S29-27 140747 P-5

Appendix B: Properties and Uses of Concrete

Gene Corley

Properties of Concrete

Concretes that can now be formed have properties which may make them valuable for lunar or space construction. These properties include high compressive strength, good flexural strength (when reinforced), and favorable responses to temperature extremes (even increased strength at low temperatures). These and other properties of concrete are described in T. D. Lin's contribution to this report ("Concrete: Potential Material for Space Station").

Higher quality cements and products may become possible. Among other possibilities is manufacture of "zero-macrodefect" concrete products. When manufactured on Earth, these materials have the potential for developing a tensile strength of 15 000 psi [103 megapascals (MN/m²)] and a compressive strength of 30 000 psi (207 MN/m²). Although they are made at relatively low temperatures and pressures, they have properties similar to those of some ceramics.

Other properties of concrete that make its application attractive are good radiation absorption and stability at high temperature. Porosity and permeability may be a problem, necessitating the addition of impermeable coatings in some applications.

Fabrication Techniques

Procedures common on Earth can be used to fabricate structural products. The following techniques are possible:

- 1. Casting
- Curing at ordinary temperatures or autoclaving
- 3. Shotcreting with glass fiber reinforcements

Of the techniques available, autoclaving appears most attractive for "high strength" products. This can be done by placing molded concrete units in a pressure vessel painted black on one side. Curing can be accomplished within a few hours. All free water can be recaptured for reuse. Autoclaving will accelerate the cure and produce concretes that contain less combined water than products cured at low temperatures and have greater volume stability upon drying, which are advantages in the space environment. Slag-type silicate-based hydraulic cements are well suited to autoclaving, because the high temperatures accelerate the hydration reactions.

Shotcreting can be used to construct large monolithic structures. Pressure vessels, structured shapes, floor slabs, and wall panels can be fabricated with the use of glass fiber reinforcements. Molds made of inflated membranes can be used for large enclosures. As in the case of autoclaving, free moisture can be recaptured.

For some applications, such as patching or grouting, where conditions make special curing impossible, a relatively quicksetting cement might be needed. Portland cements are not well suited to such applications, but phosphate cements could be developed to meet such needs. Sulfur cements, which do not require water, have been suggested, but they have poorer properties than hydraulic cements. Special composition cements are a topic worthy of further research.

On the Moon, buildings made of concrete and sheltered by a soil covering can be used as space for living, manufacturing, and storage. The amount of energy used in concrete construction can be low, and the level of worker skill does not need to be high for good results.

As concrete processing technology using appropriate lunar materials develops, concrete may find application in Earth orbit for construction of large structures (see T. D. Lin's paper). Concrete materials such as aggregate, cement, and oxygen from the Moon and hydrogen from Earth can be transported and, in advanced scenarios, at competitive transportation costs. Where large masses of material are desired, concrete has the advantage over unprocessed or sintered material in that it can be cast into compartmented but monolithic structures of high strength, using lightweight forms (e.g., inflated impermeable membranes). Indeed, the versatility of concrete for construction on Earth may be matched in space.

Addendum: Participants

The managers of the 1984 summer study were

David S. McKay, Summer Study Co-Director and Workshop Manager Lyndon B. Johnson Space Center

Stewart Nozette, Summer Study Co-Director California Space Institute

James Arnold, Director of the California Space Institute

Stanley R. Sadin, Summer Study Sponsor for the Office of Aeronautics and Space Technology NASA Headquarters

Those who participated in the 10-week summer study as faculty fellows were the following:

James D. Burke James L. Carter David R. Criswell Carolyn Dry Rocco Fazzolare Tom W. Fogwell Michael J. Gaffey Nathan C. Goldman Philip R. Harris Karl R. Johansson Elbert A. King Jesa Kreiner John S. Lewis Robert H. Lewis William Lewis James Grier Miller Sankar Sastri Michele Small

Jet Propulsion Laboratory University of Texas, Dallas California Space Institute Virginia Polytechnic Institute University of Arizona Texas A & M University Rensselaer Polytechnic Institute University of Texas, Austin California Space Institute North Texas State University University of Houston, University Park California State University, Fullerton University of Arizona Washington University, St. Louis **Clemson University** University of California, Los Angeles New York City Technical College California Space Institute

Participants in the 1-week workshops included the following:

Constance F. Acton William N. Agosto A. Edward Bence Edward Bock David F. Bowersox Henry W. Brandhorst, Jr. David Buden Edmund J. Conway Gene Corley Hubert Davis Michael B. Duke Charles H. Eldred **Greg Fawkes** Ben R. Finney Philip W. Garrison Richard E. Gertsch Mark Giampapa Charles E. Glass Charles L. Gould Joel S. Greenberg Larry A. Haskin Abe Hertzberg Walter J. Hickel Christian W. Knudsen Eugene Konecci George Kozmetsky John Landis T. D. Lin John M. Logsdon Ronald Maehl Thomas T. Meek Wendell W. Mendell George Mueller Kathleen J. Murphy Barney B. Roberts Sanders D. Rosenberg Robert Salkeld Donald R. Saxton James M. Shoji Michael C. Simon William R. Snow Robert L. Staehle Frank W. Stephenson, Jr. Wolfgang Steurer Richard Tangum Mead Treadwell **Terry Triffet** J. Peter Vaik Jesco von Puttkamer Scott Webster Gordon R. Woodcock

Bechtel Power Corp. Lunar Industries, Inc. Exxon Mineral Company General Dynamics Los Alamos National Laboratory NASA Lewis Research Center NASA Headquarters NASA Langley Research Center Portland Cement Association Eagle Engineering NASA Johnson Space Center NASA Langley Research Center Pegasus Software University of Hawaii Jet Propulsion Laboratory Colorado School of Mines University of Arizona University of Arizona Rockwell International Princeton Synergetics, Inc. Washington University, St. Louis University of Washington Yukon Pacific Carbotek, Inc. University of Texas, Austin University of Texas, Austin Stone & Webster Engineering Corp. Construction Technology Laboratories George Washington University **RCA Astro-Electronics** Los Alamos National Laboratory NASA Johnson Space Center Consultant Consultant NASA Johnson Space Center Aerojet TechSystems Company Consultant NASA Marshall Space Flight Center Rockwell International **General Dynamics** Electromagnetic Launch Research, Inc. Jet Propulsion Laboratory NASA Headquarters Jet Propulsion Laboratory University of Texas, San Antonio Yukon Pacific University of Arizona Consultant **NASA Headquarters Orbital Systems Company** Boeing Aerospace Company

The following people participated in the summer study as guest speakers and consultants:

Edwin E. "Buzz" Aldrin Rudi Beichel David G. Brin Joseph A. Carroll Manuel I. Cruz Andrew H. Cutler Christopher England Edward A. Gabris Peter Hammerling Eleanor F. Helin Nicholas Johnson Joseph P. Kerwin Joseph P. Loftus Budd Love John J. Martin John Meson Tom Meyer John C. Niehoff Tadahiko Okumura Thomas O. Paine William L. Quaide Namika Raby Donald G. Rea Gene Roddenberry Harrison H. "Jack" Schmitt Richard Schubert Elie Shneour Martin Spence James B. Stephens Pat Sumi Robert Waldron Simon P. Worden William Wright

Research & Engineering Consultants Aerojet TechSystems Company California Space Institute California Space Institute Jet Propulsion Laboratory California Space Institute Engineering Research Group NASA Headquarters LaJolla Institute Jet Propulsion Laboratory Teledyne Brown Engineering NASA Johnson Space Center NASA Johnson Space Center Consultant NASA Headquarters Defense Advanced Research Projects Agency Boulder Center for Science and Policy Science Applications International Shimizu Construction Company Consultant NASA Headquarters University of California, San Diego Jet Propulsion Laboratory Writer Consultant NASA Headquarters Biosystems Associates, Ltd. Shimizu Construction Company Jet Propulsion Laboratory San Diego Unified School District Rockwell International Department of Defense Defense Advanced Research Projects Agency

