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INTRODUCTION

The capability of computational fluid dynamics (CFD) analysis to predict
complex flowfields has been greatly advanced by the widespread use of flow
simulation programs based on the Navier-Stokes (NS) equations. The flow physics
are theoretically well represented, and with proper care the numerical solution
should not introduce appreciable uncertainties. However, the computational cost
of a typical simulation in terms of both memory and execution time are large by
current standards. Therefore, the efficiency of the numerical algorithm in

solving the set of model equations is one factor determining the usefulness of CFD
tools. The objective of the present study is to reduce the execution time of the
FDNS flow simulation code by using the parabolized Navier-Stokes (PNS) equations

to provide a "good" starting condition. The technique is not universal, however
the PNS model can be applied to convection dominated flows with moderate

deflection in geometries that are free of large obstructions.

The FDNS computer code developed by Chen et al. (1990) is a general-

purpose CFD program for solving the Navier-Stokes equations in finite-difference
form. The method is widely used at the Marshall Space Flight Center for modeling
flows in propulsion systems. CFD analysis of a given problem involves a sequence
of steps, including: generation of a mesh to represent the physical geometry,
specification of the boundary conditions on the flowfield, estimation of an initial
flowfleld from which to start the simulation, calculation of a converged solution

to the model equations, analysis of the solution by graphical as well as numerical
techniques, revision of the numerical model if necessary, and finally
presentation of the results. The calculation stage of the analysis requires the
greatest computational resources. Additionally, considerable human effort is
invested in all other phases of the analysis. Effective computer tools can relieve
some of the burden in performing these pre- and post-processing tasks. A "front
end" code to aid the analyst in estimating an initial flowfleld may reduce the

engineering time needed to set up an FDNS case.

NUMERICAL METHOD

The FDNS code uses an iterative method to solve a large set of non-linear

equations. The total execution time is the product of the number of nodes, the
calculation time per node, and the number of iterations. The number of nodes is

primarily determined by the complexity of the given problem. The calculation
time per node depends upon the computer hardware and the details of the FDNS

coding. Finally, the number of iterations is a function of the nature of the errors
present in the starting field and the error reduction properties of the FDNS
solver. Since a large effort is needed to validate modifications to the FDNS code, it
is not practical to make internal changes without good cause. But, the starting
field is an arbitrary program input prepared by the user, and the converged
solution is independent of the starting condition. Thus, by providing a starting
condition with low initial error, the execution time may be reduced without

altering the end results.

A procedure for generation of the starting flowfield is constrained by
several factors, primarily quick execution time, generality and ease of use. Since
parabolic equations may be solved at a much lower computational cost than
elliptic equations, the PNS equations have been chosen to generate the initial
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flowfield. Furthermore, the PNS equations apply to a wide range of flow
conditions and geometries without introducing many physical approximations.
The decomposition of the pressure field is the most significant approximation for
the cases studied. To facilitate use of the code, the standard FDNS input is utilized.

The PNS equations are a sub-set of the full Navier-Stokes (NS) equations
derived by the following steps, which isolate the solution from the influence of
downstream flow conditions.

1)
2)
3)

4)

5)

Neglect streamwise diffusion terms.
Neglect streamwise convection in regions of reversed flow.
For subsonic flow, assume a mean streamwise pressure gradient
applies at all points across any given flow cross-section.
For supersonic flow, solve for the pressure field in supersonic
regions and impose this pressure on the subsonic boundary layer.
Apply boundary conditions for a well-posed parabolic problem.

The numerical solution is obtained by approximating the PNS equations by
finite-differences in transformed coordinates in a manner similar to the FDNS

program. First-order approximations for streamwise derivatives are used in the
present code since high accuracy is not needed. The set is solved by a single
space-marching sweep through the grid. The kernel of the solver is the coupled
space-marching method of TenPas and Pletcher (1991), which advances the
solution one grid step in the primary flow direction based on the known values

upstream. A distinguishing feature of the algorithm is the coupled solution of the
momentum and continuity equations, with Newton linearization of the non-linear

convective terms. This formulation permits the velocity components and
pressure to be solved for directly. With the velocity field known at a given
marching step, parabolized transport equations are independently solved for the
enthalpy and turbulence properties as necessary. Local iteration is used to
converge the coefficients of the linearization and to update large changes in
properties. The space-marching calculation proceeds step-by-step until the exit
boundary is reached. In the course of this study it was found useful to perform a
final smoothing procedure on the pressure field. A pressure Poisson equation
formulated as a linear combination of the momentum equations is solved by line

iterative method to distribute sharp pressure changes among surrounding nodes.

To evaluate the potential benefit of this procedure a flow initialization
computer code has been developed for incompressible two-dimensional flow. The

FDNS source code is used as the basis for the PNS code. The FDNS input and
initialization modules are used to input data defining the geometry and flow

conditions. One additional file is read to define the PNS solution parameters. The
solver portion of FDNS is replaced by the space-marching solver, and the modules
that evaluate the finite-difference equations have been modified to permit access
by the new solver. The non-linear terms are reworked to implement the Newton
linearization. The output routines from FDNS are kept intact. The PNS code is
executed starting from FDNS input files, and produces a flowfield output file
containing the PNS solution. Depending upon the convergence limits for the
Newton and local property iteration loops, the entire PNS flow initialization
solution is executed in the time required for between one and ten FDNS iterations.
The FDNS program is then executed using the PNS output file as the starting
condition.
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RESULTS

The PNS flow initialization method was tested on two flow geometries for

incompressible flow. Both laminar and turbulent flows were simulated. Tables 1
and 2 present comparisons of the iterations required to converge the FDNS
solution based on a simple starting condition versus the PNS estimate. The
convergence rate of the FDNS program is dependent upon several factors. The
input values used for various constants are: REC=0.5, BETAP=I.0, PSMO=0.005, and
ICOUP=2. The convergence rate is also sensitive to the time step. The time step
shown for the baseline FDNS calculations was determined by trial and error to
minimize the number of iterations. The same time step was then used for the PNS

initialized cases. The study time was not sufficient to evaluate the time step
sensitivity using the PNS initialization. The convergence tolerance was selected
to represent a compromise between accuracy and total execution time. The fine
grid cases in particular are difficult to converge to a high level of precision, and
the laminar flows may also be unsteady to a small degree. Therefore, the iteration
count comparison is rather arbitrary as the value depends upon the convergence
tolerance. However, since the iteration counts are roughly proportional for
various levels of convergence, the percentage of the baseline execution time is

not strongly related to the magnitude of the convergence tolerance.

The first geometry is a 180 degree turn-around-duct (TAD) similar to that

studied by Monson et al. (1990). A fully developed laminar or turbulent profile is
specified upstream. Uniform grids are used for the laminar flow runs. For the
turbulent cases the mesh is compressed near the channel walls to grid sizes of 0.01

and 0.002, to yield y+ values of 50 and 75 for Reynolds numbers of 105 and 106,

respectively. In each case the 180 degree turn is subdivided into 40 marching
steps with equally spaced grids in the straight sections upstream and downstream.
To test the range of application of the PNS approximation the tightness of the turn
was varied from a gentle bend with outer to inner radius ratio of 5/4 to a very
tight ratio of 3/1. The PNS approximation for the gentle turn is relatively good
and significant reductions in the FDNS execution time are obtained for both the
laminar and turbulent case. For a tighter turn the PNS approximation does not

model the actual flow well, and the change in FDNS execution time diminishes.

The second case is flow over a backward-facing step as simulated by Chen

(1988). A parabolic inlet profile is specified for laminar flow, and a plug flow
profile with turbulent kinetic energy of 0.005 and dissipation rate of 0.0002 is
specified for the turbulent case. In both cases the flow inlet plane is at the
sudden expansion and the grid spacing is uniform across the channel The
laminar flow case is a 2/1 expansion at a Reynolds number of 400, which is the

upper limit of steady laminar flow for this geometry. The numerical grid extends
20 channel heights downstream to allow for the near approach to separation on

the straight wall and subsequent flow redevelopment. Comparisons are made for a
uniformly spaced coarse grid and a refined grid with grid compression near the
expansion. Large reductions are achieved for the coarse grid case, with the FDNS
convergence deteriorating for the refined mesh. A 3/2 expansion is used for the
turbulent case, with a variable grid extending 10 channel heights downstream.
As with the TAD case, the PNS initialization is less effective for the turbulent
conditions. Even though the PNS flowfield looks reasonable for this case, the fine

grids and the coupling between the velocity field and turbulence properties slows
convergence. Under these conditions the FDNS code is slow to eliminate even

relatively small errors in the solution.
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Table 1. Comparison of FDNS iteration counts for TAD cases.

Poiseuille V, Uniform P
Re R2/R1 Grid At UAt/Ax _ N

500 5/4 101x21 0.72 2 10-4 943
500 2/1 101x21 0.08 3/4 " 513
500 3/1 201x21 0.08 1 " 767
105 5/4 101x21 0.18 1/2 10-3 1000

105 3/1 201x21 0.02 1/4 " 1019

106 3/1 201x41 0.01 1/8 8x10-3 3000

PNS V & P fields

UAt/Ax ¢ N

2 10-4 250
3/4 " 390
1 " 715

1/2 10-3 487

1/4 " 988

1/8 8x10-3 3000

CPU
%

27
76
93

49

97

100

Table 2. Comparison of FDNS iteration counts for backward-facing step cases.

Static V, Uniform P PNS V & P fields
Re H2/H1 Grid At UAt/Ax e N UAt/Ax e N

400 2/1 81x41 0.25 1 10-4 1028 1 10-4 197

400 2/1 121x81 0.25 3/2 10-3 1000 3/2 10-3 500

105 3/2 61x49 0.32 2 10-4 2370 2 10-4 1861

CPU
%

19

50

79

CONCLUSIONS

While the results obtained for laminar flow are encouraging, much smaller
reductions were achieved for the turbulent flow cases. For fine grids or
complicated flows the FDNS convergence history is most strongly determined by
the slow decay of low frequency errors. In contrast, the flow initialization

procedure is most likely to reduce high frequency errors. And, the influence of
the starting condition diminishes as the iteration count becomes large. To
achieve significant reduction in the iteration count for complex problems the
specific properties of the finite-difference equations (e.g. truncation error
properties, amount of damping) or the algebraic solver (e.g. matrix structure,

limits on inner iterations) must be examined. Finally, the PNS solver may have
some practical use, by saving engineering time in setting up an FDNS case.
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