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SUMMARY

The performance requirements for hydrogen detection in aerospace applications often exceed those of

more traditional applications. In order to ascertain the applicability of existing hydrogen sensors to aero-

space applications, a survey has been conducted of commercially available point-contact hydrogen sensors,

and their operation has been analyzed. The operation of the majority of commercial hydrogen sensors

falls into four main categories: catalytic combustion, electrochemical, and semiconducting oxide sensors

and thermal conductivity detectors. The physical mechanism involved in hydrogen detection for each

main category is discussed in detail. From an understanding of the detection mechanism, each category

of sensor is evaluated for use in a variety of space and propulsion environments. In order to meet the

needs of aerospace applications, the development of point-contact hydrogen sensors that are based on con-
cepts beyond those used in commercial sensors is necessary.

INTRODUCTION

The detection of hydrogen leaks in aerospace applications, especially those involving hydrogen fuel

propulsion systems, is of extreme importance for reliability, safety, and economic reasons. The perfor-

mance requirements for the sensor depend greatly on the application. Parameters such as sensitivity,

ambient atmosphere, temperature, response time, and size, weight, and power restrictions vary consider-
ably from application to application. The required sensor sensitivity may range from the detection of

trace amounts of hydrogen (on the order of parts per million (ppm)) to levels near the lower explosive

limit, or LEL, (4% H 2 in air) and even to concentrations of 100%. The ambient atmosphere surrounding
the sensor may be helium, nitrogen (N2) , air, or even a vacuum. The temperature range may also vary
considerably: Gas emerging from a liquid hydrogen line or into a space environment may be at cryogenic

temperatures, whereas in other applications the gas is at room temperature. The response time required

also depends on the application. A several-second response time may be adequate if the hydrogen concen-
tration does not change rapidly, but in situations where the hydrogen concentration may quickly become

hazardous, rapid response times are necessary. Size, weight, and power consumption may be a factor,

depending on the leak location: In storage locations with sufficient room and power supply, a mass spec-

trometer may be an ideal way to monitor the hydrogen level. However, for applications involving remote

or confined locations or on space vehicles, compact sensors with limited size and power requirements are

preferred. Therefore, the conditions under which hydrogen sensors must function vary greatly in aero-

space applications. A sensor that works well in one application may not be adequate in another.

An example of the range of conditions in which a hydrogen sensor must function in aerospace appli-

cations that illustrates the lack of a "universal" sensor is the hazardous gas detection system (HGDS) for

the Space Shuttle (ref. 1 and personal communication from W. Helms). This system is used to prevent
an explosive situation associated with the launch of the Space Shuttle orbiter. In order to detect an

explosive situation, sensor sensitivity to 4% H 2 (LEL) in air is mandatory, but further sensitivity is
necessary to warn of potentially hazardous situations. A "red flag" warning is set off at a hydrogen

concentration of 2%, or 50% LEL. The sensor must continue to be operable even after exposure to

hydrogen concentrations as high as 100%, such as would be encountered directly at the leak location.



Thehydrogen concentration must be determined in several different environments. An array of 60

catalytic combustion sensors monitor leaks at near room temperature in air above all flanges in the main

propulsion system. However, as discussed later, these sensors are inoperative in oxygen-deficient regions

purged with helium (He), such as the umbilical cavities associated with liquid hydrogen lines. The tempera-

ture of the leaking gas in these cavities ranges from cryogenic at the leak location to room temperature

farther from the leak. A totally different type of leak detection technique from the catalytic combustion

sensor is necessary for monitoring gas concentration in these regions. The technique presently used is

monitoring the hydrogen concentration with a mass spectrometer. The detection limit of this system is

200 ppm hydrogen over a range of 1 to 50 000 ppm. ttowever, leak detection using a mass spectrometer
in this application faces a number of problems. A mass spectrometer used in these regions must sample

gas remotely through a pumping system connected to a number of sampling tubes. This decreases the speed

of response owing to the travel time for the gas to reach the mass spectrometer. The leak detection is also

complicated by the insulation covering the liquid hydrogen lines: The location where hydrogen leaves

through the insulation and interacts with the sampling tubes may not be where the leak originates. Fur-

ther, these lines must be disconnected shortly before launch, so that for a time hydrogen leaks are not

monitored. Alternatively, detection of gas generated from leaks in the liquid hydrogen lines might be
facilitated by a series of point-contact sensors placed inside the insulation or even on the surface of the

supply lines if a suitable point-contact sensor could be found. Therefore, the varying environment on the

Space Shuttle while on the launch pad means that the leak detection solutions that operate well in one

part of the launch pad are problematic in another and each approach faces its own complications.

Motivated by leaks occurring in liquid hydrogen lines supplying the Space Shuttle main engine,

NASA Lewis has been investigating the availability, method of operation, and range of application of

point-contact hydrogen sensors. The emphasis on point-contact sensors is due to their small size, low

power consumption, and versatility. The focus of the program thus far addresses not only the Space

Shuttle applications but aerospace applications in general. Therefore, the properties of these sensors

should be investigated throughout the environments present in the broad range of applications discussed
previously. These include a hydrogen gas concentration from the parts-per-million range to 100%; an

ambient atmosphere surrounding the sensor consisting of helium, nitrogen, air, or vacuum; and hydrogen

gas temperatures from liquid hydrogen temperature to room temperature. Other factors to consider

include response time, power consumption, and size limitations.

This report presents the results of a recently conducted survey of commercially available point-

contact hydrogen sensors. This survey was not meant to be an analysis of all available commercial sen-

sors but rather a discussion of the major types of point-contact sensor technology.

It was concluded that none of the sensors can meet all the needs of aerospace applications. The

major limitations of catalytic combustion sensors are their need for oxygen and limited detection range.
Electrochemical sensors have many favorable properties, but their temperature limitations and depen-

dence on liquids are significant drawbacks. Semiconducting oxide sensors are limited in their detection

range and need a s_iable temperature and oxygen concentration. The thermal conductivity detectors,

which generally have a slower response time than the other techniques, have difficulty detecting hydrogen

in helium. Although each of these sensors may perform well in a given environment, no single system is

operable throughout the varied environments that are necessary in aerospace applications. In particular,

operating a commercial point-contact hydrogen sensor in a low-temperature, helium-purged environment

is not feasible. An example of the size, weight, and power requirements is given for each sensor category

in appendix A. Appendix B shows which sensors are usable in a few limited applications.



PREVIOUSREVIEWS

Threebroad surveys of standard hydrogen leak detection techniques have previously been performed.

In 1970, Rosen et al. (ref. 2) reviewed the technology of hydrogen leak and fire detection with an empha-
sis on hydrogen safety. A variety of techniques were discussed and the results of on-site visitations to

hydrogen users were included in this publication. In 1981, Lai (ref. 3) contacted a number of hydrogen
detector suppliers that he located, in part, by using Best's Safety Directory and the Thomas Register,

1980. A number of hydrogen detection methods were presented and evaluated for use in secondary con-

tainment vessels for nuclear reactors. In 1989, Madzsar (ref. 4) reviewed a number of leak detection tech-
niques for use in hydrogen-oxygen engines, including bubble tests, mass spectroscopic techniques, and

optical and solid-state detectors. The applications included leak detection in acceptance, between-flight,

test-stand, and flight testing. The concept of miniaturized sensors in various locations about a test stand

was noted in this work. Other reviews have discussed experimental hydrogen sensors or the operation of

a specific type of hydrogen sensor. (See, e.g., refs. 5 and 6.)

The applicability and limitations of commercially available point-contact hydrogen sensors in aero-

space applications have not been discussed in the literature. This paper addresses that topic in detail.

METHOD

Three sources were consulted in order to find commercial suppliers of hydrogen sensors (refs. 7

to 9). Considerable overlap was noted between the three sources. A small number of companies that
were not in these sources were contacted if recommended by other companies. Because the interest of

this survey was point-contact sensors, companies specializing in mass spectrometry or optical systems, for

example, either were not contacted or are not part of the discussion that follows. Approximately 55 com-
panies were contacted. Of these, 43 produced sensors that could be used for hydrogen gas detection and"

28 sent information on their sensors. Some companies produced more than one type of sensor that could

be used for hydrogen detection.

Discussions with company representatives and reading product information identified four major

types of hydrogen sensors: catalytic combustion sensors (14 sources), electrochemical sensors (14

sources), semiconducting oxide sensors (9 sources), and thermal conductivity detectors (5 sources). All

other sensor types that were encountered are listed in the category "miscellaneous" (1 source). The
mechanism of hydrogen detection is explained for each major category from product information and,

preferably, reviewed journal literature.

SENSOR TYPES, OPERATION, AND CHARACTERISTICS

Catalytic Combustion Gas Sensor

Catalytic combustion sensors are effectively calorimeters. They are based upon the principle that

the reaction of a combustible gas (e.g., hydrogen) on the surface of the sensor in the presence
of oxygen releases heat. The sensors must have a minimum oxygen concentration available, at least

15 to 16%, to promote combustion (ref. 10).

The basic configuration of the sensing element, often referred to as a "pellistor," is shown in figure 1.

It consists of a platinum (Pt) wire that serves as a heater and as a resistance thermometer. The Pt wire

is covered with an alumina bead (_1 mm in diameter) that is coated with a catalyst. An identical bead
with the catalyst deactivated is used as a reference. Both sensors are placed in a Wheatstone bridge, and



the output is monitored. The catalyst is used to decrease the reaction temperature that is necessary to

completely oxidize the gas. However, the usual reaction temperature even with the catalyst is above
500 °C.

The catalyst material varies, with palladium (Pd)-based catalysts being the most common. The

catalyst is placed on high-porosity alumina beads to increase the coated surface area and the number of

active sites. Additives are combined with Pd or Pt to optimize the performance of the catalyst and to

prevent deactivation through sintering or exposure to catalyst inhibitors and poisons (refs. 11 and 12).

The heat generated bY the combustion of the gas on the catalytically active surface is proportional

to the amount of gas and its heat of combustion. The heat is conducted through the alumina bead to the

Pt wire. The heat flux generates changes in the Pt wire resistance that can be converted into a signal to

give the concentration of a given gas.

The detector may be operated in an isothermal or nonisothermal mode (ref. 12). The nonisothermal
mode is more common. The heat flux raises the temperature at the resistor and thus changes its resis-

tance and the voltage drop across the resistor. This voltage change is correlated with the amount of

combustible gas.

Firth et al. (ref. 13) have investigated the response of a catalytic combustion sensor that was oper-

ated in the nonisothermal mode. The voltage output was linearly proportional to the gas concentration

in the range investigated near the LEL. Combustion of any of a large number of gases (including car-

bon monoxide (CO)) can cause a signal; thus, the selectivity to hydrogen of this sensor is poor. There is
a general agreement in the voltage at LEL for all gases, assuming the same detector geometry and the

same coefficient for gas diffusion migrating to the sensor surface. Although these conditions are not

strictly met for all combustible gases, this work illustrates both the utility of this sensor for combustible

gas detection near the LEL and the importance of gas migration to the detector surface.

The gas arriving at the sensor may be drawn in with an aspirator or a pump, or it may diffuse to

the sensor. In both cases the catalytic bead is shielded from the environment by a flame arrestor. The

flame arrestor, which is common to all combustible gas detectors operating at high temperature, is a

stainless steel screen with a grid size smaller than the minimum quenching distance of a flame (on the

order of 0.06 cm) and keeps the heated sensor from serving as an ignition source (ref. 3). Diffusion
through the flame arrestor is the major factor in the sensor response time, which ranges from 5 to 30 sec

to reach 90% static signal.

The sensitivity of this sensor is limited by the detection mechanism. The lower sensitivity is limited

by the measurement of resistance changes for Pt wire, which means lower detection limits of combustible

gas near 100 ppm (ref. 12). For hydrogen concentrations above the LEL, it is experimently observed

that the output signal decreases and at higher hyrdogen concentrations the sensing element may burn

out. Thus, this sensor is not usable for higher hydrogen concentrations.

Electrochemical Sensor

The operating principle for an electrochemical cell, which can be used as a gas sensor, is discussed

in references 14 and 15. The cell may have two or three electrodes, depending on the purpose of the cell
and the behavior of the electrodes. The following discussion concentrates on two-electrode systems to

illustrate the concepts involved and the limitations of the technique. Components of a two-electrode

electrochemical ceil include a working (or sensing) electrode and a counter electrode that is connected



throughanelectrolyte. Thesensingelectrodeandthe counter electrode form a complete circuit through
the electrolyte, allowing charge to flow through the cell.

For hydrogen interacting at a Pt sensing electrode, the reaction that takes place is

H 2 --_ 2H ++2e- (1)

At the Pt counter electrode an oxidation reaction takes place:

02+4H ++4e- -.2H20 (2)

These reactions produce a current between the sensing electrode and the counter electrode that depends

on the hydrogen partial pressure (ref. 16).

The general design of most electrochemical gas-sensing cells is similar. Selectivity for a particular
gas is achieved by controlling such parameters as electrode catalyst, electrolyte, membrane material, and

biasing of the electrodes. The design and operation of CO sensors are very similar to those of hydrogen
sensors and will generally be discussed interchangeably.

In gas-sensing applications a chemical reaction occurs at the surface of the sensing electrode. The

reaction involves the gas to be sensed, the sensing electrode, and the electrolyte. The sensing electrode

usually consists of a catalyst, such as Pt black or a Pt black alloy, that is interdispersed in a porous

Teflon-based binder which is supported by a metal screen (refs. 17 to 22). The operation of a common

electrode in liquid electrolytes, the Teflon-bonded diffusion electrode, relies on the porosity and thus

surface area of the electrode, intimate contact between the electrode and the electrolyte, and acceptable
diffusion coefficients and reaction rates (ref. 23).

The electrolyte, whether solid or liquid, must conduct current from the sensing electrode to the

counter electrode. A number of electrolytes are used. Sulfuric acid in the 2 to 4 molar range is often

used as a liquid electrolyte (refs. 16 to 21 and 24) for gases like CO and hydrogen and was the most often

cited electrolyte in this survey. Variations in humidity can affect the electrolyte and thus the behavior of

the sensor by changing the viscosity of the electrolyte as well as its volume (refs. 16 and 19).

Solid electrolytes, such as Nation or hydrogen uranyl phosphate (HUP), which are used as elec-

trolytes in some commercial sensors, are conductors of protons (hydrogen ions) (refs. 22, 24, and 25).
Solid electrolytes have a number of advantages over liquid electrolytes, including increased sensor

stability due to the stability of the electrolyte and the electrode/electrolyte interfaces, flexibility in

design, and ability to produce compact sensors (refs. 17, 22, and 24 to 30). Although this approach elimi-

nates the need for using corrosive solutions as electrolytes, hydration of these polymers is necessary for
their operation (refs. 26 and 31).

There are two principal methods of operating these cells: potentiometric and amperometric. In a

potentiometric cell an equilibrium state is established between the sensing electrode and the counter elec-

trode. In this state no current flows and cell output is the measured potential across the sensing elec-

trode and the counter electrode. This potential is a logarithmic function of the ratio of the hydrogen

partial pressures across the electrodes and is often given by the Nernst equation (refs. 14, 15, and 30).
Sensor operation in this mode depends on the dynamics of the electrode reactions. A schematic represen-

tation of a potentiometric cell is shown in figure 2 for a solid electrolyte.
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In the amperometricmodeof operationhydrogengasentersthe cell through a hydrogen-permeable

membrane and reacts at the sensing electrode, generating a current between the sensing electrode and the

counter electrode that is proportional to the hydrogen partial pressure. A representative schematic of a

two-electrode amperometric sensor is shown in figure 3. By proper selection of the sensing electrode

potential, a particular reaction may be preferentially driven at the sensing electrode. This allows the

sensor to be selective to a given type of gas and eliminates the cross-sensitivity of hydrogen sensors to

other gases, especially oxygen (02) (refs. 20 and 32). However, this technique does not completely elimi-
nate cross-sensitivities. As noted previously, sensors sensitive to hydrogen are also sensitive to CO and

vice versa (refs. 17, 19, 22, and 32).

Gas diffusion into the amperometric cell is usually controlled so that all the gas that reaches the

catalytic surface of the sensing electrode is reacted. Under these conditions the current produced will be

proportional not only to the reactant gas concentration but also to the diffusion coefficient of gas to the

reactive sites on the electrode surface (ref. 23). Gas diffusion may be controlled in several ways, which

usually include diffusion of the gas through a membrane (refs. 20, 24, and 33). A small pumping system

may be used to regulate gas flow across the membrane. However, the presence of a pump complicates the

system response and increases the amount of power that is needed to drive the sensor (ref. 19). Gas diffusion

may occur through a membrane (ref. 32), through a capillary with a membrane (ref. 34), or through a

diffusion chamber with a membrane (ref. 26). A prefilter to eliminate interfering gases may also be

included in the system before the gas contacts the membrane (refs. 22 and 35).

The fact that electrochemical systems rely on chemical reactions and often diffusion for their opera-

tion implies dependence of the sensor on temperature (refs. 16, 19, and 22), and thus temperature control

is a concern. These sensors are generally operated at room temperature. Operation at temperatures sig-

nificantly higher or lower than room temperature leads to alterations in electrolyte properties. At higher

temperatures, dehydration for hydrated solid electrolytes or boiling for liquid electrolytes becomes signifi-

cant; at lower temperatures, freezing of liquid constituents eliminates electrolyte operation.

There are a number of advantages to electrochemical sensors: They include room-temperature sensing

with little power consumption, a high degree of selectivity and sensitivity, low cost, and the possibility of

decreasing sensor size with solid electrolytes. Disadvantages include the fact that liquid electrolytes may

leak, thus changing sensor properties as well as releasing corrosive liquid. Further, the electrolyte concen-

tration may vary with humidity, and solid electrolytes generally require hydration on a periodic basis.

Semiconducting Oxide Sensors

Semiconducting oxides were suggested for use as combustible gas detectors by Seiyama et al.

(refs. 35 and 36) and developed by Taguchi (ref. 37). Doped tin dioxide (SnO2) , an n-type semiconduc-
tor, is the most widely used and most completely characterized system although other systems containing

mixed oxides have been marketed. The mechanism by which CO or combustible gases are detected by

these semiconducting oxides involves surface reactions with chemisorbed oxygen (refs. 12 and 38 to 47).

The type of reaction depends on whether bulk or surface effects are controlling sensor resistance and the

degree of sintering of the material. For commercial systems in which grain boundary resistance domi-

nates the semiconductor resistance, the common theoretical explanation is as follows.

Chemisorbed oxygen on the semiconductor surface extracts conduction electrons from the near-surface

region of the grains. This extraction does not significantly affect the resistivity of the bulk of the semi-

conductor, in which electrons are abundant. However, near the grain boundaries the electrons must pass

from one grain to another through the field created by the depletion of the near-surface electrons. This

field traps free electrons, creates a potential barrier that impedes the electron flow, and increases the



resistanceof thematerial. Themagnitudeof this effectdependson the amountand typeof oxygenon
the surface.WhenCOor combustiblegasessuchashydrogenareexposedto thesurfaceof SnO2at
elevatedtemperatures,thegasesareoxidizedand,dependingon the temperature,leavethe surface.This
leavesoxygen-deficientstatesat the SnO2surface.Theamountof oxygenavailableto affecttheelectron
flow is decreasedandtheresistancedecreases.This mechanismis shownin figure4 for the behaviorof
COona SnO2grainboundary(ref. 38).

The resistance change is nonlinear and depends on the partial pressure of the reducing gas, such as

hydrogen, as well as on the ambient oxygen partial pressure. Although this sensor is operable in a range

of hydrogen/oxygen concentrations, the presence of some ambient oxygen is essential for its operation

(ref. 39). Large hydrogen concentrations would saturate the semiconductor surface at a certain level,

leaving it insensitive to increases in hydrogen concentration. Because the sensor will react with a wide

range of reducing gases, this sensor is not selective to a particular gas. Further, effects of humidity on

the resistance have also been noted (refs. 13, 40, 41, and 46).

The behavior of the sensor is also temperature dependent for a variety of reasons. These include

temperature dependence of the type oxygen ion adsorbed and adsorbed water loss occurring with increas-

ing temperature (ref. 46). The temperature must be high enough for the reactive gas to oxidize and be
removed from the semiconductor surface and yet not so high as to limit the time the reactive gas spends

on the semiconductor surface and thus prevent oxidation from taking place. Thus, the operating tem-

perature for this type of sensor is limited to 200 to 500 °C (ref. 40). The semiconductor surface is often
modified by a catalyst, such as Pd or Pt to assist in oxidizing the gas. Attempts have been made to

improve the sensitivity and selectivity of SnO 2 with controlled processing conditions, various additives,
multisensor schemes, or thermal cycling (refs. 43, 45, and 47 to 56).

Advantages of the semiconductlng oxide sensors of the SnO 2 type include their simplicity of design,

small size, high sensitivity, fast response time, and low cost. Disadvantages include a lack of selectivity,

the need for a constant background oxygen concentration, saturation at higher hydrogen concentratlons_

long-term drift, and nonlinear response. Further_ temperature control is necessary because the response

of this sensor is temperature dependent.

Thermal Conductivity Detectors

A thermal conductivity detector senses gas composition by comparing the conductivity of a sample

gas with that of either a flowing or stationary reference gas. The thermal conductivity of a gas is meas-
ured by monitoring the temperature of a heated element in a cell. A heated filament or thermistor is

used as a source of heat and is placed in an isothermal chamber. The heater filaments are commonly

made of tungsten (W), tungsten-rhenium (W-Re), or nickel-iron (Ni-Fe) with possibly a gold plating

(refs. 57 and 58) and are usually operated between 100 and 200 °C; the thermistors are used at tempera-
tures near 100 °C and below. Although thermistor elements are more sensitive than wire filaments be-

cause of their significantly greater temperature coefficients of resistance, they are also more susceptible to

noise (ref. 59).

The heat is dissipated from the heated element to the surrounding environment. The majority of the

heat Q for a resistive system with current I and resistance R is dissipated through conduction:

Q- I2R = 2G dT (3)
J dx



whereJ = 4.19 W/cal is the Joules equivalent, _ is the thermal conductivity of the gas in the cell, G is

the cell factor, which depends on the cell geometry I and dT/dx is the thermal gradient between the

heater element and the surrounding cell walls (ref. 57).

The cell geometry can play a significant role in the response curve of a thermal conductivity detector

(refs. 57 and 58). The temperature of the heater element for a given geometry and heat flux also depends

on the thermal conductivity of the gas carrying the heat away and on the temperature of the surrounding

walls (ref. 59). Given a constant wall temperature, cell geometry, and heat input, changes in the thermal
conductivity of the gas can be detected by the temperature of the heated element.

Although the dominant heat loss mechanism is conduction, other factors, such as the gas flow in the

cell, affect the accuracy of the gas thermal conductivity measured (refs. 57 and 60 to 62).

Two cells are necessary for thermal conductivity measurements to be used as accurate gas sensors.

The cells and heated elements are identical except that one cell is exposed to a sample gas while the other

is exposed to a reference gas. The sample gas may be the same as the reference gas except for the addi-
tion of an impurity, or it could be a different gas altogether. The reference gas may be flowing or
enclosed in a sealed chamber.

The heated element in the sample cell and the heated element in the reference cell are part of a
Wheatstone bridge. Changes in sample gas thermal conductivity yield a change in the resistance of the

sample gas heated element. This resistance change produces a signal that can be correlated to the
amount of change in the sample gas thermal conductivity. The response is nonlinear with concentration

in part because changes in the conductivity of a gas with the addition of an impurity are not linear even

for a binary gas mixture (ref. 57).

The ability to detect changes in the thermal conductivity of a sample gas due to a change in gas

composition or the introduction of an impurity strongly depends on the difference in thermal conductivity

between the reference gas and the sample gas. Thermal conductivity detectors are normally used as gas

sensors in binary gas applications where the gases and their thermal conductivities are known (ref. 63).

The thermal conductivities of several gases of interest as a function of temperature are shown in

figure 5 (ref. 64). The thermal conductivity of hydrogen is approximately seven times greater than that

of nitrogen throughout the temperature range. This means that the addition of hydrogen to a nitrogen

stream is detectable. This is the basis for using the thermal conductivity detector as a hydrogen leak

detector. The sensitivity of this system, if the necessary parameters are properly controlled, for hydrogen

in nitrogen is on the order of 1.0× 10-s cm3/sec for a flowing stream and on the order of 100 ppm H 2
concentration. The response time varies but is on the order of tens of seconds for a 90% static signal.

Detecting hydrogen in an helium stream, however, would be difficult because of their nearly equal ther-
mal conductivities.

The major advantage of this approach is that the sensor is measuring a property of the gas and not

relying upon the disassociation of the gas for its measurement. The disadvantages include its dependency

on a number of parameters, notably temperature and gas flow control, for accuracy. The system strongly
depends on a known impurity gas having a different thermal conductivity than that of the reference. The

response time and the size of the complete system are also of concern.
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Miscellaneous

Manufacturers were located who produce sensors that do not fall into the preceding categories. One

company that was contacted is beginning to produce sensors that are based on planar semiconductor

technology. The sensor involves several thin-film layers that are composed of a metal, often an oxide,

and then a semiconductor. The operating principle for these metal-oxide-semiconductor sensors, or MOS,

is significantly diferent from that for the semiconducting oxide sensors discussed previously. This type of

sensor for hydrogen detection is still generally an experimental sensor about which an enormous amount

of literature has been published. An upcoming paper is planned that will discuss the experimental sensors

in detail, and this topic is deferred until then. An interested reader is referred to references 5 and 6 and
references therein.

DISCUSSION

Each hydrogen detection technique that was described in the preceding section operates well for a

limited range of applications. The question that will be addressed in this discussion is the effectiveness of

these techniques in aerospace applications. Specifically, to which range of aerospace applications will the

sensor be applicable? As stated in the introduction the operating conditions present in aerospace appli-

cations span a wide range of parameters. It is not feasible to discuss here the specific operating condi-

tions for all possible applications. However, it is possible to discuss the gas environment of the sensor

and the sensor response in a broad way without referring to the specific application.

The set of parameters related to the gas environment of the sensor are hydrogen concentration,

ambient atmosphere surrounding the sensor, and temperature of the gas impinging on the sensor. The

hydrogen concentration may vary from trace amounts of gas to 100% H 2. The ambient atmosphere sur-
rounding the sensor may be air, nitrogen or helium purges, a vacuum, or mixtures of these gases from

vacuum to at least atmospheric pressure. The gas temperature, which may be time dependent, can range

from liquid hydrogen temperatures to room temperature and above.

The set of parameters related to sensor response are its ability to detect hydrogen in a given environ-

ment and at a given concentration level, sensor response time, and the sensor power requirement, weight,
and size. Of these, the most important attributes of any sensor are the first two: its ability to operate in

a particular environment and to give a meaningful signal in a period of time useful to the user. The dis-

cussion will center on whether the sensor is operational inn finite amount of time to changes in hydrogen

concentration in the broad range of gas conditions outlined previously.

An example of the size, weight, and power requirements is given for each sensor category in appen-
dix A. In appendix B, specific values for the condition of the gas are chosen and the corresponding sensor

response is evaluated. These values are meant to be figures of merit illustrating the applicability of each

sensor. Cross-sensitivitles for each sensor have been noted in the preceding section and will affect the

sensor performance in applications beyond those to be discussed.

Catalytic Combustion Sensors

The catalytic combustion sensor is operational in air at room temperature down to 100 ppm in sen-

sitivity. Operation at high hydrogen concentrations leads to sensor burnout. At least 16% O_ is neces-
sary for its operation; therefore, it will not function in either of the pure gas ambients or in a vacuum.

9



,,uw-_emperature operation may be complicated by several factors. The gas must diffuse through a

flame arrestor and diffusion is a temperature-dependent process. As cryogenic gas gets close to the heated

pellistors, it will warm and react at the surface of the catalyst, producing a signal. However, there is a

question as to whether the migration of cryogenic gases through the flame arrestor will be sufficiently

rapid at low temperatures to track changes in hydrogen concentration in a responsive manner. Associ-

ated with this potential problem is condensation, for example, of water on the flame arrestor, which will

further decrease diffusion to the sensing element. Heating the flame arrestor may eliminate the diffusion

and condensation questions as long as this can be done without turning the flame arrestor itself into a

spark source. Thermal shock of the component materials should also be considered in all these sensors for

applications from room temperature to cryogenic temperatures.

The power requirements for this system are a significant concern and will worsen as the sensor is

exposed to cold gas. Improved catalysts may allow a lower gas combustion temperature for this sensor

with smaller power requirements. This also would decrease the concern of having a 500 °C element near

explosive hydrogen sources. Protective coverings and conduits make this sensor safe in such applications.

However, they can increase the mass of the system to the point where one is not dealing with a point sen-
sor. This leaves the use of the sensor questionable in applications where sensor size and weight are
concerns.

Electrochemical Sensors

Electrochemical sensors are operational and sensitive from the low parts-per-million range to

100% H 2 in air and other gases at room temperature. The sensors have low power requirements and
can be made lightweight. Electrochemical sensors were chosen by Stetter et al. (ref. 65) to meet

the low power and safety requirements of methane detection in coal mine applications.

Electrochemical sensors involve some type of liquid in contact with an electrode or a diffusion med-

ium. Thus, the sensor as constructed cannot be operated in a vacuum because of the instability of the

liquid. Cryogenic temperature operation is also out of the question because the liquid, whether the
electrolyte or water, involved with the sensor will freeze. Many of these sensors depend for operation on

control of gas diffusion through a membrane. Exposure of the membrane to cryogenic or time-varying

temperatures will greatly affect the gas diffusion and make the sensor unreliable. The inability of parts of

the sensor to withstand thermal cycling will also be a limitation. For solid electrolytes, heating the elec-

trochemical sensor and periodically rehydrating the electrolyte may allow electrochemical sensors to work

at lower temperatures. Such an approach could make these sensors operational at cryogenic temperatures

with a significant increase in size, weight, and power consumption.

Semiconducting Oxide Sensors

Semiconducting oxide sensors are operational and sensitive in air at room temperature. Their depen-

dence on surface effects in an environment with a minimum oxygen concentration means that operation in
helium, nitrogen, or vacuum or in high concentrations of hydrogen is not possible. Modification with

other catalysts may make operating this sensor in these environments feasible.

Low-temperature operation would result in a signal when the gas makes contact with the heated

semiconductor. However_ problems associated with low-temperature operation of this system parallel

those of the catalytic combustion sensor and include the effect of low temperature on the diffusion

mechanisms involved in gas migration to the semiconductor surface, increases in the power necessary to

heat the sensor to operational temperatures_ the safety concerns associated with the presence of high-
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temperatureelementsnearexplosivesources,andthermalshockon the sensorcomponents.Improved
catalystsmayallow a decrease in the sensor temperature for gas oxidation, but other processes that are

involved with the detection mechanism, such as desorption of the reaction products, are thermally

activated and require a minimum temperature.

Thermal Conductivity Detectors

The principle behind the operation of thermal conductivity detectors is operational from 100 ppm to

100% H 2 in most of the considered applications. This technique assumes an equilibrium condition be-

tween the heat source and its surroundings. A thermal gradient between a heated source and its sur-

roundings may be established even at cryogenic temperatures. Monitoring changes in that thermal
gradient can be used to determine if there are changes in the thermal conductivity of the gas. However,

even at room temperature, care must be used in quantitative interpretations of the gas concentration
with this technique. The signal produced upon the introduction of hydrogen is very dependent on the

ambient gas and may be affected by the flow rate. In a helium ambient the sensitivity and reliability of

the sensor will be poor.

Another difficulty with this sensor in some applications is the response time. At room temperature

the time for equilibrium and a signal to be established is on the order of 30 sec. At lower temperatures

this time may be impractically long. At low, time-varying temperatures it is unknown whether the signal

of commercially developed thermal conductivity analyzers will be able to keep up with a varying hydro-
gen concentration. A miniaturized version of this sensor with only a small amount of heating necessary

to stabilize the surroundings of the sensor may have possibilities in cryogenic applications. This is the

only system of those discussed in this report that a manufacturer suggested would work in cryogenic

applications. A low-temperature (70 to 300 K) thermal conductivity measurement apparatus is discussed

in reference 66 that uses a transient rather than a steady-state technique.

CONCLUSIONS

The type, mechanism of operation, and aerospace applications of commercially available hydrogen

sensors have been discussed. The major categories include the catalytic combustion gas sensor, the

electrochemical sensor, the semiconducting oxide sensor, and the thermal conductivity detector. These

sensors are generally sensitive and operational in air at room temperature. The catalytic combustion

and semiconducting oxide sensors are limited in their operation to atmospheres with oxygen present;

operation of thermal conductivity detectors is disrupted in a helium ambient. Low-temperature and
vacuum-ambient operation will likely disrupt most of the sensors except for the thermal conductivity

detectors. No system has been found to be reliable and operational in all the environments examined,

and no system was operational in a low-temperature, helium-ambient application. These results are vis-

ualized for specific conditions in appendix B. The sensors may be modified to make them operational in a

given application; for example, providing an oxygen source to a catalytic combustion sensor or semicon-
ducting oxide sensor in a helium ambient. However, the more modifications made to the sensors, the

more complicated their operation becomes and the less like polnt-contact sensors they are in structure. In

order to meet the needs of aerospace applications, further development of point-contact hydrogen sensors

beyond those commercially available is necessary.

ACKNOWLEDGMENTS

The author would like to thank all those companies and individuals who have discussed their pro-
ducts and have sent valuable written information.

11



APPENDIX A

SENSOR CONFIGURATIONS

This appendix presents an example of the size, weight, and power requirements of each type of hy-

drogen sensor studied. The example will emphasize smaller sensor packages to illustrate the use of the

sensor as a point-contact sensor.

Catalytic Combustion Gas Sensor

A representative example of a commercial version of this type of sensor has the following properties:

The input power is 1.5 W at 24 V dc with an output signal of 4 to 20 mA linear with hydrogen concen-

tration. The catalytic beads themselves are relatively small, but the flame arrestor housing with trans-

mitter increases the size of a smaller system to 3.8 cm in diameter by 6.4 cm in height, weighing 0.45 kg.

A larger system measures 8.9 by 10.2 by 17.8 cm including the protective housing. The suggested ambi-

ent temperature range for the system is -40 to 80 °C. Operation at high temperature also leads to a

shorter detector life for these sensors especially in higher hydrogen concentration environments.

Electrochemical Sensor

The sensing element for the majority of commercial electrochemical sensors includes liquid for elec-

trolysis (liquid electrolytes) or humidification purposes (solid electrolytes). The dimensions of a smalI
electrochemical sensor element are typically 2.8 cm in diameter by 3.2 cm in height, weighing 30 g. A

flame arrestor and a sensor housing would increase the size considerably depending on the housing con-

figuration. The power consumption for this type of sensor is on the order of 0.6 W. Sensitivities on the

order of parts per million are achievable with a response time on the order of several seconds. The

suggested ambient temperature range of the cell is from 0 to 45 °C with a relative humidity range of at
least 30 to 80%.

Semiconducting Oxide Sensor

A typical configuration of a SnO 2 sensor includes a sensing element inside a flame arrestor. Gas

diffuses through the flame arrestor, where it comes in contact with the sintered or thin-film SnO 2 ele-
ment. The sensor element with housing is as small as 0.76 mm in diameter by 1.25 cm in height. Heat is

supplied by a resistive heating coil (usually precious metal), and the temperature is monitored. The

power input is near 0.66 W. Sensitivities to hydrogen range from the low parts per million to near the
LEL with the response time on the order of seconds.

Thermal Conductivity Detectors

The specifications for one thermal conductivity sensor system are as follows: The current necessary

to drive the temperature element in nitrogen varies with the type of element: from 0.6 to 5.2 W for a

heated filament and near 0.1 W for the thermistor element. The corresponding input current varies from
200 to 500 mA for the heated filament and is 6 mA for the thermistor. The size of the thermal conduc-

tivity cells (temperature element and chamber) varies, with the smallest system from this manufacturer

(chromatography applications) having the dimensions 4.4 by 3.8 by 1.7 cm and a gas volume of 0.02 ml.
This configuration has a flowthrough reference source, but systems are available with a reference gas (He,

H2, or N2) sealed in the reference chamber. The response time of these complete systems is less than
30 sec for a 90% static signal.
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APPENDIX B

SENSOR APPLICABILITY

This appendix evaluates the applicability of the hydrogen sensors discussed in this report with

specific parameters for the condition of the gas surrounding the sensor and the sensor response. These

parameters are meant to examine representative points of interest throughout the range of applications.

The parameters for the condition of the gas surrounding the sensor are as follows:

(1) Hydrogen concentration

(a) 200 ppm H 2

(b) 2% H 2

(c) 100% H 2

(2) Atmosphere

(a) Air
(b) Nitrogen (pure)

(c) Helium (pure)
(d) Vacuum

/

(3) Temperature

(a) 273 K

(b) 77 K (liquid nitrogen temperature)

The hydrogen concentration spans the range from sensitive applications to explosive conditions.

Specific values of hydrogen concentration include the parts-per-million range in air, 50% LEL in air, and

100% H 2 for the case where hydrogen is directly flowing on the sensor. _Atmosphere" denotes the ambi-
ent atmosphere into which hydrogen is injected and lists the atmospheres discussed in the introduction.

"Temperature" denotes the temperature of the gas to be sensed. The liquid nitrogen temperature, 77 K,

was chosen as one extreme to represent the case of cryogenic liquid hydrogen leaking from a line and
impinging on the sensor at a constant temperature. Temperatures lower than the liquid nitrogen tem-

perature would liquify the ambient gases in both the nitrogen and air examples; such a case would then

reduce to the detection of hydrogen in a liquid, which is beyond the scope of this paper.

The sensor response to these conditions may greatly depend on the manufacturer and such factors as

signal conditioning and sensor history. Nonetheless, some general patterns may be suggested. The opera-
tional responses will be grouped into three categories that cover a broad range of sensor behavior:

(1) Detection

(a) Detects (+)

(b) Inoperative (-)
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(2) Responsetime

(a) Lessthan 3 sec (+)

(b) Less than 45 sec (0)

(c) Greater than 45 sec (-)

(3) Power requirements

(a) <1 W (+)
(b) >1 W (-)

"Detection" refers to whether the presence of the hydrogen in these conditions results in a sensor

response that can be reproducibly correlated to a hydrogen concentration or if the sensor is inoperative.
"Response time" refers to the time it takes to achieve a 90_0 static signal after a change in hydrogen con-

centration. "Power requirements" refers to the power necessary to drive the sensor in the given condi-

tions. The less power required, the less of a chance of accidental ignition if a wire is exposed. The value

of i W was arbitrarily chosen as a power limit for safety considerations and based loosely on the power

limit chosen by Stetter et al. (ref. 65) for mine applications of 0.3 W.

In table I, each of the sensor types, catalytic combustion, electrochemical, semiconducting oxide, and

thermal conductivity, is evaluated for three sets of operational conditions at each temperature with
respect to the three response categories for each type of sensor. The meaning of the +_ -, and 0 has been

discussed; question marks denote that the sensor response is not known or questionable. The characteri-

zations in table I are general trends for the given type of off-the-shelf sensor; it is conceivable that an

individual brand of sensor may behave differently. The evaluations do not include either massive modifi-

cation of the sensor that may improve its performance under a given set of conditions or preconditioning

of the gas. The reasoning behind each of the appraisals is given in the discussion.

Examination of the table illustrates in what applications a sensor may be used as well as areas in
which further development work on commercially available point-contact hydrogen sensors is necessary to

meet the needs of aerospace applications.
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TABLE I.--OPERATIONAL CHARACTERISTICS OF HYDROGEN SENSORS

[Each type of sensor is evaluated for detection, response time, and power requirements.]

(a) In air

Conditions

293 K/200 ppm

293 K/2% H z

293 K/100% H 2

77 K/200 ppm

77 K/2% H z

77 K/100% H 2

293 K/200 ppm

293 K/2% H 2

293 K/100% H 2

77 K/200 ppm

77 K/2% H 2

77 K/100% H 2

293 K/200 ppm

293 K/2% H 2

293 K/100% H 2

77 K/200 ppm

77 K/2% H z

77 K/100% H a

293 K/200 ppm

293 K/2% H 2

293 K/100% H a

77 K/200 ppm

_7 K/2%H2
77 K/100% H a

Catalytic

combustion

sensors (CC)

+ 0 -

+ 0 -

+ ? -

+ ? -

Electrochemical

sensors (EC)

+ +

+ + +

+ + +

(b) In helium

Semiconducting

oxide sensors

(so)

+ + +

+ + +

+ + +

+ ? ?.

+ ? ?

+ ? ?

Thermal

conductivity

detectors (TC)

+ 0 +

+ 0 +

+ 0 +

+ ? ?

+ ? ?

+ ? ?

(c) In nitrogen

I-I-I-I L I I-i-i-i 101 1- - - + + + - - - + 0 +

- - - + + + - - - + 0 +

......... + 7 ?

......... + ? ?

......... + ? ?

(d) In vacuum

I-I-I-I-I-I-[-I-I-I 11111......... + 0 +

......... + 0 +

......... + ? ?

......... + 7

- ........ +
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Figure l.--Pellistor calorimeter showing catalyst on alumina
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Figure 4.--Gas detection mechanism of SnO2_x for CO (ref. 38).
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