
Eriksson

Meta-Tools

Knowledge Acquisition

Henrik Eriksson" Mark A. Musen

Medical Computer Science Group

Knowledge Systems Laboratory

Stanford University School of Medicine

Stanford, CA _94305-5479

N93-./7508
for Software Development anct

_c,q_G /

"Man is a tool-using animal Without tools he is
nothing, with tools he is all."
Thomas Carlyle (1795-1881)

_ Abstract

The effectiveness of tools that provide sup-
port for software development is highly depen-
dent on the match between the tools and their

task. Knowledge-acquisition (KA) tools consti-
tute a class of development tools targeted at
knowledge-based systems. Generally, KA tools
that are custom-tailored for particular applica-

tion domains are more effective than are gen-
eral KA tools that cover a large class of do-
mains. The high cost of custom-tailoring KA
tools manually has encouraged researchers to
develop recta-tools for KA tools. Current re-

search issues in meta-tooZs for knowledge acqui-
sition are the specification styles, or me,a-views,
for target KA tools used, and the relationships
between the specification entered in the meta-

tool and other specifications for the target pro-
gram under development. We examine differ-
ent types of meta-views and meta-tools. Our

current project is to provide meta-too!s that
produce KA tools from multiple specification

sources--for instance, from a task analysis of the

target application. = :. _

Introduction

Knowledge-acquisition (KA) tools are programs that
help developers to elicit and structure domain know-

ledge for use in application programs (e.g., in expert
systems). Typically, KA tools allow nonprogram-
mers who are specialists in some domain area to en-

ter structures relevant for the application program
without the aid of an intermediary who is proficient
in programming. Thus, KA tools are, in a way, code-
generating software-engineering tools for a restricted
type of software and for a particular group of users.
To increase the usability of KA tools, researchers in
knowledge acquisition have experimented with spe-
cializing the tools in various ways. For instance, KA
tools have been specialized to knowledge-acquisition

methods, problem tasks, domains, and even appli-
cations. In most cases, specialized KA tools are re-
ported to be more effective than general ones, be-
cause the users are nonprogrammers familiar with
the domain terminology. In addition to those that in-
volve the elicitation of knowledge from experts, there
are approaches to KA tool support that rely on know-
ledge acquisition from texts, and t/here also are meth-
ods that incorporate machine learning from example
solutions.

Custom-tailoring KA tools can be a laborious
task. When the benefit of domain-specific KA
tools is compared to the effort of developing them,
the tool-development cost is often unacceptable for
small projects. Also, development of domain-specific
tools can in itself be a software-engineering problem.
These problems have been addressed with supportive
tools and, to a certain extent, with tool-development
naethodologies. :lust as code-generator writing sys-
tems can be used to produce code-generating tools,
meta-_ools for knowledge acquisition can help devel-
opers to implement domain-specific KA tools. Sev-
eral meta-tools that generate target KA tools auto-

_ matically from specifications provided by the devel-

opers have been implemented by researchers in know-
ledge acquisition. Although KA tools are generally
intended for nonprogrammers, variants of such tools
can be used by programmers to increase software
quality and programmer productivity. A recta-tool
can be used to create the too] required by program-
nlers.

An important aspect of a meta-tool is the speci-
fication strategy, or recta-view, for target tools that
the meta-tool provides to the developers. The recta-
view comprises the conceptual model of the target

: tool that the meta-tool supports, as well as the spec-
ification language for target tools. Depending on the
view of target tools, several types of meta-views are
possible. Domain-specific tools for software develop-
meat are desirable in many situations. Meta-tools,
however, preferably should be domain-independent
so that they can produce domain-oriented tools for a
broad area of applications.

Much of the work in meta-tool support, for know-
ledge acquisition is relevant for software engineer-
ing, especially approaches to domain-specific devel-
opment tools. If the design and implementation of

such domain-oriented software-engineering tools are

"On leave from the Department of Computer and
Information Science, Linkbping University, S-581 83
LinkSping, Sweden

43

laborioustasks,meta-leveltoolsarecertainlyre-
quired.In thispaper,wediscussalternativemeta-
viewsanddescribetheirimplementationin different
meta-tools.

Background
Knowledgeengineeringandsoftwareengineeringare
partiallyoverlappingdisciplines.Moreover,toolsfor
knowledgeengineeringandcomputer-aidedsoftware
engineering(CASE)toolshavegonethroughsimi-
lar developmentstages,in the sensethat increas-
ingly specializedtoolshavebeenconsidered.The
first-generationAI developmenttoolsweregeneral
andwereessentiallyprogramminglanguageswithin-
tegrateddevelopmentenvironments.Examplesof
suchtoolsareEMYCIN,KEE,ART,andS1. Only
skilledprogrammersandknowledgeengineerscould
usethesetools,sothetoolswereinaccessibleto do-
mainspecialistswhohadnothadextensivetraining
incomputerandinformationsciences.

Simultaneously,investigatorsattemptedto devel-
opedtoolsthat acquiredexpertisedirectlyfromdo-
mainspecialist.Initially,theseKA toolswerealso
general.In the mid-1980s,thesegeneralKA tools
werefollowedby a secondgenerationof KA tools
thatwerespecifictoparticularproblemtasks--forin-
stance,toclassification,configuration,orscheduling.
Evenif thescopeof thetoolisrestrictedtooneprob-
lemtask,however,nonprogrammersmayhavediffi-
cultyusingthetool[Marcus,1988].A thirdgenera-
tionof evenmorespecializedKA toolswastherefore
developed.Researchersstartedto experimentwith
domain-specificKA tools. Suchtoolsaredesigned
suchthat domainspecialistscanusewell-knowndo-
mainconceptsin the tool dialog[Eriksson,1992;
Musenet al., 1987].

Domain-oriented KA tools can provide effective
support within their area, because they draw their
power from built-in domain concepts that users can

identify easily. However, the development of such
KA tools is costly, since the amount of programming
required to implement such domain-specific tools is
large in comparison to the scope of the tools' ser-
vices. There are three fundamental approaches to
this problem: (1) balancing tool generality versus
domain-orientation to achieve a reasonable trade-off

between utility and cost, (2) improving further gen-
eral tools, and (3) reducing the cost of developing
domain-oriented KA tools (e.g., through technologi-
cal means).

We have chosen the third approach. Our goal is,
thus, to make it easier for developers to design and
implement tools tailored for their needs. Meta-tools

can help developers to create new domain-specific
tools as well as to custom-tailor existing tools for
a domain. There are two principal roles for meta-
tools in this approach: (I) to address the software-
engineering problem of developing (and specializing)
target tools, and (2) to support the target-tool design
and specification process. In addition to meta-tools,
development methodologies that incorporate special-

ization of development tools can help the developer
to control the development process and to reduce its

44

Eriksson

cost.

One feature that distinguishes KA tools from other
development tools is the intended tool user. KA tools

are primarily intended for use by domain specialists,

whereas code-generating software-engineering tools
are generally designed to be use by developers with

programming knowledge. So far, we have primarily
worked with KA tools for knowledge-based systems.
Nevertheless, several of our results can be generalized
to other types of software-development tools.

Meta-Views

The most important aspect of a meta-tool is the
specification model of the target tools that it pro-
vides to the developer. The meta-view adopted by
the meta-tool guides the specification process, and
determines the scope of the meta-tool. Meta-tools

can differ substantially, depending on what aspects
the recta-tool developer chooses to emphasize in the
meta-view. Preferably, the meta-view should in some
way reflect the way that developers think about the

target tools, and should provide a natural way of
specifying target tools. Several groups of recta-views
can be identified.

The Method-Oriented View

The method-oriented view provides a framework for
describing the problem-solving method to be used in
the final application in a way that makes the descrip-
tion useful for generation of KA tools. Meta-tools
implementing a method-oriented view produce tar-
get KA tools from a partial instantiation of a generic
problem-solving method (e.g., planning, scheduling,
or troubleshooting methods). Target KA tools are
fully instantiated according to the expertise required
by the problem-solving methods for performing their
tasks. For example, the developer can instantiate
a planning method by providing descriptions of ac-
tions (and their preconditions as well as ramifica-
tions), constraints, and goals. A domain-specific KA
tool that allows specialists to enter and edit skeletal
plans can be produced from such an instantiation of

the planning method by a meta-tool supporting the
planning method. Typically, meta-tools adopting a
method-oriented view incorporate some form of a pri-
ori design of the target tools. One of the advantages
of the method-oriented view is that the instantiation

of a generic method structures the development pro-
cess and guides the developer. Another advantage
is that the target tool can be developed rapidly if a
problem-solving method for the application is known.

There are, however, drawbacks of the method-

oriented view. A significant problem is that the
meta-tool is restricted to one particular problem-
solving method. KA tools that acquire knowledge

for other problem-solving methods, including KA
tools for domains where the problem-solving method
supported is unsuitable, cannot be specified using
the method-oriented approach. Another problem is
that the type of KA tools produced for a particu-
lar domain is fixed (i.e., it is possible to have only a
one-to-one correspondence between an instance of a

pl_oblem-solving method and its NA tool, due to the

apriori KA tool design).Adaptinga meta-toolfor
anotherproblem-solvingmethodiscurrentlya labo-
rioustaskthat mayinvolveamajorredesignof the
meta-tool.

The Abstract-Architecture View

The abstract-architecture view is based on an archi-

tectural model of the target tool. In tiffs approach,

the developer specifies components of the target KA
tool, such as the user interface, the internal represen-
tation, and the generator for target code. In other
words, to create a target KA tool, the developer has
to instantiate each of the components in the KA tool

architecture and to link together the components.
(Naturally, this task requires a prior analysis of the
domain and of the requirements on the KA tool.)

Meta-tools adopting this recta-view produce KA

tool implementations from abstract specifications of
target KA tool components. In a way, the abstract-
architecture view is similar to specification languages
found in compiler compilers (e.g., Yacc and Bi-

son). The abstract-architecture view differs from
the method-oriented view in that it focuses on the

target tool rather than on the application program
under development. The abstract-architecture yiew
provides more flexibility for the developer than does
the method-oriented view, because many tools po-

tentially can be specified for one domain.
The major advantage of the abstract-architecture

view is that target KA tools can be specified inde-
pendently of the problem-solving method adopted.
Hence, the recta-tools do not have to rely on spe-
cific problem-solving methods (or on any other class
of domains). There are, however, other limitations:
The abstract-architecture view imposes restrictions

on the types of target tools that can be specified. For
instance, a recta-tool supporting architectural com-

ponents for graphical editing and browsing cannot
easily be used to produce debugging tools (which
require a completely different set of architectural
components). Another disadvantage of the abstract-
architecture view is that the developer needs to be
aware of the architecture of the target KA tools,
which knowledge is not required for the method-

oriented view (where the developer is required to
know only the problem-solving method).

The Organizational View

The organizational view captures the intended orga-
nizational context for the system under development.
The idea is to derive the target system's role from

an organizational model (e.g., an enterprise model)
and to identify the task of the system from its role.
When the task of the system has been established, it
can be used together with the organizational model
to specify target KA tools to a meta-tool. To spec-

ify a target KA tool according to the organizational
view, a developer must (1) identify the actual organi-
zational structure from a library of typical organiza-

tions, and (2) indicate the relevant position and role
in the organization for the system. In essence, the

organizational perspective is an approach to create a
job description for the system.

45

Eriksson

The organizational view provides a broader per-
spective on KA tool specification than do the
method-oriented and abstract-architecture views.

The broad perspective is an advantage of the organi-
zational view, since it helps to clarify how the system
is to be used and to make this information available

to the meta-tool. Another advantage of the organiza-
tional view is that organizational information is often
easily available and can be provided by nonprogram-
reefs. One of the problems with the organizational
view, however, is that it is not clear whether such a
model is sufficient to specify a KA tool completely.
Additional information, such as identification of ap-

propriate problem-solving methods and other techni-
cal issues, might be needed to produce automatically
or semiautomatically target KA tools that can be
used by people in the organization (i.e., nonprogram-
mers) to develop the system. A pure organizational
model would not provide sufficient information, but

an extended organizational model naight be practical

for the tool generation.

The Ontological View

The ontological view is based on the idea that do-
main concepts and relationships can be used for gen-
eration,of domain-specific KA tools that incorporate
such concepts and relationships. Concept definitions
in the ontology can be used as a basis for automated

generation of domain-oriented editors i!] the KA tool.
Target KA tools can then be used to acquire details
about the domain concepts. For example, instances
of domain-specific classes in the ontology can be en-
tered and edited ill the target KA tool by developers
and by domain specialists. To complete a target KA
tool, however, the developer might have to provide
additional information in the ontology (e.g., infor-
mation about how to edit certain concepts). The on-
tological view differs from the previonsly mentioned
meta-views in that it focuses on declarative struc-

tures required in the application system.

Composed Meta-Views

An important question is whether we can combine
several recta-view such that we avoid some of the

disadvantages of particular recta-views. For in-
stance, a combination of the method-oriented and
tile abstract-architecture views can potentially ren-

der a meta-view that provides the guidance of a pre-
determined problem-solving method and the capa-
bility to custom-tailor the target, tool (e.g., for in-
dividual users). There are, however, several con-
ceptual and technical obstacles to implementation
of composed recta-views. For example, recta-views
can be partially incompatible, and changes to spec-
ifications made according to one recta-view might
affect--and even invalidate--other specifications ac-

cording to other recta-views.

Meta-Tools

There are several recta-tools that implement the

recta-views described in the previous section. We
shall briefly examine four different recta-tool imple-

mentations,andshall relatethemto their meta-
views.

PROTEG]_

PROTI_GI_ [Musen, 1989a; Musen, 1989b] is a meta-
tool that adopts a method-oriented view. PROTI_GI_

supports a particular problem-solving method for
planning (skeletal-plan refinement), which also is the
basis for the meta-view in PROT_6_,. Historically,
PROTI_Gti_ was abstracted from a domain-specific KA
tool (OPAL) that acquires skeletal plans, or protocols,

for cancer therapy. PROTI_aI_ incorporates an a pri-
ori design of target KA tools that is similar to the
design of OPAL. The meta-view in PROTI_GI_ com-

prises concepts related to skeletal planning--for ex-
ample, planning entities (which are processes that
take place over finite periods of time), task-level ac-
tions (which are operations that control the planning
entities and modify the plan during run time), and
input-data specifications.

To build a KA tool with PROTI_GI_, the devel-

oper must instantiate the skeletal-planning method
supported by PROTI_GI_ for the domain in question.

This instantiation involves describing planing enti-
ties, task-level actions, and input data in detail.
PROTI_GI_ produces a target KA tool, which can be
used by domain specialists to enter and edit skeletal
plans, from the instantiated problem-solving method.
In turn, the target KA tool produces the application
system from the skeletal plans entered.

An important achievement of PROTI_GI_ is that it
demonstrated how meta-tools can be used to instan-

tiate KA tools from descriptions of problem-solving
methods (i.e., PROT_.C_ demonstrated the feasibil-
ity of the method-oriented view). Nevertheless, the
principal drawback of PROT_I_ is inherited in its

meta-view--the meta-tool is limited to one problem-
solving method.

DOTS

DOTS [Eriksson, 1991] is a meta-tool that is based on

the abstract-architecture view. Like PROT]_GI_, DOTS

is abstracted from a domain-oriented KA tool, but

DOTS focuses on the architecture of the target tool,
rather than on the problem-solving method of the
application system. DOTS generates target KA tools
from architectural specifications. Furthermore, DOTS
assumes that the target tools conform to a particu-
lar architecture scheme (i.e., DOTS cannot be used to
develop any type of software; it is tailored for devel-
opment of graphical KA tools).

The meta-view in DOTS comprises (1) a variety of
editors that can be custom-tailored to edit domain-

specific structures, (2) a specification language for
the internal representation (which represents what
is entered in the editors internally) and other data

structures for the target KA tool, (3) a set of update
rules that can be configured to ensure consistency
between the internal representations and the editors
in the user interface, and (4) a set of transformation
rules that is used to produce target code from the
representation internal to the KA tool. To develop a

KA tool with DOTS, the developer must analyze the

46

Eriksson

domain and design a h:A too] architecture for the

domain, enter specifications for the domain-specific
editors in DOTS, specify the internal representation
for the target KA tool, declare the relationship be-
tween the editors and the internal representation in
the form of update rules, and write transformation

rules for code generation from the internal represen-
tation. DOTS produces a target KA tool from these
architectural descriptions.

DOTS demonstrated how an abstract-architecture
view can be implemented in a meta-tool. Unlike

PROTI_GI_, DOTS is not restricted to a particular
problem-solving method or to any other domain
class. DOTS, however, is restricted to a particular
type of architecture for target KA tools.

SIS

Another meta-tool that implements an abstract-
architecture view is sis [Kawaguchi et al., 1991]. SIS

differs from DOTS in that it is designed for generating
interview-based KA tools (i.e., KA tools that conduct
a question-and-answer dialog with domain specialists
to elicit domain information and knowledge), rather
than graphical KA tools based on interactive editing
for which DOTS is designed. The components of the
architecture scheme supported by sis, therefore, are
different from those found in DOTS.

Spark

Researchers at Digital Equipment Corporation (DEC)
have explored the organizational view as a basis for
meta-tools. They have developed Spark, a meta-tool
that implements the organizational view [Klinker et
al., 1991].

To implement a KA tool using Spark, the devel-
oper must identify the organizational type (e.g., man-
ufacturing industry, service organization, or govern-
ment), identify the role of the system in that organi-
zation using a diagram of typical organizations, and
assemble a performance system using reusable pro-

gram mechanisms from a library. Spark configures
an appropriate KA tool from the description of pro-
gram mechanisms and the information requirement
for each of the relevant mechanism. The original
Spark approach has been nmdified: the group at DEC
is now considering mechanisms with a finer granular-
ity.

Spark is part of a tool set that contains two other
tools: Burn and FireFighter. Burn is the run-time
system that controls the knowledge-acquisition ses-

sion and invokes appropriate KA tools. FireFighter
is a debugging tool that helps developers and do-
main specialists to debug and maintain application
systems developed.

Programming Languages as Meta-Tools

General programming languages (e.g., C, Pascal, and
ADA) also can be regarded as meta-views and their

compilers can be seen as meta-tools, since they can
be used to implement target KA tools. Program-
ruing languages, however, provide neither much sup-
port for tool implementation, nor any high-level con-
structs for tool specification (especially for interac-

,' i g

tire tools with graphical user interfaces). The use of
programming languages can certainly provide flex-
ibility in the tool design, but the implementation
cost is often too high, Nevertheless, programming
languages can play a role in implementation of tool
functions that cannot be specified with an available
meta-view.

Summary and Conclusions

Domain-specific development tools, including
domain-oriented KA tools, are often reported to be

more successful than are their general counterparts.
Consequently, specialized development and KA tools
are emerging. Since the development of such custom-
tailored tools is relatively laborious given their re-
stricted scope, researchers have experimented with
meta-tools that support the design and implementa-
tion of domain-specific tools. Although it is prefer-
able that meta-tools be domain-independent, their

generality must be restricted if they are to be prac-
ticable and supportive. One such restriction is the
class of target tools the meta-tool produces.

A meta-view is the specification strategy for tar-

get tools adopted by the meta-tool. The method-
oriented view focuses on a problem-solving method
that is applicable to many domains. The developer
specifies domain-oriented target tools by instantiat-
ing a problem-solving method for the domain in ques-
tion. The abstract-architecture view, on tile other
hand, focuses on the architecture of the target tool.
In this approach, domain-oriented tools are specified
through instantiation of architectural components

(e.g., graphical editors, internal structures, and sets
of transformation rules). The organizational view
provides a model of generic organizations in which
the role of the application system can be identified.
Such roles are used as basis for generation of target
tools.

The meta-views examined in this paper represents
complementary approaches to specification of target.
tools. Since each meta-view has advantages and dis-
advantages, the choice of meta-view depends largely
on the requirements on the target tool, development
philosophy, and personal preferences. Ideally, meta-
tools should support target-tool specification accord-
ing to multiple paradigms.

With appropriate meta-tools, development of
application-specific tools (rather than domain-

specific) custom-tailored to particular development
situations can be made feasible. Target tools can be
changed during the course of the project to support.
different project stages in different ways. For exam-
pie, target tools can serve as specification tools and
then as maintenance tools, as the project, evolves.

We are currently developing a recta-

tool (PROT_.G_ n) that will support a combination
of meta-views [Puerta et al., 1991]. PROTI_GI_ II will

support two different development tasks simultane-
ously. One part of the emerging PROTI_GI_ II system

will allow the developer to create basic performance
systems by configuring tasks and problem-solving
methods from a library of reusable components, the
other of part PROTF, GI_ II is concerned with gener-

47

Erlksson

ation of domain-oriented KA tools (which are used

for acquiring knowledge from domain specialists for
the basic performance systems). For the KA-tool
generation component, we are currently considering
a combination of the abstract-architecture and onto-

logical views. Since PrtOTgG_, 1I is also intended for
configuration of tasks and problem-solving methods,
the combined meta-view will incorporate ideas from
the method-oriented view also.

Acknowledgments

This work has been supported in part by grants
LM05157 and LM05208 from the National Library

of Medicine, by a gift from Digital Equipment Cor-
poration, and by scholarships from the Swedish Insti-
tute, from Fulbright Commission, and from Stanford
University. We are grateful to Angel Puerta for com-
ments on drafted versions of this paper and to Lyn

Dupr_ for editorial assistance.

References

Eriksson, Hen'rik 1991. Meta-Tool Support for

Knowledge Acquisition. PhD thesis 244, LinkSping

University.

Eriksson, Henrik 1992. Domain-oriented knowledge
acquisition tool for protein purification planning.
Journal of Chemical Informatiol_ and Computer
Sciences 32(1):90-95.

Kawaguchi, Atsuo; Motoda, Hiroshi; and Mi-

zoguchi, Riichiro 1991. Interview-based knowledge
acquisition usiug dynalnic analysis. IEEE Expert
6(5):47-60.

Klinker, Georg; Bhola, Carlos; Dallemagne, Ge-
offroy; Marques, David; and McDernmtt, John
1991. Usable and reusable programming constructs.
Knowledge Acquisition 3(2):117-135.

Marcus, Sandra, editor 1988. Automating Know-

ledge Acquisitio,1 for Expert Systems. Kluwer Aca-
demic Publishers, Norwell, Massachusetts.

Musen, Mark A.; Fagan, Lawrence M.; Combs,
David M.; and Shortliffe, Edward H. 1987. Use of
a domain model to drive an interactive knowledge-

editing tool. International .]our'lsal of .l[a_-Machine
Studies 26(1):105-121.

Musen, Mark A. 1989a. Automated Genera-

tion of Model-Based h'nowledge-Acqnisition Tools.
Morgan-Kaufmann, San Marco, California.

.Musen, Mark A. 1989b. An editor for the con-
ceptual models of interactive knowledge-acquisition
tools. IT_ternational Jour_al of 3[al_-3[achine Stud-

ies 31(6):673-698.

Puerta, Angel R.; Egar, John W.; and Musen,
Mark A. 1991. Automated generation of adaptable
knowledge-acquisition tools with Mecano. Technical
Report KSL-91-62, Knowledge Systems Laboratory,
Stanford University, Stanford. CA.

