (D.14)

overtherangeofp of interest,explicitly,_ = O(1). Sincev = (-_-1,in view of Eqs.(D.5) and

(D.7),thevalueof(2 I/2 R'min) "1 gives the ratio of the peak swirl to the nominal,

thermohydrostatically computed peak swirl, Vo, for a specific (but typical) case. This very local

increase in the swirl over the value Vo is termed the "overshoot". All the dependent variables may

be straightforwardly deduced from knowledge of R(_), but these details are not pursued. We

anticipate that a breakdown occurs on the first occasion in the turnaround for which an incursion of

the separated inflow layer undergoes transition to an excursion, but we are highly uncertain about

the details.
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Fig. 1. Convectively unstable sounding (with a moderately large midtropospheric minimum in the
total static enthalpy), measured in the vicinity of a tornado at Jackson, MS on April 17, 1978 at
2300Z. The static temperature is T; the dew-point temperature, Td; the pressure, p.
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Fig. 2. Pressure-temperature relations for the sounding of Fig. 1 (circles); for ground-level air
raised on a moist adiabat to its level of neutral stability, at which its density is equal to that of the

air of the sounding (triangles); and for neutral-stability-altitude air compressed dry-adiabatically to

ground level (diamonds).
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Fig. 3. Schematic of a postulated four-part model of the structure of a quasisteady two-cell vortex,
of axial extent ZT (the "lid" of the storm). Region I is the outer potential vortex; 11, the near-ground
inflow layer; 1II, the "eyewall", the lowest portion of which is termed the turnaround; and IV, the

"eye". The dotted curve is a sketched isobar, which is at altitude h at the periphery, r _ re, and at

lower altitude at the "'eyewaU"/potential-vortex interface, r = R(z), with R(0) - Ro and re >> Ro.
The arrows schematically indicate the magnitude and direction of the secondary (i.e., radial and
axial) flow.
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Fig. 4. For the nominal case [defined by the sounding of Fig. 1 and the parameter assignments of
Eq. (17)], the radial displacement of the eyewall, R(z), and the thickness of the eyewall, h(z).

38 R592.019



12
0 2O

v(m/s)

4O 60 8O

10

8
Z

(kin)
6

q

2

0
30 40 50 60 70 80

q (m/s)
R1M.92.0266.22

Fig. 5. For the nominal case, the streamwise velocity component in the eyewall, q(z), and the
swirl velocity component, v(z).
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Fig. 6. For the nominal case, the pressure at the potential-vortex/eyewall interface, Pamb(Z), and

the height at the periphery at which the pressure Pamb occurs, h(z).
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Fig. 7. For the nominal case, the mass in the eye as a function of altitude, meye(Z), and the filling

time T(z)= meye(Z)/riaeyewaU,where riaeyewallis defined by Eq. (14).
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Fig. 8. The radial displacement of the eyewall, R(z), for several values of the parameter 13,related
to the vertical distribution of the angular momentum at the periphery, where 13= 1 is an axially
invariant distribution and 13= 0 is strongly stratified. All other parameters and functions are held at
their nominal values (and 13= 0.99 is nominal).
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Fig. 9. The eyewaU thickness, h(z), to complement the results of Fig. 8.
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Fig. 10. The radial displacement of the eyewall, R(z), for three values of the initial thickness ho,
all other parameters and functions being held at their nominal values (with ho = 35 m being
nominal). Of course, the initial curvature E [Eq. (18)] varies with ho, since the ratio (Ro/ho) is
fixed at its nominal value, 10.
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Fig. 11. The eyewall thickness, h(z), to complement the results of Fig. 10.
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Fig. 12. A simplified schematic of the structure of an axisymmetric two-cell vortex convenient for
thermohydrostatic computation. The surface-friction layer II and the turnaround (Fig. 3) have
been omitted; in the above sketch, the surface frictional layer does not separate smoothly, and the

pressure at the base of the eyewall (region m) appreciably exceeds that at the base of the eye
(region IV). For a less intense, one-ceU vortex, no eye is present, and ro --* 0, so region m (no

longer termed an eyewall) envelopes the axis of symmetry.
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Fig. 13. The total-static-enthalpy profile H(z) associated with three columns of fluid for the model
of Fig. 12, with the sounding of Fig. 1 holding at the periphery.
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Fig. 14. The pressure profile p(z) associated with three columns of fluid for the model of Fig. 12,
with the sounding of Fig. 1 holding at the periphery.
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Fig. 15 The temperature prof'tle T(z) associated with three columns of fluid for the model of
Fig. 12, with the sounding of Fig. 1 holding at the periphery.
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Fig. 16. The density profile p(z) associated with three columns of fluid for the model of Fig. 12,
with the sounding of Fig. 1 holding at the periphery.
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Fig. 17. For spatially constant viscosity, results related to the radial and axial velocity components
for the outer, preponderant portion of the boundary layer under the high-speed portion of an
impressed vortex. The similarly independent variable rl is large for large distances normal to the
wall or for small radial distances from the outer edge of the vortex system.
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Fig. 18. As a complement to Fig. 17, results related to the swirl-velocity component.
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Fig. 19. For spatially constant viscosity, a comparison of numerically computed (dotted curve)
and approximate analytic (solid) results for the function h(o), related to the radial inflow in the thin,
effectively nonrotating sublayer under the high-speed portion of an impressed swirl. The similarity
independent variable o is large for large distances normal to the wall or for small radial distances
from the axis of rotation.
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Fig. 20. For numerical integration of the turnaround, a convenient (but nonessential) eight-
segment subdivision is considered, with a segment end-point introduced wherever

_--R= 0, R---_= 0, or _ = 1. Equation I is Eq. (D.8); Eq. II is Eq. (D.12), derivable from Eq. (D.8)

by an interchange of the roles of the independent and dependent variables. The "sign" column
indicates the sign locally adopted for the last turn in Eq. (D.8) or Eq. (D.12), as appropriate.
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Fig. 21. The dimensionless radial displacement, P.(z-),of a smoothly separated surface-inflow
layer, over one cycle (incursion, then excursion, with increasing attitude _) of the turnaround. As

the geometric ratio a increases, the minimum value of R increases, so the local peak swirl exceeds
the thermohydrostaticaUy estimated peak value by a smaller amount.

55 11.5 92.019


