
Keller, K.

Domain Specific Software Design for Decision Aiding

Kirby Keller and Kevin Stanley
McDonnell Aircraft Company

McDonnell Douglas Corporation

McDonnell Aircraft Company (MCAIR)
is involved in many large multi-discipline
design and development efforts in the
production of tactical aircraft. These
involve a number of design disciplines
that must be coordinated to produce a

integrated design and successful product.
Our interpretation of a domain specific
software design (DSSD) is that of a

representation or framework that is
specialized to support a limited problem
domain. Figure 1 contrasts domain
specific vs. domain independent
approaches. A DSSD is an abstract
software design that is shaped by the
problem characteristics. This parallels the
theme of objected-oriented analysis and

design 1 of letting the problem model
directly drive the design. The DSSD
concept extends the notion of software
reusability to include representations or
frameworks. It supports the entire
software life cycle and specifically leads
to improved prototyping capability,
supports system integration, and
promotes reuse of software designs and

supporting frameworks.

Initial prototyping is improved if one can
start development with a framework that
is suited to the characteristics of the

problem. This framework can be
specialized as the development evolves to
provide a more efficient means for the
domain expert to prototype The effect is
to shorten the distance between the

domain expert and the working prototype
by providing a domain language to state
requirements and supporting automated
code generation. This concept of a

1 Rumbaugh, et al, Object-Oriented Modeling and
Design, Prentice Hall, 1991.

S/B -6/

supporting framework can be extended to _'1
the systems level. Multi-discipline design /_/

efforts may require the integration of
individual DSSDs which are critical to

concurrent engineering efforts. Domain
specific designs that capture problem
solving representations can be leveraged
in future work. These designs offer

flexibility by addressing a problem
domain and hence axe a better starting

point for reuse than particular application
modules. It may also be possible to

create libraries of such designs that can be
matched to problem characteristics.

The example presented in this paper is the
task network architecture or design
which was developed for the MCAIR
Pilot's Associate program. The task
network concept supported both module
development and system integration
within the domain of operator decision
aiding. It is presented as an instance
where a software design exhibited many
of the attributes associated with DSSD

concept. The Pilot's Associate program
(contract #F33615-86-C-3802) was

sponsored by the Defense Advanced
Research Projects Agency and
administered by the United States Air
Force. More recent work in this area has

been performed in conjunction with
McDonnell Douglas Research
Laboratories and Michigan State

University.

p!lot Decision Aiding Example:
As part of the Pilot's Associate (PA)
program, McDonnell Aircraft (MCAIR)
Company developed and demonstrated an
"associate" system for tactical aircraft
performing an air-to-ground battlefield
interdiction mission. The demonstrated

mission functionality included threat
assessment, system capabilities
assessment, threat reaction planning,

86

Keller, K.

Support for l

System
Development

Domain Specific

Problem Domain

Figure 1. Domain Specific Software Design Provides Improved Support for
Specific Problem Domains.

target attack planning, pilot monitoring,
and information management.

Appropriate controls and displays were
developed to support the demonstration in
a manned aircraft dome simulator. The

system development approach and
software architecture is based upon a task
network system model. The activities of
the pilot, PA and external agents such as
a wingman are modelled by objects called
tasks. Tasks may be decomposed into a
complex sequence, or network, of more
detailed subcomponents. This model of
the task sequences and their functionality
define a hierarchical network of tasks
which allow the representation of

complex system and pilot activity for both
steady state behavior and reaction to
changes in the environment. It captures

dependencies and interactions between
activities and provides a means for overall
control of the PA problem solving
process. The structure derived from the
task network system model provides: 1) a
domain specific requirements language or
representation that is shared by the
domain expert and software developer, 2)
data structures and frameworks for the

software design, and 3) visibility into the
system behavior that helps create a more
intuitive interface and system operation.

framework are: input packet post-
processing, the context model, the task
network mission model, exception
handling and task execution. Data flow
in this architecture consists of

communication from external processes

through packet post processing which
appropriately manipulates the data to
update objects in the context model.
Events are signalled to the task network
mission model, resulting in changes in
task status or the execution of an

exception handler. When tasks are
activated they are placed on a task agenda
and executed in order of priority. The
execution of tasks may result in the
modification of internal models (internal
actions) or the communication of data to

other processes (external actions).

The task network is modelled after the

procedural network structure, first
proposed in the NOAH system 2. The

partially ordered sequence of tasks in the
network identifies control flow and
context information for the state of the

mission. Through an explicit

representation of system and pilot tasks,
the system may reason about it's own

The top-level architecture of the task
network framework is shown in Figure
2. The main components of the

2 Sacerdoti, Earl D., A Structure for Plans and
Behavior (Elsevier: Computer Science Library,
1977).

87

Keller, K.

I

I EXCEPTION I
HANDLER

,ACK T 1__--/ '''=--

I_m ,,A_'t_

TASK I
EXECUTION I F_'nal

Figure 2.

activities. Typically, this reasoning
involves predicting system timeliness,
interactions between tasks, errors of

omission by an external agent (e.g. a

pilot), the information requirements of the
pilot, or responses to failure conditions of
the task. Each task is represented as a

specialist responsible for performing a
function when activated.

Tasks are defined in a hierarchical manner

such that they may be decomposed into
subtasks which refine the activities that

they represent. This is useful for
reasoning about tasks at different levels
of abstraction in monitoring, planning,
and execution. The task network

provides mechanisms for:
1) system coordination,
2) maintaining assumptions

about the environment,

3) handling exceptions, and
4) representation of

interaction with the pilot.

Task Network Top-Level Architecture

relatively little control over actions in the
external environment (e.g. hostile threats,
weather, etc.), it must make many

assump.tions:during plan generation and
execuUon. PA must be able to adapt

quickly and correctly when the external
environment changes in a way that
invalidates the planned system behavior.

Dependencies allow the tasks to represent
complex relationships between the tasks
and the state of the environment (i.e. the

context of the current situation). These

dependencies are checked when changes
are made to the Context Model

parameters. When dependencies are
violated, this is signalled to the task.
This signal is referred to as an exception.

The task network allows dependencies to
be placed on states of the environment,
the pilot, and the PA system through a
subset of the task network framework
referred to as the Context Model. The

Context Model is developed as an
hierarchical, distributed, object-oriented
database. It is used to represent
information about the external

environment, the pilot, the aircraft, and
the PA system itself. This representation
was designed to allow the detection of
events from state data. Since PA has

Exceptions represent violated

dependencies which require a response
by the system. This response is referred
to as an exception handier. These
exception handlers are defined for tasks
to aid in the recovery of violations in the
assumptions of the plan. Exception
handlers may be either local or system

exception handlers. Local handlers are
implemented using methods on the task
which result in minor, local changes to
the plan or states of various systems.
System handlers involve the creation of
System Response Plans which use the
task network framework as a control

mechanism for replanning portions of the
currently executing task network.

The task network architecture is a domain

specific design in that it is a framework

88

Keller, K.

that provides support for requirements
specification, design, and development at
the module and system level. The
benefits of the task network architecture
are realized from a set of features which

aid in the development of an application
which lies in the real-time decision

support domain. The components of the
architecture support system integration by
providing a uniform representation of the
elements of the domain. These

components and their inter-relationships
were developed to address the
requirements of the PA domain but it has
been implemented as a explicit framework
that is readily applicable, in part or in
whole, to problems with similar
characteristics. These features are

described in the following sections.

_,,xplicit Representation of System Plans
The requirements of the PA system are
often described in terms of the aircraft

mission. This mission description
includes the objectives of the pilot and his
weapon system in a hostile and uncertain
environment. Mission decomposition is
usually performed using a number of
representative scenarios. This mission
decomposition is a key characteristic of
the domain. Mission decomposition is a
top-down approach for dissecting a
combat mission into its functional

segments. These functional segments are
then divided into the tasks which are

required to complete each segment. As
functions and tasks become more

specific, they can be analyzed in terms of
information flow and functional

partitioning. The task network supports
this specification through it's explicit
representation of the sequence of tasks in
the mission.

The explicit representation of functions as
tasks in the system provides advantages
in software design by supporting graceful
adaptation through reasoning about task
timeliness, the explicit representation of
parallelism in task execution, by

promoting modular coding techniques,
explicit control synchronization between
tasks, and visibility into system operation

through the use of mnemonic names for
tasks.

_Enitbles Control Rea_0ning
Completing tasks by their assigned
deadlines is the very definition of a hard
real-time system. However, the character
of the Pilot's Associate prompted us to
expand the definition to include the
concepts of both hard and soft deadlines.
While meeting hard deadlines is a
requirement for correctness, meeting soft
deadlines is not strictly required, but is
certainly desirable. Control reasoning is
useful for a decision support system
which is attempting to optimize its
performance outside of hard scheduling
constraints. _The system may predict
missed deadlines, delete unnecessary

steps to meet imminent deadlines, and
perform reasoning about solution
quality/timeliness trade-offs. Control
reasoning is also supported by the
management of system priorities on
tasks.

Supports Coordination and Cooperation
Knowledge partitioning is a natural and
inevitable approach to the design and
development of large systems. The PA
system was partitioned into modules,
each of which is a knowledge based
system with the possibility of concurrent
execution. While concurrency may not
be utilized physically, the components of
the PA are intended to operate in a
functionally distributed fashion.
Functional distribution, in this context,

merely means that the components are
designed to allow the possibility Of
concurrent operation. Each component is
a real-time system. That is, each
component receives events and data
asynchronously and carries out steps of
assessment, planning and execution, all
constrained by timing requirements. For
such a collection of real-time knowledge
based systems to form an integrated
system, they need to behave in a
coordinated manner that is also timely,

res .ponsive, and adaptive to a changing
environment. Coordination refers to a

system-wide coherence among tasks and

89

Keller, K.

plans, to a resource management scheme
based on a global perspective, and to

dynamic adjustment of tasks and plans to
accommodate changes in overall system
performance goals.

Opportunistic Execution of Tasks
Quite often in system design, the correct
sequence of execution of system tasks is
unknown. The task network

representation allows the specification of

incomplete temporal constraints on
control flow. The non-linear plan

representation allows ambiguity of task
ordering. The execution of parallel tasks
may be performed opportunistically and
behavior is situationally dependent. This

allows the system to improve and tune
it's performance based on the context of
the current situation.

Exception Handlers Modify Behavior
Through Changes in Explicit Plans
The PA problem domain is dynamic and
hostile. Subsequently, plans may be
expected to be invalidated quite often.
This adds complexity to the system
requirements and design. The Task
Network Architecture handles this

through an explicit link between
environmental data and tasks referred to

as dependencies. Exception handlers are
procedures which are implemented to
respond appropriately to events. Each
task is responsible for handling these
events by one of several classes of
reactions such as: abandoning the task,
retrying to achieve the results of a task,
choosing an alternate method for
accomplishing the task results, or
repairing the cause of the error. The
complexity of exception handlers may be
quite simple, or may require extensive
replanning of the mission.

Replanning and Execution : Are

It is not possible to predict the time that
events impacting the mission will be
encountered. Deliberation on new plans
often involves extensive processing

resources devoted to solving problems
encountered in the execution of plans.

However, a real-time system cannot
afford to halt execution while replanning
is underway. Due to this, the system
must be capable of replanning portions of
the mission, while completing unaffected
portions. The current design of the task
network allows the system to inhibit the
execution of tasks which are in an

exception state, while continuing to
execute other tasks which are unaffected

by the exception.

Control Flow Manipulated Graphically
One of the tools available to software

developers for managing complexity is
that of graphical interfaces. The partially
ordered sequence of tasks lends itself
very well to a graphical depiction of the
sequence of tasks performed during the
mission. The implementation of tools for
the graphical manipulation of tasks
provides an efficient and intuitive
interface for system control specification.
At the same time, these tools will also

provide aid in debugging the performance
and functionality of the system since the
current state of the system is represented
pictorially through the state of the tasks in
the network.

One of the key features of the task
network approach is the ability to
describe tasks from the perspective of a
mission, and then use that same

description as a foundation for code
development. This philosophy is

supported by the encapsulation of
................ as provided by object-

oriented programming. The most
efficient means of designing and
modifying a task network data structure is

through the use of a graphical interface
which allowed for direct manipulation 3 of
the task network. The task network

3 Hutchins, E.L, Hogan, J.D., and Norman, D.A

(1986). Direct Manipulation Interfaces in D.A.
Norman, W.S. Draper (Eds.): User Centered
System Design: New Perspectives in Human-
Machine Interaction, Hillsdale London:

Lawrence Erlbaum, 1986).

90

Keller, K.

implementation offers a mechanism by
which application code could be
seamlessly integrated with code generated
via these graphic descriptions.

Requirements Specification Lan_age
The task network framework is a

programming paradigm for the
development of intelligent systems. The
task network architecture provides

support through the entire software
development process, from requirements
generation (specification) through
maintenance as shown in Figure 3. Each
module function is developed using the
task network framework for planning,
assessment, and human interface

functions. The goal of the framework is

to provide a common language between
the requirements specifier, system
designer, and system user. This will lead
to systems which have traceable
requirements in the program design and
whose operation may be easily
understood by the user. The program
structure serves as a model of the user in

performance of the mission. The
network of tasks describe the sequence of
tasks to be performed by the system and
user. Unplanned events must also be
accounted for in the system design. The
design for the detection of unplanned
events, the dependency mechanism,
makes the conditions for plan failure
explicit.

Requirements Deflnition/Desigr
Software Operation

Implementatior and
and Malntenanc_

Test

Human Factors S/W and H/Y_
Pilots ZZ_ Krlowledg. Engineers _ Engineering _Z_ Pilots

Domain Expem Engineering Pilots

Figure 3 - Software Model Supports the System Life Cycle

The analysis of the mission results in
identification of pilot and system activities
as they relate to various phases of the
mission. This analysis includes the
identification of mission objectives, tasks

that need to be performed, information
required to perform the mission
successfully, candidate _ipproaches for
automation and decision aiding support,
and the identification of constraints

imposed by combinations of the above.

Sequencing tasks in the mission identifies
the context within which tasks are to be

performed and the temporal constraints
for efficient and effective mission

performance. Through the process of
mission decomposition, functional

requirements are identified along with the
context in which they are to be executed.
This is a result of the representation of the
mission sequence--mixing pilot and
system activities together in a coordinated
fashion.

_ser Activity Model

Interactive decision support systems must

provide more aid than they require in user
attention to the system. The primary goal
for modeling the user in the task network
architecture is to minimize interactions

between the system and the user and
thereby develop a non-intrusive,
cooperative decision support framework.
Through modeling the user, the system is
supplied with necessary context

91

Keller, K.

sensitivity to work efficiently with the
user.

The pilot monitoring approach which was
adopted, focussed on the state of the
world represented in the Context Model,
rather than on explicit pilot interaction.
The approach isolates the monitor from
the need to identify all methods of
performing a task, all actions that may
undo a given task, and explicit legal time
intervals for tasks. The result is concise,

robust, task-monitoring rules that can be
incrementally enhanced as the Context
Model grows richer. The task network
represents the activities of the user by
activating tasks when evidence indicates
that they are being performed or have
been completed. Active tasks identify

activities which are being performed by
the user which may be used to identify
the information which is required by the
user of the system. This provides a
mechanism for providing both timely,
and relevant information to the user.

Issues:

The major benefit of DSSD promises to
be the creation of a library of reusable
designs which can be classified by
problem characteristics or domain to
which they are applicable. An application
developer could then quickly piece
together a development framework from
these designs. What is needed is an

enumeration of the fundamental designs
and a description of the range of domains
that they cover.

The DSSD concept supports the nouon
that the initial prototyping effort should
be directed at establishing or assembling a
design for the particular application. This
will allow leveraging the
representations/frameworks associated
with component DSSDs. The
development of a application design
based on existing DSSDs should be a
goal in order to achieve system
modularity, reuse, and development
efficiency (eg. automated code
generation).

Traditionally the press for real-time
performance tends to drive designs
toward system representations that are fiat
and efficient at the expense of rich
representations which support the
management of design complexity and
effective interface design. It becomes a
matter of development costs vs. the need
for a real-time design.

The integration of DSSDs to support and
integrate different design disciplines is a
key to the application of the DSSD idea to

large systems. In the PA example, the
task network is used as a means to

analyze the human factors elements of
information management and automation,
threat assessment, mission and tactical

replanning, and as a means to determine
the effect of system failures on mission
activities. A focus on the concepts of
DSSD should result in frameworks for

integrating lower level module designs
into a more coherent system design.

92

