
Fass

soFrwARE DESIGN AS A PROBLEM IN LEARNING THEORY

(A Research Overview)

9 3 " 17 5 0 9
Introduction: Background and Motivation

Our interest in automating software design has come out

of our research in automated reasoning, inductive inference,

learnability and algebraic machine theory. We have

investigated these areas extensively, in connection with

specific problems of language representation, acquisition,

processing and design.

In the case of formal context-free (CF) languages we

established existence of finite learnable models ("behavioral

realizations') and procedures for constructing them
effectively. We also determined techniques for automatic

construction of the models, inductively inferring them from

finite examples of how they should "behave". These results

were obtainable due to appropriate representation of domain

knowledge, and constraints on the domain that the

representation defined.

It was when we sought to generalize our results, and

adapt or apply them, that we began investigating the

possibility of determining similar procedures for

constructing correct software. Discussions with John

Cherniavsky, Dick Hamlet and Elaine Weyuker led us to

examine testing and verification processes, as they are
related to inference, and due to their considerable

importance in correct software design. Motivating papers
by Cherniavsky [I], Hamlet [3], Weyuker [4] and also,

Fetzer [2], led us to examine these processes in some depth.

Here we present our approach to those software design
issues raised in [1-4], within our own theoretical context.

We describe our results, relative to those of [I-4] and

conclude that they do not compare unfavorably.

Our Approach To Software Design

We approach problems of software design as examples

or applications of a general learning theory. Our

perspective is logical and algebraic: to us, a program or

system fulfilling a specification S is "just like" any other

realization of a specified behavior. The process of

constructing software to perform a particular function or set
of tasks, thus is an instance of synthesizing a behavioral

realization. The testing of given software for incorrectness,

or its verification as correct, are cases of checking a

potential model, or realization, against its behavioral

domain. If it is determined to exhibit all "good behavior"

(positive domain data, as specified by S) and no "bad

behavior" (negative data, i.e., the complementary domain

elements, relative to S) the software is then established as
correct.

Within our theoretical framework, successful software

design requires analysis of desired behavior for

identification of its essential components, and a means of

defining--often through constraints--the domain in which the

behavior lies. This knowledge must be represented and

conveyed to the design system: an algorithm or technique

for converting the knowledge into an implementation.

Should designed software be given, then the knowledge

might be conveyed to a testing/verification system to

determine correctness of the design. If incorrectness were

detected, errors could be removed and flaws repaired. The

theoretical system need only reiterate these steps until it

conclusively determined the software to be defect-free.

In each of these aspects of software design, our theory
assesses as successful a process that is proven to terminate

effectively (many would also demand efficiency),

determining correct software as its end-product. This

implies that all possible behavior must be conveyed f'mitely;

that algorithms and techniques for construction, testing or

verification of software operate in finite time and space; and

that each process concludes, producing a resultant f'mite
behavioral model.

If the above can be achieved it is a small step from
effective determination of correct software to its automated

determination or, design. We need only implement the

algorithm or technique for the software construction, testing

or verification, to create an automated "design system'.

Then we need only define an appropriately characterizing
finite selection of behavioral data that the "system" may use

to automatically determine a correct software design. To do

so, we might adapt those techniques we devised to find

correct language models [5-8], so that instead they produce

software that behaves correctly, as specified.

Once a "design system" is implemented, it should be

possible for an application specialist to provide it with

domain-specific behavior examples. The system should then

observe and generalize, to automatically determine software

that realizes, or produces, the correct domain behavior in its

entirety. At first, this appears to work very well, in theory.

However, our theoretical perspective leads us to examine

software design problems somewhat more carefully, relative

to those algebraic, constrained problem domains within

which we obtained our initial learning theory results. We
next describe some of the relationships between our theory

and actual practice.

Results, "Results" and Condusions

While there are, indeed, many similarities between

theoretical learning problems and those encountered in

practice, what we mainly find is that the constraints that

make problems solvable in theory do not, in practice,

generally apply.

We began this research overview by describing our

theoretician's perspective, and our interest in adapting or

applying our specific learning theory results to the case of

48



(automated)softwaredesign.Withintheframeworkof [3]

theory, we noted that softv_are design is "just like" any

other modelling process. E.g., if we can infer a grammar [4]
generating a language from suitable linguistic examples
then, surely, we can infer a program to produce that same

language, and be certain that it is correct.

All of the general results in learning theory that come

out of our specific CF language learning research were

made possible by appropriate knowledge representation, and
domain constraints. These enabled us to determine finite

realizability of the CF languages and, also, the conclusive

effective testability of potential language models. When

sufficiency of testing is established, and tests conclusively
detect no incorrectness, we establish correctness of a model.

We call this "verification by default" [6-9]. [6]

In the case of language learning, we were able to

establish an inference/testing/verification paradigm [6-10]

that could result in automatic design of language models,
obtainable in a number of ways. We showed that if the [7]

language has a model inferable from a finite sample of

positive domain data ("good behavior') then a potential

model could be conclusively, effectively tested and thus

might be verified, by default, as correct. What we

established was that the domain sample of positive data

sufficient for inference defined a similar sample of positive [8]

and negative data ("good and bad behavior') that was
sufficient for conclusive, effective tests.

As Hamlet noted in [3] and in our discussions, and as

we have confirmed, these results are dependent on
characterizing all necessary behavioral information in a [9]

finite way. (Our domain constraints gave us finite

realizability and decidable membership queries: we could

determine what was good behavior vs what Was not [6-10]).

While in any typical software design environment our

domain constraints and conditions do not apply, we believe

our theoretical results compare, not unfavorably, with those

of other theoreticians. Cherniavsky [1] noted testing can do
more than detect errors in software, and we showed one can

test to show software is correct. Fetzer [2] claimed

verification was "impossible" and we showed inferable

models could be testable, and verified automatically, by

default. Weyuker [4] described inference-based testing to

establish an approximate method of determining equivalence

of a program and its specification. We concur and believe

our logical and algebraic approach, and some domain-

specific imposed constraints, will result in approximately

automated software design. This will improve upon

techniques currently in practice.

REFERENCES

[1] Chemiavsky, J. C., "Computer Systems as Scientific

Theories: A Popperian Approach To Testing',

Proc. of the Fifth Pacific Northwest Software

Quality Cop_, Portland (Oct. 1987), pp. 297-308.

[2] Fetzer, J. H., "Program Verification: The Very

Idea', CACM, Vol. 31 (1988), pp. 1048-1063.

Fass

Hamlet, R., "Special Section on Software Testing',

CACM, Vol. 31 (1988), pp. 662-667.

Weyuker, E. J., "Assessing Test Data Adequacy

through Program Inference', A CM Transactiotty on

Programming Languages and Systems, Vol. 5

(1983), pp. 641-655.

Relevant Publications and Presentations by the Author

[5] Fass, L. F., "Remarks on Inductive Inference and

Testing', presented at the Association for Symbolic

Logic 89-89 Annual Meeting, University of

California, Los Angeles, January 1989.

Abstracted in the J. Symbolic Logic, Vol. 55,

No. 1 (March, 1990), p. 374.

Fass, L. F., "A Common Basis for Inductive

Inference and Testing', Proc. of the Seventh

Pacific Northwest Software Quality Conf.,

Portland, (Sept. 1989), pp. 183-200.

Fass, L. F., _Acquiring Knowledge by Positive or

Negative Means', presented at the Association for

Symbolic Logic 90-91 Annual Meeting, Carnegie

Mellon University, January 1991. Abstracted in

the J. Symbolic Logic, Vol. 57, No. 1 (March

1992) pp. 356-357.

Fass, L. F., "Learning Through Inductive Inference

or Testing", Proc. Florida Artificial Intelligence

Research Symposium, Conf. on Machine Learning,

Cocoa Beach, (April 1991), pp. 176-180.

Fass, L. F., "Inference, Testing and Verification',

presented at Ninth International Congress on

Logic, Methodology and Philosophy of Science and

Logic Colloquium 91, Section on Foundations of

Logic, Mathematics and Computer Science,

Uppsala, Sweden, August 1991. Abstracted in

Congress Volume I, p. 193.

[10] Fass, L. F., "Perfect Learning (More or Less)', to be

presented at the 1992 Meeting of The Society For

exact Philosophy, University of Southwestern

Louisiana, Lafayette, May 1992. Extended version

in preparation.

Leona F. Fass received a B.S. in Mathematics and Science

Education from Cornell University and an M.S.E. and Ph.D. in
Computer and Information Science from the University of
Pennsylvania. Prior to obtaining her Ph.D. she held research,
administrative and/or teaching positions at Penn and Temple
University. Since then she has been on the faculties of the
University of California, Georgetown University and the Naval

Postgraduate School. Her research primarily has focused on
language structure and processing; knowledge acquisition; and the
general interactions of logic, language and computation. She has
had particular interest in inductive inference processes, and
applications/adaptations of inference results to the practical
domain. She may be reached at
Mailing address: P.O. Box 2914

Carmel CA 93921

49


