
Sharma

N93-17524
_m

Automating FEA Programming

Naveen Sharma

Institute for Computational Mathematics

Department of Mathematics and Computer Science

Kent State University

Kent, OH 44240-000I

Email: sharma@mcs.kent.edu

Abstract

In thispaper we brieflydescribea combined sym-
bolicand numeric approach forsolvingmathemat-

icalmodels on parallelcomputers. An experimen-

talsoftware system, PIER, isbeing developed in

Common Lisp to synthesize computationally in-

tensiveand domain formulationdependent phases

of FEA solutionmethod. Quantities for domain
formulationlikeshape functions,element stiffness

matricesetc.are automaticallyderivedusingsym-

bolicmathematical computations. The problem

specificinformationand derivedformulae are then

used togenerate (parallel)numerical code forFEA

solutionsteps. A constructiveapproach to spec-

ify a numerical program design is taken. The

code generator compiles applicationoriented in-

put specificationsinto(parallel)f77 routineswith
the help of built-inknowledge of the particular

problem, numerical solutionmethods and the tar-

get computer.

Introduction

Engineers and scientistsfrequentlyencounter mathe-

matical models based upon partialdifferentialequa-

tions(PDEs) in a wide varietyof applications.Finite

element analysis (FEA) (Zienkiewicz 1980) isa ma-

jor computational tool for the numerical solutionof

boundary and initialvalueproblems that ariseinstress

analysis,heat transferand continuum mechanics ofall

kinds. The problem domain isfirstdiscretizedinto a

suitablemesh of elements. Then well-selectedanalyt-

icalapproximations are used for solutionwithin each

element. The globalsolutionforalldiscretepoints (el-

ement nodes)of the mesh iscomputed by numerical it-

erationstaking intoaccount inter-elementinteractions

and boundary conditions.

Simple FEA applicationscan be performed with
canned packages such as NFAP (Chang 1980) and

NASTRAN. Situationsinvolvingcomplicated bound-

ary conditionsor element properties,non-linearma-

°Work reportedhereinhas been supportedinpartby the
Army ResearchOfficeunder Grant DAAL03-91-G-0149

terial properties, require customizing many aspects of
FEA. In such cases, the finite element solution pro-
cess consists of a symbolic computation phase followed
by a numerical computation phase. Depending on the
problem at hand, the symbolic computation phase may
involve construction and analysis of solution approxi-
mations, simplification of large analytical expressions,
changing variables and/or coordinates to simplify the
problem, operating on matrices and tensors with sym-
bolic entries, as well as integration and differentiation
of analytical expressions. Results of the symbolic com-
putation phase are then used to construct numerical

programs.

Frequently the mathematical models and related
computer programs are revised during research, engi-
neering and production. Numerical convergence prob-
lems may also require that a different numerical proce-
dure be used for FEA solution steps. When the models
are three-dimensional, or use large data sets, the pro-
gram execution speed is critical. Writing programs for
parallel computers to speed-up execution is indeed not
a trivial task for modelers. Also, parallel programs
written for a parallel machines can not be ported to

other machines without significant re-programming ef-
fort. State of the art parallelizing compilers (Kuck
1978), (Allen & Kennedy 1985) take an existing (se-
quential) code as input and can produce programs for
the target parallel machine. However, these compil-
ers parallelise scientific and engineering applications on
the model of linear algebra and either completely ig-
nore the domain specific parallelism naturally present
Jn the problem or query the user during compilation.

In recent years, there has been an increase in re-
search and development efforts to alleviate these prob-
lems. Existing approaches combine symbolic and nu-
merical computing in various ways. These (coupled)
symbolic-numeric systems generally take the user input
in a very high-level form and automatically generate
numerical code in a procedural programming language
like :f77 or C for the target computer. Some notable re-

cent projects are Ellpack (Rice, Boisvert, and Ronald
1985), Sinapse (Kant et al. 1990), Alpal (Cook 1990),
PDEQSOL (Hirayama, Ikeda, and Sagawa, 1991), (Pe-

127

Sharma

skin 1987), and (Steinberg and Roache 1990). Many
of these projects have adopted finite difference solution
method for PDEs.

Our Approach

We have been working for a number of years (Wang
1986), (Sharma and Wang 1988a), (Sharma 1988b),
(Sharma and Wang 1990), (Sharma 1991a) in this re-
search direction and our primary PDE solution method
is FEA. We identify key solution steps of FEA which

are compute-intensive and are reprogrammed ev-
ery time new element formulations or boundary con-
ditions are used. Our approach is to employ symbolic
computation to generate sequential and parallel nu-
merical codes for the key FEA solution steps. The

code is generated in (the parallel version of) f77 on the
target parallel computers (currently include Sequent
Balance shared memory and distributed-memory In-
tel iPSC[860). Based on the user input, quanti-
ties such as element shape functions and strain-
displacement matrices can be derived using symbolic
mathematical computations. The derived formulas are
used to generate numerical code for computing element
stiffness matrix, solution of system of equations and
other solution steps. The generated code can be read-
ily combined with existing FEA codes. The overall
scheme is pictorially depicted in Fig. 1. We are de-

Use_ Input

PIER I

I
Generated Code

\
Execute

FEA Code

i
Figure 1: Overview of Approach

veloping a new FEA code generator named PIER to
build upon our previous work in this area and to break
new grounds. PIER is Common Lisp (CL)-based and
can work directly with the eL-based MAXIMA. It can
be easily ported to other eL-based symbolic computing
systems. PIER generates sequential and parallel codes
for the key solution steps. In next two sections we
briefly discuss our design objectives and PIER's pro-
gramming knowledge. PIER input specifications and

the code generation scheme are overviewed in subse-
quent sections. We conclude the paper by outlining
some relevant issues.

Design Goals

Previous FEA code generators, such as FINGER, P-
FINGER and PDEQSOL, are equipped with a fixed
number of numerical algorithms for FEA solution steps
and the algorithms are paraIIelized and implemented
for one specific parallel computer. Porting the code
generator to other machines, thus requires work from
scratch. This is a major drawback which should be
overcome. Our first design requirement addresses this
issue.

The code generator provides a set of architecture-

independent input specifications to design and ex-
press numerical algorithms used in FEA solution
steps.

In generating parallel programs from the user in-
put specifications, it is possible to take advan-
tage of domain independent parallelism which exists
among concurrently schedulable code modules and do-
main specific parallelism such as carrying out FEA
(sub)computations in the element-by-element (Winget
and Hughes 1985) formulation as opposed to the as-
sembled formulation, or substructuring the FE mesh
etc. This leads to our second design requirement.

Automatically generates good implementation

mappings (for input specifications) to modern
high-performance computers with the help of
built-in knowledge of the application domain,
FEA solution method, and the target program-
ming environment.

These design requirements allow engineers and sci-
entists to customize the FEA solution process for the
desired application area and the problem instances.
Only input specifications needs to be altered without
worrying about implementation details or the target
architecture.

System Overview

PIER provides a knowledge-based programming envi-
ronment to the modelers. The architecture of the en-

vironment comprises following components.

1. A Programming Knowledge-Base.

2. A set of User Input Specifications.

3. Code Generator.

The programming knowledge-base provides generic
Operations (a set of basic linear algebra computations
including matrix-vector product, vector inner prod-
uct, solving triangular system of equations etc.) and
domain specific Operations (a set of basic finite ele-
ment analysis computations including assembling ele-
ment stiffness matrices, deriving shape functions, vec-
tor preconditioning etc.). A PIER Operation has four

128

Sharma

parts: prologue/epilogue, a set of algorithm schemas,
control dependence graph (CDG) and the associated
cost-model. The schemas are stated as templates writ-

ten in Common Lisp, which include assignments, con-
ventional control constructs, and array/scalar compu-
tations. The CDG represents the execution depen-
dence among several sub-computations in the Opera-
tion and the cost-model determines the execution cost

(computation and communication costs) of the Oper-
ation. PIER Operations implement the intended com-
putations in one of the following execution styles:

(S1) Assembled: Execute for assembled data.

(S2) FullyPaxallel: Execute for individual element
data concurrently.

($3) BlockParallel : Execute for a block 1 of element
data.

($4) Scalar: Execute for one element data at a time.

The user input specifications provide methods to
specify problem parameters, desired symbolic deriva-
tion and combine Operations to construct an FEA al-

gorithm. The code generator generates f77 programs
from the user input specifications for the target archi-
tecture. The generated code is compiled and linked on
the target machine and executed. The programming
knowledge-base also provides completed specifications
for frequently used FEA algorithms. The user can,
however, specify a new algorithm and add the same to
the knowledge-base. The knowledge about program-
ming the target parallel architecture is represented as
a set of transformations. These transformations con-

vert CDGs into equivalent f77 templates. Porting to
other computers, thus, require developing the set of
relevant transformations.

PIER Input Specifications

One of the major research objectives in PIER is to de-

sign a set of very high level input specifications which
are used by scientists/engineers as well as system de-
velopers to describe FEA computations and problem
instances. We advocate a bilingual programming style
in which application oriented specifications (i.e. termi-

nology and notations as used in standard FEA texts)
can be mixed with regular f77 syntax to express an
FEA algorithm. In designing the PIER. input specifica-
tions we seek that the specifications should be easy to
understand and easy to produce by scientists/engineers
and the user specifies only the functionality desired and

leaves the implementation details to PIER.
The overall approach is to add statements (which

represent domain-specific computations) to f77. The
set of powerful statements are primarily intended for

FEA algorithms. Although this scheme could easily
work in other areas of scientific computing. The in-

put specifications support the definition of the element

1A block is a set of elements in which no two elements
share a node

mesh, nodal properties, various data arrays, symbolic
derivation and specification of numerical algorithms

for the solution procedures. Statements defining stor-
age strategies for FEA data arrays, high-level sym-
bolic/numerical computations (PIER Operations), and
straight-line 2 sequences of Operations (PIER Modules)
can be intermixed with regular f77 constructs to spec-
ify a desired numerical algorithm. We now describe

the underlying programming model.

The Programming Model

In general the systematic software development process
begins with informal requirement specifications. This
is followed by one or more than one design phases,
which define a system structure meeting requirement

specifications. The design phase identifies software
modules and their organization. The text book style

description of numerical algorithms can be expressed
at this level of abstraction with relative ease and PIER

automates rest of the software development phases i.e.
detail design and implementation for the algorithm.

While generating parallel code, the user also specifies
the resource constraints (i.e. number of maximum pro-

cess/processors etc.). The input specifications are hier-
archical and the user expresses numerical algorithms in
a bottom-up fashion by creating abstractions of higher
level in terms of lower ones. This is depicted in the

Fig. 2. Let us describe each level briefly.

FEA

t
FEA Solution Steps

t
Algorithms

f
F77 Modules

7
Operations

Figure 2: Hierarchy of Computations

• Operation: An Operation is the smallest unit of
computation (provided in PIER knowledge-base).
An operation usually represents a single textbook
equation with one variable on the left hand side and
an expression involving one or more variables on the

right hand side. For example, the equations

Tempi = r. z

2No sequence control is involved

129

Sharma

u=a.p

Temp2 = p • u

involved in the PCG (Preconditioned Conjugate
Gradient) algorithm (Hughes, Ferencz, and Hallquy-
ist 1987) can each be specified by an Operation. An
Operation can specify either a symbolic derivation
or a numeric computation. For an operation, the
variable on the left-hand side is its output data ob-
ject, while those on the right-hand side are its inpu_
data object. A PIER Dataobjeet specifies numerical
values associated with elements/nodes organized in
a structured fashion (e.g. matrix, vector).

Module: A Module consists of a sequence of Opera-
tions with no entry or exit points except at the begin-
ning and at the end of the module. In other words,
control flow enters at the beginning and leaves at
the end of a Module. Fig. 3 illustrates Module
specifications. In the example, Module, In, Out,

Begin, End are keywords whereas VecInnerVec and
MatTimesVee represent Operations (for numerical
computations).

Each step can be solved by more than one (sym-
bolic/numerical) procedure and expects a fixed set
of input quantities and computes a fixed set of re-
sults. Depending on the problem formulation, the

algorithm used for a solution step may be different.
Some standard algorithms such as Gauss quadra-
ture, Gaussian elimination and preconditioned con-

jugate gradient are built into PIER. Others can be
supplied by the user through PIER input specifica-
tions.

To derive/generate desired FEA computations (sym-
bolic formulae/f77 code) the user must first specify the
element mesh, the element properties, the data arrays
for material matrix and nodal coordinates. This is fol-

lowed by the specifications to derive desired element
formulae. We now give an example (Fig. 5) where
the problem domain is divided into 256 linear trian-

gular elements. Total number of nodes in the mesh is
153. The local degrees of freedom at each node is 1.
For complete syntax and detailed examples for PIER
input specifications the reader is referred to (Sharma
and Wang 1991b).

Module CSSh, (In:(a,r,z,p),Out:(Tempi,Temp2)i

Begin
Tempi = VecInnerVec(r,z)

u = MatTimesVec(a,p)

Temp2 = VecInnerVec(p,u)
End

Figure 3: PIER Module Specification Example

Algorithm: An Algorithm is specified by combin-
ing Modules with f77 constructs. PIER also sup-
plies, from its knowledge-base, certain standard al-
gorithms that can be used directly. Fig. 4 illustrates
an example of Algorithm specifications.

IPIER Algorithm Specification ExampleJ

Algorithm:Foo, (In:(a,b),Out:(x))

Begin
• . . f77 code .

Module Call.

<<(Templ,Temp2)=Module(CSSA,a,r,z,p)>>

• . . f77 code

Figure 4: PIER Algorithm Specification Example

• FEA Solution Step: The breakup of the FEA

solution process recognizes eight solution steps.

C Defining Triangular Element Mesh.
m = Mesh(Dim:2,Nodes:153,Elements:256)

• = Element(Ldim:l,Nodes:3,Shape:Triangle)

Dataobject x,Name:XNodalCoordinate

Dataobject y,Name:YNodalCoordinate

Dataobject enm,Name:ElementNodalMatrix

Dataobject m,Name:MatMax

C Deriving element approximations.

h=DeriveShape(Algorithm:Polynomial,e)
b=DeriveBMatrix(Algorithm:Displacement,d,h)

C Generating Numerical Code for a FEA Step.
(x)=SolveSystem(hlgorithm:Pcg,k,r,File:foo)

Figure 5: PIER Input Specification Example

Synthesis Process

In PIER the FEA programs are synthesized by the
method of composition of program components. The

Operations (in PIER knowledge-base), Modules (User-
defined) and Algorithms (User-defined) represent pro-

gram components in the increasing order of hierarchy.
The PIER code generator incrementally refines input-
specifications into FEA programs. The code genera-
tion is overviewed in Fig. 7 and consists of following

phases

1. Parsing Input Specifications

2. Problem Definition

3. Code Generation

130

Sharma

In the first phase various input specification con-
structs are identified and translated into PIER in-

ternal Common Lisp function calls. The Algorithm
template is recognized and preserved. The func-
tions related to the problem definition (parameters of
FEA mesh/element and symbolic derivation of element
properties) are executed first. This assigns appropri-
ate values to control variables in the environment. The

first phase also identifies and analyses PIER Modules,
Module Calls and input/output data object specifi-
cations. The user-specified element approximations
are derived using symbolic mathematical computations
(using AKCL-MAXIMA) and the MAXIMA internal
representations are translated into equivalent Common
Lisp expressions.

The code generation phase generates code for each
Module and constituting Operations. Each Module
Call in the Algorithm specification generates code for
a Module. Symbolic expressions, if any, appearing in
the Module body are translated into equivalent Op-
eration specifications. The code for a Module is gen-
erated as a set of f77 subroutine calls and the corre-

sponding subroutines. After generating code for all of
the Modules referred to by Module Calls, the Gencray
(Weerawarana and Wang 1989) translator is called to

translate the generated Common Lisp forms into equiv-
alent I77 statements and the holes in the Algorithm
template are filled appropriately. In the following sub-
sections we describe code generation from Module and
Operation followed by an overview of problem solving
with PIER.

Module Code Generation

The code generation from PIER Modules is modeled
by flowgraphs. A flowgraph is a collection offlownodes,
which represent task instances and directed edges,
which represent data dependencies among flownodes.
The code generator derives the flowgraph representa-
tion from the sequence of Operations specified in the
Module body and schedules the fiowgraph onto the tar-
get architecture. Operations and data objects form
flownodes and edges of the flowgraph respectively. The
flownodes, thus, represent coarse grained tasks which
have unique cost-models and may be assigned different
execution styles.

The schedular of the code generator takes as input a
flowgraph, a processor count, and Module execution
style (optional). The schedular assigns appropriate
number of processors and an execution style to each
Operation. The execution style must be consistent
with the input and output data objects of the Opera-
tion. The schedule should conform to the cost-models

of Operations and respect the partial order represented
by the flowgraph. The overall objective is to produce
a schedule with the lowest total cost.

Details of the parallel code generation can be found

in (Sharma and Wang 1990) and (Sharma 1992).

Operation Code Generation

Many of PIER Operations involve regular computa-
tions and are internally parailelized in the data par-

allel fashion. Execution styles (BlockParallel, Assem-
bled etc.) refers to methods of partitioning the in-
put/output data objects. The user-specified quanti-
ties and output of the schedular are used to refine
the algorithm schemas, which implements the Oper-
ations. PIER accepts input data objects organized in
various specialized storage strategies (e.g. Symmetric
Matrix, Banded Matrix etc.). The appropriate data
reference mapping are automatically generated in the
output code.

Problem Solving with PIER

To use PIER in practice, the first step is to prepare a
mathematical model describing the physical situation.
The modeler, then, prepares the weak statement fol-
lowed by dividing the problem domain in a series of
elements. Here, we are not concerned with the dis-
cretization process and assume that one of the sev-
eral available domain decomposition software tools is
used. However, domain discretization data (i.e. ele-
ment type, nodal coordinates, list of nodes associated
with each element) are to be organized in an appropri-
ate fashion for PIER consumption. To derive compu-
tations for any FEA solution steps, the modeler must
first define the element mesh. This is followed by input

specifications for FEA solution steps which include de-
sired quantities/methods for symbolic derivation and
numerical computation. If the desired numerical algo-
rithm is not part of the PIER's knowledge-base, the
complete algorithm has to be expressed in input speci-
fications. The modelers can use PIER to generate f77
code for FEA solution steps. The generated code, if
desired, can be executed in conjunction with an ex-

isting FEA package. The process is outlined in Fig.
6.

Issues

As indicated earlier, in the present work we are focus-

ing on two issues, that we consider critical, in FEA
code generation: programmable code generator and
code generation for multiple parallel architectures.

Progammable Code Generator

FEA solution method involves symbolic mathemat-
ical manipulation and numerical computation with
large data sets. To solve a FEA_ solution step the mod-
elers make choices for the domain mesh, element ap-

proximations, and numerical solution algorithm. The
choices made are based on: the characteristics of the
posed model, target (parallel) computer, and numer-
ical convergence properties. Therefore the FEA solu-
tion programs are highly specialized. Code generation
systems which would cover all possible cases are bound

131

Input Specifications

Sharma

Operations generate instances offlowgraphs and attach
appropriate code segments to the flownodes. The flow-
graph schedular is machine-specific and is the back-end
of PIER. Parallel programming rules are transforma-
tions from flowgraphs representations to equivalent f77
templates.

PIER

AKCL-MAXIMA

Generate

(Parallel) F77

Compile Link

Existing FEA Code

Execution On

(Parallel) Computer

Parsing

Definition

4

Call To Module

Generate Operation

Specifications

From Formulae

Derive FlowgraphI
Flowgraph Mapping

Figure 6: Problem Solving with PIER

to be large, difficult to maintain, and slow. Our ap-
proach is to identify and create library of Operations
(and possibly Modules), which can generate program
components for specific situations. These components
are reusable among FEA solution procedures. A so-
lution algorithm can be fabricated using library com-
ponents and non-FEA specifications in standard f77.
The users can customize the generators to their spe-
cific needs.

Parallel Code Generation

A major open issue in parallel code generation is
the modeling of architecture and the representation
of machine specific parallel programming knowledge.
In PIER, the computations are represented in an ar-
chitecture independent formulation (flowgraphs). The

Generate Code

From

PIER Operations

Merge withTemplate
Generated

Code

Figure 7: Code Generation Scheme

References

Chang, T. Y. 1986, NFAP - A Nonlinear Finite Ele-
ment Program, Vol. 2 - Technical Report, College of
Engineering, University of Akron, Akron, OH.

132

Sharma

Fritzson, Peter and Fritzson Dag, 1991, The Need for

High-Level Programming Support in Scientific Com-
puting Applied to Mechanical Analysis, Research Re-
port LiTH-IDA-R-91-04, Department of Computer
and Information Science, Linkoping University, S-158

83, Linkoping, Sweden.

Sharma, N. 1988b, Generating Finite Element Pro-

grams for Warp Machine, Proceedings of ASME Win-
ter Annual Meeting, Chicago, IL., Nov. 25-28.

Sharma, N., and Wang, Paul S., 1990, Generating
Parallel Finite Element Programs for Shared-Memory
Multiprocessors, Symbolic Computation and Their
Impact on Mechanics, PCP-Vol. 205, A. K. Noor, I.
Elishakoffand G. Hulbert, Editors, The American So-

ciety of Mechanical Engineers, New York.

Sharma, N. and Wang Paul S., 1988a, Symbolic
Derivation and Automatic Generation of Parallel
Routines for Finite Element Analysis, Lecture Notes

in Computer Science, Gianni, P. (Ed.), Proceedings
International Symposium on Symbolic and Algebraic

Computations 33-56, Rome, Italy.

Sharma N. 1991a, Generating Finite Element Pro-
grams for Multiprocessors, Fifth SIAM Conference on

Parallel Processing for Scientific Computing, Hous-
ton, TX.

Sharma, N. and Wang, P. S. , 1991b, Righ-level User
Input Specifications for Finite Element Code Gener-
ation, Conference on Design and Implementation of
Symbolic Computation Systems (DISCO), April 13-
15, 1992, University of Bath, Bath, UK.

Sharma, N. 1992, The PIER Parallel FEA Program
Generator, In Preparation.

Weerawarana, Sanjiva and Wang, Paul S., 1989, Gen-
cray: User's Manual, Department of Mathematics
and Computer Science, Kent State University, Kent.

Wang, P. S. 1986, FINGER: A Symbolic System for
Automatic Generation of Numerical Programs for Fi-
nite Element Analysis, Journal of Symbolic Compu-
tation, Vol. 2, pp. 305-316.

Steinberg, S. and Roaehe, P. J., 1990, Using MAC-
SYMA to write finite-volume based PDE Solvers,

Symbolic Computation and Their Impact on Mechan-
ics, PCP-Vol. 205, A. K. Noor, I. E1ishakoff and G.

Hulber_, Editors, The American Society of Mechani-
cal Engineers, New York.

Allen, J. R. and Kennedy, K., 1985, PFC: a program
to convert Fortran to parallel form, Supercomputers:
Design and Applications, K. Hwang, editor, IEEE
Computer Society Press, pp 186-205.

ParaScope Editor.

Kuck, D. J. 1978, The Structure of Computers and
Computations, Volume 1, John Wiley and Sons, New
York.

Russo, Mark F., Peskin, Richard L. and Kowalaski,
A. Daniel, 1987, Using Symbolic Computation for Au-

tomatic Development of Numerical Programs. Cou-

pling Symbolic and Numerical Computing in Ezpert
Systems, IL

Rice, John K., and Boisvert, Ronald F., 1985, Solving
Elliptical Problems Using ELLPA CK, Springer Series
in Computational Mathematics 2, Springer-Verlag,
New York.

Kant, E., Daube, F., MacGregor, W., and Wold, J.,
1990, Synthesis of Mathematical Modeling Programs.
Technical Report, TR-90-6, Schlumberger Labora-
tory for Computer Science, Austin, TX 78720.

Cook, Grant O. 1990, ALPAL, a Program to Generate
Simulation Codes from Natural Descriptions. Techni-

cal Report UCRL-102076, Lawrence Livermore Na-
tional Laboratory, L-35, Livermore, CA 94551.

Hirayama, H., Ikeda, M., and Sagawa, N., 1991, So-
lution Functions of PDEQSOL (Partial Differential
EQuation SOlver Language) for Fluid Problems, In
Proceedings of Supercomputing, pages 218-227. ACM
Press, November 1991.

Zienkiewicz, O. C. 1980, The Finite Element Method
in Engineering Science, Mc-Graw Hill, London, pp.
129-153.

Hughes, T. J. R., Ferencz, R. M." and Hallquyist,
J.O., 1987, Large-scale Vectorized Implicit Calcula-
tions in Solid Mechanics on Cray X-MP/48 Utilizing
EBE Preconditioned Conjugate Gradients, Computer
Methods in Applied Mechanics and Engineering, Vol.

61, No. 2, 1987, pp. 215-248.

Winget, J. M. and Hughes, T. J. R., 1985, Solu-
tion Algorithms for Nonlinear Transient Heat Con-
duction Analysis Employing Element-by-Element It-
erative Strategies, Computer Methods in Applied Me-
chanics and Engineering, Vol. 52, pp. 711-815.

133

