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SUMMARY 

three-dimensional time dependent Navier-Stokes analysis was applied to the 

rotor blade vortex interaction problem. The numerical procedure is an iterative 

implicit procedure using three point central differences to represent spatial 

derivatives. A series of calculations were made to determine the time steps, 

pseudo-time steps, iterations, artificial dissipation level, etc. required to 

maintain a nondissipative vortex. Results show the chosen method to have 

excellent non-dissipative properties provided the correct parameters are chosen. 

This study was used to set parameters for both two- and three-dimensional blade 

vortex interaction studies. The two-dimensional study considered the interaction 

between a vortex and a NACA0012 airfoil. The results showed the detailed physics 

during the interaction including the pressure pulse propagating from the blade. 

The simulated flow physics was qualitatively similar to that experimentally 

observed. The 2-D BVI phenomena is the result of the buildup and violent 

collapse of the shock waves and local supersonic pockets on the blade surfaces. 

The resulting pressure pulse build-up appears to be centered at the blade leading 

edge. The three-dimensional interaction study considered the case of a vortex at 

200 incidence to the blade leading edge. Although the qualitative results were 

similar to that of the two-dimensional interaction, details clearly showed the 

three-dimensional nature of the interaction process. 

I. INTRODUCTION 

The interaction of ncentrated vortices with blades induces unsteady 

aerodynamic loading responsible for blade vibrations, 	 r9elastic instabilities, 

and impulsive noise. The effects of blade-vortex interaction (BVI) are especially 

significant  in the transonic fl regime, in which the strength and position of 

the shock waves are sensitive to sill changes in the flow parameters. Due to its 

commiccurrence in many aerodynamic applications, BVI has been a subject of many 

experimntal, analytic and computational ""Investigations. Recent examples of 

experimental investigations include the work , ,,of Caradonna and his colleagues 

(1984, 1988) and Booth and Yu (1986). Analytical studies include those of Panares 

(1987), Lee and Smith (1987) and Poling, Dadone and Telionis (1989). 

Investigations based upon numerical simulations include the two-dimensional full 
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Navier-Stokes simulations of Sankar and Tang (1985), the two-dimensional thin 

layer Navier-Stokes simulations of Srinivasan and McCroskey (1987), Srinivasan, 

McCroskey and Baeder (1986) and Rai (1987),, and the three-dimensional thin layer 

Navier-Stokes simulation of Srinivasan and McCroskey (1989). 

The EVI problem can be viewed as an unsteady, three-dimensional close 

encounter of curved vortex filaments, at arbitrary intersection angles, with a 

blade that is in combined translational and rotational motion. Under certain 

operating conditions, the blade can encounter a vortex that is almost parallel to 

itself. Such an encounter is essentially two-dimensional but unsteady, and has 

been the focus of many BVI investigations.. However, in general the blade vortex 

interaction is a three-dimensional phenomenon. Both two-dimensional and three-

dimensional interactions are considered here. 

At the present time, a key problem in computing flows containing concentrated 

vortices is the ability to preserve and convect these vortices in a finite-

difference or finite-volume grid without false numerical diffusion due to 

truncation error, artificial dissipation and turbulence modelling. Various 

investigators have dealt with the vortex preservation problem in different ways. 

One approach, the prescribed vortex approach (e.g. Srinivasan and McCroskey,. 1987 

and 1989) assumes a background flow field consisting of a specified vortex and 

solves the governing partial differential equations for the difference between the 

full dependent variable field and that of the specified vortex. Under this 

approach the numerical diffusion is applied only to that part of the flow field 

which represents the perturbation from the isolated vortex flow field. A 

conceptually similar approach is taken by Sankar and Tang (1985) who solve the 

Navier-Stokes equations for the usual dependent variables; j.e., do not use a 

perturbation approach but modify the numerical dissipative operator to act on the 

difference between the instantaneous total field values and some presumed vortex 

field values, thereby removing a large part of the spurious dissipation of the 

vortex structure. More recently, strong BVI problems were solved, by using a 

fifth-order accurate upwind-biased scheme without employing any vortex 

preservation techniques (Rai, 1987). 	 . 

In the present work, the ensemble-averaged, time-dependent Navier-Stokes 

equations are solved on a body-fitted grid around a NACA0012 airfoil in two and 

three dimensions to study strong interaction of a vortex with a stationary blade. 

The Navier-Stokes equations are solved by . using an iterative implicit finite-

difference scheme with second order spatial and temporal accuracies. Furthermore,



simple vortex preservation techniques are used to minimize the amount of spurious 

numerical dissipation and eddy viscosity caused by the presence of the vortex 

during its convective motion towards the leading edge of the blade. In terms of 

spatial differencing, the present study employs three-point central differences 

with adjustable dissipation terms. An alternative approach is to use various 

upwind differencing schemes in transformed coordinates. For example, Rai (1987) 

has used first- and second-order upwind differences and also fifth-order 

upwind-biased differences to study blade vortexinteractions. Although 

higher-order centered and upwind schemes can be more accurate, the order of 

accuracy refers to transformed coordinate variables. The high order schemes are 

usually first-order accurate in physical space variables for general non-uniform 

grids. Centered schemes can be made equivalent to upwind schemes by using special 

forms of dissipation with particular choices of dissipation parameters, as 

discussed in Pulliam (1985), Yoon and Kwak (1988) and Briley, Govindan and 

McDonald (1990). 

One attraction of the upwind schems is that they propagate waves according to 

local characteristic behavior (in a one-dimensional sense). This is offset 

somewhat by complexity and the use of expanded grid molecules for higher order 

upwind schemes, which complicates their use near boundaries. An upwind approach 

can also be used to advantage in constructing special schemes for capturing strong 

shocks. Central-difference schemes also approximate local physics correctly for 

smooth flows, but require special treatment of (extraneous) boundary conditions to 

avoid error due to boundary conditions which conflict with characteristic behavior 

at boundaries. 

In our experience, the present scheme is more accurate than a first-order 

upwind scheme, and has accuracy comparable to the higher-order upwind schemes for 

general non-uniform grids. The present scheme also has a three-point bandwidth 

and is simple and economical. The simple artificial dissipation approach used 

here does not require assumptions regarding the velocity field associated with the 

prescribed vortex approach used by some other investigators, e.g. Srinivasan et 

al. (1989). Finally, the main focus of the present effort is a three-dimensional 

simulation based upon the full Navier-Stokes equations whereas the previous 

three-dimensional simulations, Srinivasan et al. (1989), are based upon a solution 

of the thin layer equations. 

The present effort proceeds in three separate steps. First consideration is 

given to the isolated vortex to develop a run protocol which has suitable vortex 
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preservation properties. Vortex preservation is necessary for viable two- and/or 

three-dimensional simulations. Secondly, a two-dimensional, transonic blade 

vortex interaction simulation is made. This allows a qualitative assessment prior 

to the three-dimensional interaction. The third portion of the program is the 

three-dimensional blade vortex interaction simulation 

II. ANALYSIS

Governing Equations and Solution Algorithm 

Prior to discussing the results a discussion of the governing equations and 

numerical approach is appropriate. As previously stated, the present approach 

solves the full ensemble-averaged Navier-Stokes equations without any shear layer 

assumption. The approach uses second-order spatial differencing and a 

second-order artificial dissipation model which does not require any assumption 

regarding the velocity field associated with the vortex. The equations are: 

Continuity

ap 
+V.pU=O	 (1) at 

Momentum

-.	 -. 
8pU  

at + V. (pUU) = —VP + V. (it + .irT )	 (2) 

Energy

+ V. (pUh) = —V. (Q + QT) + DP + 0 + p	 (3) at	 H 

where p is density, U is velocity, P is pressure, it is the molecular stress 

tensor, ,T is the turbulent stress tensor, h is enthalpy, Q is the mean heat flux 

vector, QT is the turbulent heat flux vector, 1' is the mean flow dissipation rate 

and € is the turbulence energy dissipation rate. 
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In regard to the numerical method, the basic scheme used is a Linearized Block 

Implicit (LBI) ADI procedure of Briley and McDonald (1977, 1980). The splitting 

error and the linearization error associated with this basic scheme are removed by 

introducing an inner ADI iterative procedure at each time step. In brief, the 

procedure adds terms 8p/ôr, 8pU/8r and 3ph/8'r to the continuity, momentum and 

energy equations, Eqs. (1) - (3), respectively. Three point central differences 

are used to represent spatial derivatives and, unless specified otherwise, three 

point backward time differencing is used to represent temporal differences leading 

to a second order temporal technique. The spatial accuracy is second order except 

for the use of numerical dissipation which is discussed later. The equations, 

including the 3( )/8'r terms are solved by the LBI technique in a manner analogous 

to that used by Rai (1987). On convergence of the inner iteration the scheme 

becomes a fully implicit.nonlinear backward time difference scheme. Extensive 

tests have been made on the most effective choice of inner iterations and physical 

time steps and these tests are discussed subsequently. 

Artificial Dissipation and Turbulence Model 

When calculating high Reynolds number flows using centered spatial 

differencing, some artificial dissipation is needed to maintain numerical 

stability and to suppress spurious oscillations in the numerical results. 

Such "artificial dissipation" could be added via the spatial differencing 

formulation (e.g., one-sided difference approximations for first derivatives) or 

by explicitly adding an additional dissipative term. The present effort utilizes 

the latter approach. When an additional term is explicitly added, the physical 

approximation being made is usually clearer than when dissipative mechanisms are 

contained within numerical truncation errors, and further, explicit addition of an 

artificial dissipation term allows greater control over the amount of nonphysical 

dissipation being added. Obviously, the most desirable technique would add only 

enough dissipation to suppress oscillations without deteriorating solution 

accuracy. Various methods of adding artificial dissipation were investigated by 

Shamroth et al. (1982), and these were evaluated in the context of a model 

one-dimensional problem containing a shock with a known analytic solution 

(one-dimensional flow with heat transfer). The methods considered included 

second-order dissipation, fourth-order dissipation and pressure dissipation 

techniques.

5



As a result of this investigation, it was concluded that for nearly normal 

shocks such as that expected in this study a second-order anisotropic artificial 

dissipation formulation suppressed spatial oscillations while maintaining solution 

accuracy, and could be used to capture shocks successfully. In this formulation, 

the terms

p1d 84) 
axi

(. 	 xi 

are added to the governing equations where 4) = u for the x i -momentum equation and 

= p for the continuity equation, respectively. The exponent, n, is zero for the 

continuity equation and unity for the momentum equations. The dissipation 

coefficient, dxi , is determined as follows: the general equation without 

addition of any artificial dissipation has an x i -direction convective term of the 

form a84)/3x and an x 1 -direction diffusion term of the form 8(b8(p/8x)/8x j . The 

diffusive term is expanded 

8[4)]/ax. - 

b8 2 4) + 
1. - 3x1 2	 8xj 8x1
	 (4) 

and then a local cell Reynolds number, Rex, is defined for the x i -direction by 

Re	 = Ia -	 X1/b 
£xj	 I	 a 

ab

xi  

I	

I

	
(5) 

where b is the total effective viscosity, including both laminar and turbulent 

contributions, and Ax i is the grid spacing. The numerical dissipation coeffic-

ient, d , is nonnegative and is chosen as the larger of zero and the local 
i 

quantity

(6) 

The dissipation parameter 0xi' is a specified constant and represents the inverse 

of the cell Reynolds number below which no artificial dissipation is added. The 

maximum value of the dissipation, a xi = 0.5, corresponds approximately to that 

obtained by using one-sided differencing throughout. A term of the form 

8(pnldxi84)/8x i )/3xi is added to each equation. 

The present results have been obtained with a mixing length turbulence model, 

and an isotropic eddy viscosity. This model assumes the existence of a mixing 
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length, 2, and then relates an eddy viscosity, PTI to the mixing length by 

PT = 
p22 [ [ 

:!i +	
j- I
	 1½	 (7) 

3X	 OXj 	 3X J 

For flow regions upstream of the trailing edge where the flow is attached,. the 

mixing length is determined by the usual boundary layer formulation 

2=icyD	 2<2	 (8) max 

where K is the von-Karman constant, D is a sublayer damping factor and Imax is 

taken as 0.09 6, where 6 is the boundary layer thickness. The van Driest damping 

factor is defined as

D = (1 - eY/ 26 )	 (9) 

where	 =YU1r 1vis the dimensionless coordinate normal to the wall. 

When the mixing length formulation is used in a boundary layer environment, 6 

is usually taken as the location where u/ue = 0.99. However, this definition 

assumes the existence of an outer portion of the flow where ue is independent of 

distance from the wall, and assumes that the location where Ue becomes independent 

of distance from the wall marks the end of the viscous region. In an airfoil 

Navier-Stokes calculation, no such clear flow division occurs as even in the 

nominally inviscid region there are velocity gradients due to potential flow 

effects. Therefore, the boundary layer thickness, 6, is set by first determining 

umaxt 
the maximum velocity at each given streamwise station, and then setting 6 

using

6 = 2.Oy
(u/umax =k 1 ) 

i.e., 6 is taken empirically as twice the distance from the wall to the location 

where U/Umax = k 1 . In the present calculations, k 1 was set to 0.90. 

This boundary layer thickness specification is not suitable in the airfoil 

leading edge stagnation regions or near the rounded trailing edges where two small 

separation regions form, hence special treatment is required in these areas. The 

points 1 and 2 shown in region I of Fig. I are at a specified arc-length (1s 1 and 

2) from the nominal stagnation point, and in the present calculation £s 1 and 

(10) 
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As 2 were approximately 5% of axial chord. In region I, a value of 8 is defined 

using a quadratic fit between the computed values .6 and 6 2 and a specified 

minimum value 6min assumed at the stagnation point. The points 3 and 4 shown in 

region II of Fig. 1 are at a specified arc-length (Ls 3 and As 4 ) from the trailing 

edge point, and in the present calculations £s 3 and As 4 were approximately 6% of 

axial chord. Downstream of points 3 and 4, the value of 6 is set to 6 3 and 64, 

respectively. In the wake region an assumed spreading rate is used. 

Obviously, both artificial dissipation and turbulence viscosity are sources of 

false diffusion and distortion of a vortex convected in a finite-difference grid. 

In the present work, the effects of artificial dissipation on the vortex structure 

is minimized by specifying a proper value of the adjustable parameter (°xi) which 

controls the amount of added dissipation, and for the present BVI study this value 

was determined from a separate set of calculations in which the effects of this 

parameter's magnitude on the preservation of a free vortex convected over a long 

distance are examined. To minimize the spurious diffusion of vortex structure due 

to the turbulence model, the turbulent viscosity is set to be zero in a region 

ranging between the inflow section to a section which is approximately one chord 

length upstream of the leading edge of the blade. The turbulent viscosity then 

gradually blends into the values provided by the employed mixing length model. 

The numerical results obtained show these simple techniques to be effective in 

preserving the vortex during its convection towards the blade. 

Grid Construction 

During the course of this effort calculations were run with several types of 

grids. The BVI calculations require a grid which extends far upstream (perhaps 

five chords) to a station where the vortex is placed initially. Furthermore, it 

is important that the vortex be convected to the blade with minimum distortion or 

dissipation due to numerical effects. This demand argues strongly for an 

orthogonal grid upstream of the blade since significant non-orthogonality leads to 

a higher degree of numerical error and is expected to distort and dissipate the 

vortex in a physically unrealistic manner. With these considerations in mind, SRA 

has developed a "four corner" grid, a sketch of which is shown in Fig. 2. This 

grid was generated using the EAGLE code of Thompson (1987). This grid can be 

easily extended to far upstream without introducing excessive grid 

non-orthogonality in the upstream region. On the other hand, if a "C"-grid is 

8



used such anextension to the far upstream would present considerable grid 
non-orthogonality in the far upstream region. Therefore a "four corner" grid is 
the grid of choice for the desired simulation, and is used here. 

As can be seen in Fig. 2, the points A, B, C, and D are points with singular 

metric information. However, they are on the boundary and the change in 
coordinate line direction at these points can be kept to 

450 
as compared to a 

change of 900 for a standard "H"-grid. This decrease in coordinate direction rate 

of change should make the four corner grid less susceptible to numerical error in 

the vicinity of the singular boundary points. 

Figure 3 presents a computer generated plot of the overall grid for a NACA0012 

airfoil. Detailed grid distributions in the leading edge and trailing edge 

regions are shown in Figs. 4 and 5. A total of 12,000 grid points are used with 

high resolution both near the blade and in the vicinity of the blade leading 

and trailing edges. Typical resolutin at the blade surface is 3.0 x 10 chords. 

As previously discussed, the major disadvantage with the conventional "H"-type 

grid is the presence of the singular points in the leading edge and the trailing 

edge, where the branch cut lines meet the airfoil body and the grid lines change 

their slopes at very sharp (almost ninety degrees) angles. The severity of this 
problem is reduced for the "four corner" grid by changing the location of the 

points at which branch cut lines meet the airfoil body to positions away from the 

center line so that these lines can connect to airfoil with a 
450 

angle, as shown 

in Fig. 4. 

A calculation was performed for the isolated airfoil given in Fig. 3 at zero 

incidence. The free stream Mach number and the Reynolds number used for this 

calculation were 0.3 and 1.Ox10 4 , respectively. The calculation was continued 

until an asymptotic steady solution was obtained. The surface pressure 

distribution at such a steady state is shown in Fig. 6 which qualitatively 

demonstrates the typical behavior of the NACA 0012 airfoil. The pressure 

distribution, for the same type of airfoil, reported by Mehta (1977) also is given 

in Fig. 6 for comparison. The results are in reasonable agreement with some 

moderate difference in the suction peak which may be attributable to the four 

corner grid. The contours of streamwise velocity, u, and transverse velocity, v, 

are given in Figs. 7-10. The major item to be noted in Figs. 7-10 are the smooth 

dependent variable fields which occur even in the presence of the coordinate 

singularities. This computation is a demonstration case for an isolated airfoil 

with a four corner grid. Comparisons against data for a variety of cases with an 

9



earlier version of the code using a C-grid are given by Shamroth (1979 and 1985). 

In general, the comparisons both for pressure distribution and velocity 

distribution in the boundary layer showed good agreement with data. 

Boundary Conditions 

The authors' experience in solving Navier-Stokes equations has indicated the 

important role which correctly modeled boundary conditions play in determining 

accurate solutions and rapid numerical convergence. The present approach follows 

that of Briley, Buggein and McDonald (1985). In brief, this approach sets total 

pressure and flow angle at the upstream inflow boundary, boundary EH of Fig. 2 and 

static pressure at the downstream outflow boundary, boundary HILE of Fig. 2. 

These represent the physical boundary conditions for the governing set of 

differential equations. In addition, the second derivative of pressure is set to 

zero at the upstream boundary, and second derivatives of all velocity components 

are set to zero at the downstream boundary. On the airfoil surface, no-slip 

conditions are applied. These are applied with sublayer resolution; wall 

functions are not used, as the first grid point off the wall is within the 

sublayer. In addition, the wall normal pressure gradient is set to zero. These 

conditions suffice for two-dimensional flow. For three-dimensional flow, as will 

be discussed later, symmetry conditions were set on the spanwise boundaries. 

III. ISOLATED VORTEX STUDY 

The first study of the present effort is an isolated vortexstudy aimed at 

developing a computational protocol which would preserve the vortex strength and 

shape as it is convected downstream. The present study uses three-point centered 

spatial differences as opposed to five-point upwind differences which is 

potentially more efficient and uses a numerical dissipation scheme which does not 

require any assumptions on the location or distribution ofthe velocity field 

associated with the vortex. However, prior to performing either two-dimensional 

or three-dimensional blade vortex interaction studies it is necessary to determine 

a run protocol which will preserve the vortex. If a numerical procedure does not 

preserve an isolated vortex, this same procedure can not be used for the blade 

vortex interaction study since non-physical dissipation will occur prior to the 
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interaction processand the process will be based upon a vortex of artificially low 

strength and large extent. 

The vortex preservation test for an isolated vortex was used by Rai (1987) as 

a measure to assess the time accuracy of different numerical schemes. In this 

test, the flow associated with a Lamb-type vortex convecting in a freestream is 

calculated. The pressure field associated with such a vortex is a minimum at the 

vortex center and increases asymptotically to the freestream value with distance 

from the vortex center. A dissipative scheme is incapable of maintaining the 

minimum value of the pressure at the core of the vortex at its original value; 

instead, the pressure at the center increases continually as the vortex convects 

with the flow. In the absence of any physical viscosity (Euler equations) this 

change in pressure at the center of the vortex represents numerically induced 

vortex decay. Therefore, a good measure of the vortex preserving capability is 

the core jressure. Rai reported the results of a series of calculations using a 

conventional second-order-accurate, central-difference scheme (the Beam-Warming 

scheme) and an upwind biased, fifth-order scheme. Variation of vortex core 

pressure as a function of the number of core radii traveled by a vortex, as 

reported by Rai, is given in Fig. 11. Although the grid spacing in the vortex 

path was given, the overall number of grid points and the value of CFL used for 

these calculations are not reported. Under the present program a similar approach 

of monitoring the vortex core pressure as the vortex convects downstream was 

adopted to measure the time accuracy of the SRA Navier-Stokes code. A series of 

calculations were performed to assess the vortex preservation capabilities of the 

current numerical procedure and to indicate areas where refinement would be 

required. Based on the results of these calculations, the code was further 

developed to enhance the features required for the blade vortex interaction (BVI) 

study. The BVI investigation may require considerable computer resources. This 

is due to the large physical domain needed to avoid boundary effects and to the 

very fine mesh required to resolve flow details. Calculations were performed to 

study the effects of the physical boundary distances, grid spacing, artificial 

viscosity, initial vortex strength, boundary conditions and time iterations to 

optimize the use of the computer resources as a prelude to the actual BVI 

simulations.
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Computational Grids 

Three major different types of grids were used for the free vortex 

calculations: 

1) Type "A" grid - is a rectangular grid that is 52.5 x 7.5 radii in a length to 
width with equal spacing in the x- and y-directions. The physical domain and 

the trajectory of the vortex path from its initiation to 45 radii of travel 

are shown in Fig. 12a. The grid spacing for this grid is Lx = Ay = 1/4, the 

core radius of vortex being 1.0. A portion of the grid is shown in Fig. 12b. 

2) Type "B" grid - is identical to the type "A" grid except for spacing. The 

spacing used for this grid is Ex = Ay = 1/8. The "A" and "B" grids will be 

used to demonstrate the effect of the grid density on the vortex preservation 

characteristics of the scheme. 

3) Type "C" Grid - is shown in Fig. 13. Equal spacing (Ax = y = 1/4) is used in 

the central region containing the vortex path and a stretched grid is used to 

extend the physical domain to the far field. The boundaries of the grid are 

245 x 200 radii in length to width, the core radius of the vortex being 1.0. 

The boundaries of the equally spaced grid region, the overall boundaries and 

the vortex path are shown in Fig. 14. In contrast to grid types "A" and "B", 

the boundaries of the type "C" grid are considerably farther from the vortex 

path than the type "A" or "B" grid; calculations performed on this grid are 

intended to demonstrate the effect of the boundary extents. 

Initial Conditions, Calculation Procedures 

Initializations used for all the calculations are the same. With respect to a 

coordinate system fixed at the vortex center, the cylindrical velocity component 

of the vortex used is given by: 

r	 r2 
ye =	

+ a2	
(11) 

The pressure and density for the vortex flow are obtained as below: 
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The r momentum equation gives

(12) 

The energy equation yields

2

	

IPco	 .y—i	 V - 

	

- LP,	 2	
(13) 

From Eq. (12) and Eq. (13)

1

	

P 	 (14) 
dr	 p [p_i.i.1 

72J 

Eq. (14) is a first order ordinary differential equation. From Eqs. (11) and 

(14), the analytical solution of p is 

p = p,exp(f)
	

(15) 

where f is

	

[2r2 +B 	 '1flu2D

-B2' [tan_i4a2 _B2' j - 	 ]	

(16) 

where

pU 
ir Co 

D=	
L2,n]	 P.0

(17) 

and

B=2a_!D	 (18) 

The temperature is then given by the equation of state. It is noted here that the 

exact solution of the Lamb-type vortex satisfies the Euler equations. Options 
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were added to the code to solve the Euler equations rather than the Navier-Stokes 

equations. 

Having an analytical solution for v0 , p, p and T, the initial flow field is 

established by adding a uniform flow to the above exact solution. Pressure, 

vorticity and velocity contours for the initial conditions are given in Figs. 

15-19. The flow is then allowed to develop in physical time. Since the vortex is 

translated with the . freestream velocity, u, the location of the vortex is known 

at all times and the boundary condition is accordingly updated to the exact 

solution at each time step. Non-exact boundary conditions were also utilized in 

some of the calculations to assess the appropriate choice of boundary conditions 

for BVI problems. In these runs, the total temperature/total pressure/flow 

direction inflow boundary conditions and static pressure outflow boundary 

conditions were utilized. Most cases were run with three inner iterations per 

time step. However, tests were also conducted with two iterations per time step 

which, for the same conditions, gave identical results as those having three 

iterations. The number of iterations at each time step and the value for the 

physical time step were chosen based on the analysis performed to establish 

criteria for choosing these values. The criteria is described in later sections. 

The vortex was allowed to travel 45 radii downstream and the variation of the 

vortex core pressure was registered during the travel. At the end of vortex 

travel, plot files were written to produce contour plots. 

Central Difference Scheme. First-Order in Time 

Case #1 

A calculation was performed to determine the flow characteristics associated 

with a Lamb-type vortex convecting in a freestream, using the SRA 

first-order-in-time, central difference scheme without any inner iteration at each 

time step. The purpose of these free vortex calculations is to assess the vortex 

preservation capability of the code when applied to blade-vortex interaction 

problems. A type "B" grid was used for this case. As described before, the exact 

solution was used to set up the initial condition and the subsequent unsteady 

boundary conditions. Figure 20 shows the variation of the vortex core pressure 

with the travelled distance of the vortex. From this result it is evident that 

the first-order-time-accurate scheme is very dissipative; an improvement is needed 
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for vortex preservation. This is achieved via the second-order unsteady iterative 

implicitscheine described in the next section. However, the results of the Case 1 

calculation are qualitatively consistent with those obtained by Rai using the 

first-order temporal accuracy Beam and Warming procedure, although the present 

results show somewhat less dissipation . . It is interesting to note that although 

the vortex has lost a significant amount of its strength, the vortex structure is 

very well preserved after 45 radii of travel. This is evident from the contour 

plots of Figs. 21-24, which are taken at the final point of the vortex travel; 

i.e. after 45 core radii of travel. 

Second-Order in Time and Iteratively Implicit Scheme 

This procedure utilizes second-order accurate time-differencing, together with 

inner itertions at each physical time step. The iteration at each time-step 

decreases numerical errors resulting from ADI splitting, time linearization and 

implementation of the intermediate boundary conditions. A series of calculations 

were performed to determine the most appropriate choices for the parameters 

controlling the inner iteration pseudo-time step, the physical time step and the 

number of inner iterations. All the calculations were performed on an equally 

spaced grid distribution. The problem chosen for these tests was the 

two-dimensional vortex in a uniform flow. This is a very relevant case for the 

current overall effort and results obtained for this case are expected to have 

strong relevance for the blade vortex interaction problem. The effects of these 

new parameters on the solution behavior have been studied and are described in the 

following. 

(A) Pseudo Time-Step Parameter, DTAU 

The effect of this parameter upon the convergence behavior is shown in Fig. 

25. In this figure, the maximum residual of the streamwise momentum equation is 

chosen to assess the degree of iteration convergence. The residual of each 

equation is obtained by summing all the terms in the equation with the exception 

of the pseudo time-derivative term; i.e., the 3( )/a 'r term. Obviously, when the 

residual is zero, a converged solution including unsteady effects is attained. 

Since the rate of convergence depends upon the magnitude of the iteration-step, 

termed here as the pseudo time-step DTAU, it is necessary to study this dependency 
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so as to develop an efficient running, time accurate code for application to 

complex two-dimensional or three-dimensional flow cases. 

Figure 25 shows the dependence of convergence rate for the iteration at each 

time-step upon the pseudo time parameter DTAU. The calculations were initiated 

from an analytic solution and the results of Fig. 25 pertain to the first 

time-step. As can be seen, once a value of DTAU = 2.0 is reached, further 

increase does not significantly improve the rate of convergence. 

(B) Physical Time-Step DT 

After the determination of an appropriate iteration pseudo time-step DTAU, a 

physical time-step needs to be chosen to minimize the temporal error. The 

preservation of the vortex core pressure against different values of physical 

time-step (or in terms of CFL number) was chosen to determine the time accuracy 

associated with the size of the time-step. It is noted here that a time accurate 

solution should preserve the magnitude of the vortex core pressure as it is 

convected toward downstream. Obviously, numerical error will lead to some 

dissipative effects; however, it is expected that these effects can be made small. 

A series of calculations using different values of CFL were performed to determine 

this relationship. The calculations were run for the same total physical time 

interval. These runs were made with the three time-level procedure. Figure 26 

demonstrates this relationship and can be used to give guidance in choosing an 

appropriate value for the time-step for a given grid geometry. 

(C)--Number-of-Pseudo-Time-Iterations 

For a specified pseudo time-step and a specified value for physical time-step, 

it is necessary to determine the number of iterations required at each physical 

time-step to achieve the desired degree of convergence. This relationship is 

shown in Fig. 27. Convergence is defined here as a state at which the per cent 

change of each and every dependent variable does not vary, at least for six 

significant digits, and the maximum residual of each and every equation reduces by 

at least four orders of magnitude during the iteration. It is noted that larger 

values of DT, the time step, not only require more iterations to achieve 

convergence (Fig. 27), they also introduce larger time truncation error (Fig. 26), 

as is expected. Using the iteratively implicit scheme, various calculations were 
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performed to assess the vortex preservation capabilities of the newly improved 

code and to study the effects of grid spacing, artificial dissipation, initial 

vortex strength and the boundary condition. 

Spatial Spacing - Two calculations were performed on grids with different spacing 

to study .the effects of grid.spacing on the vortex preservation. A calculation 

was also performed to investigate the effect of the physical time step. 

Case #2 

The type "A" grid was used for this calculation. Variation of vortex core 

pressure versus number of core radii travelled is shown in Fig. 28. It can be 

seen that the numerical solution is oscillating, particularly toward the later 

parts of the vortex travel. Contour plots of pressure after 45 radii of vortex 

travel are given in Fig. 29, which is a picture of a badly deformed vortex. As 

mentioned before, spacing used for the grid is Ax = Ay = 1/4. 

Case #3 

A type "B" grid was used for this calculation. The type "B" grid is identical 

to the type "A" grid except its spacing is Ax = Ay = 1/8. All the other 

conditions of the calculation were identical to Case #2. The variation of vortex 

core pressure with number of core radii is shown in Fig. 28, which indicates a 

very stable and accurate solution. It should be noted that there is almost no 

perceptible rise in core pressure after 45 radii of travel in this case. Contour 

plots of pressure, vorticity magnitude, streamwise velocity and transverse 

velocity for this case after 45 radii of travel are shown in Figs. 30-34. In 

contrast to the previous case, Ax = Ay = 1/4, this case shows no significant 

distortion of the vortex during this travel. 

Case #4 

Conditions for this case are identical to Case 3 but physical time-step At 

was doubled, i.e., it was increased from At = 0.02 to At = 0.04. This will 

correspond to increasing CFL from CFL = 0.16 to CFL = 0.32. The calculation was 

performed as an additional confirmation of the results presented in Fig. 26, which 
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demonstrates preservation of the vortex core pressure for different values of CFL. 

Figure 26 indicates that for CFL = 0.32 the vortex core pressure is still well 

preserved. A comparison of the variation of the vortex core pressure with number 

of core radii travelled for Case 3 and Case 4 is given in Fig. 35. Contour plots 

of pressure, etc. for Case 4 were nearly identical to those of Case 3. 

Boundary Conditions: Calculations were performed to investigate the effect of the 

boundary conditions and the influence of the extents (i.e. the physical distance 

between the boundary and the vortex) of the boundaries on the vortex behavior. In 

most cases function boundary conditions were applied, i.e. the exact solution 

corresponding to the vortex moving in a freestream was imposed on the boundaries. 

This is possible since the vortex is translated with the freestream velocity, u, 

therefore location of the vortex is known at all times and the boundary condition 

is accordingly applied and updated to the exact solution at each time step. 

The function boundary condition discussed in the preceding section could only 

be applied to free vortex calculations. These boundary conditions cannot be 

applied to the flow calculations involving a blade. "Non-function" boundary 

conditions were used in some of the free vortex calculations as an attempt to find 

appropriate boundary conditions for the flow situations containing vortex and a 

blade. The "non-function" boundary conditions used for free vortex calculations 

are such that the total pressure, total enthalpy and flow angle are specified, and 

second derivative of pressure set to zero. It should be noted that these are time 

dependent unsteady boundary conditions and their values are changed and updated at 

each time step. Total pressure is obtained from 

P0 = P(T0/T)"'	 (19) 

where

P0 = total pressure 

P = static pressure 

To = total temperature 

and H, the total enthalpy, is obtained from 

H0 =h+[u2 +v2 ]	 (20) 
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where

h = CpT
	

(21) 

The specifications of the above boundary conditions require the values of 

pressure p, density p, streamwise velocity u and transverse velocity v. These 

values are supplied from the exact solution. It should be pointed out here that 

the specifications. of total enthalpy, total pressure and flow angle amount to 

requiring the dependent variables (i.e., u, v, p and T) to satisfy a system of 

algebraic equations; this is different from directly imposing functional values of 

these variables, as in the case of function boundary condition. 

The boundary conditions used on the downstream boundary are such that the 

time-dependent static pressure is specified, the second derivative of streamwise 

velocity u, transverse velocity v and the total enthalpy H 0 set to zero. Again 

downstreait static pressure is supplied from the exact solution. The 

"non-function" boundary conditions used on the upper and lower boundaries of the 

rectangular grid are identical to those applied on the downstream boundary. 

Case #5 

This calculation is identical to Case 2 except the type "C" grid is used 

instead of the type "A" grid. The boundaries of the type "C" grid are much 

further away from the vortex path than those of the type "A" grid (see Figs. 12a 

and 14). The results were identical to those of Case 2, indicating that when 

function boundary conditions are used, the physical locations of the boundaries 

from the vortex have little bearing on the calculated solutions. 

Case #6 

All the conditions of this calculation were identical to Case 3 with the 

exception that the alternative boundary conditions were used. Variations of 

vortex core pressure versus number of core radii is almost identical to the Case 3 

calculation (Fig. 36). Contours of pressure, vorticity magnitude, streamwise 

velocity and transverse velocity for Case 6 are shown in Figs. 37-40, 

respectively. Pressure contours of this case (Fig. 37) are identical to those of 

Case 3. However, an examination of the vorticity magnitude contours (Fig. 38) and 
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velocity component contours (Figs. 39-40) reveals the influence of the boundary 

condition on the unsteady vortex flow behavior. Compare these figures with those 

of Case 3 calculations (i.e., Figs. 31-34) where the exact function boundary 

conditions were used. It is clear that use of the alternate boundary conditions 

do distort the vorticity and velocity field in those regions where the field is 

relatively weak. For example, as shown in Fig. 39, the vorticity distortion 

occurs primarily in the region where W/Wmax < 0.15. The region where the major 

vortex strength occurs stays relatively undistorted. The influence of the 

boundary conditions on the vortex flow behavior can be definitely minimized by 

extending the boundaries further away from the vortex center, as they would be 

with the stretched grids contemplated for the BVI study. It should be noted that 

the upper and lower boundaries of the domain for Case 6 were only 3.75 radii away 

from the vortex center during the entire calculation, where the vortex core radius 

is 1.0. 

Initial Vortex Strength 

Two cases were conducted to assess the effect of the initial vortex strength 

upon the decay rate. 

Cases 7-8: 

The type "C" grid was used for these calculations. The initial core pressure 

of the vortex was 0.95. In all the previous cases the initial core pressure was 

0.84. In Case 7 calculations, a central difference scheme with first-order 

accuracy in time was . used, whereas a second-order accurate in time and iteratively 

implicit scheme was used for Case 8 calculations. The variation of the vortex 

core pressure with number of radii travelled by vortex for Cases 7 and 8 is shown 

in Fig. 41 and for stronger vortex, having a core pressure of 0.84, in Fig. 42. 

It is clear from these figures that the weaker vortex loses less of its initial 

strength, i.e., the weaker vortex numerically preserves itself better. This is 

consistent with the fact that the degree of preservation depends upon the 

truncation error associated with difference schemes, and these errors are 

• proportional to the flow gradients, which have larger values for stronger vortex. 

Pressure contours for Cases 7 and 8 after 45 radii of vortex travel are shown in 

Figs. 43-44, respectively.
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Artificial Dissivation - Since all the calculations are at high-Reynolds numbers, 

it is generally necessary to add "artificial dissipation" terms to suppress 

central difference spatial oscillations. Such "artificial dissipation" could be 

added via the spatial differencing formulation (e.g., one-sided difference 

approximations for first derivatives) or by explicitly adding an additional 

dissipative term. In the numerical scheme used in this study, the latter approach 

was adopted. When an additional term is explicitly added, the physical 

approximation being made is usually clearer than when dissipative mechanisms are 

contained within numerical truncation errors. Further, explicit addition of an 

artificial dissipation term allows greater control over the amount of non-physical 

dissipation being added. Obviously, the most desirable technique would add only 

enough dissipation to suppress oscillations without deteriorating solution 

accuracy. Four cases were run to assess the effect of the "artificial 

dissipatirn" on the unsteady vortex flow. In all cases the item AVISC is equal to 

oxi (See Eq. 6) which is approximately an inverse for all Reynolds numbers. 

Cases-9,-10,-11: 

All the conditions for these cases were identical to Case 3 with the exception 

of the amount of "artificial dissipation" added. The parameter "AVISC" is a 

measure of the amount of artificial dissipation added. The larger the AVISC 

value, the larger the added artificial dissipation. The values used in Cases 9-11 

are 0.0, 0.005 and 0.05. The value used in the Case 3 calculation was 0.001. 

Variation of the vortex core pressure versus number of core radii travelled by the 

vortex for different values of the "artificial dissipation" calculations is given 

in Fig. 45. It is clear from these curves that the higher the value of the 

"artificial dissipation" the more dissipative the calculation. As discussed 

before, there should be only enough dissipation to suppress oscillations without 

deteriorating solution accuracy. It should be noted that in the present 

calculation the solution remains stable without any added artificial dissipation 

throughout this calculation. Contours of pressure and vorticity magnitudes after 

45 radii of travel for calculations each having a different value of "artificial 

dissipation" are given in Figs. 31-32 (AVISC = 0.001) and Figs 46-51. These 

contour plots indicate that the vortex shape is very well preserved after 45 radii 

of travel, despite the fact that for higher values of "artificial dissipation" the 

vortex has lost more of its strength.
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Solving Navier-Stokes Equations (Case 12): 

In all the cases discussed before,, since a Lamb-type vortex was used, the 

Euler equations were solved. A calculation with an identical condition to Case 3 

was performed, except instead of Euler equations, Navier-Stokes equations were 

solved. The results were identical to Case 3. This is expected since, in free 

vortex calculations, in the absence of walls the contributions of the viscous 

terms are very small. 

Summary 

The original form of the SRA Navier-Stokes code which was used for this study 

was a central difference scheme, first-order accurate in time. It was shown to be 

very dissipative. The code was further developed to be second-order accurate in 

time and to do multiple iterations at each time step. These improvements proved 

to increase the time accuracy of the code significantly. Free vortex calculations 

demonstrating this aspect of the improvements were presented. Fig. 52 

demonstrates vortex preservation capabilities of the original SRA central 

difference scheme code and the improved second-order accurate in time and 

iteratively implicit scheme code. Results of Rai's fifth-order-accurate upwind-

biased scheme are also presented in this figure for comparison. Numerous test 

cases were performed to assess the effects of grid size, initial vortex strength, 

boundary conditions and artificial dissipation on the unsteady free vortex flow 

calculations. The calculation conditions and the results are summarized in Table 

1. It can be noted from Fig. 52 that the inclusion of the second order accurate 

scheme, together with the use of iteratively implicit techniques greatly increase 

the time accuracy of the solution and the numerical simulation and preserve the 

vortex strength and structure for the duration needed for the blade vortex 

interaction study.
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IV. TWO-DIMENSIONAL BLADE VORTEX INTERACTION 

The second case considered is that of a two-dimensional blade vortex 

interaction. The isolated vortex study showed the proper choice of time step, 

iteration step, iteration number, etc. required to preserve the vortex strength 

and radius. However, this study does not address resolution and artificial 

dissipation issues for the BVI problem. These issues were addressed in a 

two-dimensional BVI simulation. 

Grid. Boundary Conditions and Artificial Dissipation 

Fig. 53 illustrates the grid distribution used for the BVI simulation. The 

total number of grid points is 144 x 118. The inflow boundary is located at 7 

chords from the blade leading edge while the outflow boundary is located at 5 

chords from the blade trailing edge. Based upon the isolated vortex study the 

distance between the top boundary and the chord line of the NACA0012 airfoil was 

set at 5 chord lengths. The geometric configuration is symmetric about the chord 

line. Along the inflow boundary, the total pressure, the total temperature and 

the inflow angle are specified. The pressure is obtained by extrapolation. Along 

the outflow, top and bottom boundaries, the static pressure is specified, the 

velocity and the total temperature are obtained by extrapolation. On the blade 

surface, non-slip conditions are imposed. The density is obtained by solving the 

continuity equation and the surface temperature is specified as the constant, free 

stream total temperature. When the vortex is introduced into the transonic flow 

field at a point upstream of the blade, the boundary values must take into account 

the existence of this vortex, e.g., the inflow angle will not be zero and 

generally is not uniform along the inflow boundary. In addition, as the vortex is 

convecting towards the blade, these boundary values are changing with time. For 

the present simulation, they are taken from the composite "vortex in a 

free-stream" solution. 

A spatially varying artificial dissipation was used in the BVI calculation 

presented here. Upstream of the blade AVISC was set to 0.005. Based upon the 

vortex preservation studies this should keep the vortex decay within allowable 

levels prior to the interaction. However, it should be recognized that the vortex 

preservation studies were done on a uniform grid whereas the present calculation 

is done on a non-uniform grid. Downstreamof the airfoil leading edge station the 

24



value of AVISC was set at 0.05 except in the immediate vicinity of the leading and 

trailing edge locations where it was set to 0.5. The relatively high value of 0.5 

was required due to the highly stretched, highly skewed grids and the marginal 

resolution of the flow in these regions. The regions of different AVISC values 

were blended at boundaries-to avoid discontinuous changes in the artificial 

dissipation. 

Although this procedure for specifying numerical dissipation does put a higher 

than desired level in the immediate vicinity of the leading and trailing edge 

regions, it is necessary to suppress oscillations in these regions. This same 

procedure has been used in a variety of airfoil and cascade studies and has given 

good agreement with experimental data for a wide variety of cases, e.g. Shamroth 

(1985), 'Weinberg et al. (1986) and Shamroth et al. (1988). 

Flow Paranvters 

The reference length is the chord length of the blade and the reference flow 

conditions are the free stream condition with M = 0.8 and Re = 1.0 x 106. The 

background flow is a steady transonic flow with shock waves standing in the middle 

of the blade. Furthermore, the flow is symmetric about the chord line; hence, the 

lift coefficient ( CL) is zero. The surface pressure distribution of this 

background flow is shown in Fig. 54. 

The dimensionless strength and core radius of the vortex are —1.6 and 0.2, 

respectively, where the minus sign indicates that the vortex has a clockwise 

sense. The initial location of the vortex center is at a point 5 chords upstream 

of the airfoil leading edge ( x = —5.0) and 0.26 chords below (y = —0.26). The 

calculation is carried out from t 	 0 to t = 8 with constant time step At = 0.005. 

It is noted here that the vortex core arrives at the blade leading edge when 

t = 4.95, which indicates an average core velocity of 0.99 vs,. 

Results and Discussion 

The time histories' of 'the aerodynamic coefficients during the blade-vortex-

shock interactions are described in Figs. 55-57. It should be noted that the 

small amplitude variations occurring for t up to 1.0 are due to the impulsive 

introduction of the vortex into the background flow, and these small amplitude 

oscillations have been damped out long before the onset of significant blade 
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vortex interactions. Furthermore, these coefficients are evaluated in terms of 

static pressure; they do not include the contribution of viscous stresses. The 

lift coefficient (CL) and the quarter-chord pitching moment coefficient (CM) are 

shown in Figs. 55 and 56, respectively. It should be noted that the background 

flow is a nonlifting case and that any lift generated during the interaction is 

induced by the vortex. Since the vortex flow is revolving in the clockwise 

direction, when the vortex is approaching the blade, it induces nonuniform and 

unsteady velocities that result in negative angles of attack at the blade. This 

influence changes to increasing angles of attack after the vortex has reached the 

blade. Severe load variations occur during the time period from t = 4.0 to 

t = 6.0; i.e., when the vortex is within one chord length of the blade leading 

edge. During this period of time, CL and CM change their signs, while CD 

undergoes rapid variation exhibiting two distinct temporal maxima (Fig. 57). The 

coefficients have not yet returned to their undisturbed value at t = 8.0 

indicating that the interaction is still affecting the flow. This is consistent 

with the results of Srinivasan et al. (1986). 

The interaction between the vortex and the blade with a shock are further 

elucidated in terms of the instantaneous static pressure distribution at several 

selected time stations. Fig. 58(a) gives the pressure contours over the entire 

computational domain at t = 0, while Fig. 58(b) gives the distribution of static 

pressure coefficient on the blade surface at t = 0. This is the starting flow 

field. As the vortex convects towards the blade, the uppersurface shock moves 

in the upstream direction, its strength is decreasing and the extent of the 

associated supersonic pocket also is reducing. On the other hand, the lower 

surface shock moves in the downstream direction with increased strength. In 

addition to the motion of the shock waves, pressure difference between the upper 

and lower surfaces start to build up. These generic features are illustrated in 

Fig. 59(a) and (b), which are obtained at t = 2.0. The outer pressure contours on 

the aft region of the blade shows some "wiggles"; however, this is in a region of 

nearly uniform pressure and, therefore, the presence of these "wiggles" is not 

significant, but represents small changes in a nearly uniform field. The flow 

field at t = 4. 0, i.e., when the vortex core is about one chord length upstream of 

the blade, is shown in Fig. 60(a) and (b). The upper surface supersonic pocket 

practically has disappeared. The lower surface shock wave becomes stronger and is 

located in a further downstream position; at the shock's root the flow shows signs 

of separation. In addition, a significant transverse pressure gradient exists in 
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the leading edge region. At t = 4.5, this leading edge transverse pressure 

gradient becomes the dominant feature of the interaction. In addition, the lower 

surface shock stops moving towards the trailing edge, in spite of the fact that 

its strength is still increasing. These features are depicted in Figs. 61(a) and 

(b). When t = 5.0, the vortex core 'hits' the blade, the averaged Mach number 

inside the lower surface supersonic pocket increases to approximately 2. Most of 

the disturbances on this surface will propagate downstream until reaching the 

shock., Part of the disturbance is able to leave the supersonic pocket near the 

outer region of the shock. However', the remainder seems to build up at the root 

of the shock, as indicated by Fig. 62(a). At the same time, high pressure 

disturbance starts to be released from the upper surface of the leading edge, as 

indicated by Fig. 62(a). The state of the flow at this moment is very volatile, 

within a short period of time, this process of disturbance build-up has collapsed, 

as illust Sated by Fig. 63 at t = 5.5. The shock is no longer an approximately 

normal ' shock but has an oblique leg which intersects the blade wall upstream of 

the intersection location at t = 5.0 (Fig. 62(a)). The emission of a high 

pressure pulse from the upper surface of the leading edge is evident from Fig. 

63(a); this high pressure pulse then propagates upstream in a domain including the 

frontal region of the entire leading edge (see Fig. 64(a)). Between this frontal 

high pressure region and the lower surface shock wave, a low pressure pulse is 

propagating towards the lower outer boundary. Figs. 62(b), 63(b) and 64(b) 

illustrate the collapse of the disturbance building up process and the subsequent 

relaxation of the strength and the location of the shock wave on the lower 

surface. The general features of the flow at t = 6.0 are: the existence of a 

supersonic pocket on the lower surface, significant flow separation originating 

at the root of the shock, the appearance of vortex remnants near the blade 

trailing edge, and the development of supersonic flow on the upper surface. 

Subsequently, the lower surface supersonic pocket continually reduces its extent 

and eventually disappears by t = 8.0. The lower surface shock moves towards the 

leading edge with continually diminished strength and then vanishes. At t = 8.0, 

the vortex remnants have been further convected downstream. The flow on the lower 

surface does not exhibit any appreciable separation and is entirely transonic. 

Furthermore, about 70% of the upper surface is covered by a supersonic pocket, 

with compression waves appearing near the trailing edge of the blade. It is clear 

that the interaction is a strong one and the vortex path particularly, when the 

vortex is near the blade is influenced by the blade and the interaction. The 
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local velocity changes significantly during the interaction. This makes 

techniques based upon assumed vortex position or shape unlikely to provide an 

accurate simulation. 

The radiation of pressure pulses from the leading edge region as a result of 

the blade-vortex interaction is further investigated in terms of the scaled 

pressure disturbance. In the two-dimensional linear far field, the amplitude of 

propagating waves should be proportional to i/r ½ , where r is the distance to the 

origin of the disturbance. The scaled pressure disturbance is obtained by 

subtracting the steady-state pressure background value from the instantaneous BVI 

solution and then dividing the difference by the far upstream value of pressure. 

The result is then multiplied by r½ , where r is the distance to the leading edge. 

Fig. 66 defines the points at which the time histories of the scaled disturbances 

are recorded and presented in Figs. 67 (a), (b) and (c). These points are taken 

as grid points leading to some variation in 6. The first peak, I, is due to the 

interaction between the incoming vortex and the leading edge, when the vortex 

center is within one chord length of the blade. The valley, II, is associated 

with the passage of the vortex core through these points, and the peak, III, 

originates from the upper surface of the leading edge, after the vortex case 

'hits' the blade, as described before. The results of Fig. 67 shows the 

simulation to give l/r½ scaling only approximately. Points #1 and #2 satisfy the 

scaling reasonably well. The results for point 1/3 show the same shape but the 

level of the maximum and minimum distributions are significantly more negative 

than points 1 and 2. 

The lift coefficient time history of the present effort showed the same 

qualitative features as that obtained by Srinivasan, McCroskey and Baeder (1986) 

and Sanker and Tang (1985) and the moment coefficient showed qualitative 

similarity with that of Srinivasan et al. (1986). Surface pressure distributions 

also showed qualitative agreement with the results of Srinivasan et al. (1986) and 

Rai (1987) as the shock strength on the upper surface decreased and that on the 

lower surface increased during the interaction. Finally, the details of the 

acoustic wave leaving the blade during the interaction show considerable 

similarity with those of Rai (1987).
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V. THREE-DIMENSIONAL BLADE VORTEX INTERACTION 

The final case considered is that of a three-dimensional blade vortex 

interaction. The two-dimensional isolated vortex study clearly indicates the need 

for appropriate grid resolution to avoid unacceptable levels of numerical 

dissipation in the vortex. This need to maintain high grid resolution even in the 

three-dimensional case influenced the choice of case to be studied. Although 

numerical simulation of a blade with a tip is the eventual goal, inclusion of a 

tip would require resolution of an entire new set of length scales associated with 

the tip geometry and the local tip flow; this would increase the number of grid 

pointsrequired beyond what is practical for this effort. Therefore a simpler 

problem which contains the basic three-dimensional flow field physics was chosen 

for the present investigation. 

A ske ch of the case to be considered is shown in Fig. 68, which shows a 

periodic vortex initially consisting of straight line segments in a plane parallel 

to the airfoil midline. Since there is a natural symmetry, the computational 

domain is reduced to the region between spaced spanwise symmetry planes and, 

further, since no tip is included an equally spaced spanwise grid can be used. 

This allows use of a computational grid consisting of 21 equally spanwise planes 

with each plane containing 144 x 118 points for a total of 356,832 grid points in 

the computational domain. The specific configuration chosen had an angle 4, of 20 

degrees, a distance d of 2.0 chords and points a and b were 5.0 and 4.27 chords 

upstream of the blade, respectively. 

The equations solved are the three-dimensional Navier-Stokes equations as 

given in Section II. These solve the equations in an inertial frame. Extension 

to a rotating frame can be made either by having the wing move in this inertial 

frame as was done in the dynamic stall study of Shamroth (1985) or by adding 

centrifugal and Coriolis terms. This latter approach was used at SRA in a 

three-dimensional rotor-stator interaction study using the same computer code as 

used here by Gibeling et al. (1990). It is this latter approach which would be 

recommended if the rotational effects were to be included. Although this 

additional capability was not available at the initiation fo the present study, it 

is now available and adds little complexity to the numerical solution. Obviously 

boundary conditions must be written in the rotating frame but this should be 

straightforward.
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Having specified the initial vortex geometry, it is necessary to create 

compatible velocity, density and pressure fields. Considering a vortex line 

segment, as shown in Fig. 69, the induced velocity at a point P due to this line 

segment is given by: 

= [L4Yj s2r Ir
l + r2] [i - r

1 • r2 1 
r1r2 Ij 

[ri x r2 ]	 (22) 

where

r1 & r2 : "relative" position vector of P defined from the end points to P. 

rM	 minimum distance of P from the vortex line. 

S : distance between the end points "1" and "2" of the line 

element. 

F : a constant and its sense is consistent with a vorticity vector 

directed from 11 1" to "21'. 

The influence of the core is accounted for by multiplying AV by a factor 

2] 
fcore =r. /	 + rcJ 

where rc is the core radius and it is the location at which the tangential 

velocity has its maximum. Induced velocity due to the overall geometry consisting 

of many line segments is given by: 

=	 (23) 

The number of filaments is chosen such that the induced velocity field satisfies 

the symmetric condition for the flow in the computational domain. Experience 

indicates that, by placing approximately 30 or more vortices on each side of the 

representative vortex, an excellent approximation to the spanwiseperiodicity 

required by an infinite number of vortices can be achieved. Fig. 70 shows the 

overall geometry and the relative position of the vortex and the blade. It should 

be noted here that the induced flow field associated with the filament present in 

the computational domain contains not only the dominant contribution of this 
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vortex but also the contributions of all the other vortices in the same array. 

The vortex model constructed according to Eq. (22) and illustrated in Fig. 70 is 

to be used only in setting the initial flow condition of the simulation. The 

subsequent flow development is governed by the solution of the Navier-Stokes 

equations. 

The composite flow will consist of the background flow and the variation from 

that background flow due to the initiation of the vortex filament. The presence 

of the blade wall is incorporated into this initial flow specification by 

multiplying the induced velocity field ' by tanh (#cd/8) where: 

d is the distance to the wall 

K is the von Karman constant 

and

6 is the boundary layer thickness 

thus

= ul tan h (icd/fl	 (24) 

and u' satisfies the no-slip condition. 

The composite velocity field is: 

U Ub+ U '	 ( 25) 

V Vb +V '	 (26) 

WWb+W'	 (27) 

where ub, vb and wb are streamwise velocity, spanwise velocity and transverse 

velocity of the background flow; i.e., the flow without a vortex. 

The initial pressure field of the composite flow must be evaluated in such a 

way that it is consistent with the prescribed composite velocity field. Two 

approaches were attempted. Under the first approach the temperature was assumed 

to be that of the background flow. 

T = Tb
	

(28) 

The strategy was to find the density (p) and pressure (P) of the composite field 

such that they are consistent with the velocity field given by Eqs. (25) - (26) 
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and the temperature field given by Eq. (28). This was done by initially assuming 

P = 

where Pb is the background density, and then integrating the suitable component of 

the momentum equation in its steady form 

1.  
L 
1. e. a= 

to obtain the pressure field. Utilizing this pressure, temperature (T) and the 

equation of state, p can be updated. Using the updated p and integrating the same 

component of the momentum equation, a new pressure (P) is obtained. Convergence 

of this iteration process implies that a consistent F, p field is achieved. 

Although a convergent solution could be obtained the numerical truncation error of 

the integration process was excessive and an alternative numerical specification 

was sought. 

Under this alternative the flow field was constructed on a spanwise plane by 

spanwise plane basis. At each spanwise plane the vortex was assumed to be a Lamb 

vortex and the pressure, density and temperature found via Eqs. (11) - (18). 

Although this does represent an approximation, it did provide an initial starting 

flow field from which the computation was able to proceed without any significant 

discontinuity. 

The initial pressure field is shown in Fig. 71. A top view of the pressure 

contours is shown in the upper portion of the figure with the pressure contours 

due to the vortex being on the left hand side of the figure and that of the blade 

on the right hand side of the figure. The inclination of the vortex relative to 

the blade is evident. The lower portion of the figure shows a perspective plot 

with contours plotted in three spanwise planes. It should be noted for future 

reference that the vortex is initially closest to the blade at LY = 21, and 

furthest upstream from the blade at LY = 1. The initial pressure and Mach number 

fields through the center spanwise plane, LY = 11, are shown in Fig. 72 and Fig. 

73. There is no spanwise pressure variation for this initial condition. 

The remaining figures present either pressure contours or Mach number contours 

at a specific time in three spanwise planes or surface pressure distributions on 

the blade. When figures showing contours are vertical, the 
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LY = 1 plane which initially has the vortex at its furthest upstream location is 

at the top of the figure, LY = 11 is in the middle and LY = 21 is at the bottom. 

When presented horizontally, LY = 1 is on the left. 

Figure 74 shows pressure contours at t = 1.23, At = 1 is the time a particle 

at undisturbed freestream velocity traverses a distance of one chord. At all 

spanwise locations the movement of the upper shock forward and the lower surface 

shock backwards is evident; The vortex centerline which was initially in a plane 

parallel to that of the blade midspan has migrated out of that plane, with the 

vortex core location being at progressively higher locations as the spanwise 

location proceeds from plane LY = 1 to plane LY = 21; i.e., the portion of the 

vortex for that downstream rises due to the self-induced motion as is expected 

(e.g.. Hama and Nutant, 1963). The result is an interaction where the vortex is at 

angle to the blade and is no longer parallel to the blade centerline which 

changes v'rtex location relative to the blade as a function of span. 

Figures 75 and 76 present pressure and Mach number contours' at t = 2.838. At 

this time' the upper surface shock has nearly disappeared at, all span wise 

locations.. The height of the vortex core clearly varies with spanwise location 

and a strong shock remains on the lower surface with the shock appearing to be 

significantly stronger'than that shown at t = 0.0, Fig. 72. In all cases the 

contours are quite clear and free of oscillations. A composite surface 

pressure plot consisting of surface pressure plots at 7 different spanwise 

locations is shown in Fig. 77; no significant spanwise pressure variation is 

observed at this time. Pressure and.Mach number fields at t = 4.139 are 

presented in Figs. 78 and 79. At this time the interaction is very strong at all 

streamwise locations. The interaction at'LY = 21 has proceeded the furthest. A 

composite surface pressure plot is shown in Fig. 80; 'at this time significant 

surface pressure differences are evident with the highest suction peaks occurring 

at the LY = 21 location. This is the spanwise location at which the vortex is 

closest to the blade and at which the vortex is highest. The shock location 

varies mildly with span; however, the shock strength is approximately constant 

with span. The vortex center at the LY = 21 plane has nearly reached the blade 

leading edge at this time. ' The fields at t = 4.56 are presented in Figs. 81 and 

82. At t = 4.56 the three-dimensionality of the interaction is very clear from 

both pressure and Mach number plots. By t = 4.56, the shock on the lower surface 

at the LY = 21 plane has moved forward whereas that on the LY = 1 plane remains 

aft on the blade. The surface pressure distributions indicate shock bifurcation 
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at some spanwise locations. As in the two-dimensional case, high pressure pulses 

are being released from the upper surface of the leading edge at all spanwise 

locations at this time. The pulses are most apparent at the LY = 21 plane; 

however, they are apparent even at the LY = 1 plane.. A composite pressure plot is 

shown in Fig. 83. 

At time, t =4.7, the interaction is very strong over the entire spanwise 

extent of the domain. The pressure contours are shown in Fig. 84 and the Mach 

number contours in Fig. 85. Based upon these figures the lower surface shock 

system on the LY = 21 plane has moved considerably forward from its most aft 

position and continues to sharpen in the freestream. The LY = 1 system is a 

single shock on the aft portion of the blade. Figs. 86-88 show details of the 

contours. These plots were created from a culled plot file hence the somewhat 

discontinuous appearance of the contours. Of particular interest is the vortex 

interaction induced shock bifurcation shown in Fig. 88. This represents the 

spanwise plane where the interaction has proceeded furthest. The contours at LY = 

11 in Fig. 87 show bifurcation starting, whereas those in Fig. 86 show no 

significant sign of bifurcation. Pressure and Mach number fields at t = 5.157 are 

given in Figs. 89 and 90. At this location the effects of three dimensionality 

are significant, as can be seen by comparing Figs. 81 and 89. Figure '81 presents 

results at t = 4.56, at which time the vortex at spanwise plane LY = 21 has just 

passed the airfoil leading edge. Figure 89 presents results at t = 5.15, at which 

time the vortex at LY = 1 has just passed the leading edge. At LY = 1, t = 5.15, 

(Fig. 89) the sthock shows a clear bifurcation which is not present at LY = 21, t = 

4.56 (Fig. 81). This is likely to be an effect associated with the three 

dimensionality. Details of the lower surface pressure contours at t	 5.157 are 

presented in Figs. 91-93, where the different shock locations and strengths at the 

various spanwise locations are apparent. A composite surface pressure plot is 

given in Fig. 94 and lower surface contour plots are shown in Fig. 95. 

Plots of blade lift, drag and moment coefficient as a function of time are 

given in Figs. 96-98. Although these are qualitatively similar to their 

two-dimensional counterparts, they are affected by the variation of vortex height 

with spanwise location. Surface pressure contours on both the upper and lower 

surfaces are shown in Figs. 99-107. 

The general qualitative picture obtained for the three-dimensional interaction 

is similar to that previously obtained for the two-dimensional interaction as 

modified by the inclination of the 'vortex relative to the blade leading edge and 
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the migration of the vortex core line so that it does not lie on a plane parallel 

to the blade midplane. As the vortex approaches the blade, the core location at 

one spanwise boundary rises and that at the other spanwise boundary falls. At all 

spanwise locations the upper surface shock moves forward, its strength reduces and 

the associated supersonic pocket reduces. The extent of the interaction at any 

specified time is a definite function of the spanwise location. However, although 

at any spanwise location the general flow development is similar to that of the 

two-dimensional case; three-dimensional effects influence the flow details. The 

lower surface shock moves aft with increasing strength. As the vortex core moves 

closer to the airfoil the upper surface shock system disappears. All these 

interactions, as well as the ones discussed subsequently, occur first in the 

LY = 21 plane, which is the plane in which the vortex is initially closest to the 

blade. During the interaction the lower surface shock system reaches a maximum 

downstrerm position and then moves forward and sharpens. High pressure 

disturbances appear at the leading edge and propagate upstream. As the 

interaction continues, the shock shows a bifurcation with the appearance of an 

oblique leg, which produces a diffuse pressure rise at the blade surface; however, 

the shock remains very sharp in the outer flow removed from the blade. The 

pressure pulse continues to propagate in the upstream direction. 

The present BVI simulation is based upon a solution of the full Navier-Stokes 

equations. The only previously published viscous solution to this problem to 

the present authors' knowledge is that of Srinivasan and McCroskey (1989) based 

upon the thin shear layer approximation to the Navier-Stokes equations. The 

Srinivasan and McCroskey effort considered unsteady interaction of a rotor with a 

vortex with the equations solved in an inertial frame with the rotor being 

represented as a moving no-slip/no through flow boundary. A presecribed vortex 

formulation was used. The present approach uses the full three-dimensional 

Navier-Stokes equations without any thin shear layer assumption and does not split 

the velocity field into a prescribed vortex portion and a background flow. 

However, the present effort considers a simpler problem, that of a vortex 

encountering a blade section of finite spanwise extent in an inertial frame. 

Therefore, no direct comparisons of the results of the two efforts can be made. 

Based upon the three-dimensional simulation of the present effort certain 

conclusions can be made. For vortices of modest angle to the blade, the present 

case was 200, the three-dimensional interaction is qualitatively similar to the 

two-dimensional interaction on a section by section basis. However, differences 
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do exist as details of the flow field at any spanwise locations for which the 

interaction had occurred at any earlier time. This effects the details of the 

shock shape, shock location, surface pressure distribution and field pressure 

distribution. Therefore, although qualitative conclusions can be drawn from 

two-dimensional simulations, a need for detail or quantitative conclusions require 

a three-dimensional simulation. This conclusion is in basic agreement with that 

of Srinvasan and McCroskey (1989). 

CONCLUDING REMARKS 

A Navier-Stokes analysis has been applied to the problem of two- and 

three-dimensional blade vortex interactions. The two-dimensional interaction 

studies have shown the ability of an iterative implicit procedure using three 

point central differences to provide a highly non-dissipative solution procedure. 

Results were obtained which showed details of the flow including the propagating 

pressure disturbances resulting from the interaction. The results showed many of 

the known physical features and gave good qualitative correspondence with other 

analyses. The three-dimensional study considered a blade vortex interaction with 

the vortex initially at 200 incidence to the blade. A solution was obtained 

showing general features of the two-dimensional interaction with modifications due 

to the angle between the vortex and the blade. . As in the two-dimensional case, 

pressure disturbances were observed leaving the blade leading edge. Details of 

the simulated flow physics are presented in the appropriate sections of this 

report.	 .	 . 
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SYMBOLS 

a Vortex core radius 

CD Drag coefficient 

CL Lift coefficient 

CM Moment coefficent 

C Specific heat 

D Damping coefficient 

d Distance from wall 

DT Time step 

D TAU. Pseudo time step parameter 

dx Artificial dissipation coefficient 

core Velocity damping factor in vortex core 

h Enthalpy 

H0 Stagnation enthalpy 

Mixing length 

LY Spanwise plane number 

P Pressure 

Q Heat flux vector 

r Radial distance 

T Temperature 

t Time 

Ui Velocity component in ith direction 

U, v Cartesian velocity component 

ub, vb, wb Background flow velocity components excluding contribution of 

vortices 

V Velocity 

Ve Tangential Velocity 

Xj Cartesian Coordinate 

y Dimensionless coordinate normal to wall 

r Circulation 

6 Boundary layer thickness 

Ax, Ay Grid spacing 

Axi Grid spacing in ith direction 

Turbulence dissipation 

K Von-Karman constant
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P	 Viscosity 

'it	 Stress tensor 

P	 Density 

Relaxation time step coordinate 

Mean flow dissipation 

Dependent variable 

Subscripts 

b	 Background value 

0	 Stagnation value 

CO	 Far upstream value
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Fig. 58a Static Pressure Contours (t0) 
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Fig. 59a Static Pressure Contours (t=2.0) 
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Fig. 60a Pressure Contours (t=4.0) 
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Fig. 61a Pressure Contours (t=4.5) 
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Fig. 62a Pressure Contours (t-5.0) 
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Fig.	 62b Surface C (t5.0) 
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Fig. 63a Pressure Contours (t5.5) 
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Fig. 64a Pressure Contours (t6.0) 
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Fig. 66 Points where Scaled Pressure Disturbance are Calculated. 
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Figure 70 Overall Geometry. 
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Mach Number Contours, t-4.56.
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