
•- Wailnau

 93-]7528
CARDS: A Blueprint and Environment for Domain-Specific Software Reuse

Kurt C. Wallnau, Anne Costa Solderitsch and Catherine Smotherman

Paramax Systems Corporation ._ _... _/¢
(A Unisys Company)

Farimont, West Virginia and Paoli, Pennsylvania

CARDS (Central Archive for Reusable Defense Software) exploits advances in domain analysis and domain modeling to

identify, specify, develop, archive, retrieve, understand and reuse domain-specific software components. An important ele-

ment of CARDS is to provide visibility into the domain model artifacts produced by, and services provided by, commercial

computer-aided software engineering (CASE) technology. The use of commercial CASE technology is important to provide

: rich, robust support for the varied roles involved in a reuse process. We refer to this kind of use of knowledge representation

: systems as supporting "knowledge-based integration."
, f,,.

1. Introduction

The problem of achieving satisfactory levels of reuse in

the development of defense software has been challenged

in recent years, but with limited success. A development

which will surprise no one in the AI community is a recent

focus by the US DoD on attacking the reuse problem on a

per-domain basis. A notable example is the CAMP project

[1]. CARDS (Central Archive for Reusable Defense Soft-

ware) attempts to exploit advances in domain analysis and

domain knowledge represemation to identify, specify,

develop, archive, retrieve, understand and reuse domain-

specific software components' -- and to do so in a way that

is independent of the underlying application domain.

We view the domain analysis and domain knowledge

representation as the key to achieving the CARDS objec-

tives -- with special emphasis on understanding the rela-

tionships between software components and the domain

model. However, the stipulation that CARDS should be

applicable across a variety of application domains has

interesting consequences on the construction of a blueprint

and environment for domain-specific reuse.

development of a domain-specific reuse library, and a com-

puter-aided support environment for putting the blueprint

in action, is necessary.

The problem confronted by CARDS is the multiplicity

and divergence of dimensions, or elements, of any CARDS
architecture t. For example, CARDS must support a variety

of roles, where roles are task-related personifications of

activities necessary to achieve reuse. Examples include:

performing domain analysis; using the results of a domain

analysis (i.e., the domain model) to identify abstract inter-

faces; specifying the concrete interfaces; implementing the

components; designing a user-friendly library classifica-

tion scheme; archiving components within the classifica-

tion scheme; and, ultimately, the end-user role of locating

and retrieving components. Figure 2-1 illustrates a straw-
man architecture for a CARDS environment.

2. Divergent Roles and Environments

The defense department develops systems spanning

many domains -- exactly how many is a matter of conten-

tion and will only be resolved when a concise definition of

domain is available and is applied to defense department

procurements. Software continues to be a critical compo-

nent of systems developed in most of these domains.

Attaining high-leverage reuse within narrowly focused

application domains is well-justified by research, experi-
ence and economics. However, to institutionalize domain-

specific reuse, a blueprint detailing how to undertake the

component
engineer

I

domain [library

analyst _ administrator

application
developer

Figure 2-1 Central, Shared Domain Model

Of cout_, Figure 2-1 is overly simplistic. Since each of

these roles represents a different perspective (and several

roles are missing), different processes, methods and sup-

port technology will need to be brought to bear to support

*. Software componentsinclude assets such as requiremenuandde-
sign models,partsgenerators,programs,etc.See[2]for moredetails.

?. We use the term "architecture" toreferto the blueprintand support
technology.

148

Wallnau

different kinds of tasks. For example, the kinds of informa-

tion produced and consumed by a domain analyst will be

different from that produced and consumed by a compo-

nent engineer. One way to address divergent roles is to pro-

vide alternative views into a shared knowledge base, as

illustrated in Figure 2-2. This is the approach that is taken

..,:.,...

:i_1:i

::;::5.:':

domain +

application
developer

Figure 2-2 Uniform Domain Model & Views

in classical software development environment architec-

tures [3] as well as hypertext-oriented knowledge represen-
tation frameworks [I6].

Of course Figure 2-2 is also overly simplistic. First,

there is no consensus regarding domain analysis process,
method or representation. It appears that the choice of

domain analysis technique depends to some extent upon

the desired end-result of the analysis -- e.g., supporting

reuse, understanding a system, comparing different sys-

tems, etc. For example, Diaz's analysis technique [4] for

reuse differs substantially from Brown's informal [5] tech-

nique for comparing software environment architectures,

while LASSIE makes use of a uniform, formal knowledge

representation scheme for managing the complexity of a
layered system [6].

Second, domain analysis techniques will vary across

application domains. For example, information manage-

ment application domains may be suitably modeled using

classical structured analysis and structured design tech-

niques; real-time systems may require the addition of

behavioral models and temporal logics; complex, interac-

tive systems may be best modeled using object-oriented

techniques. While, in theory, each of these techniques has

an analogue in a more generic knowledge representation

formalism, such a mapping would not be practical.

Third, ev_w7il_ih isoiated application d-0ifia3iis it may

be useful to employ a variety of domain analysis and repre-

sentation techniques. For example, the SEI feature-oriented

domain analysis method (FODA) [7] employs an eclectic

assortment of representations. Besides FODA, the notion

of refinement, crucial in various formal design methods,

implies a mapping among various representations, for

example Z [17] specifications to program source. Thus,

focusing on support for the domain analyst role, a more

realistic CARDS architecture is illustrated in Figure 2-3.

engineer

Figure 2-3 Eclecticism and Tool Coalitions

There is an underlying pragmatic basis for Figure 2-3 as

well -- while domain analysis and knowledge representa-

tion are better understood today than just a few years ago,

the technology is still unstable. Further, there is an existing

body of commercial CASE tools available which can sup-

port practical application of domain analysis techniques.

There are severe problems underlying Figure 2-3. The

collection of analysis tools employed by the domain ana-

lyst -- in essence the domain analysis environment m are

not likely to be well integrated with respect to the domain

analysis process, the logical services provided by the tools,

nor the underlying tool mechanisms [8]. The tools them-
selves are at worst completely egocentric and at best wired

together in some loose form of tool coalition [9]. This

makes it difficult to verify the completeness and consis-

tency of domain models.

Just as serious is the lack of integration of the domain

analysis environment with the environment required by the

component engineer. Not only will it be difficult for the

component engineer to locate and understand the portions
of the domain model relevant to the construction of soft-

ware components, but the component engineer will also

have specialized tools to support development tasks, e.g.,

coding, performance, annotation, testing and configuration

management tools. The concept_ua!_di_st,maCe between the
analysis tools and development tools makes even tool coa-

litions an unlikely prospect. A similar impedance mismatch
exists between other roles in the CARDS architecture.

3. Knowledge'Based Integration

Figures 2-2 and 2-3 illustrated the dichotomy between

an idealized view of a domain-specific reuse environment,
and the view most likely to emerge from the combination

149

Wallnau

of state-of-the-practice tool support and the requirement
for domain-independence of the CARDS architecture.
These views need to be merged. That is, we must provide a
semantically meaningful view, for each role, into a domain
model, while not sacrificing the tool support necessary to
support the processes associated with a particular role.

Our approach is to merge these views, initially using the
STARS* Reusability Library Framework (RLF) [10] as a

meta-model for relating, and integrating, services provided
by and artifacts produced by different tools. The hybrid
knowledge-representation system in RLF combines a
semantic network system based upon KL-ONE, with an
extensible, typed rule-base system. A high-level view of

this architecture is depicted in Figure 3-1.

Figure 3-1 Meta-Model Integration in RLF

The architecture highlighted in Figure 3-1 has several
interesting properties. First, the RLF knowledge base pro-
vides a single meta-model which a) uses the semantic net-
work to relate the artifacts produced by various tools, and
b) uses action rule types to tie tool services to tool arti-
facts t. The firstproperty increases the visibility to relation-
ships among elements of the domain model that are created
by one role but semantically meaningful to other roles in
the CARDS environment. The second property leverages
the substantial investment in existing CASE technology
and preserves a convenient, comfortable and functional
environment already tailored to role-specific processes.

Second, the browser allows various users in the CARDS

environment to view only those portions of the knowledge
base that are appropriate for their role. Two forms of view
filters are possible: through the graphical browser, and
through the use of advisor librarians (also available
through the browser). The former is a relatively straighffor-

*. STARS -- Software Technology for Adaptable, Reliable Systems.

I'. A sirra'Jar integration approach is provided in Frame Technology's

L/re L/nks and in several other systems.

ward user-interface problem. The latter is supported

through the use of various rule types which are used by a
special advisor inference engine -- TAU.

Third, the use of RLF provides the basis for the devel-

opment of other specialized types of inferencers to support
the reuse process. One inferencer -- Gadfly [11], has
already been prototyped to support component specifica-
tion and qualification. Other inferencers have been devel-
oped using a similar hybrid knowledge representation
system for systems diagnostic maintenance [12] and (more
closely related to software component reuse) hardware
configuration [13].

4. CARDS and the Reuse Process

The architecture in Figure 3-1 is sketchy and only
briefly discussed bgcause the real problem is not the mech-
anisms of the CARDS environment, but the use of it within

the context of an overall reuse process. A number of ques-
tions will need to be answered, perhaps some of them on a
per-domain basis:

• How much of the domain model should

be captured in the knowledge base, versus
its use as an index into tool artifacts and tool
services?

° What are the appropriate views into the
knowledge base? For example, should an
application developer's view be based upon
models of architectures [14] or require-
ments [15]?

• When is a domain ripe for reuse [2]?

While these discussions have focused on the integration
of different user roles with a reuse repository $, another

dimension of integration can be found wlaen viewing a
domain-specific reuse library as a bridge between supply-
side and demand-side reuse processes. As illustrated in

Figure 4-1, the scope of a repository can vary according to
the nature of the domain analysis processes, e.g., how close
is the "fit" between the domain analysis process and the
domain modeling services provided by the repository, and
the nature of the demand-side processes, e.g., who on the
demand side will be using the repository?

In Figure 4-1, two parallel life-cycle processes are
depicted: domain engineering and software engineering
represent the supply-side and demand-side reuse processes,
respectively. The repository can be scoped to capture the
by-products of different domain engineering subprocesses;
such decisions about scoping can result from, or can result

:1:.The use of a domain model as a kind of repository has been implicit

throughout the discussion. The terms "archite," "h'brary" and "repository"

are also used synonymously.

150

Wallnau

domain evolution
repository

...................

Architecture

Implementation

Domain Analysis Requirements

_ Analysis

Architecture System
Specification Specification

System
Implementation

DOMAIN SOFTWARE
ENGINEERING ENGINEERING

Figure 4-1 Repository Scopes and Process

in, different demand-side processes. For example, scoping
the repository to include only the implementation compo-
nents produced by domain engineering processes will
result in a "conventional" parts library. Such a design deci-

sion can be motivated by various factors, including the pos-
sibility that the demand-side processes are still too chaotic
to support more systematic reuse. Thus, in Figure 4-1 the
"pans" library could support, at worst, ad hoc opportunistic
reuse during system implementation, and, at best, could
support a system specification that takes some advantage of
existing reuse,able components.

There ate clearly potential advantages to extending the
scope of the repository to address the entire spectrum of
domain-engineering by-products, including domain analy-
sis. In Figure 4-1 the primary benefit illustrated is the
potential for closing the loop between domain engineering
and software engineering through a feedback and domain-
evolution path. Such a feedback loop can probably only be
supported if the domain model is captured and represented
in a reasonably formal manner.

5. Summ

We have described the problem of constructing an envi-
ronment to support the construction of domain-specific
reuse libraries in terms of integration. The integration prob-
lem involves integration of:

• roles in the reuse process

• domain analysis tools with each other

• domain analysis tools with a reuse pro-
cess

We briefly outlined the use of a hybrid knowledge rep-
resentation system, RLF, to act as an integrating agent to
provide role-specific views into the domain model, and to

support the use of an eclectic assortment of modeling tech-
niques by tapping into a large, robust CASE market.

The CARDS program will focus, in the next year, on
creating a blueprint for achieving reuse in the DoD. This
blueprint will address technical as well as non-technical

issues, and wiH_ovide guidelines for the use of a hybrid
knowledge-representation/CASE tool architecture for
developing domain-specific reuse libraries and using

domain-specific software architectures and assets to create
application systems. = =

The CARDS program will also be experimenting with
domain-specific reuse environment and system composi-
tion techniques tailored to the command center subdomain
of C2 applications. The conceptual model for this composi-
tion is similar to that of hardware configuration [13] -- a

user configures a system of software components based
upon a inferencer-directed dialogue designed to elicit sys-
tem requirements.

References

[1] Anderson, C.M., McNlcholl, D.G., "Common Ada Missile

Packages (CAMP); Preliminary Technical Report, Vol.

1" in STARS Workshop Proceedings, April 1985, FO
8635-84-C-0280.

[2] Simm, M.A., "The Growing of an Organon: A Hybrid

Knowledge-Based Technology and Methodology for
Software Reuse" Domain Analysis and Software Sys-

tems Modeling, Prleto-Diaz, Arango, Eds., IEEE Com-

puter Society Press, ISBN 0-8186-8996-X.

[3] Integrated Project Support Environments: The Aspect

Project, A.W. Brown (Editor), Academic Press, 1990.
[4] Prieto-Dlaz,R., 'q)omaln Ana_is- for-Re_b_t% _'_'

Domain Analysis and Software Systems Modeling, PH-
eto-D[_, Arango_Eds., IEEE Computer Society Press,
ISBN0-81_-_)96-X,_:_-_:_ _ _ _: -

[5] Brown, A.W, Feller, P.H.,An Analysis Technique for

Examining Integration in a Project Support Environ-

ment, Technical Report CMU/SEI-92-TR-3, Software

Engineering Institute, Carnegie Mellon University,
" Pittsburgh, PA, January 1992.

[6] Devanbu, E, Brachman, R.J., Se!fridge, P., Baliard, B.,
"LASSIE: A Knowledge-Based Software Information

System," Domain Analysis and Software Systems Model-

ing, Prieto-Dlaz, Arango, Eds., IEEE Computer Society

Press, ISBN 0-8186-8996-X.

151

Wallnau

[7] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A., Fea-

ture-Oriented Domain Analysis (FODA) Feasibility

Study, Technical Report CMU/SEI-90-TR-21, Software

Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA, November 1990.
[8] Brown, A.W., Feller, P.H., Wallnau, K.C., "Understanding

Integration in a Software Development Environment,"
accepted for Second 1EEE International Conference on

Systems Integration, Irvine, CA, for May, 1992.
[9] Brown, A.W., Feller, P.H., Wallnau, K.C., '_Past and

Future Models of CASE Integration," submitted to

Fifth International Workshop on Computer.Aided Soft-

ware Engineering, for July 1992.
[10] Solderitsch, J., Wallnau, K., Thaihamer, J., "Construct-

ing Domain-Specific Ada Reuse Libraries," in Proceed-

ings of the 7th Annual National Conference on Ada

Technology, Atlantic City, NJ, 1989.
[U] Wallnau, K., Solderitsch, J., Thalhamer, J., et. al., "Con-

structlon of Knowledge-Based Components and Appfi-

cations in Ada," Special Issue of the IEEE Intelligent

Systems Review, Spring 1989.
[12] Matuszek, P., Clark, J., Sable, J., Corpron, D., Searls, D.,

"KSTAMP: A Knowledge-Based System for the Main-

tenance of Postal Equipment," United States Postal

Service Advanced Technology Conference, May 1988.

[13] Searls, D., Norton, L., "Logic-Based Configuration with a

Semantic Network," in The Journal of Logic Program-

ruing, Volume 8, 1990, pages 53-73.

[14] D'Ippolito, "The Context of Model-Based Software Engi-

neering" in Proceedings of the Workshop on Domain-

Specific Software Architectures, Hidden Valley, PA,

DSSA Program Manager, DARPA/ISTO, 1400 Wilson

Blvd., Arlington, VA 22209, July 1990.

[15] A Domain Analysis Process, Interim Report, Domain_An-

alysis-90001 -N, Version 01.00.03, Software Productivity
Consortium, 2214 Rock Hill Road, Herndon, VA,

22070, January 1990.

[16] Mayfield, J., Nicholas, C., Using Semantic Networks to

Enrich Hypertext Links, Technical Report, Computer

Science Dept., University of Maryland Baltimore

County, January, 1992.
[17] Z --An Introduction to Formal Methods, DUler, A., John

Wiley and Sons, ISBN 0-471-92489-X.

152

