
Dankel

GATOR: Requirements Capturing of Telephony Features

Douglas D. Dankel II
ddd@cis.ufl.edu

Wayne Walker
ww0@cis.ufl.edu

E301 CSE, C.I.S.
University of Florida

Gainesville, FL 32611
(904) 392-1387 (Office)
(904) 392-1220 (FAX)

Mark Schmalz
msz@mosquito.cis.ufl.edu

I. Introduction

During the past twenty years the
telecommunications industry has become
increasingly dependent upon software-
controlled switching systems. The software of
these systems automates the billing of long
distance calls, supports direct dialing of
overseas calls, and provides features (e.g., call
waiting, call forwarding) that many people
consider essential components of everyday life.
While telephony software has become both very
large and complex in function and structure,
the methods of software description have
changed little over the past two decades,
existing characteristics and features as well as
any modifications or additions to this software
are described through natural language
requirements specification documents.

These documents present a real dilemma
to both the developers and customers. While
these documents are essential to describe of the
functionality of telephony features, the
ambiguity and uncertainty inherent within
natural language often leads to
misinterpretations which can severely impact
the resulting implementation of the
functionality, the user acceptance of these
features, and/or the development cycle.

I_L:We are developing a natural language-
based, requirements gathering system called
GATOR (for the GATherer Of Requirements)
that assists in the development of more
accurate and complete specifications of new
telephony features. GATOR interacts with a
feature designer who describes a new feature,
set of features, or capability to be implemented.
The system aids this individual in the
specification process by asking for clarifications
when potential ambiguities are present, by
identifying potential conflicts with other
existing features, and by presenting its
understanding of the feature to the designer.
Through user interaction with a model of the
existing telephony feature set, GATOR

constructs a formal representation of the new,
:"to be implemented feature. Ultimately
GATOR will produce a requirements document
and will maintain an internal representation of
this feature to aid in future design and

:specification.

This paper _onsists of three sections that
describe (1) the structure of GATOR, (2) POND,
GATOR's internal knowledge representation
language, and (3) current research issues. .

2. The Structure of GATOR

GATOR consists of three major
components, illustrated in Figure 1:

1. The User Interface (consists of the
Parser, Lexical & Grammatical
Knowledge Base, Predicate Generator,
and Response Generator) accepts
natural language requirements
descriptions and reports its
understanding of these requirements to
the user. Additionally, the User

Interface answers, user queries
regarding the system s understanding of
a feature and requests clarification of
input which may be ambiguous or may
contain recognizable errors.

2. The Command Interpreter
(consists of the Interpreter) receives
information and commands from the user
interface, and issues queries and update
instructions to the Knowledge Base/Data
Base. This information specifies actions
to be taken by the telephone switching
circuits and software (e.g. "The
Directory Number is always transmitted

to the terminating office as ,a part of the
Initial Address Message.), provides

structural/organizational knowledge
(e.g., Calling Number Delive ,r:y
Blocking (CNDB) is a CLASS feature.),

or describes act!ons for displaying
information (e.g., Display a call with
CNDB and Three-way Calling (3WC).),

29

locating information within the

representation (e.g.,"What are the parts
of a call?),creating new knowledge that
must be stored (e.g.,"After the access
code is entered, it is checked for

validity."), or , modifying existing
knowledge (e.g., 'The check for CNDB

validity is made after the access code is
verified as a valid code.).

3. The Knowledge/Data Base is a
repository of information about the

eneral structure of a call, existing
atures, and the new feature being

defined. It consists the three levels,
described in the next section.

Dankel

3. Knowledge/Data Base

The Knowledge/Data Base contains specific
knowledge of the components of a call and all
existing features. It was built using POND
[DANK92] (the Pantological Organization of
New Delineations), a knowledge representation
structure based on the family of KI_ONE
languages [BRAC85, BRAC89, WOOD90].
While most of the KL-ONE languages divide
knowledge into two partitions, called the
Terminological Box or TBox and the
Assertional Box or ABox, POND consists of
three distinct knowledge levels as shown in
Figure 2:

Appropriate f

Generator

&

Interpreter

User

N,L,

@uerses _
about _

Unknown _ _.
Words _.

Parser

PredicateGenerator

lea G_tlcaltcs & [_dc_ IData

I

_c_lcs &
Updates

Grammatical

Knowledge

Figure 1. Internal System View

3O

C
O
N
C
E
P
T
S

Hierarchy of Basic Knowledge Concepts

- Pre-constructed

- Built by System using Composition

Provides Structure for Instance Knowledge

Concept
I-Ilcrarchy

Dankel

I
N
S
T
A
N
C
E
S

Hierarchies of Knowledge Describing:]_

- Basic Call
- Various Feature and

Feature Classes

Pre-constructed Call ,
User-Defined Description .

merarchy

Feature
I-nerarehy

M
O
D
E
L
S

Constructed Model of a Call with
Particular Feature(s) Used to:

Reason About Call Structure
Simulate Call Actions

Develop Requirements Document

Mode]

Figure 2. A Conceptual Diagram of the Knowledge Levels within the Call
& Feature Knowledge Base

1. Concepts. High-level conceptual
knowledge used to structure all of the
knowledge within the knowledge base.

2. Instances. Specific descriptions of
the components of a call, existing
features, and the dynamic specification
of the feature under definition.

3. Models. A constructed model of a

articular call containing specific
atures.

A short description of each of these components
follows.

3.1. Concepts

Knowledge on the Concept Level provides a
structure for the knowledge on the Instance

and Model Levels. Conceptual knowledge
includes definitions of:

1. The concepts that represent

telephone call andfeature components.
Each concept contains several slots (i.e.,
:features) that define the type and
number of permitted values. Concepts
can additionally include references (i.e.,
:ako) to other concepts on which they

are based and applicable constraints
(i.e., :annotation).

2. Special slots, or attributes, of the
concepts, which define a set of restricted
values or define relationships between
concepts. For example, the category
slot defines a restricted set of allowable
slot values, while the chi2dren and

31

rent slots define relationships
tween slots.

3. Temporal relations [ALLE85]
required for specifying temporal
ordering within instances and models.

3.2. Instances

The Concept Level defines knowledge
fundamental to instances on the Instance
Level. A particular concept associates with
each instance providing a structure and certain
internal values for the instance. Instance
knowledge includes descriptions of call and
feature components. For example, a call
initially decomposes into the logical
components (instances) of go-off-hook,
make-call, and disconnect-call. Each of

these components is, in turn, further
decomposed on the Instance Level. The

temporal relationships associated with each

Dankel

instance define the instance's location to the
other instances.

Instance Level knowledge also includes
descriptions of the various telephony features.
Each feature, such as Three-Way Calling
(3WC) and Calling Number Delivery Blocking
(CNDB), decomposes into a structure similar to
the decomposition of a call shown in Figure 3.
These decompositions detail the individual
operator actions that enable each feature,
resultant system actions, and temporal
relationships between feature components and
ca 11 components.

Besides modeling individual features, the
feature descriptions contain restrictions and
special interactions between features. For
example, since the features of 3WC and CNDB
are compatible but interact, the interaction
must be specified. See Figure 4.

_yes

Change status
.... IAM pmsentatlon

restricted flag

no
i i i
i i
! i
i i i

error denial [denial

treatnmnt announcement [announcement

continue
call

Figure 3. Decomposition of CNDB

32

Dankel

I "ll-n-ee-way I
"L ."

- o,'

,./" Composed_ -of Links
part-of IAnks

Figure 4. Feature Interaction with the Feature Hierarchy

-- Part-og IAnks

I--"] Call N°des _ Temporal Ll_

;n" [f t_,oLi,-,.,_mL] i I I DisconnectI <_o-O_-l f D_-_-- l I_o,. _.,, [I v,_o -
I H°°k [........... l Code 1 I | I Call]

Figure 5. Model Representation of a Ca21 with CNDB

3.3. Models

The Model Level facilitates the building of
a description of a particular telephone _call
exhibiting specific features. While the
knowledge on the Concept Level changes very
little (due to the operation of Composition
[DANK92]) and the primary goal of GATOR is
for the user to build Instance Level knowledge
of some new feature, the Model Level is

significantly more dynamic.

While operating G_ATOR, the user can
request a description of a telephone call which
exhibits a particular feature or set of featuresl
The system examines its Instance Level
knowledge and retrieves the appropriate
instances representing a general call and the
set of features of interest to the user. These
instances combine to develop a model of the
requested call type as shown in Figure 5. The

instance ordering depends upon any explicit or
implicit interactions and dependencies that
exist between features and the feature

specification order.

Upon completion, models are presented to
the user. The display of a model allows the
user to verify that knowledge represented on
the Instance Level is correct and complete.
Errors detected generally result from
incomplete or incorrect specifications on the
Instance Level. Each must be identified and
corrected by the user. ARer locating and
correcting an error, the user can verify that
appropriate corrections were made by creatin_
another model and examining its revisea
structure.

4. Status and Plans
Our current research

requirementsgatheringincludes:

in automated

33

1. Improvements and extensions to
POND. POND, as originally
constructed, provides a rich
environment for specifying set/member
and part/sub-part relations. While the
system currently includes the ability to
specify temporal information, it does not
provide a unified temporal reasoning
component or subsumption, each of
which require further definition and
incorporation.

2. Expansion of the knowledge base
to include additional feature
knowledge, Currently, the feature
knowledge base consists of a limited set
of telephony features. This knowledge
base needs to be significantly expanded
to provide an adequate environment for
developing new features, specifying
feature interactions, testing model
building, and expanding the natural
language interaction.

3. Development of a Specification
Document Generator. Once feature
knowledge has been captured within
GATOR's knowledge base, it must be
made more accessible to developers,
implementors, and customers. An
output generation system is currently
under design with which the user will be
able to produce a feature requirements
specification document.

4. Extension of the Natural
Language Capabilities. The current

system is limited in the range of input
which is can process. We are expanding
the syntactic and semantic capability of
the system to more closely model the

range of language used by designe,rs
when they describe a feature s
structure.

While our research has concentrated on
telephony, our approach is applicable to a wide
range of domains. An initial examination of
telephony features has shown that GATOR can
capture 80 to 90 percent of the functional
requirements of a feature contained in a typical
specification document. We expect that the use
of such an automated tool, in this and other
domains, will significantly reduce ambiguities
and uncertainties within specification
documents, thereby decreasing development
time and expense.

5. References

[ALL.E85] Allen, J., Maintaining Knowledge
about Temporal Intervals, in Reading m
Knowledge Representation, edited by
R. J. Brachman and H. J.. Levesque,

Dankel

Morgan Kaufman, Los Altos, CA, pp. 509 -
521, 1985.

[BRAC85] Brachman, R. J. and J. G. Schmolze,
An Overview of the KL-ONE Knowledge
Representation System, Cognitive
Science, Vol. 9, No. 2, pp. 171 - 216, 1985.

[BRAC89] Brachman, R. J., A. Borgida, D. L.
McGuinness, and L. Alperin Resnick, The
CLASSIC Knowledge Representation
System, or, KL-ONE: The Next Generation,
Workshop on Formal Aspects of
Semantic Networks, Santa Catalina
Island, CA, 1989.

[DANK92] Dankel, D. D., W. Walker, and M.
Schmalz, POND: A Knowledge
Representation Language which Facilitates

Requirements Capturing, Working Paper
submitted to the 12th Internatmnal
Avignon Conference, 1992.

[WOOD90] Woods, W. and J. Schmolze, The
KL-ONE Family, TR-20-90, Center for

Research in Computin6 Technology,
Harvard University, Cambridge, MA, 1990.

34

