
Nonnenmann

N 3- 1'7521

DOMAIN-SPECIFIC FUNCTIONAL SOFTWARE TESTING:

A PROGRESS REPORT

Uwe Nonnenmann

AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974
un_research.att.com

1 Introduction

Software Engineering is a knowledge intensive activ-
ity that involves defining, designing, developing, and
maintaining software systems. In order to build ef-
fective systems to support Software Engeneering ac-
tivities, Artificial Intelligence techniques are needed.
The application of Artificial Intelligence technology
to Software Engineering is called Knowledge-based
Software Engineering (KBSE) [Lowry & Duran, 1989].
The goal of KBSE is to change the software life cycle
such that software maintenance and evolution occur by
modifying the specifications and then rederiving the
implementation rather than by directly modifying the
implementation. The use of domain knowledge in de-
veloping KBSE systems is crucial.

Our work is mainly related to one area of
KBSE that is called automatic specification acqui-
sition. One example is the WATSON prototype
[Kelly & Nonnenmann, 1991] on which our current
work is based. WATSON is an automatic program-
ming system for formalizing specifications for tele-

phone switching software mainly restricted to POTS,

allow such scaling, we had to relax the ambitious goal
of complete automatic programming, to the easier task

of automatic testing.

2 KITSS Overview

In the Knowledge-Based Interactive Test Script Sys-

tem (KITSS), we have taken this philosophy and ap-
plied it to the task of functional software testing. In
functional testing, the internal design and structure of
the program are ignored. It corresponds directly to

uncovering discrepancies in the program's behavior as
viewed from the outside world. This type of testing
has been called black box testing because, like a black
box in hardware, one is only interested in how the in-
put relates to the output. The resulting tests are then
executed in a simulated customer environment which

corresponds to verifying that the system fulfills its in-
tended purpose.

Tests are by definition correct but not exhaustive.
KITSS checks and augments given tests and generates
related new ones but does not generate the full spec-
ification as in WATSON. KITSS can be seen as per-

i.e., plain old telephone service.

Other examples of such systems are IDeA
and Ozym. The Intelligent Design Aid (IDEA)
[Lubars & Harandi, 1987] performs knowledge-based
refinement of specifications and design. IDeA gives
incremental feedback on completeness and consis-
tency using domain-specific abstract design schemas.
The idea behind Ozym [Iscoe et al., 1989] is to spec-
ify and implement applications programs for non-
programmers and non-domain-experts by modeling do-
main knowledge.

However, despite two decades of moderately suc-
cessful research, there have been few practical demon-
strations of the utility of Artificial Intelligence tech-
niques to support Software Engineering activities
[Barstow, 1987] other than such prototypes as men-
tioned above. Our current approach differentiates it-

self from these other approaches in two antagonistic
ways: On the one hand, we address a large and com-
plex real-world problem instead of a "toy domain" as
in many research prototypes. On the other handl to

forming testing from examples. KITSS' strength lies
in its very domain-specific approach [Barstow, 1985]
and customized reasoning procedures. It will change
the software life cycle by modifying the functional
tests and then rederiving the system tests which cor-
responds to finding and eliminating software prob-
lems early in the development process as in the KBSE
paradigm. Therefore, we designed KITSS to be well
integrated into our existing design and development
process [Nonnenmann & Eddy, 1991].

KITSS achieves this integration by using the same
expressive and unobtrusive input medium, namely test
cases. They describe in English the high-level details
of the external design and are written before coding
begins. KITSS also produces the same output as be-
fore, executable test scripts written in an in-house test
automation language. These are low-level descriptions
derived from test cases for specific test equipment.

To support this integration, KITSS has a natural
language processor that is trained in the domain's tech-
nical dialect [Jones & Eisner, 1992] and converts the

111



Nonnenmann

Figure 1: KITSS Architecture

test cases into a formal representation that is au-
dited for coverage and sanity. To accomplish this,
KITSS uses a customized theorem prover-based ana-
lyzer (based on WATSON technology) and a hybrid
knowledge base as the domain model using both a
static terminological logic and a dynamic temporal
logic. These two modules have been feasible only
due to the domain-specific knowledge-based approach
taken in KITSS. Finally, a translator takes the cor-
rected test case and converts it from temporal logic
into a test script language that can exercise the switch
using dedicated test equipment. Figure 1 shows the
overall architecture of KITSS.

In summary, KITSS helps the test process by gen-
erating more tests of better quality and by allow-
ing more frequent regression testing through automa-
tion. Furthermore, tests are generated earlier, i.e.,
during the development phase not after, which should
detect problems earlier, thus resulting in reduced

maintenance costs (for more details on KITSS see
[Nonnenmann & Eddy, 1992]).

3 Knowledge Representation Issues

As we used a highly domain-specific approach, the do-
main model is one of the center pieces of KITSS. In the
following section we will highlight the key design deci-
sions made and the knowledge representations chosen.

Testing is a very knowledge intensive task. It in-
volves experience with the switch hardware and testing
equipment as well as an understanding of the switch
software with its several hundred features and many
more interactions. There are many binders of feature
descriptions for PBX software, but no concise formal-
izations of the domain were available before KITSS.
The focus of KITSS and the domain model is on an

end-user's point of view, i.e., on (physical and soft-
ware) objects that the user can manipulate. Figure 2

gives an overview of KITSS' domain model.
The static model represents all telephony objects,

data, and conditions that do not have a tempo-
ral extent but may have states or histories. It de-
scribes major hardware components, processes, log-
ical resources, the current test setup, the dial plan
and the current feature assignments. All static parts
of the domain model are implemented in CLASSIC
[Brachman et al., 1990], which belongs to the class of
terminological logics (e.g. KL-ONE).

The dynamic model defines the dynamic aspects of
the switch behavior. These are constraints that have to

be fulfilled during testing as well as the predicates they
are defined upon. Objects include predicates, stimuli
which can be either primitive or abstract, and observ-
ables. Additionally, the dynamic model includes in-
variants and rules as integrity constraints. Invariants
are assertions which describe only a single state, but
are true in all states. These are among the most im-
portant pieces of domain knowledge as they describe
basic telephony behavior as well as the look _J feel of
the switch. Rules describe low-level behavior in tele-

phony. This is mostly signaling behavior.

Representing the dynamic model we required ex-
pressive power beyond CLASSIC or terminological log-
ics, which are not well-suited for representing plan-like
knowledge. We therefore used the WATSON Theo-
rem Prover, a linear-time first-order resolution theorem
prover with a weak temporal logic. This non-standard
logic has five modal operators holds, occurs, issues, be-
gins, and ends. As an action occurs, the response to
that action may endure until some other action occurs
or it may be transient. An enduring actions begins and
holds until, in response to some other action, it ends.
In the transient case, the switch merely issues the re-
sponse. These modals are sufficient to represent all
temporal aspects of our domain. The theorem proving
is only tractable due to the tight integration between
knowledge representation and reasoning.

In adding the dynamic model, we were able to in-
crease the expressive power of our domain model and to
increase the reasoning capabilities as well. The integra-
tion of the hybrid pieces did produce some problems,
for example, deciding which components belonged in
which piece. However, this decision was facilitated be-
cause of our design choice to represent all dynamic as-
pects of the system in our temporal logic and to keep
everything else in CLASSIC.

The domain model consists of over 600 domain con-

cepts, over 1,700 domain individuals, and more than
160 temporal axioms.

The domain model was built in the initial phase of
the project as the reasoning modules depended on the

underlying representations being created first. In this
phase the domain model changed constantly as we still
enhanced our understanding of the domain. Then, we
left the domain model mainly unchanged through the
development phases until a milestone was reached. We

112



Nonnenmann

D O M A I N

CORE

PBX
MODEL

TEST

EXECUTION
MODEL

LINGUISTIC

MODEL

STATIC M ODEL

• Major hardware

componenu
• Static data

• Phenomena
• PTocesseS

• Logical resources

• Coufigttradou model
• Automated test

language model

• Telephonese statistics

• Telephonese concepts

rERMINOLOGICAL LOGI

M O D E L

• Predicates
• Primitive stimuli

• Abstract stimuli
• Observables

• Integrity constraints
- Invariants

- Rules

TEMPORAL LOGIC

Figure 2: KITSS Domain Model

then typically performed a major revision of the do-
main model based on problems encountered. The do-
main model went through three iterations like that and
has been stable since. Of course, we continually add
new knowledge but the representations are mainly un-
changed.

Although we anticipate that the domain model will
grow only linear with the number of features cov-
ered, we already had great difficulty in acquiring new

knowledge and maintaining the existing domain model
as both tasks have been done completely manual so
far. Therefore, knowledge acquisition and maintenance
support is crucial. At least we have gained an under-
standing on how to design such automated tools. The
above experience is the main motivation for another
approach included as a proposal in this workshop's pro-
ceedings [Hall, 1992].

4 Status

At last year's ASD workshop, we initially reported on
KITSS. Since then, we had a major evaluation of the
KITSS prototype with the following results.

System execution speed has not been a bottleneck
due to continued specialization of the inference capa-
bility. However, it is not clear how long such optimiza-
tions can avoid potential intractability of the theorem
prover. Another result we found was that it is easier
to train the natural language processor than it is to
achieve coherence in the reasoning audits. The initial
scaling phase from the proof-of-principle demo (3 test
cases) to the first prototype (38 test cases) was suc-
cessful but tool< too long and KITSS was too brittle in
general. Although KITSS has been designed from the
beginning as an interactive system (the 'T' in KITSS),
we pushed the machine initialive in this scaling phase
as far as possible as an experiment. However, this was
the limiting factor for rapid progress.

The current schedule is to expand KITSS to cover a
few hundred test cases in the next couple of months.
To achieve such scaling, we changed some of KITSS'
design to make it much more robust. Despite the fact
that the natural language processor performed well, we
augmented it with a paraphrasing mechanism, i.e., in
case the English input cannot be understood, the user
can rephrase this input using a paraphrase language
based on our temporal logic. When the analyzer en-
counters problems, it intensely questions the user to
explain unclear passages of test cases. This approach
has only been possible because KITSS is very respon-
sive. Additionally, we changed all reasoning modules
to produce "soft-failures", i.e., in case the system fails
to fully understand the test case it still continues to
translate user inputs as an assislant.

In general, our strategy has shifted from a nearly
fully automatic system to one that is much more in-
teractive and might resort to the assistant paradigm
occasionally. However, we still have the full KITSS
approach in place so that we can improve e.g. the an-
alyzer incrementally without any change for the user
other than reduced interactions.

5 From Research Into Practice

In 1987, the initial prototype of WATSON was com-

pleted. Today, five years later, KITSS is a prototype
with a more restricted scope in the same domain at-
though with broader coverage. So where is the big
progress? Or in other words: How do we get from a
research prototype to a deployed real-world system?
Is this "just" technology transfer? Another question
might also be: Can we build a research prototype in
a toy domain and expect it to work on a real-world
problem?

The answers to these questions 1 are not easy, but we
would like to give at least partial answers based on our
experience.

In scaling from WATSON's toy domain to KITSS'
real-world telephony domain we had to address a num-
ber of new research issues (which we can just list here
without further explanation). For example, we had
to extend our temporal logic, restructure the domain
model into a hybrid one (static/dynamic), create tele-
phony "micromodels" and understand their interac-
tions, reason with multiple agents instead of single
ones, significantly enhance the planning component,
understand the "purpose" of inputs to be able to gener-
alize and specialize them, perform more complex non-
monotonic reasoning etc. Additionally, we had to in-
corporate and customize a natural language module to
cover input test cases in English instead of a limited
scenario language.

KITSS being so different in all these respects, WAT-
SON cannot be seen as a core system to which we just

tThese questions are based on a personal discussion with
Ron Brachman.

113



Nonnenmann

added domain knowledge. For KITSS, we had to ba-
sically rewrite and enhance WATSON and add com-
pletely new modules. We see KITSS based on technol-
ogy that WATSON has proven feasible. Therefore, we
do not see KITSS as technology transfer at all but as
a research project that covers a real-world domain.

Yet despite such research progress, we were still
required to further change KITSS' design to achieve
practical solutions (see Section 4). No matter how im-
pressive a research prototype looks, we believe there is
still a lot of research to be done in order to scale to
real-world use.

So: "Can we build a research prototype in a toy do-
main and expect it to work on a real-world problem?"
The answer is: "Probably not".

6 Conclusions

KITSS is a domain-specific system to generate exe-
cutable functional tests using the KBSE paradigm. Its
main difference to previous approaches is that it covers
a real-world domain instead of a toy domain. However,
therefore the initial goal of automatic programming
had to be limited to the easier problem of automatic
testing.

KITSS converts input tests into a formal represen-
tation interactively with the user. To achieve this,
we needed to augment the static domain model repre-

sented in a terminological logic with a dynamic model
written in a temporal logic. Knowledge acquisition has
been performed manually and is a major problem that
has not been addressed yet.

In general, scaling from a research prototype to a
real-world system involves much additional research
before the actual technology transfer can begin. To
achieve such scaling, we had to further move toward
more user interaction. Although scaling-up remains a
hard task, KITSS demonstrates that our KBSE ap-
proach chosen for this complex application is feasible.

Acknowledgments

Many thanks go to John Eddy, Van Kelly, Mark Jones,
and Bob Hall who also contributed major parts of the
KITSS system. Additionally, we would like to thank

Ron Brachman for his support throughout the project.

References

Barstow, D.R.: Domain-specific automatic program-

ming. IEEE Transactions on Software Engineering,
November 1985.

Barstow, D.R.: Artificial Intelligence and Software
Engineering. In Proceedings of the 9th International
Conference on Software Engineering, Monterey, CA,
1987.

Brachman, R.J., McGuinness, D.L., Patel-Schneider,

P.F., Alperin Resnick, L., and Borgida, A.: Living
with CLASSIC: When and how to use a KL-ONF_,-Iike

language. In Formal Aspects of Semantic Networks,
J. Sowa, ed., Morgan Kaufmann, 1990.

Hall, R.J.: Interactive specification acquisition via
senarios: A proposal. In Proceedings of the AAAI'92

Workshop on Automating Software Design, San Jose,
CA, 1992.

Iscoe, N., Browne, J.C., and Werth, J.: An object-
oriented approach to program specification and gener-
ation. Technical Report, Dept. of Computer Science,

University of Tezas at Austin, 1989.

Jones, M.A., and Eisner, J.: A probabilistic parser
applied to software testing documents. In Proceedings
of the lOth National Conference on Artificial Intelli-
gence, San Jose, CA, 1992.

Kelly, V.E., and Nonnenmann, U.: Reducing the
complexity of formal specification acquisition. In Au-
tomating Software Design, M. Lowry and R. McCart-

ney, eds., MIT Press, 1991.

Lowry, M., Duran, R.: Knowledge-based Software
Engeneering. In Handbook of Artificial Intelligence,
Vol. IV, Chapter XX, Addison Wesley, 1989.

Lubars, M.D., and Harandi, M.T.: Knowledge-based
software design using design schemas. In Proceedings
of the 9th International Conference on Software En-

gineering, Monterey, CA, 1987.

Nonnenmann, U., and Eddy J.K.: KITSS - Toward
software design and testing integration. In Automat-
ing Software Design: Interactive Design - Workshop
Notes from the 9th AAAL L. Johnson, ed., USC/ISI
Technical Report RS-91-287, 1991.

Nonnenmann, U., and Eddy, J.K.: KITSS - A func-

tional software testing system using a hybrid domain
model. In Proceedings of the 8th Conference on Ar-
tificial Intelligence for Applications, Monterey, CA,
1992.

114


