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1. INTRODUCTION

This interim report summarizes research accomplished during the initial 6-month period of the -
grant, Toward the end of this period we enrolled a graduate student, Darren Leigh, who finished
his MSEE at MIT in June, 1992. Thus during the period covered by this report the active
personnel included the PI, two Harvard undergraduates (Neil Hendin and Greg Galperin, both
part-time), and minor participation by Mr. Leigh, who has now commenced full-time work on
the project. For the summer months we have been joined by another undergraduate, Derek Bass.

2. RESEARCH ACCOMPLISHED

2.1 Antenna Configuration

Following conversations with Prof. David Staelin (MIT) and with Dr. Michael Davis (Arecibo),
and after considerable work with 5 years of data from the ongoing META search apparatus (see
Publications, below), we have concluded that the problem of terrestrial interference is
sufficiently severe that it is worthwhile including a "terrestrial” feedhorn (and spectrometer), in
parallel with the East and West feedhorns originally planned. Each feed will drive an identical
80-megachannel spectrometer, based on parallel replication of the Berkeley Serendip-III
architecture, as originally proposed. The terrestrial feed will probably consist of an azimuthally-
symmetric low-gain (+3dBi) pattern; simultaneous detection of a signal in the terrestrial beam
and one of the (high-gain) sky beams results in immediate veto.

Another suggestion from Staelin is that the two sky beams should include an area of overlap.
This mandates a small phased array of horns, which we are currently designing. A promising
design uses 7 horns and three low-noise preamps: The central horn is buffered and phased with
each of the two buffered passively combined outer sets of three horns. The advantage of
overlapping beams is the observable "handoff" of a continuing signal; we expect to make the
decision as to whether this feature is worth the extra effort of a phased array during the current 6-
month period of the grant, and move forward with construction on the method of choice.

2.2 Downconverter

Considerable progress took place in this area. The channelizing downconverter requires an array
of 20 local oscillators (LO’s), equally spaced in frequency across the IF bandwidth, and
preferably phase-locked to the master station clock. We looked at several technologies for this
synthesis, namely i) direct digital synthesis (DDS), ii) an array of fixed crystal oscillators, iii) a
comb generator, driven at the channel spacing frequency, driving a set of narrow filters and
buffers, and iv) an array of phase-locked-loops (PLL’s). We concluded that DDS is too
expensive, and prone to spectral impurities (spurs and harmonics); crystal oscillators, though
delivering quite good signal purity, are difficult to obtain in small quantities at specific
frequencies (in response to our specifications, most vendors bid "no bid"!); the comb generator
approach requires an elaborate set of high-Q (and potentially drift-prone) filters at VHF; and thus
the PLL approach seemed best. '
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A good PLL requires a good open-loop oscillator, so we began by exploring various designs of
varactor-tuned VHF oscillators. In particular, we look at a Meissner circuit (transformer
coupled, JFET), an IC circuit (Motorola MC1648), and a JFET Clapp oscillator. The latter was
the best, delivering both open-loop and locked spectral purity better than our Hewlett Packard
3325A HF synthesizer. We measured both wideband (to 100 MHz) and close-in (down to 1.5 Hz
full-span) spectra, demonstrating better-than-required spectral purity (see attached spectra,
Figures 1-4). To measure close-in noise, we mixed the VHF LO with the synthesizer, both
referenced to the same master crystal, then lowpass filtered the beat note (7-pole Chebysheyv,
f =1 MHz) and analyzed it with a low-frequency (100 kHz) FFT analyzer. The resulting spectra
are, of course, the convolution of the separate spectra, and set a worst-case limit of spectral
purity that is far better than we need. We used a Schottky-diode amplitude feedback
arrangement, to prevent JFET clipping or gate conduction, a common condition in casually
designed JFET oscillators; the result is an extraordinarily pure sinusoidal oscillation, compared
with the usual Q-robbing clamped waveform (see Figure 5).

It was interesting to note that the VHF oscillator IC (MC1648), which claimed "high spectral
purity,” was by far the worst of the three oscillators, being some 10-30dB poorer than the others
(Figure 6; note carrier level is reduced 15dB compared with Figures 1-3).

We next closed the loop, using initially the 74HC4046 phase detector; it performed poorly,
displaying serious phase jitter. We traced the problem to the zero-phase "dead band," a frequent
problem in frequency synthesis, for which there are improved phase detectors. We tried the
MC145151, a single-modulus PLL synthesis chip with parallel-input modulus selection; it
worked well, but was too inflexible in choice of modulus, and also occupied a large package.
Our final choice was the MC145170, a superb PLL chip, in a small 16-pin DIP, with no
deadbanding problem, and a good price ($6.90). It requires serial downloading, via an
interesting 3-pin serial port; initially we used a 22V10 state-machine PAL to accomplish the
download, but finally settled on an 87C751 microcontroller to do the job, since it can download a
large array of PLL’s as easily as it can do a single PLL. The schematic (Figure 7) shows the
final circuit configuration of both JFET oscillator, PLL, and microcontroller downloading
arrangement.

After PC breadboarding and testing, we layed out a PC board with 10 VHF LO’s; two such
boards are needed for the full BETA system. The board is two-sided, with a ground plane to
ensure clean signals and good isolation between oscillators (see Figure 8). The boards have been
manufactured, and are awaiting a final decision on channel spacing before being fully stuffed.
We made some extra boards, at the request of the Berkeley group, which may use them in its
channelizing filter bank.

The LO array drives the mixer/filter/ADC subsystem, on which we made good progress also.
We began by designing our own anti-alias lowpass filters, because commercial filters were
quoted at $50 per filter (and 40 are needed per feedhorn!). We built 5-pole Butterworth and 7-
pole Chebyshev versions (the latter in both 0.01dB and 0.1dB passband ripple configurations),
all with a 1.0 MHz cutoff (anticipating 2 MHz of real-time bandwidth per spectrometer path).
Figure 9 shows a linear/linear sweep, dc to 2 MHz; the 7-pole, 0.1dB filter seems optimal, and



costs $8 per copy. It uses slug-tuned inductors and pairs of mica capacitors, in an easily
manufactured arrangement.

The next step is the ADC. We chose the TRW TMC1175 half-flash 8-bit ADC, which costs less
than $10 and converts up to 20 MSPS (our application requires only 2 MSPS). From our
experience with META (and after comparing notes with Berkeley), we decided that open-loop
trimming of the dc offset is marginal in systems with large FFTs, because even a fractional LSB
dc offset puts a "coherent” signal into the dc channel that can produce numeric overflow in a
system scaled for noiselike signals. For example, 1 LSB of dc offset produces 2? unscaled
counts in the dc channel of a 4 megachannel FFT, which might have something like 14 bit scales
to prevent (incoherent) word growth with the expected noiselike signals. That amounts to 8 bits
of coherent signal after scaling. In the ongoing META search, we carefully trimmed the dc
offset, while watching the FFT’s dc channel; it was a critical adjustment, with potential for
catastrophic drift.

Our solution here is a unique "auto-zero" circuit, which to our knowledge has not been used
elsewhere. The idea is to accumulate a running sum of the (signed) digitized outputs of the
ADC, then use the output (a digitally integrated error signal) to drive a DAC that trims the
analog input offset. Of course, this has to be done for both the / and Q mixer channels. The
schematic diagram in Figure 10 shows our circuit solution. The accumulation is performed in a
44-pin "super-PAL" device from AMD (their Mach 110, with 32 macrocells), suitably
programmed; we managed to squeeze a 16-bit adder/accumulator into a single part, with a
remarkable 96% product-term utilization. The DACOS is a very fast (85ns) 8-bit current output
DAC that costs less than $2, and is configured to provide about 4 LSB’s of trim over its full
range. In this circuit the DAC is tied to the top 8 bits of the accumulator, which carries out of the
bottom 8 bits, where the input quantities are being added.

The autozero successfully keeps the dc signal near zero, in the process introducing a low-
frequency rolloff in the converter response. That occurs because the input signal is ac coupled,
with the autozero trimming the dc input to the ADC just downstream of the blocking capacitor.
Our circuit puts the rolloff at about 600 Hz, which is desirable in any case because of 1/f type
noise in the vicinity of the dc channel. In fact, in our current system we let the FFT cope with
large amounts of dc and 1/f spectral components, then postprocess the spectrum by setting those
components to zero! The autozero accomplishes the same thing, without straining the FFT
numeric headroom.

There’s an interesting serendipity in this circuit, in that the high frequency cutoff of the autozero
feedback signal is precisely the same as the low frequency cutoff of the (blocked) input signal;
that is because both are determined by the blocking capacitor in combination with the dc
resistance seen at the ADC input. We demonstrated this by injecting a logarithmic frequency
sweep (dc to 10 kHz), and plotting (top to bottom traces, in the top oscilloscope photo of Figure
11) the input signal, the signal reaching the input to the ADC, and the autozero feedback signal.

The autozero circuit performs very well. The remaining oscilloscope photos in Figure 11 show

the dynamic performance, with a half-scale wideband noise input (top trace, 1V/div). The
middle photo shows the DAC output, with the loop open; the sawtooth is the result of a few
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LSB’s of average dc offset, accumulated to a digital ramp. The lower photo shows the result
when the loop is closed; now the autozero holds the input trimmed, with only a small portion of
the DAC range exercised, even with a large input noise signal, of the sort routinely expected. -

In our prototype, the autozero is easy to use: Just trim the manual offset adjustment to bring the
DAC output to the middle of its range. Small changes in trim simply cause the DAC output to
shift up and down, when the autozero loop is closed, whereas the trim causes changes in
sawtooth wave frequency when the loop is open. In the latter case it is nearly impossible to make
the DAC output stationary; furthermore, even if accurate open-loop trim can be achieved, it is
lost when the input amplitude changes, because the overall dc trim depends on the symmetry of
ADC decision levels, as averaged by the input signal. Le., the ADC dc trim is a dynamic
quantity, hence untrimmable in principle without an autozero!

We are completing final testing of the autozero circuit, and checking out an alternative ADC part
(the TI TLC5502-5), which is a comparably-priced full-flash 8-bit converter, compared with the
half-flash TRW part. When tests are complete, we will reduce the circuit to PCB pattern (this
time using CAD/CAM), and have boards manufactured. Together with the now-completed LO
array, this will complete the downconverter task.

2.3 FFT Array

We began with a survey of five commercially available FFT ASIC’s: The Array Microsystems
66111, Austek A41102, LSI Logic L64280, Plessey 16510, and TRW TMC2310-1. In each case
we studied data sheets and made preliminary comparisons, then proceeded to block out
implementations. Some of these chips include automatic block floating point scaling, a good
feature for individual FFT’s, but an awkward arrangement when a long 1-dimensional FFT is
performed as a succession of shorter row and column FFT’s, as we plan to do. That is because,
in a transform of N*M points, one must interpose a complex multiply (known as a "twiddle
factor") between the N row and M column FFT’s during the "corner turn”; thus, if the FFT chip
has performed a block floating point scaling, each row, say, will in general have a different
exponent, as the chip scales each short transform. Now the column transform becomes
extremely awkward, requiring one to find the largest row exponent, then barrel-shift all other
rows to the same exponent.

Taking account of this sort of problem, and considering overall bandwidth issues, we eliminated
three of the FFT chip sets, leaving the Austek and LSI Logic as finalists. The LSI excels in
precision, but is expensive and requires special 44-bit wide video shift registers for intermediate
storage; it also mandates an awkward recirculating configuration for efficient low-bandwidth
applications, having been designed for wideband pipelined use. Among other things, this
requires that the clock rate be lowered, and that input and output data be handled in rapid bursts
of low duty cycle, with consequent poor use of memory resources. By contrast, the Austek chip
is ideal for continuous-flow real-time data streams, requires no special memory, and has great
flexibility in terms of bit scaling, word width, transform length, normal vs bit reversed sequence,
and use of internal multiplier and data switches. In addition, its documentation is unparalleled.
On the down side, it (like the others) is a sole-sourced product, with future supply not assured.



Based on the above considerations, and given Berkeley’s choice of the Austek chip and
negotiation of an excellent price, we placed an order for 300 pieces, enough to build two
complete BETA systems. In part this was a conservative response to Austek’s decision to
discontinue this excellent part, allowing us one "lifetime buy.”

The order was placed at the end of December, 1991. While waiting for delivery we began
simulations, to determine the needed word precision (16 vs 20 vs 24 bits, fixed point), and also to
determine optimum twiddle factor ROM organization. We began by favoring 20 bit arithmetic,
and a 16-bit by 256K ROM quarter-sine lookup table (which provides 17-bit precision after
appending the sign). We also devised an efficient 3-chip 4-megachannel FFT configuration,
taking advantage of the Austek chip’s ability to perform normal or bit-reversed transforms (see

Figure 12).

It now appears that 16-bit arithmetic is adequate, though not extravagant, for a 4M FFT with
noiselike input signal. Preliminary data from Serendip-IIl supports this conclusion. We are
completing simulations, and will make the final decision shortly.

On the chip supply issue: Austek has indeed discontinued the part, with the silicon for our order
now fabricated but not packaged. During this period the manufacturing rights to the chip,
granted to Austek by the Australian government’s CSIRO, expired, and were sold to a reputable
Australian silicon foundry known as AWA. The latter will be completing packaging and
delivery of the ordered chips, probably in October, 1992, at the negotiated price. Although the
delay is not good news, the continuity of future supply is very good news. We will keep busy in
the meantime with further simulations, PC board layout, and work on other aspects of the
system.

2.4 DSP Backend Array

The FFT array is followed by an array of dedicated digital signal processing (DSP) chips, which
sift through the spectra looking for i) new peaks that exceed background by a significant amount,
and ii) the progress of previously flagged frequencies of interest; see the original proposal for a
detailed description.

We have been looking at several choices for the DSP array, including the Motorola 56002,
96002, Intel 80960, and Star chip. The fixed-point 56002 has now been eliminated, because its
address space is inadequate for the IMB of memory it shares with the following "LAN
controller” array. Likewise, the Star chip, with its multiple processors, is too complex. The Intel
80960 has recently become affordable (less than $200), and may be the best choice; however, the
96002 has the advantage of Motorola’s pleasant assembly language and traditionally clean
architecture, as well as having a close relationship to the 68030 processor that we favor for the
LAN controller array. On the down side, it includes unneeded floating point capability.

Whatever the choice of DSP, we have decided to perform the baseline calculation in a dedicated
hardware accumulator, using a pair of memories of length L/2 and an adder/subtractor, so that we
calculate the average baseline centered on a sliding window of length L centered on the current
data point. There are various choices of implementation, including FIFO or SRAM for the
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buffers, and FRGAs, PALs, or DSPs for the accumulator. In fact, the comparison of current data
point with baseline multiple can also be done in hardware (rather than DSP).

An interesting issue arises on the baseline computation. To do accurate signal statistics, the
baseline must be calculated from power, computed from the / and Q amplitudes that come from
the FFT. But, since the final FFT output is in bit-reversed order, the results must be stored in a
"comer-turn” memory, of size 4M x wordlength. Thus, if we use a multiplier and adder to
compute power, the result requires 32 bits (from 16-bit amplitudes) for corner-turn storage, thus
using 16MB of RAM (or 40% of the total RAM required). A smarter approach is to store a
representation of the power (e.g., mu-law, or modulus) in the corner-turn memory, thus halving
the memory size (16 bits of compressed power, say, derived from a complex pair of 16-bit
amplitudes). A good way to compute the power representation is to use a 2-step ROM approach,
with 7 and Q indexing into a table of compressed power representation; the baseline averaging
circuit, reading out of the corner turn memory, then inverts the compression to recover true
power, before accumulating the average baseline. We like this method, and are working on
simulations, prior to reducing it to practice.

2.5 Backend & Workstation

We have just taken delivery on our Unix workstation (SPARCstation 2), essential for serious
simulations as well as for actual experiment control. It is in use around the clock! For the
crucial task of backend control of the experiment, we have decided to use thin-wire Ethernet
between the workstadon and the LAN controller array. We are now actively building the
backend software and user interface, first by building a "data-maker” that simulates the LAN
controller array, complete with signals and noise. Then we will write the backend user interface
and other code, allowing it to interact with this simulator on the Ethernet, exactly as in real
operation. This has the advantage of letting us contend with real network issues (communication
protocols, latency, congestion, etc.), as well as writing code that will work when the real DSP
and LAN-controller array is substituted for the simulator.

3. NEXT STEPS

As described above, we have expanded the scope of work somewhat, by including a third
spectrometer to service a terrestrial feed, and by exploring the use of phasing to produce
overlapped sky beam lobes. The channel count and instantaneous bandwidth has also been
increased, to 240 megachannels and 120 MHz (from the proposed 100 megachannels and 60
MHz, respectively). Though bold, we believe these changes to be important, and necessary.

The delay in FFT chip delivery is a disappointment, but probably will not seriously affect startup
of the system, given other tasks awaiting completion. Overall, we are satisfied with progress to

date.



4. PUBLICATIONS
During the period of this report we have submitted two publications:

Horowitz, P. Five Years of META: Results of The Planetary Society’s Search at Harvard.
Presented at the USA-USSR Joint Conference on the Search for ExtraTerrestrial Intelligent Life,
August 5-9, 1991, Santa Cruz, CA (Sponsored by the US National Academy of Sciences,
Academy of Sciences of the USSR, and the Life Sciences Division, NASA Headquarters, with
support from the SETI Institute and the University of California, Santa Cruz). Manuscript
submitted for publication in the Conference Proceedings.

Horowitz, P., and Sagan, C. Five Years of Project META: An All-Sky Narrowband Radio
Search for Extraterrestrial Intelligence. Manuscript submitted to Nature.

Both describe work completed before the current grant became effective, but actual manuscript
preparation took place during the period of the grant, and describe plans to be carried out during
the grant period.
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is7.5x 14

uit pattern (solder side) for local oscillator array. Board size

8. Printed circ

inches, double sided with ground plane.

Figure
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Figure 9. Frequency response of LC anti-alias lowpass filters, all with f,.=1 MHz. Horizontal:
linear frequency sweep, 0 to 2 MHz; vertical: linear amplitude scale, constant voltage drive. (a)
5-pole Butterworth; (b) and (d) 7-pole Chebyshev, 0.01dB ripple; (c) 7-pole Chebyshev, 0.1dB
ripple.
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(b)

Figure 11. Autozero dynamics, when driven by sinewaves or noise. (a) dc to 10 kHz linear
sweep; top trace is constant level input signal, middle trace is signal reaching the ADC, and
bottom trace is the autozero feedback. (b) 1 volt broadband (1 MHz) noise, approx 1 volt pp
amplitude; top trace in input signal, and bottom trace is the output of the autozero DAC with
feedback loop open; dc error at input is integrated by the adder-accumulator, generating sawtooth
output. (c) same, but with loop closed; note headroom of autozero, whose output can swing 2.5
vertical divisions.
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Figure 12. Data flow in a 2%-point FFT, implemented as 256 2!4_point FFT’s followed by 16384
28_point FFT’s, with phase rotation by a mwiddle-factor” in between (indicated by a multiplier
symbol). The 2!4-point FFT is itself a succession of 27-point FFT’s, again with twiddle factors.
The rectangular boxes are FFI’s, performed with the Austek A41102 chip; BR means bit-
reversed data ordering; N means normally (monotonically) ordered; crossovers represent bit-
reverse ordering of the data stream, via “corner-turn” memory buffers. Both twiddle-factor
multiplication and input time windowing are performed in the IC’s internal complex multiplier.



