
Ballin

Developing Satellite Ground
Graphical Models

NO3"
Control Software through

Sidney Bailin, Scott Henderson, and Frank Paterra

CTA Incorporated
Rockville, MD

Walt Truszkowski

17500

S/-G/

NASAJGoddard Space Flight Center

Greenbelt, MD

1 Introduction

The old maxim goes, "A pictureisworth a thousand

words"--ten thousand, ifyou believe Larkin and

Simon (1987). Most people,when faced with the

problem of understanding the behavior of a

complica_d s_,stem,resorttotheuse of some picture

as an aidinth[nkingabout the system. Barwise and

Etchmendy (1991) make a strong case for the
effectivenessof diagrams, over and above other

representations,incertainproblem solvingsituations.

This paper discussesa program of investigation

into software development as graphicalmodeling.

The goalofthiswork isa more efficientdevelopment

and maintenanceprocessfortheground-basedsoftware
thatcontrolsunmanned scientificsatelliteslaunched

by NASA. The main hypothesisof the program is

thatmodeling of the spacecraftand itssubsystems,

and reasoningaboutsuch models,can---andshould--

form thekey activitiesof softwaredevelopment;and

thatby using such models as inputs,the generation

of code to perform various functions (such as
simulationand diagnosticsofspacecraftcomponents)
can be automated. Moreover, we contend that

automation can provide significantsupport for

reasoning about the software system at the diagram
level.

The outline of this paper is as follows. We
describe the application domain in the next section,
and the graphical modeling technique in Section 3.
Sections 4 and 5 describe the approach to generating
diagnostic and simulator sofftware from these models.
In Section 6 we describe th_ wQrk we are doing in

automated reasoning about the diagrams. Finally, in
Section 7, we summarize what we think_are the
prospects for this program, the key issues, and major
risks and unknowns.

2 The Domain: the Intelligent

Ground System

Simulation and diagnostics play a key role in a
satellite control center. They support the two

principal activities of the control center--

commanding and monitoring the spacecraft.
Development of command loads prior to spacecraft
launch employs simulation to verify their proper
operation. Monitoring involves fault detection,
isolation, and recovery when telemetry values received
from the spacecraft fall outside of defined limits. In
our work implementing a testbed for an advanced
control center, which we call the Intelligent Ground

System (IGS), we found that simulation and
diagnosis activities tend to derive from the same set
of knowledge, namely models of the spacecraft
components. An integrated approach, in which
diagnosis and simulation are both driven by the same
run-time models, seems feasible to us; at this point,
however, we are aiming at a less ambitious goal,
which is the generation of distinct programs to

support the respective functions from the same
graphical model. We can view this as "design time
integration" rather than "run time integration."

The importance of such models is a result of an
object-oriented system architecture, which is one of
the defining characteristics of the IGS. The object-
oriented architecture describes the IGS as a model of
its environment. This environment consists

primarily of the spacecraft, its subsystems, and

payload, and the users of the IGS (the Flight
Operations Team, or FOT), who are divided into
several distinct roles within the control center. The
environment may also be viewed as including the
communications systems through which the IGS and
the satellite interact, and various other ground
systems to which a control center is typically
connected. Each of these environmental elements is

represented as a distinct object in the IGS. This
approach enables us to make the IGS "inteUigent" by
making each such object a knowledge-based system in
its own right, with its own simulation capability,
diagnostic capability, etc.

There are various consequences of this architecture
for the operation of the IGS, including the need for a
cooperative framework, and for an intelligent user
interface. The object-oriented architecture defines the
IGS as a collection of interacting knowledge-based
systems. This interaction models the interaction



Ballin

foundin thesystem'senvironment,butit mustalso
includemeansfor cooperativeproblemsolving
amongthesystem'scomponents.Forexample,the
successfuldiagnosisof telemetryanomaliesmay
requireinteractionbetweenthediagnosticsofseveral
subsystems.Thus,akeyrequirementof theIGSisa
set of problem-solvingprotocolsthroughwhich
multipleknowledge-basedsystems,in conjunction
with theFOT,canconvergetowardsa goal. A
frameworkforsuchcooperationisdescribedbyBailin
et al (1989).

The need for an intelligent user interface follows
from the fact that he IGS does not operate
autonomously--the health and safety of the spacecraft
precludes such an approach. The FOT are active
players in the cooperative process just described.
Thus, the IGS must model the FOT roles in a way
that a) facilitates communication between the human
and the machine, and b) enables the system to
interpret human actions within the cooperative
protocols.

2.1 Implications for Software

Development

The IGS architecture makes everything a model. The
software models the states, behaviors, and interactions
of elements in its environment. Given this role for

the software, it seems appropriate to look for a
language in which such information can be made
explicit. Graphical modeling of objects, their
behaviors, and their interactions is an obvious choice

for such a language; there is nothing new in our
advocacy of diagrams to express such information.
Our contention, which may be more questionable, is
that the real complexity of the software lies in the
interactions expressed by the graphical models, not in
the implementation details of the eventual code.

We contend that the structure of the implemented
code, for at least certain functions of the IGS--
specifically, simulation and diagnosiswis sufficiently
well understood to permit us to generate it
automatically, and therefore to allow us to redefine
the development process as one of developing and
reasoning about the graphical models. The following
sections describe the progress we have made to date in
demonstrating this idea. Similar ideas have been put
forward in a recent article by Harel (1992).

The more advanced IGS functions---the cooperative
framework and the intelligent user interface---go

beyond our current view of what can be automatically
generated from graphical models. The reason is
simple: we do not yet have an adequate understanding
of these functions. Our work on the IGS is

attempting to make inroads into these areas,
especially the cooperative framework, but this work

is still exploratory, We expect that with the
definition of cooperative protocols, code
implementing such protocols would be provided as

reusable library assets. It is conceivable, therefore,
that they could form a part of the automated
development framework towards which we are
working.

3 The Graphical Models

The diagrams consist of objects described by
behavioral annotations and connected to each other by
influence paths. Each object has a set of state
variables, some of which serve as input ports
(receiving influences), some of which serve as output
ports (creating influences), and some of which are
internal to the object. In translating such a diagram
into a simulator, the influence paths are implemented
as data flows. The influences paths may, however,
correspond to the transfer of physical attributes, e.g.,
heat transfer, in the modeled system itself. Thus, the

graphical representation is somewhat different from
the conventional notion of a dataflow diagram.

The object behaviors are described in terms of
states and transitions, but the representation is more
powerful than that of a finite state machine. Each
internal and output state variable has a finite number
of "transitions" associated with it, but each such
transition is a mathematically specified function.
Thus, the domain of each transition is a set of
possible initial state values; the resulting state, and
any corresponding outputs, are a function of the
initial state. This function may be defined in a
piecewise fashion: that is, the set of possible initial
states may be partitioned into a finite number of
subsets, and the transition may then be defined on
each subset by an appropriate expression. This seems
to be similar to the approach recently advocated by
Pamas (1990), in which tables are used to specify the
discontinuities often present in functions that

software is required to compute.
Components are stored in a library, so that they

may be reused in many applications. Components
are typed, and intuitively fall into a class hierarchy,
although the library system does not yet support
inheritance. Components may contain
subcomponents as well as the state variables
discussed above. In such cases, the interconnection of

the subcomponents via influences forms part of the
parent component description. There are no
"systems" per se in the library: everything is a
component. A system can be stored in the library as
a new component, in which case it is available for
use as a component in a still larger system in the
future.

4 Generating Diagnostic Rules: the

Knowledge from Pictures System
The Knowledge from Pictures (KFP) tool builds a
knowledge base to perform fault detection, isolation,
and recovery from a diagram of the monitored system.



Bailin

The generated knowledge base takes the the form of
facts and rules in the C Language Integrated
Production System (CLIPS), an expert system shell
developed by NASA/Johnson Space Center. The
diagram is also used as the basis for the user interface
of the diagnostic system.

Assertions derived from the behavioral descriptions

of the diagram's components are used to determine
when a component is in a state other than those in its
definition (for example, a temperature sensitive object

operating outside of its design temperature range).
When such a situation has been detected, a fault has
occurred. Alarms are defined as collections of

component states. In the generated knowledge base,
each alarm condition is represented by a CLIPS rule.

The rules generated by KFP use the influence paths
shown in the diagram to isolate failed components.
When an alarm is detected, a search begins for the

faulted object causing the alarm. The search is
performed by tracing back through the paths of
influence that are input to the alarming object. The
influence paths form a collection of chains of objects
that either directly or indirectly influence the
components contributing to the alarm. The tracing is
performed via a collection of rules that examine the
objects in each path. When these rules t'tre, they use
information about the known states of the object

being examined, and the states of the objects that
influence it, to determine whether the examined object
is behaving correctly. If the object being examined is
not in the correct state, then the fault has been
isolated. If it is in the correct state, the objects that
influence it are examined next.

After a fault has been detected and isolated, the

recovery phase begins. At present the recovery phase
is represented by a template for recovery rules---one
for each fault/object pair. The action part these rules
must be t'dled in by the knowledge engineer.

In KFP, the diagram of the system being
monitored is also intended to serve as the basis for the

diagnostic system's user interface. The control center
operator should see a display of the system as a
graphical model, with the status of its components
expressed through color coding or similar
conventions. The current KFP tool does not do this,

but the concept has been demonstrated by another
prototype system, the Generic Spacecraft Analyst
Assistant (GenSAA). 1 Our plan is to integrate KFP
with the next version of GenSAA by the end of this

year.

1 The GenSAA project is directed by Peter Hughes of
NASA/Goddard's Automation Technology Section

(Code 522.3).

5 Generating Simulator Software: the

Multi-Aspect Simulation Tool

Our generic simulation architecture is based on the
connection manager approach described in the
Software Engineering Institute's (SEI)
recommendations for flight simulators (Lee, 1990).
In this approach, the influences between objects are
simulated as data flows, and the data flows are

implemented by connection managers--objects whose
specific role is to manage the connections between
application objects. The benefit of this approach is
that the application objects themselves remain
ignorant of the context in which they are used, and
thus can be reused in quite different contexts.

In the Multi-Aspect Simulation Tool (MAST) we
have extended SEI approach by independently
formalizing each aspect of a component's behavior,
by integrating work on discrete event simulation done
by Zeigler (1990), and by implementing the design
using the object-oriented techniques of multiple
inheritance and virtual base classes.

Simulations typically represent system behavior

along several dimensions. In MAST these
dimensions are rendered by the interactions of
independent aspect managers. Each manager is
concerned with different component attributes. A

gravitational manager, for example, is concerned with
a component's position and mass, but not with its
shape or color. All components subject to a manager

appear to that manager with the same form, regardless
of their actual structure. The manager can therefore
assess and manipulate the components in terms of
this Standard form, oblivious to interactions occurring

within the component with other aspects of its
behavior. For example the gravitational manager
should be able to change a component's position
oblivious to the fact that the change also modified the

component's shape. This homomorphy is available
in C++ through multiple inheritance and virtual
methods.

MAST integrates both discrete event simulation
and continuous simulation techniques. For

continuous aspects of the simulation, the associated
aspect manager schedules re-evaluations at regular
intervals of simulated time. These intervals can be

decreased during the simulation to enhance the fidelity
of the behavior rendered for a particular passage, and
then lengthened to speed the simulation through a
passage where little is changing. For discrete aspects
of the simulation, the associated aspect manager
schedules re-evaluation at the time of the most
imminent event known. When that simulated time

is-: achieved, the aspect manager executes the
associated event, propagates its effects, and then

computes the next imminent event for scheduling. A
central simulation manager decides how to advance
the logical clock by perusing each manager's

3



Bailin

schedule. The clock is advanced to the most
imminent re-evaluation time, and the managers who
are scheduled for that time are executed.

Although not yet implemented, we view it as a
straightforward task to generate the connection
management code automatically from the graphical
models, and plan to do so in the near future.
Generating the specific algorithms of each aspect
manager, using the associated behavior specifications
from the graphical model, would be a far more
difficult task, which we do not plan to tackle in the
near future.

6 Reasoning about the Diagrams

We have been working for several years on an
automated reasoning system that takes diagrams as
input The GROVER system attempts to interpret the
diagram as a high-level description of a proof plan,
and it attempts to carry out the plan using an
underlying "conventional" theorem prover (Barker-
Plummet and Bailin, 1992). Recendy we have begun
to apply these ideas to the problem of reasoning
about software. The graphical models that we
discussed in the previous sections are interpreted by
this (as yet unnamed) tool as plans for proving
assertions about the software design.

The particular type of assertions processed by this
tool grew out of an actual experience in debugging
part of the IGS testbed. In testing a particular
simulator program it was found that the behavior of
the system was not as expected, but no errors could
be found in any of the simulator components. The
problem turned out to be one of missing connections
between objects in the simulator. Since the
simulator architecture keeps each object
autonomous----completely ignorant of the objects to
which it is connected in a given application--the
absence of these connections did not result in any
anomalous behavior on the part of any object, but the
system itself was not behaving as expected.

Thus we decided to apply the planning concept to
verifying statements of the form, "If event x occurs at
object A then event y will occur at object B," The
planner takes event y at B as a goal, and tries to
construct a plan that starts from event x at A as an
initial condition (typically, various other context
conditions are specified as well). A goal is reduced to
subgoals by traversing the connections specified in
the diagram: if a goal state in an object D follows,
according to D's behavior description and the
connections specified in the diagram, from a certain
state in object C, then this state in object C becomes
a subgoal of the goal state. A failed plan, when
presented to the developer, serves to identify missing
connections that may have been overlooked in
defining the system.

We have noticed a similarity in the logic of this
planner and that of the KFP tool, which similarly

traces back through the influence paths in the diagram
in generating fault isolation rules. We have not
studied this similarity in enough detail to decide
whether the two tools can make use of a single
"influence traverser" mechanism, but there seems to
be some promise of this.

7 Conclusions

We have made a startat what we hope will become an
integrated graphical modeling and development
system, in which software development becomes
synonymous with defining and reasoning about
graphical models. The prospects for such an
integrated environment are based on a few empirically
perceived similarities:

• Similarity between the information used
to simulate a system and that used to
diagnose faults

• Similarity between the logic used to
reason about system behavior during
development, and that used to diagnose
faults during operation (backward
chaining over influence paths)

• Similarity in the program structure of
specific simulators and specific
diagnostic systems, which has allowed
us to define generic architectures for
each of these applications

We noted in Section 2 that the full IGS concept
includes a lot more than a collection of simulation
and diagnostic programs. We are not yet in a
position to say whether these advanced capabilities
can be accommodated in our application development
framework. Even if they are not, however, the
current framework raises the level of abstraction at
which a significant amount of development for a
control center is performed.

Within the scope of the current framework, there
are perhaps two major open issues: 1) the impact of
scale-up on the performance of the generated code, and
2) the feasibility of automated reasoning about
additionalaspectsofthemodels.

The efficiency of the generated fault detection.
isolation, and recovery rules for a large, complex
system is an open issue. The examples we have
worked with to date in KFP have been obtained from

actual systems (either existing or being developed),
but they are very small subsets of these systems.
There is a solid basis of real-time scheduling theory
(e.g., rate-monotonic scheduling) with which we can
address scale-up performance issues for the generated
simulator code, but we lack such a ftrm basis for a
rule-based diagnostic system. The solution to this
problem may be to evolve to a more thoroughly
model-based approach to diagnosis, in which there is
no production rule interpreter at all. This would, in

4



Bailin

addition, permit a greater degree of integration
between the diagnostic and the simulator code.

An open issue concerning reasoning about the
models is whether automation can support reasoning
about issues other than the pre-condition/post-
condition behaviors currently addressed. One major
area that we would like to investigate is support for
reducing the state space of a set of interacting
components. This problem arises in "reachability
analysis," in which one tries to prove (or at least to
convince oneself) that no unexpected states are
entered. In the area of communications protocols.
this has proven to be a difficult but necessary process
that can be supported by a variety of heuristic
techniques, some of which are automated (Holzman,
1992; Lin and Liu, 1992)

References

Bailin, S., Moore, J., Hilberg, R., Murphy, E., and
Baher, S., 1989. A logical model of cooperating
rule-based systems. Telematics and lnformatics, Voi.
6 Nos. 3/4, pp. 331-349.

Barker-Plummer, D. and Bailin, S. Proofs and
pictures: proving the diamond lemma with the
GROVER theorem proving system. AAAI
Symposium on Reasoning with Diagrammatic
Representations, March 1992.

Barwise, J. and Etchmendy, J., 1991. Visual
information and valid reasoning. Preprint.

Harel, D., 1992. Biting the silver bullet: Toward a
brighter future for system development. IEEE
Computer, January 1992.

Holzman, G., 1992. Protocol design: redefining the
state of the art. IEEE Software, January 1992.

Larkin, S and Simon, H., 1987. Why a diagram is
(sometimes) worth ten thousand words. Cognitive
Science, 11, pp 65-100.

Lee,, K. et. al., 1990. An OOD paradigm for flight
simulators, 2nd edition. Technical Report of the
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

Lin, F. and Liu M., 1992. Protocol validation for
large-scale applications. IEEE Software, January
1992.

Parnas, D., Asmis, G., and Madey, J., 1990_
Assessment of safety-critical software. Technical
Report 90-295, ISSN 0836-0227.
Telecommunications Research Institute of Ontario.
Queens University, Kingston, Ontario.

Zeigler, B., 1990. Object-oriented simulation with
hierarchical, modular models. New York: Academic
Press.

5


