
Malden

N93-1752C

Generic Domain Models in Software Engineering

Neff Maiden

Department of Business Computing
City University

London EC1V OHB, UK.
Tel: +44-71-253-4399 x3422

E-mail: cc559@city.ac.uk

Abstract

This paper outlines three research directions related m

: domain-specific software development: (i) reuse of generic
models for domain-specific software development; (ii)
empirical evidence to determine these generic models,
namely elicitafion of mental knowledge schema possessed
by expert software developers, and; (iii) exploitation of

generic domain models m assist modelling of specific
applications. It focuses on knowledge acquisition for
domain-specific software development, with emphasison
tool support for the most important phases of software
development.

Introduction

Domain-specific software design has aroused considerable
interest over the last decade. Most of the research effort

has focused on supporting the latter stages of software
development, typified by program wansformational
techniques and systems (e.g. Feather 1987). However, it is
now agreed that most costly problems occur during the
early stages of system development, when systems'
requirements are ill-clef'meal and poorly understood.
Therefore, domain-specificsoftware development (as
opposed m design) must provide effective guidance during
requirements engineering and high-level software design

as well as during system implementation. Unfortunately
requirements engineering differs from system design in its
focus on the identification and embedding of systems in

automatingrequirementsengineeringand high-level

softwaredesign.

Domain modellingisneededfordomain-specificsoftware
development.However, case historiesof successful

domain modellingand effectivemethods for modelling
complex applications have been lacking in the literature.
Innovative work by Neighbors (1980) indicated that
domain analysiswas bothdifficult and time-consuming,

even for experienced analysts. Recent findings have
supported this view, for instance Prieto-Diaz (1991)

reports difficulties in maintaining a domain model
represented as a faceted classification scheme supporting
reusewithina singleapplication.Furthermore,models of

specificapplicationscanonlysupportdevelopmentwithin

that application,while many organisationsdevelop

softwareformany applications,thusreducingthepotential

payofffromsuchapplicationmodelling.Genericdomain

modelsprovidean alternativedomain knowledgesource

whichcan providegreaterpayofftosoftwaredevelopers

becauseoftheirapplicabilitytomany applications.Reuse

of such models has been proposed elsewhere(e.g.

Reubenstein&: Waters 1991),althoughlittleisknown

about the nature, contentsand applicability of generic

domain models for effective requirements engineering. As
a result, a second research direction proposed in this paper
is to determine the knowledge structures of generic domain

models which support effective requirements engineering.
Generic domain models have been proposed to support

their environment rather than prescribing systems' requirements engineering activities, however they may also
functionality. This broad view can often preclude the provide effective guidance for longer-term domain
complete capture of all domain knowledge, implying only
partial automation of domain-specific software
development. This paper proposes, as a in'st
direction, that it is more beneficial to model generic

domain models rather than specific application domains,
and to exploit these genetic models for guiding rather than

modellingactivities.The problemisakintoknowledge

acquisitionduring knowledge-based system (KBS)

development.Recentadvancesinknowledgeacquisition

techniquespromote reuse of generic,partialdomain

models as templatessupportingtop-down knowledge

acquisitionand modelling(e.g.Wielingaet al. 1991,
105

Maiden

Chandrasekaran 1986). A third research direction proposed

in this paper is to exploit generic domain models to assist
application modelling within a comprehensive domain
modellingframework.

The remainder of the paper investigates these three
research directions, namely reusing generic models for
domain-specific software development, determining the

natureof thesegenericmodelsfrom empiricalstudies,and
exploiting generic domain models to assist subsequent
modelling of specificapplications.

Evidence for Generic Domain Models

Evidence for the likelihood of generic domain models to
assist requirements engineering comesfor current software
engineering research, recent advances in knowledge
acquisition and empirical evidence of software engineering
expertise. Each is examined in turn,

Generic Domain Models in Software Engineering

Generic domain modelling in software engineering
research hasarisenas an issuein bothautomatedsoftware
development and domain analysis. Reusable generic
domain models have been proposedin several research
projects (e.g. Reubenstcin & Waters 1991). The well-
known RequirementsApprentice (Reubensmin& Waters
1991) exploits cliches representing general software
engineering concepts, including domains, however few

Generic Knowledge Structures in Knowledge

Acquisition

Knowledge acquisition techniques and methods (reviewed
in Neale 1988) have implications for domain analysis for at
least three reasons. First the task of requirements analysis
is similar to knowledge acquisition. Aspects of KBS
development such as informatiOn analysis, application
selection, project management, user requirement capture,
modular design and reusability are similar to those

encountered in software development. Indeed the KADS
project (Wielinga et al. 1991) proposes a sequential
development method based on modelling activity and an
operational model that exhibits some desired behaviour in
terms of real-world phenomena, similar to many existing
software development methodologies including SSADM
(Cuffs 1987) and JSD (Jackson 1983). A second reason is
that knowledge acquisition techniques like KADS are
relevant to requirements engineering because they focus
support on the earlier, analytic stage,s of KBS development

while domain-specific software design paradigms support
later stages such as program specification, transformation
and maintenance (e.g. Feather 1987). Finally knowledge
acquisition approaches introduce techniques not found in
otherwise equivalent software development methodologies,

so a review of knowledge acquisition techniques in respect
to requirements engineering is warranted. The following

clues are provided about the nature and boundaries of_ese_knowledge acquisition projects were identified as having
cliches. Furthermore object-oriented paradigms have been implications for generic domain models.
limited to design and implementation phases of software
development while object-oriented analysis has focused on Generic Tasks: Chandrasekaran and his colleagues at Ohio
object definition rather than object structure within State University propose generic tasks to provide an
domains. This would suggest that abstraction in software_ oudine or framework for expert system design. This
engineering is poorly understood, and requires further framework claims that complex knowledge-based
investigation, reasoning tasks can often be decomposed into generic

Iscoe (1991) reviewed evolving research in domain tasks, each with associated types of knowledge and family
modelling, with emphasise on met,a-models instantiated of_nwol regimes (Chandrasekaran 1986). Six generic

into application domains. His research issues include expert system tasks are identified in terms of knowledge
domain classification and analysis, implying the need for a
theory of software engineering abstraction, however he
gives few clue,s about the nature of this abswaction. Several
domain meta-models have been reported in the literature
(e.g. Lubars 1988, Dardenne et ai. 199I, Chung et al.
1990), however this work has not been sufficiently
developed as application examples and in practice to
determine generic domains. Prieto-Diaz (1990) also
reviewed domain analysis and emphasised the importance
of abstraction in domain modelling. However, he could
offer no guidance for this abstraction process beyond

current structured analytic techniques such as SSA (De
Marco 1978) and domain analyst expertise. Furthermore

types and control regimes: classification, state abstraction,
knowledge-directed retrieval, object synthesis by plan
selection and ref'mement, hypothesis matching, and
assembly of compound hypotheses for abduction. These

tasks encompass both declarative and procedural
knowledge in reoccurring patterns. They emphasise the

importance of domain knowledge and the reuse of large
knowledge structures akin to complex objects.

The KADS Project:. KADS is an ESPRIT project (ESPRIT-
1 P1098), providing the knowledge engineer with reusable

partial knowledge models as templates to support top-
down knowledge acquisition and modelling, based on

abstraction was limited to identification of important recognition that parts of the model are not specific to
domain features rather than generification from application certain applications. The success of this approach has been
instances, documented in many domains, including diagnosis of

106

Maiden

movement disorders, paint selection, commercial wine

making and statistical consultancy (Wielinga et al. 1991),
suggesting the potential effectiveness of the retrieval and
exploitation of generic knowledge structures in complex,
ill-slructured modelling activity. Generic models are

categorised by system slructure, solution type and the
discrepancy between observed and expected behaviour,
based on a modified and extended version of Clancey's

(1985) description of problem types.
KADS's domain meta-model is based on a tentative

topology of primitive problem solving actions, or
knowledge sources, consisting of concepts, their attributes,
the values of these attributes, the structure of concepts, sets
and set instances. It is derived from the type of operation

that is carried out by the knowledge source, demonstrating
the importance of contextuality linked to functionality of
knowledge needs. KADSs' generic models demonstrate the
importance of a topology of primitive problem solving
actions based on a taxonomy of problem solving types.

This approach has lead to considerable modelling success
in a number of complex applications. Unfortunately the
meta-model is weak due to the varied nature of domains

tackled by the KADS approach.

Generic Mechanisms: Klinker et ai.'s generic mechanisms

(1991) result from comprehensive research to develop
constructs which are both usable and reusable during

knowledge acquisition and modelling. These mechanisms
represent generic tasks reoccurring in many domains, for
example sizing and scheduling tasks occur in both the
computer and aerospace industries. Klinker's current
knowledge acquisition tool is populated with at least 14
such mechanisms which are also aggregated into larger

applications in which they often occur. A theory of
mechanisms is currently being developed from experiences
with the knowledge acquisition tool in new applications,
leading to a more refined and complete mechanism library.
The approach of Klinker and his colleagues differs from
those of Chandrasekaran and KADS in terms of the

research methods used, which employ empirical evidence
to determine generic task mechanisms and their

aggregation. This most comprehensive generic domain
analysis demonstrates the importance of multi-level
abstraction and granularity for generic domain models,
with a need to aggregate domain models in several
dimensions such as common application groupings.

Summary:. Recent knowledge acquisition approaches
demonstrate the feasibility of guidance based on generic
domain and task models during complex modelling

activities like requirements engineering. However, a model
of generic tasks and domains, implying an underlying
theory of absuaction, is not readily available for software
engineering researchers. Such a theory must identify

several determinants of generic domain models, such as
their appropriate level of abstraction, granularity and
effective knowledge su'uctures, to decide how big or small
these generic domain models should be. Intermediate
findings point to potential research directions, namely the
contextual nature of these models and the need to validate

them through empirical evidence in software engineering,
for instance software engineering domains are very
different to those of commercial winemaking or diagnosis
of movement disorders (Wielinga et al. 1991).

Software Engineers' Expertise

Software engineers' expertise offers one form of empirical
evidence for validating generic domain models. Expert

software developers possess preformed abstract mental
schema of domains which allow them to classify, sU'ucture

and scope each problem (Gulndon 1990) and develop
multiple mental domain models (Pennington 1987).

Experts' mental schemata can be assumed to be effective
generic representations due to successive refinement
during requirements engineering experiences in many

applications, which may suggest why experienced software
engineers are much sought-after individuals. Intelligent
software development mimicking experts' knowledge
structures may be one direction for research to proceed.

Again however, current empirical evidence of software
engineers' mental schema is limited due to a lack of
relevant and comprehensive studies, so more effective,

empirical research is needed to determine generic domain
models in software engineering.

An Initial Model of Software Engineering

Abstraction

Studies of genericmodels in software engineering,
knowledge acquisition and expert analytic behaviour

suggest the validity of a generic domain modelling
approach to domain-specific software development.
However, the nature of these generic models is less clear,
so a three-phase research strategy was adopted at City

University to determine their contents and su'ucture:
• investigation of analogical specification reuse as one

means of determining generic domains underlying this
reuse, to be followed by validation and extension of these

generic domain models using:
•empirical studies of software engineers' menial
knowledge structures via knowledge acquisition

techniques, and
• domain analyses of large, real-world applications to

verify generic domains in terms of recognisable
instantiations and instantiation aggregations.

The first phase is partially complete while the second and
third phases are the focus of an ESPRIT Basic Research
Action. The fwst phase has led to a tentative model of
software engineering domains which provide the basis for

107

Malden

a retrieval mechanisms supporting analogical specification

reuse, and described in Maiden & Sutcliffe (1991).

Generic Domain Models Supporting
Specification Reuse

Maiden (1991) identified an initial model of generic

domain models through studies of analogical specification

reuse, such that two specified domains are analogous if
they are both instances of the same generic domain class,

as demonstrated in Figure l. As such the scope, granularity

and level of abstraction of these generic knowledge

structures is constrained to most effectively support reuse

of functional specifications.

Maiden's model (1991) proposes that generic domain

classes are differentiated by key state transitions, hence a

generic resource hiring domain, of which library loans is

an example, can be distinguished from a generic resource

containment domain (e.g. stock control) by the key

transition of return (see Figure 2). SimilarJy two classes of

object allocation domain can be differentiated by the

transitions send to and remove from waiting fists, for

example the reservation system of a local cinema may not
include waiting lists once all seats for a performance are
sold. Additional determinants of distinct domain classes

were identified in terms of these critical transitions

between domain states. The following meta-schema for
describing critical generic domains and theft instantiations

was developed, with each knowledge type describing one
or more critical dimensions:

• actions leading to state transitions with respect to a

knowledge structure. These actions represent system

intervention in the domain to maintain or change the

domain from a possible to a required state. Actions and

state transitions are central to the model, for example the

allocation action in the theatre reservation example

causes the object (theatregoer booking) to change state
from an in-requirement state to an occupying.resource

state (from required-booking to reserved-booking);

* object structural knowledge describing both problem and

required domain states in the form of conceptual

relations between objects. For example, theatre contains

many seats, each containing one or no theatregoer

booking. Furthermore, required knowledge structures

such as maximise seat occupation, can be imposed on
these domain states;

• pre/post-conditions on state transitions identified from

values describing the current state of objects, for

example a state transition moving the theatre reservation

to the seat only occurs if the reservation and the seat

have similar constraints such as non-smoking, price
<£20, seat is unreserved, etc.;

• object types describe object roles in the context of state

transitions, for example customer bookings is a type of

requirement while theatre seats are resources available

to satisfy those requirements;
functional transformations which may be causally-

related to state transitions in the domain model, for

example the functional transformation allocate from

waiting list results in a state transition moving the

theatre booking from the waiting list to theatre seats

while functional transformations in library systems are

typically lend and return;

state transitions can also be distinguished by their

triggering events. Domain events which cause state

transitions ate either initiated by the information system

or by events external to it, for example the theatre

reservation domain may in part be distinguished by the

scope of triggering domain events because allocating

customer bookings to the seats available is initiated by

the information system while removing customers from
allocated seats results from external events.

requirement resources

@ allocat= . _ cancellations

<world. reqt set, has_one>
<world. resource_set.has one>
<world,list.has one>
<reqt set. reqt. contalns_one>
<resource set.resource, has_many>
<resource, req t, con lain s one>
<allocate,reqt,reqt_set,resource,o ne>
<reclt,reqt_type>
<resource.resource_type>
<allocate,matching_properties>

theatregoer theatre with seats

II"',. I! =i'--i==

theatre waiting list

Figure 1."simple theatre reservati on domain

and its generic domain class, ind uding partial
d_mition of that class

To sum, this model of generic software engineering

domains was developed from example-based studies of

such domains in the context of reuse. Its development was

driven by domain-based studies of important knowledge

structures in software engineering, a constraint which

108

Malden

distinguishes it from existing meLa-models of software Summary
engineering domains such as TELOS, (Chung et al. 1990). This paper proposes that greater benefits can be achieved
The extent and nature of this example-drivenanalysis is from modelling generic domains rather than specific

described briefly in the following section.

Example Generic Domain Models
Current research has identified 35 generic domain models

through the relatively weak proof of trial by example, see
Figure 2 and Maiden (1992). These models were
hierarchically-swactmed to identify classification and
specialisation of basic domain types, for instance library
and stock control domains are both specialisations of a

more generic object containment domain. Furthermore
generic domains were aggregated to identify standard
applications incorporating many domain classes in unique
patterns, for example a comprehensive library system can
involve lending, stock updating, allocating and reserving
activities which are all instantiations of different domain

classes. The validity of this current approach is suggested
by a prototype specification reuse tool incorporating 10
such generic domain models in a specialisation hierarchy
to support successful retrieval and explanation (Maiden
1992). However, further work is needed to extend and
validate the current model.

Domain Modelling From Generic Domain
Models

This paper reports studies which reveal domain analysis to
be a problematic task akin to knowledge acquisition.
Parallel experiences in knowledge acquisition suggest that
generic domain models may assist in this task. A domain
modelling framework incorporating reuse, similar to the
KADS method, is needed to make effective use of generic
domain models. In particular such models provide pieces

of the generic skeleton to be instantiated and fleshed out
with additional knowledge types until the domain model is

complete.

re.$oulr_;

numy bon, ower$

I'e,$ot_d_..$

Figure 2: examples of generic doom in models:

(i) renewable resource, e.g. libra ry,

(ii) non.renewable resom'ce, e.g. stock control.

applications, so overcoming domain modelling bottlenecks
by mimicking expert software engineering practice.
Intelligent tool support founded on generic domain
knowledge can assist during requirements engineering in
the following tasks:
• identification and validation of application models to

assist effective requirements capture, providing
intelligent feedback on system requirements and models;

• procedural guidance for requirements engineering tasks,
using generic domain hierarchies to focus on critical
domain features and incrementally specialise them;

• support for reuse through categorisation of problems
based on generic domain classes (Maiden & Sutcliffe
1991).

We would also intuitively expect generic domain models

to provide the basic building blocks for complex
application modelling then domain-specific software
design. Acquiring these knowledge structures therefore
takes on considerable importance for intelligent support
during requirements engineering and software design. To
this end we suggest that much research effort should be
focused on practical and empirical research to determining
the most effective knowledge structures for supporting

domain-specific software development.

References

Chandrasekaran B., 1986, Generic Tasks in Knowledge-
Based Reasoning: High-Level Building Blocks for Expert
System Design, IEEE Expert 1(3), 23-30.

Chung L., Katalagarianos P., Marakakis M., Mertikas M.,
Mylopoulos J. & Vassilou Y., 1990, From Information
System Requirements to Designs: A Mapping
Framework, Technical Report CSRI-245, University of
Toronto, September 1990.

Clancey WJ., 1985, Heuristic Classification, Art_cial

Intelligence 27, 289-350.
Cuffs G., 1987, SSADM - Structured Systems Analysis and

Design Methodology, Paradigm Publishing.
Dardenne A., Fickas S. & Lamsweerde A., 1991, Goal-
directed Concept Acquisition in Requirements Elicitation,
Proceedings of 6th Intl Workshop on Software

Specification and Design, Como (It) 25-26th October
1991, IEEE Computer Society Press, 14-21.

De Marco T., 1978, Structured Systems Analysis and

Specification, Prentice-Hall International.
Feather M.S., 1987, A Survey and Classification of some

Program Transformation Approaches and Techniques,
Program SpecO_cation and Transformation, ed. L.G.L.T.
Mecrtens, Elsevier Science Publishers.

Guindon R., 1990, Designing the Design Process:

Exploiting Opportunistic Thoughts, Human-Computer

109

Maiden

Interaction 5, 305-344._ :_
Iscoe N., 1991, Domain Modelling: Evolving Research,

Proceedings of 6th Knowledge-Based Software
Engineering Conference', Syracuse NY, 22-25th
September 1991, 300-304.

Klinker G., Bhola C., Dallemagne G., Marques D. &
McDermott J., 1991, 'Usable and Reusable Programming

Constructs', Knowledge Acquisition 3, 117-135.
Lubars M.D., 1988, A Domain Modelling Representation,

MCC Technical Report STP-366-88, Software
Technology Program, MCC, Austin Texas, November
1988.

Maiden N.A.M., 1992, Analogical Specification Reuse

during Requirements Analysis, PhD Thesis, Department
of Business Computing, City University.

Maiden N.A.M., 1991, Analogy as a Paradigm for
Specification Reuse, Software Engineering Journal 6(1),
3-15.

Maiden N.A.M & Sutcliffe A.G., 1991, Analogical
Matching for Specification Retrieval, Proceedings of 6th
Knowledge-Based Software Engineering Conference,
Syracuse NY, 22-25th September 1991, 101-112.

Neale I., 1988, First Generation Expert Systems: A Review
of Knowledge Acquisition Methodologies, The
Knowledge Engineering Review 2, 105-145

Neighbors J.M., 1980, Software Conslruction using
Components, Ph.D. Dissertation, Department of
Information and Computer Science, University of
California, Irvinc.

Pennington N., 1987, Comprehension Strategies in
Programming, 2nd Workshop of Empirical Studies of
Programmers, ed. G. Olson, S. Sheppard and E. Soloway,
Ablex, 100- 113.

Prieao-Diaz R., 1991, 'Implementing Faceted
Classification for Software Reuse', Communications of
the ACM 34(5), 88-97.

Prieto-Diaz R., 1990, Domain Analysis: An Introduction,
ACM SIGSOFT Software Engineering Notes 15(2), April
1990, 4%54.

Reubenstein H.B. & Waters R.C., 1991, 'The

Requirements Apprentice: Automated Assistance for
Requirements Acquisition', IEEE Transactions on
S_tware Engineering 17(3), 226-240.

Wielinga BJ., $chreiber A.Th. & Breuker J.A., 1991,
"KADS: A Modelling Approach to Knowledge
Engineering', Technical Report ESPRIT Project I>5248
KADS-II, May 1991.

110

