(NASA-TM-105934) A STATISTICAL
N93-18069 IN-26 ANALYSIS OF ELEVATED TEMPERATURE GRAVIMETRIC CYCLIC OXIDATION DATA OF 36 Ni- ANO CO-BASE SUPERALLOYS BASED ON AN OXIDATION ATTACK
PARAMETER (NASA) 49 p
G3/26 0145791

A STATISTICAL ANALYSIS OF ELEVATED TEMPERATURE GRAVIMETRIC CYCLIC

OXIDATION DATA OF 36 Ni - AND Co-BASE SUPERALLOYS BASED ON AN
 OXIDATION ATTACK PARAMETER

Charles A. Barrett
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A large body of high temperature cyclic oxidation data generated from tests at NASA Lewis Research Center involving gravimetric/time values for 36 Ni and Co-base superalloys was reduced to a single attack parameter, K_{a}, for each run. This K_{a} value was used to rank the cyclic oxidation resistance of each alloy at 1000,1100 , and $1150^{\circ} \mathrm{C}$. These K_{a} values were also used to derive an estimating equation using multiple linear regression involving $\log _{10} K_{a}$ as a function of alloy chemistry and test temperature. This estimating equation has a high degree of fit and could be used to predict cyclic oxidation behavior for similar alloys and to design an optimum high strength Ni-base superalloy with maximum high temperature cyclic oxidation resistance. The critical alloy elements found to be beneficial were Al, Cr and Ta .

INTRODUCTION

Cyclic oxidation data in the form of specific weight change/time values and x-ray diffraction results for retained scales as well as spalled oxide(s) has been collected in two recent NASA reports (refs. 1 and 2). These reports covered 36 high-temperature Ni - or Co-base superalloy turbine alloys (table I). These alloys were tested in standard NASA Lewis cyclic oxidation test rigs which have been described in detail in reference 3. Most of the samples tested in these studies were run in a standard mode of a 1.0 hr exposure in the hot zone and then automatically lifted out of the furnace for a minimum of 20 min . This standard cycle was repeated continuously with the sample removed at selected intervals for intermittent weighing to generate the specific weight ($\Delta W / A$) versus time curves. X-ray diffraction analysis was performed at selected intervals as well. In most cases the standard 1 hr cyclic tests for these alloys were 100 hr at $1150^{\circ} \mathrm{C}, 200 \mathrm{hr}$ at $1100^{\circ} \mathrm{C}$, or 500 hr at $1000^{\circ} \mathrm{C}$.

Most of these alloys, particularly at the higher test temperatures, showed an eventual sample specific weight loss due to scale spalling as the sample cools between heating cycles - more than offsetting the oxygen pickup during scale formation at the exposure temperature. The shape of these $\Delta W / A$ versus time curves closely resemble classic paralinear kinetic behavior (refs. 4 to 6).

This gravimetric cyclic oxidation data can be converted into a single attack parameter, K_{a} (see below) to rank the oxidation resistance at a given temperature. The higher this K_{a} value the poorer the resistance. Based on analysis of a large body of data generated by this laboratory, K_{a} values are ranked as follows (ref. 7):

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}} \leq 0.20 \text { excellent } \\
& 0.20 \text { to } 0.5 \text { good } \\
& 0.50 \text { to } 1.0 \text { fair } \\
& 1.0 \text { to } 5.0 \text { poor } \\
& >5.0 \text { catastrophic }
\end{aligned}
$$

The goals of this investigation are to derive the attack parameter, K_{a} for each individual alloy sample tested using the suitable model equation; compare the derived K_{a} values at 1000,1100 , and $1150^{\circ} \mathrm{C}$ to rank the oxidation resistance of alloys; and thirdly, to attempt by regression analysis to derive an estimating equation for K_{a} (or more realistically $\log _{10} K_{a}$) as a function of test temperature and alloy composition. If the third goal is feasible the estimating equation will be used to estimate K_{a} for an alloy not included in this study and finally predict an optimum alloy composition for an alloy of this type.

ESTIMATING CORROSION ATTACK

All the specific weight change/time data and related kinetics are based on the simple mass balance equation at any time, t :

$$
\begin{equation*}
\Delta W / A=W_{r}-W_{m} \tag{1}
\end{equation*}
$$

where $\Delta W / A$ is the sample's specific weight change value which is plotted against time in these type of handbook figures; W_{r} is the specific weight of the retained scale, and W_{m} is the accumulated specific weight of all the metal converted to oxide up to that time regardless whether the metal is still in the retained scale, or lost by any other process (e.g., scale spalling, and/or scale vaporization and/or scale erosion). This W_{m} value is the critical parameter in any corrosion process and always increases monotonically with time. The problem in any corrosion study is to somehow estimate W_{m} preferably as a function of time.

In most corrosion studies a test sample is run for a given time, removed from test and descaled and the thickness change measured. This value can be directly converted to a W_{m} value provided there is no significant alloy element concentration gradient or grain boundary penetration in the alloy. This is not a very practical method in high temperature oxidation studies since it effectively destroys the sample and is a difficult measurement to make particularly for complex alloys. An even more complex extension of this approach is to metallographically mount a cross section of the test sample and determine not only thickness change but any grain boundary attack. Special etching techniques or electron microprobe analysis can then be used to determine any diffusional effects. However, it would be more practical if some nondestructive technique to measure thickness change of the sample as a function of time could be developed, with these more complex and time consuming analysis serving to provide verification.

Another approach is to focus on the W_{F} value. Since it is assumed that the $\Delta W / A$ value can be derived for any time by simply weighing the sample at that time then if W_{r} can be determined then the W_{m} values can be readily solved using equation (1) for a series of times. For two limiting cases W_{r} presents no particular problem. In the first case typical of most high temperature isothermal studies no scale loss occurs. So the W_{r} value at any time is simply the $\Delta W / A$ value multiplied by a stoichiometric oxide constant (refs. 8 and 9). For example, in an isothermal parabolic oxidation process after time, t :

$$
W_{m}=b k_{p}^{1 / 2} t^{1 / 2}-k p^{1 / 2} t^{1 / 2}
$$

or

$$
\begin{equation*}
W_{m}=k_{p}^{1 / 2} t^{1 / 2}(b-1) \tag{2}
\end{equation*}
$$

where k_{p} is the parabolic scaling constant and b is the stoichiometric constant based on the composition of the scale.

In the other limiting case where the scale spalls to essentially bare metal, occasionally found in cyclic oxidation, equation (1) reverts to

$$
\begin{equation*}
-W_{m}=\sim \Delta W / A \tag{3}
\end{equation*}
$$

where $\Delta W / A$ values are negative. This has been observed, for example, in burner rig oxidation studies where an insignificant amount of oxide remains (refs. 10 to 14).

There have been attempts at this laboratory and elsewhere to measure W_{r} directly using some physical method (e.g., β-back scatter, ultrasonic, or microwave technique). So far, however, no method has proven practical. Therefore, an indirect means of estimating W_{m} as a function of time must be found to analyze the large body of cyclic oxidation data.

One approach is to attempt to model the scaling/scale loss process using differential equations based on parabolic scale growth, occurring simultaneously with a linear scale loss. This model has been solved using the mass balance approach and requires only the constants $\mathbf{k}_{\mathrm{p}}, \mathbf{k}_{\mathrm{p}}$, and the stoichiometric constant for the scale formed to be able to determine $\Delta W / A, W_{r}$, and most importantly W_{m} for any time t (refs. 4 to 6). But since k_{p} and particularly k_{ℓ} are not generally known, Barrett and Presler (ref. 9) derived a computer program to analyze paralinear behavior and determine $\Delta W / A, W_{r}$, and W_{m} values along with the k_{p} and k_{g} values as a function of time using just two sets $\Delta W / A$, time inputs, and a stoichiometric constant. This program has been used successfully to analyze isothermal oxidation of chromia forming alloys where scale vaporization is significant (ref. 9). Attempts have also been made to use this COREST program to analyze cyclic oxidation behavior of the type of $\Delta \mathrm{W} / \mathrm{A}$ with time curves shown in the two turbine alloy reports but its success had been limited (refs. 14 and 15) but it is useful as a first approximation.

A more successful approach has been to actually model the cyclic oxidation process, cycle by cycle, on a computer. Any scale growth process, usually a parabolic rate constant, can be used as input. The nature of the spalling process should also be known. For chromia or alumina forming alloys it appears the rate of spalling is a fixed percent of the oxide thickness (ref. 16). As in the other methods the stoichiometric constants can usually be estimated quite easily. This computer program termed COSP (ref. 17) generates the $\Delta W / A, W_{r}$, and W_{m} versus time just as in COREST. This approach has been fairly successful with the more simple type heater alloys but has been more difficult to use in analyzing the cyclic oxidation behavior of more complex alloys like high temperature superalloys.

Another approach which has proven successful is to fit the specific weight change/time data to a simple quasi-paralinear equation by multiple linear regression:

$$
\begin{equation*}
\Delta W / A=k_{1}^{1 / 2} t^{1 / 2} \pm k_{2} t \pm \sigma \tag{4}
\end{equation*}
$$

Here $k_{1}{ }^{1 / 2}$ and k_{2} are constants analogous to the scale growth and scale spalling constants and σ is the standard error of estimate. If the fit is good enough (usually $\mathrm{R}^{2}>0.90$) and $\mathrm{k}_{1}{ }^{1 / 2}$ is significant and positive and k_{2} is statistically significant then the attack parameter K_{a} is defined as:

$$
\begin{equation*}
K_{a}=\left(k_{1}^{1 / 2}+10\left|k_{2}\right|\right) \tag{5}
\end{equation*}
$$

or

If $k_{1}^{1 / 2}$ is either not significant or negative and k_{2} is significant then K_{a} is defined as

$$
\begin{equation*}
K_{a}=20\left|\mathrm{k}_{2}\right| \tag{6}
\end{equation*}
$$

The rational behind these K_{a} derivations are discussed in references 7, 16, and 18 to 22. It has been shown that these K_{a} values are valid as estimators of oxidation resistance and are well correlated with both thickness change measurements and W_{m} estimates derived by both the COREST and COSP computer programs discussed above. This K_{a} estimation technique has the advantage that if the specific weight change/time data is in a computer data base for a given run the data can be automatically processed for a regression fit according to equation (4) and K_{a} computed according to equations (5) or (6) depending on the significance and sign of the coefficients $k_{1}{ }^{1 / 2}$ and k_{2}. By this process fairly irregular kinetics can be evaluated. This K_{a} approach was chosen to analyze the large number of runs for the complex superalloys referred to in this report.

Derivation of K_{a} Values from the Cyclic Oxidation Data

A total of 323 runs based on the 36 alloys listed in table I of $\Delta W / A$ versus time data were individually analyzed according to equation (4) by multiple linear regression. This approach leading to K_{a} values for each run is detailed in Appendix A.

After discarding 8 outliers as described in the appendix a total of 315 valid K_{a} values were available to rank the alloys. These valid K_{a} values can be compared at each test temperature for each alloy as a. series of bar graphs. For ease of description the 36 alloys tested were divided into two distinct groups and plotted in figures $1(\mathrm{a})$ to (c) and figures $2(\mathrm{a})$ to (c). In the first grouping, all Ni-base, the alloys were essentially alumina/aluminate scale formers. These alloys, 15 in number, contained 5 to $6 \mathrm{wt} \% \mathrm{Al}$ and a minimum of $5 \mathrm{wt} \% \mathrm{Cr}$. The second grouping, containing both Ni - and Co -base alloys, were either $\mathrm{Cr}_{2} \mathrm{O}_{3}$ /chromite or possibly MO scale formers. This group of 21 alloys contained either less than $5 \mathrm{wt} \%$ Al with Cr of $9 \mathrm{wt} \%$ or greater and were basically the $\mathrm{Cr}_{2} \mathrm{O}_{3} /$ chromite scale formers. Or else they had quite high Al levels but no Cr and tended to form NiO as the surface oxide in spite of the high Al levels.

These two sets of alloys are plotted as a series of bar graphs in order of increasing Al content at the three test temperatures.

The coordinates are K_{a} values plotted on a log based scale. Also indicated are the rankings from excellent to catastrophic. The top of each bar is the maximum K_{a} value derived for that alloy at the given temperature. Any horizontal lines below the top represent replicates. This gives an indication of the scatter for each alloy. As expected, oxidation resistance decreases with an increase in test temperature and the number of alloys showing excellent to good oxidation resistance (i.e., $\mathrm{K}_{\mathrm{a}} \leq 0.2$ or ≤ 0.5) decreases with increasing temperature as well. Although these plots are quite informative they tend to be somewhat pessimistic because they focus more on maximum values than on average values. Based on these plots three alloys, all $\mathrm{Al}_{2} \mathrm{O}_{3} /$ aluminate formers, have the best oxidation resistance. In decreasing order of resistance they are: (1) TRW-R, (2) B-1900, and (3) NASA-TRW-VIA.

Modeling Oxidation Attack, K_{a} as a f (Alloy Chemistry, Temperature)

In an earlier study (ref. 22) at this laboratory the derived oxidation attack parameter in the form of $\log _{10} \mathrm{~K}_{\mathrm{a}}$ was used to study systematic variations in $\mathrm{Co}, \mathrm{Ta}, \mathrm{Al}, \mathrm{Cr}$, and Mo in a prototype Ni-base turbine alloy. The basic alloy content was $\mathrm{Ni}-1 \mathrm{wt} \% \mathrm{Ti}-2 \mathrm{wt} \% \mathrm{~W}-1 \mathrm{wt} \% \mathrm{Nb}-0.1 \mathrm{Zr}-0.12 \mathrm{C}-0.01 \mathrm{~B}$. The alloy had five target levels each of $\mathrm{Al}(3.25,4,4.75,5.50$, and 6.25$) ; \operatorname{Cr}(6,9,12,15$, and 18$) ; \operatorname{Co}(0,5,10,15$, and 20); Mo ($0,1,2,3$, and 4); and $\mathrm{Ta}(0,2,4,6$, and 8) all in weight percent. This series of alloys represented a 2^{5} composite statistically designed experiment representing a total of 43 individual alloys. The samples were tested for $2001-\mathrm{hr}$ cycles at $1100^{\circ} \mathrm{C}$ to derive the K_{a} values as described above. This design along with a suitable number of replicates enabled a second degree estimating equation to be derived by multiple linear regression as a function of the five composition variables.

This same basic approach was to be used to analyze statistically the 36 alloys with the valid 315 derived K_{a} values of this study. This analysis differs signifcantly from the above mentioned $\mathbf{2}^{5}$ statistically designed study as follows:
(1) It includes both Ni and Co-base alloys although the preponderance are Ni-base.
(2) There are 13 compositional variables as shown in table $\mathrm{I}-\mathrm{Cr}, \mathrm{Al}, \mathrm{Ti}, \mathrm{Mo}, \mathrm{W}, \mathrm{Nb}, \mathrm{Ta}$, $\mathrm{C}, \mathrm{B}, \mathrm{Zr}, \mathrm{Hf}, \mathrm{V}$, and Re.
(3) The alloys were tested at two, three, or even four different temperatures.
(4) The compositions were essentially random (i.e., the alloy compositions were not systematically varied).
(5) An additional temperature term of the form $X_{i}=1 / T_{k}{ }^{\circ}$ is required as well.

In addition the following simplyfing assumptions were made:
(A) Nominal alloy chemistries will be used even if multiple heats of the same alloys were tested.
(B) A fourteenth composition variable was added and was defined as the $\mathrm{Co}+\mathrm{Fe}$ content in the Ni base alloys or the $\mathrm{Ni}+\mathrm{Fe}$ content in the Co base alloys.
(C) The minor Cu content in the Mar-M-246 alloy was not included.

Note there were a number of replicate runs. In multiple regression analysis this allows the pure error variance to be separated from the residual error variance so the significance of the model may be tested ${ }^{\text {- }}$ with the lack of fit variance. This approach will be shown for the ultimate model derived in this analysis.

Initially only a first order model will be considered (i.e., the independent variables will be first degree only or linear - $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$) using the basic 15 terms. Assume the model:

$$
\begin{align*}
& \log \mathrm{K}_{\mathrm{a}}=\mathrm{a}+\mathrm{b}_{1} \mathrm{C}_{\mathrm{r}}+\mathrm{b}_{2} \mathrm{Al}+\mathrm{b}_{3} \mathrm{NiCo}+\mathrm{b}_{4} \mathrm{Ti}+\mathrm{b}_{5} \mathrm{Mo}+\mathrm{b}_{6} \mathrm{~W}+\mathrm{b}_{7} \mathrm{Nb}+\mathrm{b}_{8} \mathrm{Ta} \tag{7}\\
& +\mathrm{b}_{9} \mathrm{C}+\mathrm{b}_{10} \mathrm{~B}+\mathrm{b}_{11} \mathrm{Zr}+\mathrm{b}_{12} \mathrm{Hf}+\mathrm{b}_{13} \mathrm{~V}+\mathrm{b}_{14} \mathrm{Re}+\mathrm{b}_{15}\left(1 /\left(\text { temp }+273{ }^{\circ} \mathrm{C}\right)\right) \pm \sigma
\end{align*}
$$

The multiple regression analysis stepwise procedure was used ${ }^{1}$ which rejected any of the 15 terms not significant to the 0.15 level. The final estimating equation involved 11 significant terms with a suprisingly high R^{2} value of just over 80 percent. The lack of fit (L.O.F) variance is highly significant implying as expected the model is not adequate. The summary table for this analysis is shown in Appendix C.

The next step is to build a model involving both first and second order terms. In most cases a second order equation is sufficient to model most estimating processes of this type. Thus the model equation would be of the form

$$
\begin{equation*}
\log K_{a}=a_{1}+b_{1} x_{1}+b_{2.2} x_{1}^{2}+b_{1.2} x_{1} x_{2}+b_{2} x_{2}+\ldots b_{15.15} x_{15}^{2} \tag{8}
\end{equation*}
$$

For $x_{i}=15$ this would involve a possible 135 terms which would not be practical to run in a stepwise multiple regression analysis. Instead a series of subsets of $x_{i}, x_{i}^{2}, x_{i} x_{i} \ldots$ terms were used involving 20 to 25 of the 135 possible terms. The significant terms were then accumulated, A total of 23 likely terms were then used to derive a final estimating equation. A rejection level of $\alpha=0.15$ was again used.

Table II summarizes this analysis. Including the coefficients for the final 14 term equation (9), fourteen of the 23 terms were found to be significant. These coefficients along with the intercept are listed in this table along with their significance levels. This technique also generated the predicted values for each sample run as well as $\log \mathrm{K}_{\mathrm{a}}$ values for any of the 36 alloys not tested at 1000 or $1100^{\circ} \mathrm{C}$.

Table III is an analysis of variance (ANOVA) summary table to partition the variability (i.e., sum of squares) to test the goodness of fit of the 14 term model equation. This is possible because of the large number of replicate terms which represent pure error. This enables the residual error found in regression analysis to be separated into pure error and lack of fit. The F - ratio of $\mathrm{MS}_{\mathrm{L} . \mathrm{O}, \mathrm{F}}$ to $\mathrm{MS}_{\text {error }}$ is roughly 1.26. Thus the L.O.F term is not significant to the $\alpha=0.05$ level. This indicates the model estimating equation is adequate for predictive purposes. The \mathbf{R}^{2} value is close to 0.85 which is quite high for this type of estimation. Even if a better model estimating equation could be found involving more of the 135 possible second order terms or involving even higher order terms or possibly other variables not included in the model only an \mathbf{R}^{2} value of 0.886 could have been achieved because of the pure replicate error. On this basis the estimated equation explains just over 95 percent of the possible variability that could be modeled.

Figures 3(a) to (c) and figures 4(a) to (c) show the derived K_{a} estimates from the 14 term estimating equation on a $\log _{10}$ bar graph scale for each alloy at 1000,1100 , and $1150{ }^{\circ} \mathrm{C}$ for the two alloy groupings. These values are listed in tables IV and V. Also shown on the same bar graphs are the

[^0]average observed K_{a} values ${ }^{2}$ for each alloy for ready comparison. At $1000^{\circ} \mathrm{C}$ only 11 of the 36 alloys were tested, so 25 alloys represent just the predicted values. At $1100^{\circ} \mathrm{C} 34$ of the 36 alloys were tested, while at $1150{ }^{\circ} \mathrm{C}$ all 36 alloys were run. In general the mean and predicted values fall in or near the same rating category. The overall agreement between the predicted and average K_{a} values appear good.

Figure 5 shows a plot of the regression standard residuals plotted against the predicted values for all the 315 runs. The random nature of the residuals are a good indicator of the validity and unbias nature of the regression equation. A scatter diagram of the predicted $\log K_{a}$ values ploteed against the \log of their observed values is shown in figure. 6. The data was fitted by simple linear regression and gives a resultant diagonal straight line with a slope near unity. Also shown are the + or -2.5 standard deviation lines which would include 95 percent of the data points. This is a further validation of the 14 term regression equation to estimate $\log \mathrm{K}_{\mathrm{a}}$ values.

A further check on efficency of the estimating equation is how well it predicts K_{a} values for a similar alloy not included in the original 36 alloy data base. The alloy chosen was NASAIR-100 which has a nominal composition in weight percent of $\mathrm{Ni}-9 \mathrm{Cr}-5.8 \mathrm{Al}-0.5 \mathrm{Co}-10.5 \mathrm{~W}-3.3 \mathrm{Ta}-1.2 \mathrm{Ti}-1 \mathrm{Mo}-0.03 \mathrm{max}$ $\mathrm{Zr}-0.006 \mathrm{C}-0.002 \mathrm{~B}$. Two samples were tested for 1001 hr cycles at $1150{ }^{\circ} \mathrm{C}$. Also a single sample was tested at $1200{ }^{\circ} \mathrm{C}$ even though this was outside the temperature test range by $50^{\circ} \mathrm{C}$. Table VI summarizes the K_{a} derivations for these cyclic runs. From the estimated $\log K_{a}$ values from the 14 term estimating equation (9) and the derived $\log K_{a}$ values from the computed K_{a} values derived from the oxidation rate constants. The agreement appears quite good. At $1150^{\circ} \mathrm{C}$ both actual $\log \mathrm{K}_{\mathrm{a}}$ values are within $1-1 / 2$ sigma units, while at $1200^{\circ} \mathrm{C}$ the values are within one sigma unit of each other. This leads further credence as to the validity of the 14 term estimating equation as well as the overall approach.

Implications for Alloy Chemistry From The Model Estimating Equation

The final 14 term estimating equation (9) summarized in table III has certain obvious implications from the alloy chemistry standpoint. There are only three terms with beneficial negative coefficients which lower the K_{a} estimates. These improve the cyclic oxidation resistance of this type of Ni-based or Co-based superalloy. Both Al and Cr improve the resistance and so does Ta as long as Al is present. Alloy elements which are neutral (i.e., have no effect) on the cyclic oxidation resistance at least within the alloy ranges (i.e., sample space) of the 36 alloys tested are C, B, and Zr. This also applies to Co in Ni -based or Ni in Co-based alloys.

This leaves $\mathrm{Ti}, \mathrm{Hf}, \mathrm{V}, \mathrm{Re}, \mathrm{Nb}, \mathrm{Mo}$, and W to be evaluated from the coefficients. Nb is the most obvious element to omit since has a positive interaction with Ti, Ta and Hf. This then allows 1.0 -percent Hf to be alloyed since it is neutral without Nb . Rhenium and V should also be eliminated. Tungsten, Mo, and Ti should probably also be dropped since they are all involved with positive terms. However, since around 1.0 -percent Ti is usually alloyed to this type of Ni-base superalloy for reasons other than oxidation resistance it should be fixed at roughly 1 percent. One percent Hf could be added also as long as Nb is not present.

This could lead to a typical prototype turbine alloy of $\mathrm{Ni}-10 \mathrm{Co}-0.9 \mathrm{Ti}-1 \mathrm{Hf}-0.1 \mathrm{C}-0.015 \mathrm{~B}-0.1 \mathrm{Zr}$ with $\mathrm{XAl}-\mathrm{YCr}-\mathrm{ZTa}$. It is then possible to use the estimating equation to optimize the composition within certain alloy constraints. If Mo and W are required for any reason they should be kept as low as possible.

[^1]This is assumed to be a Group I alloy-a basic alumina/aluminate former which has an Al content constrained between 5 and $6 \mathrm{wt} \%$. The Cr contents for this type of alloy that varies between 5 and $13 \mathrm{wt} \%$ while Ta when present ranges between 2 and $9 \mathrm{wt} \%$. The role of Cr in helping to stabilize the protective alumina/aluminate scale in heater alloys and Ta in forming the tri-rutile oxide $\mathrm{Ni}(\mathrm{Ta}) \mathrm{O}_{4}$ which also confers protection in more complex alumia/aluminate forming alloys have been discussed elsewhere (refs. 8 and 7). This statistical analysis tends to confirm these earlier conclusions. The optimum contents of Al, Cr, and Ta were determined using the above constraints and generating a series of contour plots from the 14 term estimating equation at $1100^{\circ} \mathrm{C}$. A factor was added (2.5×0.352155) to give a 95 percent confidence interval so that the alloy would have excellent cyclic oxidation resistance (i.e., $\log \mathrm{K}_{\mathrm{a}} \leqq-0.7$). The criterion chosen was such that the total $\mathrm{Cr}+\mathrm{Al}+\mathrm{Ta}$ content would be at a minimum. On this basis the composition for the "best" cyclic oxidation resistance should be $6 \mathrm{Al}-5 \mathrm{Cr}-$ 8.6 Ta . Thus a typical ideal alloy should be $\mathrm{Ni}-10 \mathrm{Co}-6 \mathrm{Al}-5 \mathrm{Cr}-8.6 \mathrm{Ta}-0.9 \mathrm{Ti}-1 \mathrm{Hf}-0.15 \mathrm{C}-0.015-0.05 \mathrm{Zr}$. This high strength superalloy would satisfy all the compositional constraints of a group I alumina/aluminate forming alloy with good cyclic oxidation resistance and contain no deletereous alloy additions implicit from the 14 term estimating equation.

SUMMARY OF RESULTS

As a result of statistical analysis of 323 cyclic oxidation runs in static air for 36 Ni - and Co - base high strength superalloys in the 1000 to $1150{ }^{\circ} \mathrm{C}$ range using an oxidation attack parameter, K_{a} derived from $\Delta W / A$, time data the following results were obtained:
(1) Using multiple linear regression analysis with $\log K_{a}$ as the dependent variable a second degree estimating equation can be derived as a function of nominal alloy composition and test temperature based on $315 \mathrm{~K}_{\mathrm{a}}$ values with a high degree of fit.
(2) The derived 14 term estimating equation has an R^{2} value of close to 85 percent and the numerous replicate runs show the maximum possible R^{2} would be close to 89 percent due to 11 percent pure error and only 4 percent lack of fit. This indicates this particular 14 term model is adequate and can be used to predict oxidation results and design alloys with a high degree of confidence.
(3) Based on the coefficients of the regression equation Cr and Al are considered beneficial, and Ta is beneficial when Al is present. Nb is deleterious when Ta, Ti, and Hf are present and should be omitted. Mo and W should be at a minimum since they adversely affect Al and Cr , respectively. Re, V, and Ti should not be alloyed if possible. Ni in Co-base alloys and Co in Ni-base alloys appear innocuous as does C, B, and Zr within the range of their nominal compositions of the 36 alloys studied.
(4) The same estimating equation appeared equally valid for either Ni - or Co-base alloys and for both alumina/aluminate formers or chromia/chromite formers.
(5) Of the 36 alloys studied (see table I) the five best all group I alumina/aluminate formers can be ranked as follows from best to worse (low K_{a} to high) based on the estimating equation computed at $1100^{\circ} \mathrm{C}$:
(a) B-1900
(b) B-1900 $+\mathrm{H}_{\mathrm{f}}$
(c) NASA-TRW-VIA
(d) TRW-R
(e) TAZ 8A
(6) The estimating equation was used to calculate K_{a} values for NASAIR- 100 a related alloy and compared to K_{a} values derived from cyclic oxidation tests at 1150 and $1200^{\circ} \mathrm{C}$. The actual and derived K_{a} 's agreed well within the 95 percent confidence interval.
(7) An optimum Ni-base alloy with maximum possible cyclic oxidation resistance along with a minimum total alloy content with good mechanical properties was designed using both the $\log \mathrm{K}_{\mathrm{a}} 14$ term estimating equation and the compositional constraints implicit in table I. This alloy in weight percent was the alumia/aluminate former alloy:
$\mathrm{Ni}-10 \mathrm{Co}-5 \mathrm{Cr}-6 \mathrm{Al}-8.6 \mathrm{Ta}-0.9 \mathrm{Ti}-0.15 \mathrm{C}-0.015 \mathrm{~B}-0.05 \mathrm{Zr}$.

CONCLUSIONS

1. A cyclic oxidation attack parameter, K_{a} derived from gravimetric/time data which has proven useful in the past to quantitatively rank cyclic oxidation resistance for a number of heater type alloys was successfully to evaluate the cyclic oxidation resistance of a large number of complex Ni - and Co-base high strength superalloys.
2. Using $\log _{10} \mathrm{~K}_{\mathrm{a}}$ as the dependent variable an estimating equation involving alloy chemistry and test temperature was derived from the experimentally derived K_{a} values using multiple linear regression. This allowed the oxidation resistance of the alloys studied as well as similar alloys to be successfully predicted and ranked.
3. The estimating equation can be used to design comparable alloys based on alloy composition and test temperature.

APPENDIX A - DERIVATION OF INDIVIDUAL K_{a} VALUES

A total of 323^{1} runs based on the 36 alloys in table I of the $\Delta W / A$ versus time data from references 1 and 2 were individually analyzed according to equation (4), by multiple linear regression.

$$
\Delta W / A=k_{1}^{1 / 2} t^{1 / 2}+k_{2} t \pm \text { S.E.E. }
$$

Where $\Delta W / A$ is the specific weight change at any time, t in hours, $k_{1}^{1 / 2}$ is a growth constant that when squared is analogous with the parabolic scaling constant, k_{p}; and k_{2} is a linear coefficient and S.E.E. is the standard error of estimate on the $\Delta W / A$ estimates. The significance level for each coefficient is tested to the 10 percent significance level. If both are significant and $k_{1}^{1 / 2}$ is postivie then an attack parameter, K_{a} is defined as:

$$
K_{a}=\left(k_{1}^{1 / 2}+10\left|k_{2}\right|\right)
$$

But if $\mathrm{k}_{1}^{1 / 2}$ is either negative or not significant then K_{a} is re-defined as

$$
\mathrm{K}_{\mathrm{a}}=20\left|\mathrm{k}_{\mathbf{2}}\right|
$$

The other limiting case is when there is no linear component such as spalling, scale vaporization, excessive scale growth etc., K_{a} reduces to simply $\mathrm{K}_{\mathrm{a}}=\mathbf{k}_{\mathrm{l}}^{1 / 2}$ or for diffusion controlled scaling $K_{a}=k_{p}^{1 / 2}$. Here k_{p} is the conventional isothermal parabolic scaling constant.

The runs analyzed ranged in temperatures from 1000 to $1150^{\circ} \mathrm{C}$. The times analyzed were at $1000^{\circ} \mathrm{C}$ were $500 \mathrm{hr}, 1100^{\circ} \mathrm{C}-200 \mathrm{hr}$ and $1150^{\circ} \mathrm{C}-100 \mathrm{hr}$. The times may be shorter if the specific weight charges are extreme ($>100 \mathrm{mg} / \mathrm{cm}^{2}$) usually with associated massive scale spall.

The total of 323 cyclic oxidation sample runs involving 36 alloys were analyzed as described above using regression analysis on the specific weight change/time data. K_{a} values were then computed from the appropriate $\mathrm{k}^{1 / 2}$ and/or k_{2} constants. Table A-I summarizes the class of K_{a} values derived for each alloy at each temperature. There were 20 runs at $1000^{\circ} \mathrm{C}, 128$ at $1100^{\circ} \mathrm{C}$ and 172 at $1150^{\circ} \mathrm{C}$. There were also three runs at $1093{ }^{\circ} \mathrm{C}\left(2000^{\circ} \mathrm{F}\right)$. An examination of these $323 \mathrm{Ka}_{\mathrm{a}}$ values led to dropping 8 of these values. Seven were inferred to be statistical outliers (runs 204-3, 336-4, 472-6, 324-4, 656-1, 657-4, and 664-6). In addition run 481-6 was dropped because its $\Delta W / A$ values were positive but gave too poor a fit to any of the standard model equations to drive $K_{\mathbf{a}}$.

The individual K_{a} values are listed in table A-II. Of the 315 valid runs 231 follow the type I paralinear model the remaining 84 are of the type III type showing a linear weight loss. In general the individual regression fits are quite good to models I or III with R^{2} values usually well over 90 percent. Of the 315 valid runs, 25 had R^{2} values under 90 percent. Of these, 16 had R^{2} values in 80 to 90 percent range, 5 in the 70 to 80 percent range, 3 in the 60 to 70 percent range, and 1 in the 50 to 60 percent

[^2]range. In the overall analysis, however, these three values with the lowest R^{2} model fits in the 50 to 70 percent range were not even close to being statistical outliers so they were retained for the overall analysis. These valid K_{a} values can then be used for further comparison and analyses.

APPENDIX B - SUPPLEMENTAL CYCLIC OXIDATION PLOTSS

Figures B-1 to B-28 show the additional 28 alloy runs not included in references 1 and $\mathbf{2}$. The Ka_{a} values were derived as described in the body of the text. The test cycles were 1 hr in static air.

APPENDIX C - BASIC LINEAR OXIDATION MODEL

A summary of the simplest linear model involving 11 significant terms of the original 15 first order terms listed in the main body of the text are shown in tables C-I and C-II. A reasonable \mathbf{R}^{2} is derived as indicated in table C-I. However, table C-II indicates the residual sum of squares when partitioned into true error (i.e. replicate) and lack of fit error the simplest model is not adequate. This led to the more complex final model which included second degree terms.

References

1. Barrett, C.A.; Garlick, R.G.; and Lowell, C.E.: High Temperature Cyclic Oxidation Data. Part 1: Turbine Alloys. NASA TM-83665, 1989.
2. Barrett, C.A.; and Garlick, R.G.: High Temperature Cyclic Oxidation Data. Part 2: Turbine Alloys. NASA TM-101468, 1989.
3. Barrett, C.A.; and Lowell, C.E.: High Temperature Cyclic Oxidation Furnance Testing at NASA Lewis Research Center. J. Test. Eval., vol. 10, no. 6, Nov. 1982, pp. 273-278.
4. Haycock, E.W.: Transitions from Parabolic to Linear Kinetics in Scaling of Metals, J. Electrochern Soc., vol. 106, no. 9, Sept. 1959, pp. 771-775.
5. Wajszel, D.: A Method of Calculating Paralinear Constants for the Formation of a Volatile Scale. J. Electrochem Soc., vol. 110, no. 6, June 1963, pp. 504-507.
6. Tedmon, C.S., Jr.: The Effect of Oxide Volatilization on the Oxide Kinetics of Cr and $\mathrm{Fe}-\mathrm{Cr}$ Alloys. J. Electrochem Soc., vol. 113, no. 8, Aug. 1966, pp. 766-768.
7. Barrett, C.A.: The Effect of Variations of Cobalt Content on the Cyclic Oxidation Resistance of Selected Ni-Base Superalloys, Alternate Alloying for Environmental Resistance, Proceedings of the Symposium, G.R. Smolik and S.K. Banerji, eds., Metallurgical Society, Warrendale, PA, 1987, pp. 211-231.
8. Barrett, C.A.; and Lowell, C.E.: Comparison of Isothermal and Cyclic Oxidation Behavior of Twenty-Five Commercial Sheet Alloys at $1150^{\circ} \mathrm{C}$. Oxid. Met., vol. 9, no. 4, Aug. 1975, pp. 307-355.
9. Barrett, C.A.; and Presler, A.F.: COREST: A Fortran Computer Program to Analyze Paralinear Oxidation Behavior and Its Application to Chromic Oxide Forming Alloys. NASA TN D-8132, 1976.
10. Johnston, J.R.; and Ashbrook, R.L.: Oxidation and Thermal Fatigue Cracking of Nickel- and Cobalt-Base Alloys in a High-Velocity Gas Stream. NASA TN D-5376, 1969.
11. Lowell, C.E.; and Sanders, W.A.: Mach 1 Oxidation of Thoriated Nickel Chromium at $1204{ }^{\circ} \mathrm{C}\left(2200^{\circ} \mathrm{F}\right)$. NASA TN D-6562, 1971.
12. Sanders, W.A.: Dynamic Oxidation Behaivor at 1000 and $1100^{\circ} \mathrm{C}$ of Four Nickel-Base Cast Alloys. NASA-TRW VIA, B-1900, 713C and 738X. NASA TN D-7682, 1974.
13. Johnston, J.R.; and Ashbrook, R.L.: Effect of Cyclic Conditions on the Dynamic Oxidation of Gas Turbine Superalloys. NASA TN D-7614, 1974.
14. Barrett, C.A.; Johnston, J.R.; and Sanders, W.A.: Static and Dynamic Cyclic Oxidation of 12 Nickel-, Cobalt-, and Iron-Base High-Temeprature Alloys. Oxid. Met., vol. 12, no. 4, Aug. 1978, pp. 343-377.
15. Barrett, C.A.; and Lowell, C.E.: Resistance of Nickel-Chromium-Aluminum Alloys to Cyclic Oxidation at 1100 and $1200^{\circ} \mathrm{C}$. NASA TN D-8255, 1976.
16. Lowell, C.E.; Smialek, J.L.; and Barrett, C.A.: Cyclic Oxidation of Superalloys. High Temperature Corrosion; Proceedings of the International Conference, NACE-6, R.A. Rapp, ed, National Association of Corrosion Engineers, Houston, TX, 1983, pp. 219-226.
17. Lowell, C.E., et al.: COSP-A Computer Model of Cyclic Oxidation, Oxid. Met., vol. 36, no. 1-2, Aug. 1991, pp. 81-112.
18. Barrett, C.A.; and Lowell, C.E.: The Cyclic Oxidation of Cobalt-Chromium-Aluminum Alloys at 1100 and $1200{ }^{\circ} \mathrm{C}$ and a Comparison with the Nickel-Chromium-Aluminum System. Oxid. Met., vol. 12, no. 4, Aug. 1978, pp. 293-311.
19. Barrett, C.A.; Khan, A.S.; and Lowell, C.E.: The Effect of Zirconium on the Cyclic Oxidation of NiCrAl Alloys, J. Elechem. Soc., vol. 128, no. 1, Jan. 1981, pp. 25-32.
20. Barrett, C.A.; Miner, R.V.; and Hull, D.R.: The Effects of $\mathrm{Cr}, \mathrm{Al}, \mathrm{Ti}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ta}$ and Cb on the Cyclic Oxidation Behavior of Cast Ni-Base Superalloys at 1100 and $1150^{\circ} \mathrm{C}$. Oxid. Met., vol. 20, no. 5-6, Dec. 1983, pp. 255-278.
21. Stephens, J.R.; and Barrett, C.A.: Oxidation and Corrosion Resistance of Candidate Stirling Engine Heater-Head-Tube Alloys. NASA TM-83609, 1984.
22. Barrett, C.A.: The Effects of $\mathrm{Cr}, \mathrm{Co}, \mathrm{Al}, \mathrm{Mo}$, and Ta on the Cyclic Oxidation Behavior of a Prototype Cast Ni-Base Superalloy Based on a 2^{5} Composite Statistically Designed Experiment, High Temperature Corrosion in Energy Systems, MF Rothman ed., AIME, New York, 1985, pp. 667-680.
table I.-NOMINAL ALLOY COMPOSITION FOR HIGH-TEMPERATURE TURBINE alloys

Alloy	Compoaltion, w1\%													Commente
	Ni	Co	Cr	Al	Ti	Mo	w	cb	T.	c	B	Zr	Hf	
Alloy 625	Belance	\cdots	22.5	0.2	0.2	9.0	\cdots	See Commente	Seen Comments	0.05	\cdots	\cdots	\cdots	$\mathrm{Cb}+\mathrm{Ta}=3.66^{1}$
Alloy 718		\cdots	19.0	. 5	. 8	3.05	Soe Commeats	Soe Commente	04	0.005	\cdots	With 18.5 wt\% $\mathrm{Fs} ; \mathrm{Cb}+\mathrm{Ta}=5.30^{2}$
Astroloy		15.0	15.0	4.4	3.5	5.25	4.0	\cdots	--------...	. 06	. 09	0.06	-----	Slimilar to U-700
B. 1900		10.0	8.0	6.0	1.0	6.0	${ }^{1} 1$	0.1	4.3	1	. 015	. 08	\cdots	
		10.0 15.0	8.0 19.0	6.0 5.5	1.0 5.5	6.0 3.0	${ }^{1}$	1	4.3	${ }_{18} 18$. 015	.08 .05		
(1N.100 ${ }_{\text {IN. } 713 \mathrm{LC}}$		15.0	10.0 12.0	5.5 5.9	6.5	3.0 4.5	\cdots	2.0	\cdots	.18 .05	.015 .010	.05 .10	\cdots	
IN-738		8.5	16.0	3.4	3.4	1.75	2.6	. 9	1.75	${ }^{17}$. 010	. 10	----	${ }^{*}{ }^{\text {c ineluden }}$ one hot-worked alloy with $\sim \mathrm{a} \mathrm{Cb}$
IN-792		9.0	12.7	3.2	4.2	2.0	3.9		3.9	. 21	. 02	. 10	. 75	4
IN-939		19.0	. 22.0	2.0	3.6	---	2.0	1.0	1.5	. 15	. 01	. 10	---	
MAR-M-200		10.0	2.0	5.0	2.0	\cdots	12.5	2.7	\cdots	.15 18	. 015	. 05	\cdots	2
MAR-M-200 + Ht		10.0	0.0	5.0	20	$\overline{35}$	${ }_{5}^{11.5}$	1.0 2.7	\cdots	. 15	${ }^{.015}$. 05	1.5	2
MAR-M-246		11	11	5.0	1.5	2.5	${ }_{6}$.	2.7	2.0	. 18	. 0.01	. 01	\cdots	With 0.1 wt\% Cu
MAR-M-247		10.0	8.2	5.5	1.0	. 6	10.0		3.0	. 16	. 02	. 09	1.5	
MAR-M-421		0.6	15.8	4.3	1.8	20	3.8	2.0	-	. 16	. 015	${ }^{205}$	---	
NASA-TRW-VIA		7.5	6.1	5.4	1.0	2.0	5.5	. 5	9.0	. 13	. 02	. 13	40	With 0.5 wt\% Rem; ${ }^{\text {c }}$
Nimonic 115		14.0	14.8	4.9	4.0	3.5	-	\cdots	-	. 16	. 015	. 001	\cdots	
NX-188		--3.0.	<10	8.0	.	18.0	\ldots	\cdots	\square	04	--	\cdots	\cdots	3
Reme 41		110 9.6	19.0	1.5	3.1	10.0	\cdots	\cdots	\square	109	. 01	--	-	
		9.6 10.0	14.0 9.0	3.0	5.0 4.0	4.0 2.0	7.0	\cdots	3.8	. 17	. 015	. 03	\cdots	
Rene 125		10.0	9.0	8.0	2.5	2.0	7.0	- ---7-......	3.8	. 10	. 02	. 05	1.50	${ }_{4}$
R-150-SX		12.0	5.0	5.5	---	1.0	5.0	------	6.0	---	--.-.	--	\cdots	With 3.0 wt Re and 2.2 wt V
TAZ-8A		\cdots	6.0	6.0	\cdots	4.0	10	2.5	8.0	. 125	. 004	1.0	\cdots	
TRWW R		8.0	8.0	5.3	.	3.0	4.0	. 3	6.0	05	. 015	. 12	1.00	
TRW-1800		${ }^{6}$	13.0	6.0	. 6	-	9.0	1.5	\cdots	.08			---.	
U-520 U.700		12.0 12.5	19.0	2.0	3.0	80	1.0	------	\cdots	. 06	${ }^{.005}$	\ldots	-	
U-700		12.6	18.0	4.3	3.5	4.5	--	\cdots	-	. 07	. 03			verying Co brules
U-710		15.0	18.0	2.5	5.0	3.0	1.5	\cdots	\cdots	. 10	. 012	\cdots	\cdots	
U. 720		15.0	18.0	2.5	5.0	30	1.2	\cdots	------	. 04	. 03	. 03	--	
Weapeloy		13.5	19.5	1.3 6.5	$\stackrel{3}{3.0}$	6.3 18.5	\cdots	$\underline{\square}$. 15	.006	. 06	\cdots	
MAR-M-609	10.0	Balama	23.5	---.	. 2	--	7.0	--	3.5	. 00	\ldots	.50	\ldots	
	10.0.	Belance	${ }_{26.5}^{21.0}$	-	-	-	11.0	2.0	\cdots	. 48	-	--	-	Wuth 2.0 wtx Fe*

[^3][^4]TABLE II.-MULTIPLE REGRESSION* RESULTS
FOR LOG ${ }_{10}$ Ka AS A FUNCTION OF ALLOY COMPOSITION IN wt\%, AND OF ABSOLUTE TEST TEMPERATURE IN $1 / T_{K}$ BASED ON AN INITIAL SELECTION OF 23 MOST LIKELY

1st AND 2nd ORDER REACTIONS.
NUMBER DATA VALUES $\mathbf{n}=315$

$\mathbf{Z i}=23, \mathbf{Z f}=14$		
Significant terms, Z	Coefficient	t-statistic
Al-Ta	-0.03008490	-7.365
$1 / \mathrm{T}_{\mathrm{K}}$	-28733.83015	-11.020
$\mathrm{Al}^{\mathbf{2}}$	-. 05162169	-9.088
Al.V	+. 16395511	7.053
Cr	-. 71873828	-5.241
Nb -Ta	+.05346153	7.115
$\mathrm{Cr} \cdot\left(1 / \mathrm{T}_{\mathrm{K}}\right.$)	+924.75130	4.850
Ti.Ta ${ }^{\text {m }}$	+. 01932161	2.432
$\mathrm{Cr} . \mathrm{W}$	+.003726623	5.878
Al. Mo	+. 01273215	6.960
$\mathrm{Ti} \cdot \mathrm{Nb}$	+. 08140372	4.089
$\cdots \mathrm{Nb} \cdot \mathrm{Hf}$	+. 24155034	2.930
Ti	+. 08344541	2.890
Re	+. 21293029	1.739
a_{0}, intercept	22.75638644	

$\mathrm{R}^{\mathbf{3}}=84.43 \% \quad$ S.E.E. $=0.352155 \quad \mathrm{Zi}=23$ $\mathrm{Al} \cdot \mathrm{Ta}, 1 / \mathrm{T}_{\mathrm{K}}, \mathrm{Al}^{2}, \mathrm{Al} \cdot \mathrm{V}, \mathrm{Cr}_{\mathrm{r}}, \mathrm{Nb} \cdot \mathrm{Ta}, \mathrm{Cr} \cdot\left(1 / \mathrm{T}_{\mathrm{K}}\right)$, $\mathrm{Ti} \cdot \mathrm{Ta}, \mathrm{Cr} \cdot \mathrm{W}, \mathrm{Al} \cdot \mathrm{Mo}, \mathrm{Ti} \cdot \mathrm{Nb}, \mathrm{Nb} \cdot \mathrm{Hf}, \mathrm{Ti}, \mathrm{Re}, \mathrm{Al}, \mathrm{Mo}$, $\mathrm{Nb}, \mathrm{Ta}, \mathrm{C}, \mathrm{Zr}, \mathrm{Hf}, \mathrm{Cr}^{2}, \mathrm{Ti} \cdot \mathrm{Z}_{\mathrm{r}}$
"Stepwise Regreassion-Variables are added one at a time atarting with the most significant, the F-atatistic for a variable must be sigaificant to 0.15 . After a variable is added, however, the atepwise method looks at all the variables already in the model and deletes any that does not produce an F-statistic significant to the 0.15 level.

TABLE III.-ANALYSIS OF VARIANCE (ANOVA)
SUMMARY FOR $n=315$ DATA SET; $\mathbf{Z f}=14$
SHOWING SOURCES OF VARIATION INCLUDING LACK
OF FIT OF THE ESTIMATING EQUATION

Source	Degrees of freedom, d. 1	Sum of square:	Mean squaren
Model	14	201.68573	14.40469511
Residual	300	37.20395146	. 12401317
Lack of fit	(67)	(9.8844261)	(.14762875)
Replication	(233)	(27.319525)	(.11725118)
Total	314	238.86988	

$$
F-\text { Ratio }=\frac{M S(\text { LOF })}{\text { MS(REPS) }}=\frac{0.14752875}{0.11725118}=1.258^{\mathrm{a}}
$$

> The lack of fit term appears not be be significent
> since the $F-$ Ratio for $(1-a)$ where $a=0.95=1.658$ which exceeds the MS(LOF)/MS(REPS) ratio derived in this tudy. Therefore this model is considered satiafactory.

TABLE IV.-GROUP I ALLOYS - ALUMINA/ALUMINATE SCALE FORMERS COMPARISON OF PREDICTED Ka's FROM LOG Ka ESTIMATES FOR COEFFICIENTS LISTED IN TABLE II TO THE AVERAGE* OF THE OBSERVED Ka's FOR EACH ALLOY AT EACH TEST TEMPERATURE

Alloy	Wt\% ${ }^{\text {b }}$			$1000{ }^{\circ} \mathrm{C}$		$1100^{\circ} \mathrm{C}$		$1150^{\circ} \mathrm{C}$	
	Al	Cr	Ta	Average Ka	$\begin{aligned} & \text { Predicted } \\ & \mathrm{Ka} \end{aligned}$	Average Ka	$\begin{gathered} \text { Prodicted } \\ K a \end{gathered}$	Average Ka	$\begin{gathered} \text { Predicted } \\ \mathrm{Ks} \\ \hline \end{gathered}$
MAR-M-200	5.0	9.0	\ldots		0.9752	7.2548	14.3609	88.3329	47.7780
MAR-M-200 + Hf	5.0	9.0		1.0993	16.9870	16.1768	58.2881	63.8568
MAR-M-211	¢. 0	9.0 7883	13.2160	11.6007	24.1583	38.6218
MAR-M-246	5.0	11.0	2.0		. 0726	1.6534	. 8376	18.0767	2.5006
Rent - 125	5.0	9.0	3.8		. 1400	1.9005	2.0602	9.7719	6.8580
TRW-R	5.3	8.0	6.0	0.0555	. 0323	. 1063	. 5365	. 8302	1.8863
NASA-TRW-VIA	5.4	6.1	9.0		. 0169	. 3155	. 3533	1.3698	1,3776
IN-100	5.5	10.0		1.8657	14.0391	24.3067	83.0398	76.6307
MAR-M-247	5.5	8.2	3.0	. 0525	. 0477	. 5022	. 7743	4.3845	2.6928
R-150-SX	5.5	5.0	6.0	3.5375	2.8480	45.0103	68.2400	314.856	282.519
IN-713 LC	5.9	12.0	-...		. 0924	. 7146	. 9439	1.2619	2.6685
B-1900	6.0	8.0	4.3	. 0532	. 0187	. 1839	.3100	1.3843	1.0898
B-1900 + Hf	6.0	8.0	4.3		. 0197	. 4228	. 3277	1.0774	1.1532
TAZ - 8A	6.0	6.0	8.0	. 0972	. 0252	. 4243	. 5244	2.2900	2.0634
TRW - 1800	6.0	13.0	...-		. 0968	. 7309	. 8746	3.6902	2.3416

${ }^{\text {a }}$ Observed Ka^{\prime} s are based on the antilog of the average of the Log Ka values for each alloy at each test temperatuare.
${ }^{\mathrm{b}} \mathrm{Al}_{1} \mathrm{Cr}$, and Ta are the key elements in improving cyclic oxidation renintance.

TABLE V.-GROUP II ALLOYS - CHROMIA/CHROMITE AND NiO SCALE FORMERS - COMPARISON OF PREDICTED Ka's FROM Log Ka ESTIMATES FOR COEFFICIENTS LISTED IN TABLE II TO THE AVERAGEa OF THE OBSERVED Ka's FOR EACH ALLOY AT EACH TEST TEMPERATURE

Alloy	W \% $^{\text {b }}$			$1000{ }^{\circ} \mathrm{C}$		$1100^{\circ} \mathrm{C}$		$1150{ }^{\circ} \mathrm{C}$	
	Al	Cr	Ta	Avorage Ka	$\begin{gathered} \text { Predicted } \\ \mathrm{Ka} \end{gathered}$	Average Ka	$\begin{gathered} \text { Predicted } \\ \mathrm{Ka} \end{gathered}$	Average Ka	$\begin{gathered} \text { Predicted } \\ \mathrm{Ka} \\ \hline \end{gathered}$
MAR-M-509	0	23.5	3.5		10.2035	25.2623	25.6668	46.5804	38.7764
WI-52	0	21.0		16.1108	33.6529	54.9552	116.887	95.1412
X-40	0	25.5		12.4060	35.5703	24.4580	27.6292	33.1348
Alloy 625	0.2	22.5	1.9		3.9692	28.7163	11.2780	36.4196	17.9926
Alloy 718	0.5	19.0	3.3		8.3100	28.5671	36.1671	43.3921	69.8240
Waspaloy	1.3	19.5	4.7380	3.7067	5.7051	15.1791	23.1244	28.5170
René 41	1.5	19.0	\cdots		4.6173		20.0954	33.0520	38.7982
IN-939	2.0	22.0	1.5		9.9811	32.5843	30.1413	55.3798	49.4148
U-520	2.0	19.0	----		3.9657	31.6500	17.2593	55.9731	33.3208
U.710	2.5	18.0	...-		4.1103	33.7545	20.2068	48.908	41.1959
U-720	2.5	18.0	6.3587	3.9242	32.3348	19.2918	41.5751	39.3306
René 80	3.0	14.0	----		2.4992	37.3206	20.0015	60.3715	50.7086
IN-792	3.2	12.7	3.9		2.0481	21.9872	19.2034	49.8747	52.2593
IN-738	3.4	16.0	1.8	1.6985	3.1246	27.3451	19.5987	37.0869	44.5570
MAR-M-421	4.3	15.8	----		1.3436	9.5308	8.6353	34.9361	19.8471
René 120	4.3	9.0	3.8		. 6020	6.8484	8.8588	14.9107	24.4930
U-700	4.3	15.0	.-.-	1.1562	. 7657	3.6784	5.4247	21.2444	13.0235
Astroloy	4.4	15.0	...-		1.2896	3.2373	9.1370	61.7246	21.9361
Nimonic 115	4.9	14.6	--.-	. 3982	. 4071		3.0284	1.6397	7.4309
WAZ-20	6.5	-.	----		. 3425	20.0738	15.0883	82.7178	82.0313
NX-188	8.0	---.	----		. 0518	3.4403	2.2817	7.7592	12.4050

'Observed $\mathrm{Ka}^{\prime} \mathrm{a}$ are based on the antilog of the average of the Log Ka values for each alloy at each teat temperatuare.
${ }^{\mathrm{b}} \mathrm{Al}, \mathrm{Cr}$, and Ta are the key elementa in inproving cyclic oxidation resistance.

TABLE VI.-COMPARISON OF OBSERVED AND PREDICTED Ka VALUES FOR A TYPICAL TURBINE ALLOY Ni-BASE NASAIR-100(Ni-9Cr-5.75Al-1.2Ti-1Mo-3.30Ta-10.5W-.03Zr) TESTED IN CYCLIC OXIDATION FOR ONE HR EXPOSURE CYCLES IN STATIC AIR AT 1150 AND $1200^{\circ} \mathrm{C}$

Run	Test temperature	Teat time, hrs	$\Delta W / A$ fasl, $\mathrm{mg} / \mathrm{cm}^{2}$	Ka observed	Log Ks observed	Log Ka predicted ${ }^{2}$	Standard deviation, σ	Deviation σ-units ${ }^{b}$
$44-1$	$1150^{\circ} \mathrm{C}$	100	-33.54	5.8137	0.7645	0.2684	0.3522	1.408
$44-3$	$1150^{\circ} \mathrm{C}$	100	-38.75	6.9583	0.7751	0.2685	0.3522	1.438
$42-1$	$1200^{\circ} \mathrm{C}$	30	-48.14	12.2041	1.0865	0.7554	0.3522	0.940

[^5]TABLE A-I.-CLASSIFICATION OF OBSERVED KE VALUES DERIVED FROM INDIVIDUAL $\triangle W / A$ VERSUS TIME VALUES FOR EACH ALLOY RUN FOR A TOTAL OF 323 RUNS INCLUDING EIGHT PROBABLE OUTLIERS

Alloy	Number of samples tested at			Observed Ks, type		Number of outiler(a)" and reason(a)
	$1000^{\circ} \mathrm{C}$	$1100^{\circ} \mathrm{C}$	$1150{ }^{\circ} \mathrm{C}$	Paralinear	Linear	
Alloy 625	0	1	1	2	0	0
Alloy 718	0	1	1	2	0	0
Astroloy	0	1	1	1	1	0
B. 1900	1	8	30	23	16	$10=4.457$
$\mathrm{B}-1900$ + Hf	0	3	3	0	6	$10=3.798$
IN-100	0	3^{1}	13	11	5	
IN-713 LC	0	1	2	0	3	0
IN.738	1	10	5	16	0	
IN. $792{ }^{\text {b }}$	0	8	11	18	0	$\begin{gathered} 1 \text { o }=-3.972, \text { approximate parabolic } \\ \mathbf{R}^{4}=0.998 \end{gathered}$
IN-939	0	1	1	2	0	0
MAR-M-200	0	3	4	5	2	
MAR-M-200 + Hf	0	6	8	12	2	0
MAR-M-211	0	3	3	5	1	$2 \sigma=-3.175, \theta=-3.677$
MAR-M-246	0	1	1	2	0	0 0 2.78
MAR-M-247	2	5	5	9	3	1 ± -2.785
MAR-M-421	0	1	1	2	0	0
NASA-TRW-VIA	0	6	13	15	4	0
Nimonic 115	2	1	1	2	2	$10 \pm-3.13 i$
NX-188	0	2	3	4	1	0
Rene-41	0	0	3	3	0	0
Rene-60	0	2	3	5	0	0
René-120	0	1	2	3	0	0
René-125	0	3	2	4	1	0
R-150-SX	2	1	1	3 30	1	0
TAZ-8A	1	11	11	30	3	
TRW-R	1	2	2	1	4	0
TRW-1800	0	1	1	1	1	0
U. 520	0	1	1	2	0	0
U.700	5	27	12	21	23	0
U.710	0	1	1	2	0	0
U-720	2	1	1	$1{ }^{4}$	0	l^{0}
Waspaloy	3	5	5	12	1	$1^{\text {c }}$
WAZ-20	0	2	3	3	2	
MAR-M-509	0	${ }_{2}{ }^{\text {d }}$	3	${ }^{6}$	0	0
WI-52 X-40	0	$2^{\text {d }}$ 1	7	3	0	0 0
Total	20	128	172	230	89	8

${ }^{2}$ An additional IN-100 sample tested at $1093^{\circ} \mathrm{C}$. paraliaear behavior.
${ }^{\text {b }}$ One IN-792 sample showed almont pure parabolic behavior but was deemed an outlier.
${ }^{\circ}$ One Waspalloy sample ($481-6$) teated for 200 I . hr cycles at $1100^{\circ} \mathrm{c}$ gave tuch a poot nt to any of 3 posilble models-
paralinear, linear or parabolic that it was automatically considered an outliet.
${ }^{\text {d }}$ Two additinal WI-52 samples tested at $1093^{\circ} \mathrm{C}$, paralinear behavior.
"Based on the model:
$\log \mathrm{Ka}=\mathrm{a} \cdot \mathrm{CoNi}+\mathrm{b} \cdot \mathrm{Ti}+\mathrm{c} \cdot \mathrm{Mo}+\mathrm{d} \cdot \mathrm{W} \pm \mathrm{e} \cdot \mathrm{Nb}+\mathrm{f} \cdot \mathrm{Ta}+\mathrm{g} \cdot \mathrm{C}+\mathrm{h} \cdot \mathrm{B}+\mathrm{l} \cdot \mathrm{Zr}+\mathrm{j} \cdot \mathrm{HI}+\mathrm{k} \cdot \mathrm{V}+\mathrm{l} \cdot \mathrm{Al} \cdot \mathrm{Cr}_{\mathrm{t}}+\mathrm{m} \cdot \mathrm{Al}^{\mathbf{2}}+\mathrm{n} \cdot \mathrm{Cr}^{2}+\mathbf{o} \cdot \mathbf{1 / T} \mathrm{T}_{\mathrm{K}}+\mathrm{p} \cdot \mathrm{Cr}+\mathrm{q} \cdot \mathrm{Re} \pm \sigma$ if $\sigma> \pm 2.5$ the sample is dropped as an outlier.

TABLE A-II.-INDIVIDUAL Ka Values and associated specific weight change data for
EACH ALLOY SAMPLE RUN, $\mathrm{n}=315$

Alloy	Test temperature, ${ }^{\circ} \mathrm{C}$	Run number	Test time, hr	Model type	$k_{1}^{1 / 2}$	\mathbf{k}_{2}	Ka	$\mathrm{R}^{\mathbf{2}}$	Final $\Delta W / A$
Alloy 625	1100	351-4	200	Paralinear	7.99315	-2.07222	28.7154	0.998	-293.20
Alloy 625	1150	352.4	100		7.69380	-2.87258	36.4196	. 999	-208.10
Alloy 718	1100	351-3	200		8.17729	-2.03898	28.5671	. 998	-284.60
Alloy 718	1150	352-3	100		8.67148	-3.47206	43.3921	. 999	-255.70
Astroloy	1100	473-3	200	\checkmark	1.21721	-. 20201	3.2373	. 928	-30.25
Astroloy	1150	472-3	100	Linear	-........-	-3.08623	61.7246	. 992	-318.80
B-1900	1000	471-3	500	Paralinear	. 03803	-. 00151	. 0531	. 926	+. 19
	1100	103-3	200	Paralinear	. 07635	-. 01044	. 1808	. 978	-. 97
		103-4		Paralinear	. 08866	-. 01469	. 2356	. 951	-1.56
		186-6		Linear	-...--.--*	-. 01597	. 3193	. 873	-2.52
		190-5		Linear	--...-**	-. 00843	. 1686	. 832	-1.20
		276-6		Paralinear	. 04583	-. 00840	. 1298	. 983	$-.97$
		324-2			. 06368	-. 01226	. 1863	. 972	-1.40
	t	327-1	\checkmark		. 03604	-. 00924	. 1284	. 983	-1.21
	11.50	41-1	100		. 06418	-. 03528	. 4169	. 999	-2.87
		78-1			. 58862	-. 24889	3.0775	. 994	-19.91
		78-2		\checkmark	. 65950	-. 25321	3.1916	. 995	-19.59
		95-1		Linear	--------*	-. 05565	1.1130	. 995	-5.56
		95-2		Linear	-----.---	-. 05231	1.0462	. 995	-5.05
		101.3		Paralinear	. 18539	$-.04590$. 6444	. 996	-2.62
		101.6		Linear	-...-.-.--	-. 04207	. 8414	. 988	-3.97
		107.4		Linear	--------	-. 06512	1.3025	. 995	-6.80
		107.5		Paralinear	. 40414	-. 13133	1.7174	. 997	-9.46
		123-1			. 65939	-. 16387	2.1981	. 986	-12.11
		123-2			. 72746	$-.20699$	2.7974	. 982	-15.16
		123-3			. 57362	-. 13841	1.9577	. 985	-9.12
		123.4			. 15333	-. 05408	. 6941	. 981	-4.35
		123-5			. 32815	-. 12461	1.5743	. 989	-10.10
		123-6		t	. 52619	-. 12212	1.7474	. 978	-7.93
		128-1		Linear	--------*	-. 07332	1.4665	.995	-7.08
		128-2		Linear	-----.-.-	$-.05824$	1.1648	. 999	-5.62
		130-1		Paralinear	. 71171	$-.16798$	2.3915	. 976	-11.14
		130-2			2.32699	-. 49507	7.2777	. 981	-28.76
		130-3			. 77096	-. 20694	2.8404	. 987	-14.43
		130-4			. 21995	-. 07800	1.0000	. 999	-5.66
		130-5			. 07632	-. 06096	. 6860	. 998	-5.42
		$130-6$.	. 42854	$-.15200$	1.9485	. 990	-11.99
		146-5		Linear	---------	-. 04454	. 8908	. 986	-4.25
		204-4			---------	-. 07026	1.4053	. 947	-6.13
		221-1			--.------	-. 05004	1.0008	. 990	-4.75
		221-5			--	-. 07562	1.5125	. 997	-7.31
		321.2			---------*	-. 05778	1.1557	. 995	-5.50
		328.1			--------*	-. 03415	. 6830	. 989	-3.27
	\checkmark	$337-4$	\downarrow		--	-. 03844	. 7688	. 994	-4.11
B-1900 + Hf	1100	190-4	200		--------	-. 01208	. 2416	. 902	-1.94
	1100	326-3	200		---..---	$-.08729$	1.7458	. 983	-1.65
	1100	475.1	200		-.......--	$-.00896$. 1791	. 959	-1.44
	1150	323-3	100		-...-...--	-. 0437	. 874	. 967	-3.85
	1150	474.1	100	\downarrow	-........-	$-.0664$	1.327	. 978	-7.80
IN-100	1093	100-1	100	Paralinear	6.9924	-2.1500	28.493	. 999	-148.10

TABLE A-II.-Coptinued.

Alloy	Teat temperature, ${ }^{-} \mathrm{C}$	Run number	Teat time, hr	Model type	$k_{1}^{1 / 2}$	\mathbf{k}_{2}	Ks	$\mathrm{R}^{\mathbf{2}}$	$\begin{aligned} & \text { Final } \\ & \Delta W / A \end{aligned}$
IN-100	1100	$393-1$	200	Paralinear	1.0514	-0.1415	2.466	0.985	-15.25
	1100	413-4	75	Linear	*-"-***	-6.3439	126.878	. 999	-462.4
	1100	469-1	200	Linear	-7......	-. 4421	8.842	. 983	-63.34
	1150	41-6	100	Paralinear	5.3939	-1.0188	15.582	. 955	-56.20
	1	95.3	75	Paralinear	21.2371	-6.4656	85.793	. 897	-306.0
		95-6	75	Linear	-->......-	-5.2591	105.183	. 999	-385.0
		105-1	90	Paralinear	4.1880	-7.9080	83.268	. 999	-652.7
		105-2	100		13.8025	-7.9190	92.992	. 999	-635.2
		127-1			41.1241	-7.9930	121.054	. 983	-417.6
		127-2			14.9888	-10.7823	122.812	. 899	-827.8
		127-3			18.2168	-3.8912	57.129	. 089	-220.2
		127-4			16.6828	-3.4270	50.952	. 984	-191.0
		127.5			28.0016	-5.2697	80.699	. 988	-277.2
		127.6	-	\downarrow	23.6953	-4.3537	67.232	. 953	-231.9
		414.4	60	Linear	-п*-	-7.3451	146.902	. 999	-438.2
	\downarrow	470-1	45		--**-***	-11.8857	237.714	. 999	- 821.9
IN-713 LC	1100	473-5	200		-	-. 0357	. 715	. 997	-6.20
IN-713 LC	1150	41-4	100		-...-...-.	$-.1386$	2.772	. 993	-12.98
IN-713 LC	1150	472-5	100	¢		-. 0287	. 575	.966	-2.52
IN-738	1000	674-3	500	Paralinear	1.0279	-. 0870	1.698	. 953	-12.65
	1100	324-1	200		9.4313	-1.3867	23.298	. 976	-55.81
		413-2			11.9709	-1.6564	28.535	. 964	-182.4
		469-6			3.4517	-.6258	8.710	. 997	-95.13
		659-1			13.2680	-2.6506	39.774	. 998	-338.4
		663-2			13.5724	-3.1061	44.634	. 988	-183.3
		664-2			11.9394	-1.8196	30.135	. 992	-199.50
		679-4			7.5608	-2.3929	31.490	. 999	-363.60
		679-5			11.8385	-1.9061	30.900	. 994	-215.80
		680-4			7.2468	-2.2193	29.440	. 998	-332.70
	\downarrow	680-5	6		4.6310	-2.1713	26.344	. 996	-357.9
	1150	41-2	100		8.5420	-1.8366	26.908	. 965	-112.6
		321-1			9.9065	-2.2040	31.946	. 976	-134.1
		414-2			11.7430	-2.6738	38.481	. 983	-160.8
		470-6			13.4443	-2.9574	43.018	. 986	-170.6
	-	658-1	,		5.5606	-4.3745	49.305	. 999	-371.9
IN-792	1100	310-2	200		9.0621	-1.4302	23.364	. 991	-161.9
		376-2			9.7766	-1.6063	25.841	. 995	-184.5
		326-5			9.5023	-1.4302	23.804	. 990	-156.30
		336-5			8.9258	-1.6386	24.312	. 995	-184.4
		411-6			. 0792	-1.2207	12.287	. 973	-148.8
		469-4			10.0727	-1.5685	25.757	. 983	-183.6
	\checkmark	657-5	,		9.4552	-1.3011	22.466	. 965	-144.3
	1150	323-2	100		13.6102	-3.2478	46.088	. 994	-192.1
	115	323-5			13.4964	-3.3138	46.634	. 996	-196.2
		337.5			12.4612	-3.2332	44.794	. 995	-205.0
		412.6			13.2188	-3.3625	46.844	. 993	-208.5
		425.4			13.8841	-3.7341	51.225	. 998	-233.2
		425-5			14.3983	-4.1172	55.570	. 998	-264.5
		426-4			14.1476	-3.7264	51.411	. 998	-229.6
	\downarrow	426-5	\checkmark	t	13.1177	-3.8563	51.681	. 998	-251.4

TABLE A-II.-Continued.

Alloy	Test temperature, ${ }^{\circ} \mathrm{C}$	Run number	Test time, hr	Model type	$k_{1}^{1 / 2}$	k_{2}	$\mathbf{K a}$	R^{2}	$\begin{aligned} & \text { Final } \\ & \Delta W / A \end{aligned}$
IN-792	1150	428-4	100	Paralinear	13.9847	-3.6630	50.615	0.998	-225.0
IN-792	1150	428-5	100		17.1251	-4.4736	61.861	. 997	-273.8
IN-792	1150	470-4	100		12.3665	-3.2108	44.474	. 992	-203.4
IN-939	1100	327-3	200		12.3857	-2.0199	32.584	. 996	-227.6
IN-939	1150	328-3	100		15.8826	-3.9472	55.380	. 996	-233.2
MAR-M-200	1100	310-3	200		1.7693	-. 3701	5.470	. 994	-52.16
	1100	391.1	200		1.1751	-. 3713	4.888	. 999	-58.06
	1100	391.2	200	-	6.1989	-. 9083	14.281	. 989	-50.55
	1150	225-1	75	Linear	------*-*	-5.0986	101.972	. 998	-369.2
	11	225-2	75	Linear	--........	-5.0528	101.056	. 999	-368.2
		392-1	100	Paralinear	11.2087	-2.6179	37.388	. 984	-165.2
	\downarrow	392-2	100		16.4969	-4.0094	56.591	. 994	-243.3
MAR-M-200 + Hi	1100	310-4	200		5.7798	-. 8618	14.398	. 994	-95.85
		310-5			6.3588	-. 8557	14.916	. 974	-94.95
		391.3			7.5777	-1.0607	18.185	. 984	-115.7
		391-4			10.9500	-1.3809	24.758	. 944	-35.11
		391-5			6.4031	$-.8243$	14.646	. 957	-90.17
	.	391-6	\downarrow		7.1013	$-.9866$	16.967	. 983	-107.0
	1150	225-3	100		4.6373	-4.2870	47.507	. 999	-380.3
		225-4		\downarrow	5.2434	-1.0455	15.698	. 982	-58.81
		225.5		Linear	--.------	-3.9051	78.102	. 999	-385.0
		225.6		Linear	----..---	-4.4577	89.153	. 999	-439.9
		392-3		Paralinear	22.2491	-5.1485	73.734	. 997	-295.0
		392-4			20.9305	-5.2509	73.439	. 998	-313.7
		392-5			23.0734	-4.6244	69.317	. 985	-242.8
	\checkmark	392-6	-		21.4160	-4.6941	68.357	. 993	-261.4
MAR-M-211	1100	324-4	115		51.5721	-9.4149	145.721	. 983	-524.9
	1100	473-6	200		. 3227	-. 08759	1.199	. 989	-14.62
	1150	321-4	100		1.4392	$-.39142$	5.353	. 979	-27.93
	1150	478-1	100		32.1709	-7.6849	109.019	. 995	-452.8
MAR-M-246	1100	325-3	200		. 2656	-. 1288	1.653	. 994	-24.44
MAR-M-246	1150	322-3	100		5.0692	-1.3008	18.077	.975	-92.89
MAR-M-247	1000	452-5	500		. 0471	-. 0012	. 059	. 991	+.46
	1000	480-3	500	\downarrow	. 0343	-. 0012	. 046	. 954	+.24
	1100	453-5	200	Linear	-------	-. 0280	. 560	. 993	-5.30
	1	481-3		Paralinear	. 0789	-. 0320	. 399	. 997	-4.92
		657.1		Paralinear	. 2228	$-.0334$. 556	. 998	-3.50
		657-2		Paralinear	. 1964	-,0259	. 456	. 994	-2.52
	\downarrow	657-3	+	Linear	--.---*	-. 0282	. 564	. 979	-4.86
	1150	454-5	100	Paralinear	. 4067	-. 2250	2.657	. 996	-19.46
		482-3		Paralinear	1.1464	-. 4054	5.200	. 995	-30.86
		656-2		Paralinear	2.9041	-. 6259	9.163	. 995	-35.68
	\downarrow	656-3	\cdots	Linear	-......	-. 1459	2.919	. 973	-14.21
MAR-M-421	1100	325-1	200	Paralinear	3.8911	-. 5640	9.531	. 944	-74.11
MAR-M-421	1160	322-1	100		12.0706	-2.2866	34.936	. 940	-128.7
NASA-TRW-VIA	1100	103-1	200		. 2144	-. 0198	. 412	. 988	-. 94
	,	103-2	1		. 1933	-. 0174	. 367	. 982	-. 77
		103-6			. 1118	-. 0111	. 223	. 874	-. 54
		190-6			. 0528	-. 0154	. 207	. 992	-2.32
	\checkmark	473-4	\downarrow	\cdots	. 1981	-. 0258	. 456	. 939	-1.88

TABLE A-II.-Coptinued.

Alloy	Teat temperature, ${ }^{\circ} \mathrm{C}$	Run number	Test time, hr	Model type	$\mathrm{F}_{1}^{1 / 2}$	k_{3}	Ka	R^{2}	$\begin{aligned} & \text { Final } \\ & \Delta W / A \end{aligned}$
NASA-TRW-VIA	1100	659-6	200	Paralinear	0.0991	-0.0212	0.311	0.963	-2.41
	1150	41-3	100		. 4364	-. 0838	1.274	. 991	-3.87
	1	78-6			. 4543	-. 1233	1.687	. 991	-8.27
		101-4			. 4176	$-.0750$	1.168	. 999	-3.26
		105-5			. 1437	-. 0564	. 708	. 997	-4.13
		129-1		Linear Linear Paralipear	****************)	-. 0367	. 734	. 995	-3.81-3.77
		129-2			-...---	-. 0382	. 763	. 983	
		129-3			0.8529	$-.1894$	2.747	. 996	-11.01
		129-4		Paralipear	. 6891	-. 1357	1.946	. 999	-7.68
		129-5			. 1439	-. 0533	. 677	. 992	-4.20-15.81
		129-6			1.3212	-. 2894	4.215	. 999	
		204-5		Linear	--.---*	$-.0877$	1.754	. 998	-8.96
		472-4		Paraliaear	. 2585	-. 1205	1.463	. 998	-9.82
	\checkmark	658-6	\checkmark	Linear-	-. 0768	1.636	. 996	-7.35
Nimonic 115	1000	675-4	500	Paralinear	. 1930	-. 0124	. 317	. 825	-1.47
Nimonic 115	1000	675-5	500	Paralinear	. 3220	-. 0178	. 500	. 542	-4.60
Nimonic 115	1150	663-6	100	Linear	-----**	-. 0820	1.640	. 962	-7.24
NX-188	1100	393-2	200	Paralinear	. 8623	-. 2386	3.248	. 990	-39.06
	1100	413-3	200		. 5128	$-.3131$	3.644	. 997	-58.45 -37.87
	1150	102-3	100		. 5371	-.4188	4.725	. 999	-37.87
		102-6	1		2.1865	-. 8314	10.500	. 997	-61.88
1		414-3		Linear Paralinear	10.2068	-. 4708	9.416	. 998	-48.39 -156.4
Rend 41		100-5	-			-2.6283	36.480	. 988	-156.4
Rene 41		137-3	,		8.2779	-2.4160	32.438	. 995	-150.9
Rend 41	t	137-6			8.5318	-2.1973	30.505	. 998	-130.4
Rend 80	1100	232-3	200		10.6738	-2.9182	39.856	. 999	-426.4
	1100	659-2	200		13.7574	-2.1189	34.946	. 993	-234.3
	1150	108-3	100		14.0964	-5.2980	67.077	$.999$	-380.0
	1150	108-6	100		$\begin{array}{r} 12.8470 \\ 6.8785 \end{array}$	$\begin{aligned} & -5.0996 \\ & -4.4707 \end{aligned}$	63.838	$\begin{aligned} & .999 \\ & .999 \end{aligned}$	$\begin{aligned} & -373.9 \\ & -370.6 \end{aligned}$
	1150	658-2	100				51.386		
René 120	1100	232-6	200		$\begin{aligned} & 6.8785 \\ & 2.9870 \end{aligned}$	$\begin{array}{r} -4.4707 \\ -.3887 \end{array}$	6.854	. 984	-38.57
Rend 120	1150	108-4	100		4.6318	$\begin{array}{r} -.3887 \\ -1.0219 \end{array}$	$\begin{aligned} & 14.851 \\ & 14.970 \end{aligned}$. 996	-57.63
Rend 120	1150	108-5	100	\downarrow	$\begin{aligned} & 4.9019 \\ & 1.4998 \end{aligned}$	$\begin{array}{r} -1.0219 \\ -1.0068 \end{array}$. 994	-53.30
René 125	1100	325-4	200			-. 1942	3.442	. 959	-20.97
	1100	659-3	200	Limear Paralinear	--....-	$-.0190$. 380	$\begin{aligned} & .997 \\ & .967 \end{aligned}$	-3.92
	1100	659-3	200		2.1047	$\begin{aligned} & -.3141 \\ & -.6214 \end{aligned}$	$\begin{aligned} & 5.246 \\ & 9.304 \end{aligned}$	$.967$	-38.76
	1150	322-4	100	Paralinear	3.0903			$.981$	$\begin{aligned} & -34.69 \\ & -52.21 \end{aligned}$
,	1150	658-4	100500		2.7092	$-.7554$	$\begin{array}{r} 9.304 \\ 10.263 \end{array}$. 990	-52.21 -16.78
R-160-SX	1000	615-3			. 6394	$-.0514$	$\begin{array}{r} 10.263 \\ 1.153 \end{array}$		-16.78
1	1000	678-6	500		5.8266	-. 5024	10.850	. 922	-148.1
	1100	614-3	160	Linear Paralinear	3.7768\qquad	-4.1233	45.010	. 999	-598.4
\downarrow	1150	613-3	45			-15.7428	314.856	. 993	-667.0
TAZ-8A	1000	471-6	500		. 0851	-. 0012	. 097	. 994	$+1.40$
	1100	232-2	200		. 7243	-. 0823	1.547	. 955	+7.40 +2.95
		324-3	,		. 3521	-. 0095	. 447	. 999	+2.95
		413-1			. 1172	-. 0094	. 211	. 648	-. 06
		413-6			. 4530	-. 0235	. 688	. 992	+1.31
		469-2			. 3932	-. 0184	. 678	. 998	+1.84
		473-2			. 1203	-. 0063	. 184	. 981	+.43
\square	\downarrow	657.8	\dagger	t	. 0401	-. 0046	. 086	. 748	$-.19$

TABLE A-II.-Continued.

TABLE A-II.-Continued.

Alloy	$\begin{gathered} \text { Test } \\ \text { temperature, } \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \text { Run } \\ \text { number } \end{gathered}$	Tent time, hr	Model type	$\mathrm{ki}^{1 / 2}$	k_{3}	Ka	$\mathbf{R}^{\mathbf{2}}$	$\begin{gathered} \text { Final } \\ \Delta W / \mathbf{A} \end{gathered}$
U-700	1100	655-5	200	Paralinear	7.3772	-0.9441	16.819	0.914	-111.2
		656-6	200		6.7959	-1.8583	25.379	. 999	-271.3
		679-1	200		-. 1278	2.656	. 958	-32.13
		679-2	100	Linear	-. 0938	1.876	. 936	-19.72
		$680-1$			-. 1230	2.460	. 973	-23.97
	\downarrow	680-2			-. 0854	1.708	. 940	-15.05
	1150	321-6			$-.4705$. 9.411	. 941	-60.56
		323-6				-.4260-3.9220	8.520	. 964	-51.14
		423-5		Paralinear	16.4....		55.680	. 992	
		438-1			2.0961	-. 6998	9.095	. 958	-230.7 -58.16
		438-2			15.2100	-3.9650	54.860	. 995	-243.2
		449-6			15.0393	-3.0999	46.038	. 970	-174.8
		454-1		\downarrow	2.2690	-. 6897	9.168	. 938	-57.77
		470-5		Linear Linear Paralinear	-. 3743	7.486	. 960	-45.27
		478.6			-	-. 5407	10.814	. 926	-71.45
		654-4			14.7616	-3.6417	51.179	. 992	-217.5
		654-5			14.1388	-3.5586	40.725	. 995	-214.4
	\downarrow	654-6	t		9.3159	-3.4349	43.665	. 999	-246.5
U.710	1100	324-5			11.6597	-2.2095	33.755	. 997	-270.2
U. 710	1150	321-5	200 100		9.4443	-3.9464	48.908	. 999	-294.1
U-720	1000	674-6	500		2.9558	-. 2821	8.777	. 978	-77.59
	1000	675-6	500		3.5686	-. 3431	7.000	. 973	$\begin{gathered} -93.57 \\ -313.5 \end{gathered}$
	1100	655-3	200		9.5565	$\begin{aligned} & -2.2778 \\ & -3.6764 \end{aligned}$	$\begin{aligned} & 32.335 \\ & 41.575 \end{aligned}$. 999	
\downarrow	1150	654-3	100		4.8115			. 999	$\begin{aligned} & -313.5 \\ & -313.4 \end{aligned}$
Waspaloy	1000	436-6	500		3.6677	-. 2862	$6.530$$5.511$. 854	$\begin{aligned} & -313.4 \\ & -75.73 \end{aligned}$
	1000	480-6			3.0613	-. 2450		. 900	-57.36
	1000	615-5	500 500		1.7020	$\begin{array}{r} -.1253 \\ -1.9120 \end{array}$	2.955	. 667	$\begin{gathered} -44.80 \\ -248.5 \end{gathered}$
	1100	393-5			9.0460		$\begin{array}{r} 28.166 \\ 3.760 \end{array}$. 999	
		437.6	200		1.6630	-. 2097		.930.968	$\begin{array}{r} -248.5 \\ -23.91 \end{array}$
		473-1			1.7550	-. 2465	$\cdot 4.220$		-30.25
		614-5	1		1.0993	$\begin{array}{r} -.1271 \\ -2.9190 \end{array}$	2.371	. 869	-14.48-165.2
	1150	438.6	100		14.1400		$\begin{aligned} & 43.330 \\ & 56.035 \end{aligned}$	$\begin{array}{r} .985 \\ .989 \end{array}$	
		470-2	100		11.7414	-4.4294			$\begin{array}{r} -165.2 \\ -318.9 \end{array}$
		472-1			4.082	-. 7967	$\begin{array}{r} 12.049 \\ 9.660 \end{array}$. 992	-41.06
		482-6			3.5827	-. 6077		,980	$\begin{gathered} -27.53 \\ -226.7 \end{gathered}$
,	-	613-5	1		19.2421	-. 4156	23.398	. 995	
WAZ-20	1100	232-5	200	\square	3.6298	$\begin{aligned} & -1.0868 \\ & -1.8428 \end{aligned}$	$\begin{aligned} & 14.498 \\ & 27.794 \end{aligned}$. 991	-155.5
	1100	413.5	200100		9.3657			$\begin{array}{r} .999 \\ .999 \end{array}$	$\begin{aligned} & -240.6 \\ & -568.3 \end{aligned}$
	1150	102-4		Linear Linear Paralinear	--.----	$\begin{aligned} & -6.8479 \\ & -5.2145 \end{aligned}$	$\begin{array}{r} 27.794 \\ 116.958 \end{array}$		
	1150	102-5	100		--....-		$\begin{array}{r} 104.291 \\ 46.400 \end{array}$.999.999	$\begin{aligned} & -505.3 \\ & -322.5 \end{aligned}$
\downarrow	1150	414-5	100		6.8340	-3.9566			
MAR-M-509	1100	310-1	200		9.3085	$\begin{aligned} & -1.3218 \\ & -1.7972 \end{aligned}$	22.524	. 990	-137.1
	1100	326-4	200		10.3614		28.333	. 999	-211.2
	1150	102-1	100		9.6676	-1.8752	28.420	. 987	-97.87
	1150	102-2			17.2012	-3.3339	80.540	. 981	-177.5
,	1150	323-4			21.8875	-4.8477	70.364	. 996	-265.2
W1.52	1093	120-1			9.7830	-4.3592	53.375	. 999	-327.5
	1093	120-2		\checkmark	2.3512	-3.8348	40.699	. 998	-346.4
	1100	393-3	200	Linear--	-3.7798	75.596	. 998	-579.6
\downarrow	1100	469-3	200	Paralinear	14.5889	-. 0392	14.981	. 989	-559.0

TABLE A-II.-Concluded.

Alloy	Test temperature, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Run } \\ \text { number } \end{gathered}$	Test time, hr	Model type	$k_{1}{ }^{1 / 2}$	\mathbf{k}_{2}	Ka	$\mathrm{R}^{\mathbf{2}}$	$\begin{gathered} \text { Final } \\ \Delta W / A \end{gathered}$
W-152	1150	99.1	100	Linear	-6.2106	124.212	0.999	-608.2
		99.2		Linear	--.-..-	-6.8008	136.016	. 999	-663.3
		105-4		Paralinear	9.9264	-7.6869	86.795	. 999	-650.6
		105-5	,	Paralinear	8.8308	-7.2813	81.644	. 999	-623.7
		128-4	75	Linear	--.-..-	-5.8658	117.317	. 982	-387.4
		128-5	75	Linear	-5.8844	117.689	. 993	-419.0
		470-3	45	Linear	-9.0172	180.344	. 999	-405.7
X-40	$\begin{aligned} & 1100 \\ & 1150 \end{aligned}$	393-4	200	Paralinear	$\begin{aligned} & 15.2770 \\ & 15.5662 \end{aligned}$	-2.0293	35.570	.971.994	$\begin{array}{r} -206.3 \\ -186.0 \end{array}$
		95-4	100			$\begin{array}{r} -2.3280 \\ -.3388 \end{array}$	$\begin{array}{r} 38.846 \\ 5.106 \end{array}$		
		95-5			1.7174			$\begin{array}{r} .816 \\ .983 \end{array}$	$\begin{gathered} -186.0 \\ -25.44 \end{gathered}$
		105-3			11.4739	-2.2589	$\begin{array}{r} 5.106 \\ 34.063 \end{array}$		$\begin{gathered} -25.44 \\ -121.8 \end{gathered}$
		105-6	\checkmark		10.8964	-2.1528	32.424	. 989	$\begin{gathered} -113.6 \\ -42.54 \end{gathered}$
		128-3	45		5.5343	-1.6776	22.310	. 950	
	,	128-6	100	,	15.5855	$\begin{aligned} & -3.4410 \\ & -3.5114 \end{aligned}$	$\begin{aligned} & 49.995 \\ & 50.303 \end{aligned}$	$\begin{array}{r} .995 \\ .996 \end{array}$	$\begin{gathered} -42.54 \\ -188.6 \end{gathered}$
	\downarrow	146-3	100	\downarrow	15.1885				$\begin{aligned} & -188.6 \\ & -197.9 \end{aligned}$

TABLE C-I-MULTIPLE REGRESSION" RESULTS FOR LOG ${ }_{10} \mathrm{Ka}$ AS A FUNCTION OF ALLOY COMPOSITION IN wt , AND OF ABSOLUTE TEST TEMPERATURE IN $1 / T_{k}$ BASED ON AN INITIAL SELECTION OF $151^{\text {"* }}$ ORDER VARIABLES.

NUMBER OF DATA VALUES $n=315$.

$\left[Z_{i}=15, z_{\text {f }}=11\right]$		
Significant tē̈ms, Z	Coefficient	t-statistic
Ta	-0.15488235	-9.666
$1 / \mathrm{T}_{\mathrm{K}}$	-17305.08365	-16.606
$\mathrm{Al}^{\mathbf{K}}$	-0.33925047	.7.333
Cr	-0.08308178	-4.459
Ti	+0.26407575	11.464
Nb	+0.24172264	4.789
C	+1.99987840	5.810
Re	+0.87295039	9.593
Zr	+0.37654324	2.416
Mo	+0.04526628	2.995
Hf	+0.17781791	2.309
a_{0}, intercept	14.77171564	
$\mathrm{R}^{2}=80.04 \%$	E.E. $=0.396669$	$Z_{i}=15$

$\mathrm{Co} / \mathrm{Ni}, \mathrm{Cr}, \mathrm{Al}, \mathrm{Ti}, \mathrm{Mo}, \mathrm{W}, \mathrm{Nb}, \mathrm{Ta}, \mathrm{C}, \mathrm{B}, \mathrm{Zr}, \mathrm{Hf}, \mathrm{V}, \mathrm{Re}, 1 / \mathrm{T}_{\mathrm{k}}$
"Stepwise regression-variables are added one at a time starting with the most significant, the F -otatistic for a variable must be significant to 0.15. Alter a variable is added, however, the stepwise method looks at all the variablen already in the model and deletea any that does not produce an F-statistic significant to the 0.15 level.

TABLE C-II-ANALYSIS OF VARIANCE (ANOVA) SUMMARY
FOR $n=315$ DATA SET; $\mathrm{E}_{\mathrm{f}}=11$ SHOWING SOURCES
OF VARIATION INCLUDING LACK OF FIT
OF THE ESTIMATING EQUATION

Source	Degrees of freedom, d.f.	Sum of squares	Mean squarea
Model	11	191.19376	17.3812505
Residual	303	47.67592788	0.1573463
Lack of fit	(70)	(20.35603) $\}$	(0.29080575)
Replication	(233)	(27.319525)	(0.11725118)
Total	314	238.86968	

$$
F-\text { ratio }=\frac{M S(\text { LOF })}{M S(\text { REPS })}=\frac{0.29080675}{0.11725118}=2.480^{\circ}
$$

[^6]

Figure 1.-Observed oxidation attack parameters - Ka's for Group I alumina/aluminate scale alloy formers tested at 1000,1100 and $1150{ }^{\circ} \mathrm{C}$ respectively (multiple horizontal lines indicate replicates).

Figure 1.-Continued.

Figure 2.-Observed oxidation attack parameters - Ka's for Group 11 chromia/chromite or NiO scale alloy formers tested at 1000, 1100 and $1150^{\circ} \mathrm{C}$ respectively (multiple horizontal lines indicate replicates).

Figure 2.-Continued.

Figure 2.-Concluded.

Figure 3.-Comparison of the average observed and the predicted oxidation attack parameters, Ka's, for Group I alumina/aluminate scale alloy formers at 1000, 1100, and $1150^{\circ} \mathrm{C}$ respectively.

Figure 4.-Comparison of the average observed and the predicted oxidation attack parameters, Ka's, for Group II chromia/chromite or NiO scale alloy formers at 1000,1100 and $1150^{\circ} \mathrm{C}$ respectively.

Figure 5.-Standardized residual values va. 315 predicted log Ka values derived from a 14 term regression estimating equation involving alloy composition and temperature for 36 high strength Ni - and Co - base superalloys.

Figure 6.-Predicted log Ka values derived from a 14 term estimating equation involving alloy composition and temperature va. observed log Ka values for 36 high strength Ni - and Co-base superalloys (the straight lines on thls plot represent a simple linear regression fit of this data with ± 2.5 standard deviation limits).

Figure B-1.-B-1900, $1150^{\circ} \mathrm{C}$, run 78-1.

Figure B-3.-W-52, $1150^{\circ} \mathrm{C}$, run 99-1.

Figure B-5.-WI-52, $1150^{\circ} \mathrm{C}$, run 128-4.

Figure B-2.-IN-100, $1150^{\circ} \mathrm{C}$, nun 95-6.

Figure B-4.-B-1900, $1150{ }^{\circ} \mathrm{C}$, run 123-3.

Figure B-6.-NASA-TRW-VIA, $1150^{\circ} \mathrm{C}$, run 129-2.

Figure B-7.-René-41, $1150^{\circ} \mathrm{C}$, run 137-3.

Figure B-9.-B-1900 $+\mathrm{Ht}, 1150^{\circ} \mathrm{C}$, run 204-3.

Figure B-11.-TAZ-8A, $1100^{\circ} \mathrm{C}$. nun 232-2.

Figure B-8.-René-41, $1150^{\circ} \mathrm{C}$, run 137-6.

Figure B-10.-B-1900, $1150^{\circ} \mathrm{C}$, run 221-1.

Figure B-12.-WAZ-20, $1100^{\circ} \mathrm{C}$, run 232-5.

Figure B-13.-Alloy $625,1150^{\circ} \mathrm{C}$, run 352-4.

Figure B-15.-U-700, $1100^{\circ} \mathrm{C}$, run 422-5.

Figure B-17.-U-700, $1000^{\circ} \mathrm{C}$, run 424-5.

Figure B-14.-Alloy $625,1150^{\circ} \mathrm{C}$, run 352-4.

Figure B-16.-U-700, $1150^{\circ} \mathrm{C}$, run 423-5.

Figure B-18.-IN-792, $1150^{\circ} \mathrm{C}$, run 428-4.

Figure B-19.-Waspaloy, $1000^{\circ} \mathrm{C}$, nun 436-6.

Figure B-21.-U-700, $1100^{\circ} \mathrm{C}$, run 448-6.

Figure B-20.-U-700, $1000^{\circ} \mathrm{C}$, run 447-6.

Figure B-22.-U-700, $1150^{\circ} \mathrm{C}$, nun 449-6.

Figure B-23.-MAR-M-247, $1150^{\circ} \mathrm{C}$, run 454-5.

Figure B-24.-TAZ-8A, $1150^{\circ} \mathrm{C}$, run 472-2.

Figure B-25.-MAR-M-211, $1150^{\circ} \mathrm{C}$, run 478-1.

Figure B-27.-IN-792, $1100^{\circ} \mathrm{C}$, run 657-5.

Figure B-26.-TAZ-8A, $1150^{\circ} \mathrm{C}$, run 656-2.

Figure B-28.-René-125, $1100^{\circ} \mathrm{C}$, run 659-3.

[^0]: ${ }^{1}$ The SAS statistical computer package (version 5) for the VM main frame operating system was used for all data analysis in this study.

[^1]: ${ }^{2}$ The average K_{a} 's are defined as the antilog of the average of the $\log K_{a}$ values for each alloy at each temperature.

[^2]: ${ }^{1}$ Included also are 28 runs not listed in references 1 and 2, but plotted in the Appednix B of this report.

[^3]:

 | 3 |
 | :--- |
 | 3 |
 | 8 |
 | 1 |
 | 3 |
 | 3 |
 | 3 |
 | 3 |

[^4]:

[^5]: ${ }^{2}$ Based on the derived estimating equation, see table II.
 b $(\log \mathrm{Ka}$ observed $-\log \mathrm{Ka}$ predicted)
 Standard deviation

[^6]: ${ }^{\text {a }}$ The lack of fit term appears to be significant since the F-ratio for $(1-a)$ where $a=0.95=1.658$ which does not exceed the MS(LOF)/MS(REPS) ratio derived for this first order model. Therefore this model is not considered satisfactory.

