
Keller, R.

Knowledge-Intensive Software Design Systems:
Can too much knowledge he a burden?

RichardM.KeNer N 9 3" 17 5 1 8

Sterling Software
NASA Ames Research Center - Artificial Intelligence Research Branch

Mail Stop 269-2, Moffett Field, CA 94035-1000

(415) 604-3388 (Phone); 604-3594 (FAX); Keller@ptolemy.arc.nasa.gov

Abstract

While acknowledging the considerable benefits of domain-specific, knowledge-intensive
approaches toautomated software engineering, it is prudent to carefully examine the costs
of such approaches, as well. In adding domain knowledge to a system, a developer makes
a commitment to understanding, representing, maintaining, and communicating that
knowledge. This substantial overhead is not generally associated with domain-
independent approaches. In this paper, I examine the downside of incorporating additional
knowledge, and illustrate with examples based on our experience building the SIGMA
system. I also offer some guidelines for developers building domain-specific systems.

1. Introduction

One of the long-prevailing tenets of artificial intelligence
research is that "knowledge is power" -- the more
knowledge made available to a system, the better. The
knowledge-based software engineering (KBSE)
community, as evidenced by its self-designation, embraces
this philosophy no less than other disciplines within AI.
Traditionally, the knowledge represented and used by
practitioners of KBSE has been knowledge about the
programming discipline, itself. Increasingly, however,
researchers are recognizing the utility of representing and
using knowledge about the target programming domain
(e.g., business, manufacturing, science,
telecommunications, engineering, etc.) to facilitate
automation of various facets of the software engineering
process [1,2,3]. In fact, the seductive "knowledge is
power" maxim has even found a receptive audience in the
mainstream software engineering community, where
several workshops on the topic of "Domain Modeling"
have been held over the past few years [4].

The migration toward domain-specific systems comes as
no great surprise. Despite progress in developing general-
purpose methods for automated software engineering [5],
the practical application of these techniques has met with
limited success. In some cases, these methods have failed
to scale up appropriately; in other cases, the methods

have proven too mathematically-sophisticated to appeal
widely to the practicing community of software engineers.
However, by incorporating additional domain knowledge
and constraints, it becomes possible to specialize and
simplify these methods to a point where they are more
tractable and less daunting to apply. While
acknowledging the considerable benefits of domain-
specific, knowledge-intensive approaches to automated
software engineering, it is prudent to carefully examine
the costs of such approaches, as well. In adding domain
knowledge to a system, a developer makes a commitment
to understanding, representing, maintaining, and
communicating that knowledge. This substantial
overhead is not generally associated with domain-
independent approaches. In this paper, I examine the
downside of incorporating additional knowledge, and
question whether adding knowledge introduces as many
new problems as it solves.

Over the past several years, I have been involved in the
development of a domain-specific software design system
for scientific modeling. To ground my remarks, I will
briefly describe this system and its knowledge
requirements. Then I will describe some of the additional
burden placed on the developers as a result of the
knowledge-intensive nature of this system. Finally, I will
attempt to generalize from our experience and present
some guidelines and caveats for others developing domain-
specific KBSE systems.

93

2. SIGMA : A knowledge-based
scientific software environment

The goal of the SIGMA project [6] is to provide
computational support for scientists engaged in computer
modeling and simulation of physical systems. Examples
of such systems include planetary atmospheres, forest
ecosystems, and biochemical systems. Generally, these
systems can be modeled as a set of algebraic and ordinary
differential equations, where the terms in the equations
interrelate the physical quantities of interest. Although
computer models play a crucial role in the conduct of
science today, scientists lack adequate software engineering
tools to facilitate the construction, maintenance, and reuse
of modeling software. Usually, scientific models are
implemented using a general-purpose computer
programming language, such as FORTRAN. Because
this type of general-purpose language is not specifically
customized for scientific modeling problems, the scientist
is forced to translate scientific constructs into general-
purpose programming constructs. This manual
translation process can be very complicated, labor-
intensive, and error-prone. Furthermore, the translation
process obfuscates the original scientific intent behind the
model, and buries important assumptions in the program
code that should remain explicit. The resulting software
is typically complex, idiosyncratic, and difficult for
anyone but the primary scientific author to understand.

We are building a knowledge-based software environment
that makes it easier for scientists to construct, modify, and
share scientific models. The SIGMA (Scientists"
Intelligent Graphical Modeling Assistant) system

Keller, R.

functions as an intelligent assistant to the scientist.
Rather than construct models using a conventional
programming language, scientists will be able to use
SIGMA's graphical interface to "program" visually using
a more natural high-level graphical data flow modeling
language. The terms in this modeling language denote
scientific concepts (e.g., physical quantities, scientific
equations, and datasets) rather than general programming
concepts (e.g., arrays, loops, counters). The scientist-user
interacts with the system to construct a syntactically and
semantically valid data flow graph, such as the one
illustrated in Figure 1. In this graph, the lettered nodes
represent scientific quantities, such as temperature,
pressure, and density. These quantities are input to
scientific equations (depicted by numbered nodes in Figure
1) which calculate output quantities.

The data flow graph in Figure 1 represents part of a
planetary atmospheric model developed at NASA Ames
Research Center [7]. The model computes the temperature
(T) at some altitude point above a planetary surface based
on input data (r)' measuring the extent to which a radio
signal refracts upon penetrating the atmospheric gases at
that altitude.

Although visually simple, the graph masks a number of
non-trivial technical problems that must be addressed to
actually execute the corresponding program. For example,
the input refractivity value is a vector quantity, not a
scalar, so there is an implicit iteration being performed.
Note also that Equation # 4 is a differential equation that
must be numerically integrated to solve for P. In
addition, the scientific units specified for the various
inputs to an equation may not be compatible and must be

fraclivity number mass

ta let density density prenure temperature

hmid" #: L.?_ molecuIIr I gri_,.,,o_ i

,.,.gr.,h,:£i IIw.,,.. - :g

aim mlr_tlvIly: r_ planet -mdI.-,:L l _ lurl_e OnwIly: g_

- -- altitude:

r

@ n: , Q at'= -pg
I dzQ q.-q =-;-;

.2_
(_ p---'nT-4ft j_ _ n=kTNO

Figure 1: Data flow graph representing a portion of a planetary atmospheric model. Letters represent physical quantities.
Numbered circles correspond to equation application nodes.

94

converted to a common unit system before that equation
can be applied. SIGMA's interpreter handles these details
automatically for the user.

Keller, R.

makes extensive use of scientific domain knowledge to aid
in the program synthesis process. The next section
describes SIGMA's domain knowledge.

On the surface, SIGMA appears similar to a large class of
data flow based visual programming environments that
have been developed recently. These systems help users
graphically construct software in a variety of application
areas, including image processing and scientific
visualization (Khoros/Cantata [8], Iconicode/IDF [9],
AVS [10], apE [11]), scientific instrument design
(LabVIEW [12]), and simulation (STELLA/IThink [13],
Extend [14]). In all of these cases, however, the software
tool has fairly limited knowledge of the application
domain. Although the tools enforce simple syntactic
checks on the data flow graphs and perform some type-
checking, none of these tools has a deep semantic

understanding of what the data flow program is doing and
whether the operations on the data make sense. As a
result, it is possible with these tools to create a
syntactically valid flow graph that is semantically
meaningless to a domain specialist. In contrast, SIGMA

assists the scientist during the model-building process and
checks the model for consistency and coherency as it is
being constructed. In particular, SIGMA's domain

knowledge assists the system in interpreting the user's
intentions and in constructing a semantically meaningful
program.

SIGMA is closer in spirit to _0 [15]. _0 is a domain-

specific automatic programming system constructed to

assist in generating oil well log interpretation software.
The system was designed for direct use by petroleum
scientists, who would use it to construct geological

models expressed as a set of quantitative equations relating
geological parameters of interest. Like SIGMA, O0

3. SIGMA's Domain Knowledge

SIGMA's domain knowledge is represented and stored in a
hierarchically-structured, frame-based knowledge base of
over 500 concepts which contain information about
scientific equations, physical quantities, scientific units,
numerical programming methods, scientific domain

concepts, and bibliographic citations. A partial overview
of the knowledge base is depicted in Figure 2.

SIGMA's knowledge can be partitioned into four
categories:

I, Cross-disciplinary scientific knowledge:
General knowledge available to persons with a
scientific background, including knowledge about
various physical quantities, scientific domain
objects, Scientific measure units, foundational
equations, and scientific handbook data.

, Area-specific scientific knowledge:
Quantifies, domain objects, equations, and data
pertaining to a specific scientific discipline (e.g.,
biology, ecology, physics).

. Problem-specific knowledge: Domain
objects and relations pertaining to the specific
physical system being modeled by the scientist,

[SIGMA Knowledge BaseL_

Transform
[Atmospheric / _.D.a_ X '_ '_
I Obiect / t.ltauon]t 't_ \ I _ .

Lin_lal _-- Chemical _ \ _ subroutine equa]aon
d_t_t /I ._ Object Physical \ \ /

/ I Pkmne.,tory \ Quantity \ \ I ideal'gasl
physical I _ _. . / , _ _ I hydrostatic-law I
" "ty tool" ule ressureture gravity-eqn
,, /,,,/, m'_..on _ _tm-e[.oX '_ I_.os_a,_y_ol
Z . I _ Irerracuvsq, I measure \ I .,.. I

physical radiation liT_ I I h g. I u., \, -,

atm&p_ric substance Imethane I _'_ _ cony .e_ble X
eel I Ihvdm_enl _t Ph sicai

p 't ° I / X
mass pressure n

c_ u?it unit IB°ltzmannI

4clOlld naze _gram" IAv°gadr° I
I nl I_go.cp-q
[slug t sph_ letc I
Ietc I

Figure 2: Overview of SIGMA's knowledge base

95

Keller, R.

, Programming knowledge: Knowledge about
numerical programming methods, data structures,
control, etc. (In the current version of SIGMA,
much of this knowledge is implicit in the data flow
interpreter.)

Although a detailed discussion of SIGMA's knowledge
base and representational structures is outside the scope of
this paper, I will briefly describe one of the key elements:
SIGMA's equation representation.

Each SIGMA equation consists of a syntactic equation
formula plus a semantic interpretation for each of the
symbols in the formula. Each symbol is identified with
an attribute of some class of domain objects in SIGMA's
knowledge base. The domain objects associated with the
various equation symbols are constrained toobey specified
relationships among each other. Consider Figure 3,
which illustrates how Equation 1 of Figure 1 is
represented internally within SIGMA. Equation 1 states
that the number density (n) of a gas mixture (i.e., the
number of particles per volume of mixture) is equal to the
refractivity index (r) of the entire mixture divided by a
weighted sum of the refractivity indices (rg) of the
individual gases within the mixture.

As shown in Figure 3, the semantics of this equation are
represented in terms of the domain objects that the
equation interelates, namely the gas mixture (called an
atmospheric-parcel), the homogeneous pure-gas
subcomponents of the mixture (called constituents), and
the individual gases that are included in the mixture. The
symbols "r" and "n" in the equation are linked to the
refractivity and number-density attributes of the same
atmospheric-parcel. The subscript "g" is identified with

the constituents attribute of that same atmospheric-parcel.
The constituents attribute stores a pointer to each
constituent within the atmospheric-parcel. The symbol

"fg" is linked to the mixing-fraction of a constituent, and
stores the percentage of this constituent as a fraction of
the total quantity of gas within the atmospheric-parcel.
The symbol "rg" represents the refractivity atlribute of a
gas that is contained by the constituent. Finally "L"
refers to a physical-constant called Loschmidt's Number.

In essence, this representation provides a set of domain
conslraints that must be satisfied for the equation to apply
legitimately in a given domain situation. As a scientist
builds up a data flow graph such as the one in Figure 1,
he or she is unknowingly constructing an invisible
constraint network of domain objects and relations similar
to the one illustrated in Figure 3. This constraint network
provides a sound semantic interpretation for the graph.

4. SIGMA's Knowledge Burden
i

The rationale behind our decision to invest considerable

time and energy into representing domain knowledge for
SIGMA is simple and, we believe, compelling: How can
a machine interact intelligently and s),nergistically with a
scientist to create modeling software if the machine has no
understanding of the scientific problem under study?
Without this shared understanding, SIGMA would have to
rely on user guidance for many of the functions it now
performs automatically. Our users have expressed an
impatience with systems that need to be "spoon-fed";
given an option, they would rather drop down into
FORTRAN and code the model themselves! Our only
alternative, it seems, is the knowledge-intensive route.

r[] PLANET <_1 I PHYSICAL'CONSTANT I

ATMOSPHERIC SurfaceGravlty: Unit= : 1/cm3 l
PARCEL Radius : Value : 86e+19

• i° IIAltitude:] I_' -- •
NumberDen=ity:

L
Refractivit,

Pressure:

Temperature:__

Gravity"
Constituents

In-r l
CONSWTUENT

MixingYractlon

NumberDensity:__

MassDensity:__
PEeSlUEe:

Gas:

Figure 3: Representation for Equation 1 in Figure 1.

96

TheCatch-22in this situation is that the addition of

domain knowledge imposes burdens on the developer,
maintainer, and users of the interactive software design

system:

• The Comprehension Burden: System developers
must analyze and understand the application domain
and the class of problems to be solved.

Our experience with SIGMA is that a significant
amount of time (several person-months of effort) is
required to sufficiently understand the scientific
modeling problems presented by our collaborators
in planetary and ecosystem sciences. Of course the
difficulty is a function of many variables, including
the developer's prior background knowledge and
experience in the application domain, the caliber of
expert advice and guidance, the complexity of the
scientific modeling problem, etc.

• The Representation Burden: Developers must
design suitable representations to capture the
knowledge.

In our experience, the problem of representing
domain knowledge is a significant modeling
problem in itself. Within SIGMA, we have
identified a need for representing quantities,
quantitative and qualitative relationships, part-
whole and subsumption relationships, temporal and
spatial relationships, modeling assumptions, and
other difficult representational constructs. A
comprehensive treatment of all of these issues is
beyond the scope of any single project. (However,
see [16] for an ambitious effort in this vein.)

• The Maintenance Burden: System maintainers
or users must add new knowledge, update old
knowledge as it becomes outdated, and generally
maintain the integrity of the knowledge base.

For example, novice and intermediate SIGMA users
will want to enter new equations and new physical
quantities into the system. Sophisticated SIGMA
users may wish to modify the original domain
theory that was captured and encoded as a by-
product of discussions with our expert
collaborators. In fact, the domain theory (i.e., the
domain objects, attributes, and relations) is as
much a part of the scientist's model as the
equations. Because the equations are intimately
linked to the underlying domain theory (as
discussed in Section 3), entering a new equation is
complicated, and modifying the domain theory has
wide-ranging implications. As a result, the current
version of SIGMA does not permit users to modify
the domain theory.

• The Communication Burden: Developers must
implement tools and techniques that adequately

Keller, R.

convey the system's knowledge to the user, and
vice versa.

Consider once again SIGMA's equation
representation. It is non-trivial to convey this type
of a representation scheme to a naive user without
exposure to knowledge-based or object-oriented
techniques. Building an adequate user-friendly
editor for SIGMA will be a challenging (and no
doubt time consuming) task. Navigating and
editing the concepts in the knowledge base pose
similar difficulties.

Although these problems are significant, most of them are
pose no greater or lesser challenge than those faced by
developers, maintainers, and users of any sophisticated
knowledge-based system. Software engineering, after all,
is just another application area for knowledge-based
techniques.

t

r

5. Easing the Burden

Despite the extra effort involved, and the new problems
introduced, I still believe it is worth the effort to
incorporate domain knowledge as an integral part of an
automated software engineering environment. !believe
the newly-introduced problems are challenging, but
tractable. And without incorporating additional
knowledge, I see no way to provide more intelligent and
domain-sensitive tools to practitioning software engineers.
In this spirit of pragmatism, I offer the following
recommendations to those building knowledge-intensive,
domain-specific tools:

• Generality: Keep the knowledge base and the
representations general, without going overboard.
This will facilitate entry of new information into
the knowledge base, and encourage reuse of existing
knowledge and representational conslructs in new,
similar domains.

• Stability: Choose an application for _,hich the
domain knowledge is relatively stable. This will
minimize the maintenance burden.

• Scope: Choose an application for which knowledge
is well-circumscribed, yet broad enough to make
the endeavor worth your effort. If the knowledge
can be reused in other applications, the
development costs can be amortized over a shorter
period of time.

• Content: Choose an application for which the
domain theory is well-understood and commonly
accepted. This will simplify the process of
building an acceptable domain theory and reduce
maintenance and communication costs.

97

• Terminology: Use vocabulary that is as familiar as
possible fo users.: This will ease the
communication burden.

• Grainsize: Avoid modeling phenomena in more
detail than necessary for the task -- unless
warranted due to generality and subsequent
reusability.

Of course the developers of software systems do not
always have control over the selection of an application
domain. In this case, the above recommendations can be
used to evaluate the suitability of domain-specific
approaches with respect to a particular domain.

6. Conclusion

Yes, I still believe in the "knowledge is power" axiom.
But more than ever, I feel it is important to heed its most-
overlooked corollary: "There is no such thing as a free
lunch". Caveat emptor!

Acknowledgments

Thanks to the SIGMA group, and especially to Michal
Rimon, who implemented the current version of our
system. Thanks also to Pandu Nayak who provided us
with his RML representation language.

References

[1] D.Barstow, "Domain-Specific Automatic
Programming", IEEE Transactions on Software
Engineedng, Vol. SE-11, No. 11, pp. 1321-1336,
Nov. 1985.

[2] E.Kant, F.Daube, W.MacGregor, and J.Wald,
"Scientific Programming by Automated
Synthesis", in Automating Software Design, pp.
169-206, M.R.Lowry and R.D.McCartney (eds.),
AAAI Press, Menlo Park, CA, 1991.

[3] D.Setliff, "On the Automatic Selection of Data
Structure and Algorithms',in Automating Software
Design, pp. 207-226, M.R.Lowry and
R.D.McCartney (eds.), AAAI Press, Menlo Park,
CA, 1991.

[4] N.Iscoe, "Domain Modeling -- Evolving
Research",Proc. Sixth Annual Knowledge-Based
Software Engineering Conference, pp. 234-236,
lEE Computer Society Press, Los Alamitos, CA,
1991.

[5]

[6]

[7]

[8]

[9]

[lO]

[11]

[12]

[13]

[14]

[15]

[16]

Keller, R.

M.R.Lowry and R.Duran, "Knowledge-Based
Software Engineering", chapter in Handbook of
Artificial Intelligence, Vol. IV, A.Barr and
P.Cohen (eds.), Addison-Wesley, New York, 1989.

R.M.KelIer and M.Rimon, "A Knowledge-based
Software Development Environment for Scientific
Model-building", AI Research Branch technical
report #FIA-92-12, NASA Ames Research Center,
Moffett Field, CA, forthcoming July 1992.

C.P.McKay, J.B.Pollack, and R.Courtin, "The
Thermal Structure of Titan's Atmosphere", Icarus,
vol. 80, pp. 23-53, 1989.

Khoros/Cantata software product, Khoros
Consortium, EECE Department, University of
New Mexico, Albuquerque, NM.

Iconicode and IDF software products, Iconicon,

Palo Alto,; CA.

AVS software product, Stardent Computer, Inc.,
Sunnyvale, CA.

apE 2.0 software product, Ohio Supercomputer
Center, Columbus, OH.

LabVIEW software product, National Instruments,
Austin, TX.

STELLA and IThink software products, High
Performance Systems, Lyme, NH.

Extend software product, Imagine That, Inc., San
Jose, CA.

D. Barstow, R. Duffey, S. Smoliar, and S. Vestal,
"An Overview of _nix", in Proc. National
Conference on Artificial Intelligence (AAAI-82),
pp.367-369, Pittsburgh, PA, August 1982.

R.V.Guha and D.B.Lenat, "Cyc: A Mid-Term
Report", AI Magazine, 11(3), 1990.

98

