l‘l "o
i

o o
(rr

iy e

““!‘!W

{ 311 AN S

r

mm™

g

! e
|

v

AR

MODEL REFERENCE
ADAPTIVE CONTROL OF ROBOTS

NAGW-/333

by

Rodrigo Steinvorth

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering
Troy, New York 12180-3590

March 1991

CIRSSE REPORT #87

- TABLE OF CONTENTS
. LISTOFFIGURES ..¢ivirtitierenesotsaroneeanssscssnnsonansvnsanesns iv
- ACKNOWLEDGEMENT .. uunrreeanneeeeannnnnaneeeeeann e vii
7 ABST RACT ittt iiit ittt ittt et ey ix
— 1. Introduclionttt it e e 1
é 1.1 Introduction ..ttt iiriienitarneronennrnnsaraarnannsnsenos 1
1.2 Background . ..vuivunnnertitit i e 3
- 1.2.1 Problem Descriptionc.ciiitiriiiiiiia, 3
: 1.2.2 Development of the Command Generator Tracker Concept . 4
j- 1.2.3 Development of the Adaptive Control Law 8
= 1.2.4 Extension of the Original Algorithm 10
1.3 SUMMATY ittt ettt 13
- 2. Modifications to Insure Asymptotic Tracking 14
- 2.1 Introductioncieiiiiii i 14
= 2.2 Modification #1: Adding a Feedforwared to the Model 14
2.3 Modification #2: Adding a Zero to the Feedforward 17
. 2.4 Addition of a Derivative Term to the Plant Output 17
E 2.5 SUMMATY o itititnenn e sanoennaaenonsorascrosonseoansns 19
% 3. Application to a Single-Link, Flexible-Joint Arm 20
- 3.1 IntroducCtion ...ttt e e 20
3.2 Plant Description ...ttt i e e 20
3.3 Simulation Results ittt i i i 23
3.3.1 BarKana Algorithm it 23
= 3.3.2 Kaufman Algortihm it 24

i

3.3.3 Derivative Algorithm et eeeeeeer s 28

3.4 SUMMATY «evveneneneenensosonsoesnenenesuennenseneneananss 31

4. Application to a Model of the PUMA 560 Arm 32

4.1 IntrodUClion . ..vivterrrniensorosonnonnasoroesonennsnnnseens 32

4.2 Plant Descripioncciivuvirnenetatriieiateiriraraaaaas 32

4.3 Simulation Results it iiiiiiri it i e 36

4.3.1 BarKana Algorithm e, 36

432 Kaufman Algorithm i, 40

4.3.3 . Derivative Algorithm 46

4.4 Discrete Simulationscciiiiiiii it i 48

4.5 Decentralized Control i i it e 52

4.5.1 Kaufman AlgOTithmcevveninnneviionnnneerannonns 52

4.5.2 Derivative Algorithm i, 57

4.6 SUMMMATY cuevrvnitnennnenennessnsasrsosenesnennoneasaesees 60

5. OVEIVIEW Mttt ierinerneneseessnnssnsnesnssesssenatesseannnnas 61

5.1 Discussion 0.0 [61

5.2 Future Work et A 63

" APPENDIX A: ACSL PrOZIAMS -+ vvvnnnesennneaeennnneeennneennnen 64
iii

Mo Wy mEnEu

L

L[]

| | [INE [/

SO

il

m

| L

‘l”““
A ua

[h e

I

gy
il

r

T
i) i

ol

N

\lwg |
i i

1!

"
1l

nan’

o

i

!

Y

]
ha

"
i

|

ikt

| I

"

t

Figure 1.1

" Figure 71 2

Figure 1.3

- Figure 2.1

Fi gul;cA 7 2..2
Figure 3.1
Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

- Figure 3.6

Figure 3.7

Figure 3.8

LIST OF FIGURES

Non adaptive command generator tracker controller
Model Reference Adaptive Controller
Extension to the CGT based MRAC system

Modification #1 to the Model Reference Adaptive Con-
troller to achieve asymptotic tracking

| Plant vaugmcmed At;y weightéd derivative term

Model of single-link flexible-joint arm from [11]
Command given to the model

Plot of the plant and model outputs (rad.) vs. time (sec.)
using the "BarKana algorithm"” for (a) no change in the
arm's load, and (b) when the arm's load is doubled at 15
sec.

le, of the plam and model outputs (rad.) vs. time (sec.)
using the "Kaufman algorithm” when there is no
change in the amm's load.

Simulation using the "Kaufman algorithm” with no
change in the armm's load. (a) Plot of the plant and model
outputs (rad.) vs. time (sec.), (b) Plot of the error
between plant and model outputs vs. time, (c) Plot of the
torque applied to the arm (N-m) vs. time, and (d) Plot of
the gain Ke vs. time.

Plot of the plant and model outputs (rad.) vs. time (sec.)
using the "Derivative algorithm” for no change in the
arm's load.

Plot of the plant and model outputs (rad.) vs. time (sec.)

‘using the "Derivative algorithm” for a sudden change in

the arm's load at 15 sec.

Plots using the "Derivative algorithm” for a sudden
change in the arm's load at 15 sec. of (a) torque
command (N-m) vs time (sec.) and (b) gain Ke vs. time
(sec.) ‘

iv

10
12

16
19
21

22

24

26

27

29

30

30

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

4.1

4.2

43

4.4
4.5
4.6
a7
4.8

4.9

410

2-D representation of the 2nd and 3rd links of the
Unimation PUMA 560 robot manipulator.

Plot of' the plamr and model outputs (rad.) vs. time (sec.)
using the "BarKana algorithm" for (a) no change in the
arm's load, and (b) when the arm's load is doubled at 6.5

SccC.

Plot using the "BarKana algorithm” when the amm's load
is doubled at 6.5 sec. for (a) the plant and model's first
output, (b) the error between plant and model's first
output, (c¢) the plant and model's second output, and (d)
the error between plant and model's second output

Plot of the plant and model 6utputs (rad.) vs. time (sec.)
using the "Kaufman algorithm” for no change in the

arm's load.

Plot of the error between the plant and model outputs
(rad.) vs. time (sec.) using the "Kaufman algorithm"” for
no change in the arm's load.

Plot of error between the plant and model outputs (rad.)
vs. time (sec.) using the "Kaufman algorithm"” when a
sudden load change is present.

Plots using the "Kaufman algorithm” when a sudden
load change is present of (a) the command torques (N-
m) to both joints and (b) one of the controller gains.
Plot of error between the plant and model outputs (rad.)
vs. time (sec.) using the "Kaufman algorithm" with a
derivative term (a = 0.0065) when a sudden load change
is present.

Plots using the "Kaufman algorithm" with a derivative
term (a = 0.0065) when a sudden load change is present
of (a) the command torques (N-m) to both joints and

(b) one of the controller gains.

Plot of the error between the plant and model outputs

(rad.) vs. time (sec.) using the "Derivative algorithm”
for no change in the arm's load.

Plot of error between the plant and model outputs (rad.)
vs. time (sec.) using the "Derivative algorithm” when a
sudden load change is present.

35

38

39

41

41

42

43

44

45

47

48

mi W .y] a 1 m | M RN oEED WO om0 w0 0

,lu o
G

|
[

Lo

LU
il

[

N
1

il

I

 niil

o

bl

mnr

i

RN
1 TR

N

1
i

Figure

- Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Plots using the "Derivative algorithm” when a sudden
load change is present of (a) the command torques (N-
m) to both joints and (b) one of the controller gains.

Plot of the plant and model outputs (rad.) vs. time (sec.)

‘using the "Kaufman algorithm" when discrete control is

simulated.

Plot of the plant and model outputs (rad.) vs. time (sec.)
using the "Kaufman algorithm" when discrete control is
simulated and a derivative term is used to augment the
plant's output.

Plot of the plant and model outputs (rad.) vs. time (sec.)
using the "Kaufman algorithm” for decentralized
control.

Plots using the "Kaufman algorithm" for decentralized
control of (a) the command torque for each joint and
(b) one of the gains.

Plot of the plant and model outputs (rad.) vs. time (sec.)
using the "Kaufman algorithm" for decentralized
control with a derivative term augmenting the plant.

Plots using the "Kaufman algorithm" for decentralized
control with a derivative term augmenting the plant of
(a) the command torque for each joint and (b) one of
thé gains.

Plot of the plant and model outputs (rad.) vs. time (sec.)
using the "Derivative algorithm"” for decentralized
control.

Plots using the "Derivative algorithm” for decentralized
control of (a) the command torque for each joint and
(b) one of the gains.

vi

49

51

51

53

54

55

36

58

59

ACKNOWLEDGEMENT

I would like to thank Professor Kaufman for his advice throughout my
stay at RPI, which was necessary for the completion of this project. I also
;am to give s;;ecrial' thanks to the Eéopfé of the United States for having made
my stay in their country a most pleasant ome and without whose support
nothing would have been possible. In addition, I want to thank CIRSSE for its

support and acknowledge the financial assistance of the ECSE department and

NASA Grant NAGW-1333.

vii

] i ui [L] m W oW 'y s ma

I

L

bl

w3

i

Para Abuelo y Mamili

ul liid

1oy
il N

Qo IED <l S

e |
g

my

i

il

viii

ABSTRACT

This project presents the results of controlling two types of robots using
new Command Generator Tracker (CGT) based Direct Model Reference Adaptive
Control (MRAC) algorithms. Two mathematical models were used to represent a
single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were
then controlled in simulation using different MRAC algorithms. Special
attention was given to the performance of the algorithms in the presence of
sudden changes in the robot load.

Previously used CGT based MRAC algorithms had several problems. The
original algorithm that was developed guaranteed assymptotic stability only
for almost strictly positive real (ASPR) plants. This condition is very
restrictive, since most systems do not satisfy this assumption. Further
developments to the algorithm led to an expansion of the number of plants
that could be coatrolled, however, a steady state error was introduced in the
response. These problems, led to the introduction of some modifications to the
algorithms so that they would be able to control a wider class of plants and at
" the same time would asymptotically track the reference model.

This project presents the development of two algorithms that achicve the
desired results and simulates the control of the two robots mentioned bcfore.
The resulté of the simulations are satisfactory and show that the problems
stated above have been corrected in the new algorithms. In addition, the
responses obtained show that the adaptively controlled processes are resistant

to sudden changes in the load.

ix

IRV [Tl o e wio mi e

mr

woom Qi

;i

” o

o
1
TR

u
i

=1
-—

m

=3
-—

g

it

gnm

0
[}

n

"
0

il

[[REi8

"o

CHAPTER 1

Introduction

1.1 Introduction
This project presents some new modifications to a Direct Model Reference
Adaptive Control (MRAC) algorithm proposed by BarKana and Kaufman [1],

that were introduced to achieve asymptotic tracking and thus eliminate a

" steady state error that used to occur. In this project, we present the use of the

new algorithms in simulations to control two different types of robot mani-
pulators, and we compare their performance with algorithms that were used
previously.

Why do we want to use adaptive control when we deal with robot
manipnfaibrs? The reason is that there are always uncertainties that occur
when we use robots to perform a given task, duec to the changing cnvironment
in which they operate. If we use a non-adaptive controller, a set of gains
which is adequat& for a certain situation may not be adequate for another. The
idea of adaptive control is to adjust to account for unexpected changes that

occur in the system.

force or the torque exerted by the load that they carry. This alteration could
be caused by different factors, such as unknown mass of the load, slippage at
the end effector, or even drop of the load. Obviously, if no action is taken by
the controller to account for these changes, there can bé a negative effect on
the performance of the robot. One solution to the problem presented by such
unforeseen changes in the planf is to use an adaptive controller. As its name

implies, an adaptive controller incorporates gains which adjust (adapt) with

time to account for changes that occur in the system.

Direct model rcfcrcncc jédép:t'ivc control techniques are currently based
on one of three different approaches [4]: First is the full state access method,
which assumes that all state variables can be measured. This method has the
limitation that the plant states are assumed to be directly measured which is
not always possible. Seccond is the augmented ecrror method which
incorporates observers into the controller to be able to have access to the
entire state vector. The disadvantage of this approach is that it becomes very
complex when dealing with multi input-multi output systems such as robot
manipulators where we have as input, several joint torques and as output,
several joint angles. Finally, the algorithms presented in this project, are
based upon command generator tracker theory as originally proposed by
Sobel, Kaufman and Mabius ([3].

Several advantages of the command generator tracker based approach

over other methods include [4]:

no need for direct estimates of the plant parameters

direct applicability to multiple input-multiple output plants

sufficiency conditions which are independent of plant dimension

control calculation which does not require adaptive observers or the

1

need of full state feedback

ease of implementation

successful experim{:méil) validation
The 'rrnajdr drawback with the original method proposed in [3] was the
need for the system to satisfy a positivc real condition. This greatly limited the

number of plants which could be controlled using this algorithm. BarKana [1]

mi & W mm .

n

ul H w mi a

Wi

n

[IWW‘ n
[y,

" 1
it

r
[wum "

L O

BN

non

"
4

vl

(AN

m
il it

il

=
i

!

i
il i

il

I([IFR

i
[t

HliNS

"
ud

l\
™

g

ml

!

i
i

éxp_andcd the algorithm to include a larger class of plants by adding a
feedforward term in parallel with the original plant; however, the difference
between the augmented plant and the model's output was not the true

difference between the model and plant outputs, and this situation introduced

~a steady state error. The modifications used in this project, climinate this

steady state error, while maintaining the larger number of plants that can be
controlled. The following section describes the development of the algorithms

given in [1] and [3] and explains their limitations in more detail.

1.2 Background

In this section we will show the development of the command generator
tracker based Model Reference Adaptive Control algorithm derived by Sobel
and Kaufman [2] énd the extension provided by BarKana [1] which gene-

ralizes the approach to a wider class of plants.

~a

1.2.1 Problem Description
" We have a plant that is described by the following set of state equations:
(1.1) xp(t) = Apxp(t) + Bpup(t)
(1.2) yp(t) = Cpxp(t)
where xp(t) is the (npx1) plant state vector, up(t) is the plant control
vector, yp(t) is the plant output vcctor, and Ap. Bp, and Cp are matrices having
the appropriate dimensions. Wlthout knowmg Ap, Bp, and Cp explicitly, we
want to find the plant's control vector up(t) such that its output vector yp(t)

asymptotically tracks the output of a rcference model given by thc following

state equations:

(13) Zm(®) = AmXm()) + Bnum(t)

(1.4) Ym(t) = Cmnxm(t)
where xp (1) is the (npx1) model state vector with dimension nm , um(t) is the
model control vector, ym(t) is the model output vector, and Ay, Bm, and Cqy are
matrices having the appfﬁpriatc dimensions. It is important to note that the
only restriction on the model is that it must have the same number of outputs
as the ‘plant; however, the dimension of the model state may be smaller than
the dimension of the plant state. Therefore, it is possible to choose nm < np in
order to simplify the problem. In addition, ugm(t) can be any command signal
that can be described as the solution of a differential equation forced by a step
input as long as the time-varying portion of the command signal is augmented
to the model state vector [5]. The basic strategy is to choose a model that will

yield the desired output given a simple command input.

1.2.2 Development of the CGT Concept

The development of the adaptive algorithm is based on the command
generator tracker (CGT) concept introduced by Broussard. Our description of
this concept will closely follow the ones given in [2] and [5]. This approach

assumes that there exist ideal trajectories of the plant x*p(t) and u*p(1) that
satisfy the following equations:
< % * *
(1.5) xp(t) = Apxp(t) + Bpup {9
* *
(1.6) Yp(t) = ¥ym = Coxp(t) = Caxm(t)
when perfect tracking occurs the real trajectories of the plant, xp(t) and up(t),

are the same as the ideal trajectories and therefore the real plant output

(IO o[—]

g m

ni U 'l w | I

|

cu AL
o dm bl 1

ey
Wi

ad

"1

e
b b 0

LA NN

lm b

i
[

==

"
i

|‘ iy
Y 11

I 11"
Cdika

s b Al

e

™

I

o o

L

vaccromcsi the ideal plant output which is defined to be the output of the model.

It is assumed that the ideal trajectories x*p(t) and u‘p(t) are linear

functions of the model state and input xp(t) and ugp(t), mathematically,

- R *
(w7 xp(t) =[S“ 312}[Xm]
* S21 Sz]l Um
uy (1) 21 S22
In equation (1.7) up is assumed to be a constant input (otherwise we will need
derivatives of the model input). We can rewrite equations (1.5) and (1.6) to
obtain
).(*
(1.8) P =
*
Yp

C, O

Substituting this result into equation (1.7) yields

ck
a9 | =[Ap BPMSH sz][xm]
- yy G 0 JLS21 Sz jtlUm

*
P
*
P

Since up is a constant input we can differentiate the first equation in (1.7) to

. obtain the following (for simplicity from here on we will omit the reference to

time, t.)

(1.10) %p = Si1%m

Py

Substituting equation (1.3) into’ (1.10) and concatenating with (1.6) results in

. %
Xp =[S11Am San][Xm]
3

(1.11)
IR Cn O fm

We can now equate equations (1.9) and (1.11) to obtain

(1.12) {S”Am S“Bm][Xm]={ Ap Bp J[Su 312][Xm]
C 0 m C 0 jLS21 Sp2)tUm

and since xm and uy are arbitrary this yields

(1.13) [SnAm San}:[Ap Bp][Su 512}
Cn 0 G 0 JLSa21 S22
A sufficient condition for Equation (1.13) to have a solution is that
-1
(1.14) [Qu Qp]__: Ap Bp}

exists and no transmission zero of the plant is equal to any ecigenvalue of Ap

[5]. The resulting equations to be solved are

(1.15) S11 =Q118511AR + Q212G

(1.16) S12=211511Bn

(1.17) S21 = Q21511Am + Q22Cn
_ (118) S22=Q21511Bn

Even if (1.14) does not exist, a solution can almost always be found for Sjj

[2). For perfect output tracking, if Yp = ym at 1=0, equation (1.7) shows that the

“ control trajectory for this constant gain command generator tracker method is

given by

(1.19) u;(t) = S21Xm(t) + Syoupm
The sufficient conditions to assure that perfect output tracking will occur
using tgis: E:o;xgtrblfia\j are (51
Al) Thc”fnéfriccs Ap, Bp, and Cp arc known, linear, and time invariant.
A2) The inverse of cquz{tibrié (1.14) exists. - -

A3) No transmission zero of the plant is equal to any eigenvalue of Am.

|

Iu [RLT]

Ed

I

N

m‘

R

i

L o

L

i

IEHI[I [

. stabilizing output feedback gain.

If ym # yp at 1=0, then we can achieve asymptotic output tracking if a
stabilizing output feedback is included in the control law. The first step in
obtaining this stabilizing feedback is to look at the error equation (i.e. the

diffcféncc between the ideal and real ‘states of the Wblant)::

(120) e=xp-Xp
We can differemiatc cquatiqn (1.20) and substitute equations (1.1) and (1.5) to

obtain

which is equivalent to

Choosing the following control law

(123) up = up + K(ym - yp) = up + KeCpe

and substituting into equation (1.22) yields the following error equation

(1.24) e =(Ap - BpKCp)e

Obviously, the error will approach zero asymptotically provided that Ke is a

= g F RLLEFL 0T i CHENEE g e B -

Therefore. we conclude that in order to achieve asymptotic output

- R]

trackmg when ym # yp at t—0 we require the following condmon in addition to

‘those listed before (Al - A3)

Ad) A constant feedback gain Ke exists such that (Ap - BpK Cp) is

asymptotlcally stable.
The rcsultmg non- adapuve controllcr as given by equation (1.23) is

represented in figure 1.1.

: < :
u L [}
— » Model o)
: + '
Controller
Up Yp
——»1 Plant

Figure 1.1: Non adaptive command generator tracker controller

- 1.2.3 Development of the Adaptive Control Law

As we mentioned previously, we are interested in the case when we do not
have c;écti kixc;wlcdgc oi' 7 the plant paramcters, or in other 7w6rds, condition Al
”is noir Vsrétisﬁed.rr We want to determine a control law i.ip('tr) which will cause the
plant's ouiput yp(t) to apprdiimaié "rcasonably well” the model's 6utput Ym (1)
without specific knowledge of Ap, Bp, and Cp. The adaptive control law chosen
to achieve this is of the same form as the nom-adaptive law given by equation

(1.23) with the exception that the gains (Ke(t), Ky(t), and K(t)) are adaptive:

] | N NP (AR | | | o | i B N -l W W L (

oo
il i,

ly AL LTN e
. l“i. s l:‘

el

i

e

I

(1.25) up(t) = Kx()xm(t) + Ky(Hum + Ke()(ym(t) - yp(1))
We are now faced v.Qitthhe task of finding v';d'aprt'i\'/c laws for Ké; f(u. and Kx
such that e(t) -> 0 ast-> o . In order to simplify the equations we will define

the matrix K.(t) and the vector r(t) as follows:

(126) K@ =[Ke(t) Ku(t) Ky(®)]

Ya® - ¥p(D)
(1.27) iy = Xm(t)

Um
therefore
(1.28) up(t) = Kr(t)r(t)
The adaptive gains are obtained using the following equations which

were proposed by Sobel, Kaufman, and Mabius [3]:

(129 Kp(®) =[ym(® - yp(0)] 7T T
(130) Ki® =[ym(® - yp(0)] T T
(1.31) K(t) = Kp(t) + Ky(t)

" where T and T are time invariant square matrices. Kp(l) and Kj(t) are

proportional and integral gains used only as an intermediate step in the
calculation of K;(1). The following are sufficient conditions to achieve an
asymptotically stable error:
AS5) T and T are positive semi@efigitp rand_ pps“itivg_ d;finite respectively.
A76) Thc plant 1s ?l;mosti §}{ictl¥ plqls”i‘tivg real (ASPR).

Condition A6 means that there exist some feedback gain matrix I’Ec such
that the fictitious stabilized plant ‘descxjibcd by the triplet (Ap - BpEeCp, Bp. Cp)

is strictly positive real. The proof of this stability result appears in [3]. Figure

10

- 1.2 shows the block diagram for the resulting adaptive algorithm. Comparison

with Fig 1.1 shows that it is very similar to the non-adaptive case.

) Gain '
) Calculation : =
. vy : »
i > K, Z
3 Xm [] |
u i y * J
=1 Model - > K | — : -
¥ L] ¥ -
3 + Y 1
e
.) K . =
Controller ‘/
Up Yp
———>»1 Plant _
=
) =
Figure 1.2: Model Reference Adaptive Controller _
]
% :

' 1.2.4 Extension of the Original Algorithm

Wl

As it turns out, A6 is a very restricting condition. Many plants do not
satisfy the ASPR assumption and thercfore the stability results from the -
' =
previous section do not hold. To alleviate this problem, BarKana and Kaufman |
[6,7] suggested augmenting the plant with parallel dynamics such that the =
=

it
’|

L]
]

e
o

i
"

L
)

U]
d

L
n

|

{
i

1o

(]
i

1

'
[

I
I

o

i

grooem

R DR 1

[T

11

_ . _ augmented plant is ASPR so that the adaptive controller may be used.

Here we sho§v the basic idea of this approach [8]. Let a non-ASPR plant be

described by the following transfer matrix:

(132) Gy(s) = Gp(sI - Ap) "By
then, choose another transfer matrix H(s) in such a way that the augmented

plant transfer matrix described by

| (133) Gals) = Gyls) + H'(s)
is ASPR., In [1] it is shb;vn that the augmented plant G,(s) will be ASPR
provided that both
= H(s) itself is ASPR
« H(s) stabilizes the closed loop output feedback system with
transfer function [I + Gp(s)H(s)]"le(s).

A choice for H(s), that is easy to implement arid has been widely used, is

-~

(134) H(s) =Dy (1 + 1s)

~ where Dp is a gain matrix and T is a positive constant which can be chosen to

"~ satisfy the conditions stated previously. This results in the following

augmented plam‘:
(135 Ga(s) = Gyls) + —2P—
1+1s

The block diagram of the resulting system appears in Figure 1.3. In the
the rest of this report we will refer to this algorithm as the "BarKana
algorithm”. As we can see in the figure, the error which is ensured to be

stable (ey) is not the true difference between the original plant's output and

the model's output.

12

! ~ Gain
: Calculation |
' y
I — K,
] x m T
Uy
: —1 Model —

"l (s)

!
L]
v
-

Figure 1.3: Extension to the CGT based MRAC system

In this case, the error is the difference between the augmented plant output
and the model's output. This results in a steady state error. It is shown in [6]
that if a plant is output stabilizable via high gain output feedback, then HDpll
can be chosen to be small. In this case, the steady state error can be

considered to be negligible and the original plant's output will be

I]

.

m

ki

i

i

"y

'
|

!

")
N

-
ok

imr

m:

o

hl

i I

Tl

i

13

approximately equal to the model's output.

1.3 Summary

We have presented a CGT based MRAC algorithm. The algorithm has the
disadvantage that it guarantees asymptotic tracking only for a very restricted
group of plants (i.e. ASPR plants). This algorithm was extended by BarKana
and Kaufman to comprise a wider range of plants. However, this extension has
the complication that a steady state error develops between the model and

plant outputs.

lul\ L
Lol i

"y

N B i

B L

o

I E3

L

Tl nmn

i

L
b Gt

i

i

i

CHAPTER 2

Modifications to Insure Asymptotic Tracking

2.1 Introduction

It is apparent that therec are some limitations with the CGT based MRAC
algoﬁtlﬁns discussed in Chaptér 1. The originai algorithm has the restriction
that it requires the plant to be ASPR. An attempt to solve this problem by
BarKana and Kaufman [6,7] has the limitatioﬁ thatgit results in a bounded
steady state error. What we want is an algorithm which expands the range of
plants for which asymptotic stability is ensured, in other words we want to
climinate the steady state error. This chapter will cover two approaches that

achieve the desired results.

2.2 Modification #1: Adding a Feedforward to the Model
One approach to eliminate the steady state error resulting from the
addition of the feedforward term to the plant's output is to incorporate this

term into the model as well. The following is the development of this idea [9].

Consider the system defined by equations (1.1) and (1.2) and the model! given

by equations (1.3) and (1.4). Define an augmented piant ;output
(2.1) zp(s) = yp(s) + H (s)up(s)
where

22 Wl = 2o
1+1s

Substituting equation (1.28) into Equation (2.1) we obtain

14

15

1
23) zp(s) = yp(s) + H ' (s)YKxxm + Kyt + Kegy]
Up to now, nothing héw has been added to the algorithm, the mew concept

is to define an augmented model output as we have done with the plant's

output:

o 1
(2.4) zm(s) = Ym(s) + H (s Kexm + Kylim]
Now, in order to control the augmented plant we will consider the
augmented error between augmented plant and model outputs:
(2.5) €z =Zm - Zp

which is equivalent to

2.6) € =Yym-¥p- H'Kee,

27 e =1+ H'K.) ey
where ey = ym - ¥p-
Substituting equation (2.2) into (2.7) gives
(2.8) e,=(0+ 22&) Iey
1 +1s
which is equivalent to

(2.9) ((1 +1s)I + DpKe)ez = (1 + 1t8)ey
We can now take the inverse Laplace transform to obtain
(2.10) 1e,(t) + (I + KeDplea(t) = tey(t) + ey(t)
therefore if the MRAC is designed so that zp -> z asymptotically then e; and ez

will both approach zero and equation (2.10) reduces to

LI

| oW mn W LI I |

niil |

mi

1

e

M

ko

LY

i

i

(SRR A A |

el

LR

16

(2.11) 1ey(t) +ey() =0
from which we can immediately tell that ey will decay to zero asymptotically;
this is the desired result. The stability proof for this approach is presented in
[9]. Figure 2.1 shows the block diagram of the resulting system. In the rest of

this report we will refer to this algorithm as the "Kaufman algorithm".

! Gain !
: Calculation :
. v :
Z —| K, ,
| xm Y]
um . Ym . :
. » Model —1 K« — ,
I y I
I Ke Z
Controller :

—? ! Plant

Figure 2.1: Modification #1 to the Model Referenée Adaptive Controller to
achieve assymptotic tracking

17

2.3 Modification #2: Adding a Zero to the Feedforward
Another way to achieve asymptotic tracking is by adding a zero at the
origin to the feedforward term in parallel with the plant. The reason for this
is that if the feedforward term has a zero at the origin it will asymptotically
decay to zero and thus climinate the steady state error. To implement this, we
might make the feedforward term H'l(s) equal to onme of the following two

transfer matrices:

2.12) Wl = 22
s+ 1

213) Hl(s)=—28%

as2 + bs + 1

where Dp is a gain matrix and T, a, b are positive constants. The block diagram
of the system is the same as the one previously given in Figure 1.3. In our
simulations, which appear in the next chapter, we used equation (2.13)
because it gave better results. In the rest of this project we will refer to this

algorithm as the "Derivative algorithm”.

2.4 Addition of a Derivative Term to the Plant OQutput
A modification to the algorithms presented in sections 2.2 and 2.3 which
might make the system less sensitive to change is the augmentation of the

plant's output with a derivative term as follows:

(214) ya=yp +ayp
where O is a positive constant. The augmented plant's output would be used

instcad of the actual plant's output in each of the previous algorithms. We now

[(NI (/. mi I L | 0l a i E | | U M m

I‘II ‘l mﬂ L |

Eulql

!,WIH!

rr

lww W n

i

I
"

i

il

1

m Adgi] m'

il

o

Y

18

intuitively give some validation to this claim. We know that the plant output
can be cxpressed as follows:

(2.15) yp(s) = H(s)up(s)

and equation (2.14) is equivalent to

(2.16) ya(s) = (@s + Dyp(s)
or -

(2.17) ya(s) = (as + D)H(s)up(s)
which means that we are adding a zero to the plant, therefore making the
system "more strictly ‘positivc real”, since we know that a system cannot be
strictly positive real if its relative degree is larger than one. Even though we
now have an augmcnicd plant, its output at steady state will be the same as the
output of the real plant sinceﬂart that point the derivative term will become
zero. |

As we will see in later chapters, some of the algorithms presented above

will in some cases have high frequency oscillations. The alpha term

introduced in this section was observed to alleviate this problem. The larger

the magnitude of o, the larger the reduction of the high frequency

components of the response. However, increasing o also increases the error

during the transient part of the response, because at these times the derivative

term is not zero, and therefore the difference between the augmented plant’s

+

output and the model's output is not equal to the difference between the real
plant's output and the model's output. As we reach steady state, the derivative
terms decay to zero, and the augmented output is equal to the real output which

results in asymptotic tracking.

19

To summarize, if there are high frequency components in the response
we can eliminate them at the expense of a larger error during the transient.
The amount of compromise will depend on the value that we choose for a.

Figure 2.2 give a block diagram of our augmented plant.

!
| !

[} — yP : >
up 7 Plant z | Ya
! |
| Yp :

! ——>{ a ,

¥
! !
1

New Plant j

Figure 2.2: Plant augmented by weighted derivative term,

~a

2.5 Summary

In this chabtcr we have shown two major modiﬁcétions to the previous
MRAC algoritt;ms that accomplish asymptotic output tracking while at the
same time maintaining the capability of controlling non-ASPR plants. The
first modxﬁc:tu;n involved augimehiiriig botflri the model and thc plant outputs,
an;ﬁ thcsecond ihclﬁdédma zéx:o at the ::ofiéin ih the fc;,rcdfofvivérd. In addition,
the idea T'Bf:'ﬂ;;;grin'cnting the o'r'i;gin;l i)rriant with a derivative term was

considered in order to make the system less sensitive to change.

[0

mi Wi EEEn

winwe i

Wi

1

dw

I T |

L3

g

rm\m MW'H

oo Mmoo

1

1l
I

it

-

oyl

il

I

CHAPTER 3
Application to a Single-Link, Flexible-Joint Arm

3.1 Introduction

This chapter contains simulations to evaluate the use of the modified
MRAC algorithms. We will control a single-link, flexible-joint robot arm that
is described in [10], using the different variations of the MRAC algorithm
described in the previous chapter. In addition, to show the usefulness of
adaptive control, we will carry out simulations which demonstrate its
performance duriﬂg-unforcscen circumstances (i.e. sudden load changes). All
the simulations were carried_qut using Advanced Continuous Simulation

Language (ACSL) in a VAX compv‘utc‘x:‘system. A listing of the ACSL programs

used appears in the appendix.

3.2 Plant Description

Here we present the model of the single-link, flexible-joint arm (as given
in [10]), that we will use to carry out our simulations. The joint is formed by
two aluminum plates joined by ecxtension springs with an actuator directly

driving one plate. The dynamics of the system are given by the following

equations:
(3.1) Iqi + Mgl sin(q;) + k(q; - 42) = 0
(3.2) J42+Bdz -k(q -q) =u,
where: upr = coritfal torqu>c‘ whlch 1s calculatcd frc;t; the adaptlvc a;lgorithms

q1 = angle at the drive end of the link

q2 = angle at the load end of the link

20

21

(N

I = link inertia = 0.031 kg-m?
J = rotor inertia = 0.004 kg-m2 %
B = rotor friction = 0.007 N-m-sec/rad —
Mgl = loading effect = 0.8 N-m o
k = joint stiffness = 31.0 N-m/rad %
Figure 3.1 shows a sketch of the link and the different parameters which B
describe the above equations: %
%
—
=
%
Figure 3.1: Model of single-link flexible -joint arm from [11]
-
It is very important to emphasize that the plant's model is used only to)
-
simulate the plant's behavior and it is not used in the control algorithm in any
way. In other words, we usc these equations to program the arm's behavior in =
ACSL to see how it will handle when we use our algorithms to control it.
In order to implement the MRAC algorithms we need to define a reference -
model. In our case we chose the following first order model: =
%
33 m=_1_
Um s+ 1) é
=
-

o

L
i

mm

v
i

t

e

e

i

p
b

Lz

e

an
i

&l

22

so as to yield an undamped response with a scitling time of about 4 seconds.
We want the output of the system, which is the angle at the end of the
link (i.e. yp = q1), to asymptotically track the output of the model (ym). The
command applied to the model (um) was arbitrarily chosen to be ome radian for
the first 30 seconds of the srimulation. followed by a switch to a negative one
radian command for the rest of the simulation as shown in Figure 3.2. Some of
the simulations will involve a sudden change in the load the arm is carrying to
test how the algorithm adapts to this "unforeseen" circumstance. In these
occasions, the load change will occur at 15 seconds, and we will double the
parameter Mgl from its nominal Qaluc of 0.8 N-m to a new value of 1.6 N-m
instantaneously. Such a situation rﬁight occur in practice by an unwanted

shift in the arm’'s load.

30 60

u time (sec)

Figure 3.2: Command given to the model

23

3.3 Simulation Results
3.3.1 BarKana- Algorithm

We will first show results of controlling the flexible arm using the
extended CGT based MRAC algorithm with no modiﬁcation to achieve
asymptotic tracking (described in section 1.2.4), to be able to later compare its
performance with the algorithms that include the new modifications. In these

simulations we used the following values for the parameters for the algorithm:

34) Dp=10
_[t1oo0
T=T=010
001

t=01

We can see in Figure 3.3 (a) a simulation of controlling the arm. The plot
shows both, the output of the plant (i.e. the joint angle of the robot) and the
output of tbcrrc\{crence model. In this case the load the robot is carrying
remains unchanged throughout the entire simulation. Figure 3.3 (b) depicts
the same situation, however, in this case the load on the arm is doubled (i.e.
~ Mgl = 1.6) at time = 15 seconds.

In both cases, a large steady state error is pré'scnt'in the response. Figure
3.3(b) shows that this steady state error becomes larger when the load
increases. The steady state error is also directly dependent on the value of Dp,
in other words, increasing Dp results in larger error and decreasing it results
in smaller error. In addition, it was observed that decreasing Dp, while

decreasing the steady state error, results in larger oscillations and decreased

robustness. The results confirm the need for another algorithm which can

@l WU e s

N

LR

Wim

L
B

o pme
i L e

b

PRIE, LU
| B

!
i

nm!

L Jill

mit

v

e

I

i

i

bt}

it
p 11

q1

24
climinate these problems.
k| &
- 1)
{ | { :
¥ H | '
= 'IJ/" 1 N b !
s x t
: | T e
l! a1 1
; .
i “,1 =1 [
- i ! = 1
K ! 3 ‘_;: "
=1 \— =1 "
& &
oo 1. I ¥ 4 S T 12,3 60 =0 450 4
time time

Figure 3.3: Plot of the plant and model outputs (rad.) vs. time

(sec.) using the "BarKana algorithm" for (a) no change
< in the arm's load, and (b) when the arm's load is
" doubled at 15 sec.

3.3.2 Kaufman Algonthmﬁ

We will now deal wilh simulations that use rthc algoﬁthm described in
section 2.2. This ecliminates thcl"s;;;édyws‘ia»tc crror thét wdcélirs in the previous
simulations. The values used for the algorithm parameters in the following

simulations were:

(45) D, = 100.0

25

_[10 0 o
T=T=| 0 10 0
0 0 10

t=0.1

It important to mention that the parameters used in this simulation and
all the others that come in this and the next chapters, were chosen to obtain a
satisfactory response, howevcr.rthcy are not optimal and it is most likely that
values which yield better responses exist. Also note, that we no longer have
the restriction of using a small value for Dp as for the "BarKana algorithm”.

Figure 3.4 shows the result of using our new controller to operate the
robot arm. We can see that the difference between the plant and model outputs
is barely mnoticeable, and that we achieve asymptotic tracking (i.e. the steady
state error is eliminated). To test the robustness of the system, we doubled the
load (i.e. Mgl = 1.6 N-m) on the manipulator at time=15 sec., and the results
~appear in figure 3.5

As we can”see in ﬁgurc 3.5(:17)," there is a small discontinuity when the
load changes, however, the joint angle continues to asymptotically track the
output of the reference model. The difference between the reference model
and the arm's joint angle is very small waﬁf,lcr 20 seconds. Figure 3.5(b) shows
the actual difference between the model outbut and ihc joint angicI The
dlffercnccbeé;mes rlargc atithrcc places: at the two transients and at the load

Ay

Al}chwav;xvge—,;' and T‘Ehren it rapidly rgiccays‘f to 7;&'0. as chpected. In addition, figures
3.5(c) and 7'3‘._5(7d) show the plots of the torque applied to thq arm (i:.re. input
command to”trhc plant) and the value of one of the adaptive gains. Both of
these values are bounded and achieve a stcady state when the response of the

system is also in steady state. Notice that the values for the control torque

| W oWt g WD owmon

I | IS 1R |

lw I\; :\

DS | IR SIS 14 |

26

remain below 1.5 N-m. [t is apparent that the large changes in the input and
the gains occur when there is something to “adapt” to, that is at the transients
and the changes in the plant parameters (i.e. changing the load). In further
simulations, both, the command input and the gains will be similar and
therefore plots of their values will not be givea from herc on.

With respect to the algorithm parameters we noticed that in gencral, a
larger valuc of Dp increases the rise time of the response. The opposite is
generally true for t and the weight matrices, the larger these values are, the

faster the response of the system.

q1

o

DX] |'2' W p I]“ b 485

time

Figure 3.4: Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "Kaufman algorithm”™ when there is no
change in the arm's load.

I S0

]
i | |
8.
2 |
@ \‘
?:
e _
1
o
_I;] {Z,AJ M0 ,).] 43.0 éﬂ
time
(a)
~Ne

1

[~
=]
i O M

0 49
1
{

| :
n k

time

(c)

Figure 3.5: Simulation using the

27
~
°
c
y
ol
N
C"'Zu.' 12 23 1 J‘s Y] as R To
time
(b)
-
i
A
.:4‘
s
Ke
5
(= 0]
l
!
z|
1 j
S5) 10 % 0 @0 1
lime
(d)
"Kaufman algorithm" with no

change in the arm's load. (a) Plot of the plant and
model outputs (rad.) vs. time (sec.), (b) Plot of the
error between plant and model outputs vs. time, (c)
Plot of the torque applied to the arm (N-m) vs. time,
and (d) Plot of the gain K. vs. time.

LD T i Wi ‘ Ll T | I WD mm

i |

H
I

lmnu 1"
T

m

-
mq
i 1.

miy "

Wm

1z

Iu o

-

bt

nn
il il

=

e

v

28

These rules are only approximate, however, they are useful in finding

values for the parameters that will yield a good response.
It is apparent, that this modification to the previous algorithm achieves
asymptotic tracking and can perfc;i'm. ‘qﬁitc well in controlling the single-link

flexible-joint arm. In addition, the system can successfully adapt to unex-

pected changes in the plant

3.3.3 Derivative Algorithm
The other alternative to achieve asymptotic tracking was to use the
algorithm presented in section 2.3. Simulations were made using this algo-

rithm with the following nominal parameter values:

(3.6) D, =02
_[600
T=T=/060
) 006
a=04
b =04

The result of the first simulation appears in Figure 3.6 and shows the
responses of the model and the arm. It verifies that the steady state error is
eliminated by using thxs algorithm. The actual error in the tracking is only
noticeable in the transient part of the response. Figure 3.7 shows the results
obtained when the torque at the load end of the robot is doubled to 1.6 N-m at

time =15 sec. . The plot shows that there is a discontinuity at the instant of the

3

change in the load, however, the system continues to be stable and

asymptotically tracks the model. Figures 3.8(a) and (b) show plots of the

29

values of command torque and the gain acting on the error respectively. Both

parameters are bounded and achieve a steady state value. As expected, at the

can observe changes in their

transients and at the load change we

magnitudes. It is interesting to note that the steady state values achieved by

the command torque in this simulation arc the same as those achieved in the

previous section.

The effects of changing the algorithm parameter values are the same as

before. Generally increasing Dp results in a slower response, while increa-

sing a, b, and the weight matrices results in a slower response.
Again, the modification introduced achieved asymptotic tracking and

successfully controlled the robot arm. In addition, the system is resistant to

sudden changes in the system.

) 12.8 2.9 .0) w
time

Figure 3.6: Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "Derivative algorithm” for no change in

the arm's load.

L}

R ¥ oK m Wi m .

i

!
I

l |
| |

{IDRO

I A

t

LR

m

mo

e

N

[INERS A

1

30

[]

q1

__

G 12.9 2.8 x.9 .0 -
time

-0 20
yd

“1.30

Figure 3.7: Plot of the plant and mode! outputs (rad.) vs. time

(sec.) using the "Derivative algorithm” for a sudden
change in the arm's load at 15 sec.

<
N S
8 &
- °1
$ %
o - et
§
Ke
? 2
27 <1
2 -]
o e
8 g
.00 0 % 0 @0 "W >0 12 10 %0 NS
time time
(a) (b)

Figure 3.8: Plots using the "Derivative algorithm” for a sudden

change in the arm's load at 15 sec. of (a) torque
command (N-m) vs time (sec.) and (b) gain K. vs. time
(sec.)

31

3.4 Summary

This chapter dcscribcc;lr a single-link ”ﬂcrxﬂiialc-joint arm and showed the
results of simulations used to implement different MRAC algorithms to control
it. The algorithms used were the "BarKana algorithm" which had a steady state
error and the Kaufman and Derivative ra,lgorithms that contain the new
modifications to achieve asymptotic tracking. The results of the simulations
showed that the robot can be successfully controlled using the new algorithms
and that the resulting systems are resistant to sudden changes in the payload.

A comparison of the two algorithms with the modifications showed that it
is easier tofmd good parameiter values for the "Kaufman algorithm" than for
the "Derivative algorithm". In addition, the first consistently resulted in
smaller error than the second. The range of values of Dp that can be used with
the Kaufman algorithm seems to be larger than for the Derivative algorithm

sincc it is difficult to achieve a good response with large values of Dp in the

latter method., ~

miil m W . B wmirr wWloanr Wi

un W

I Iym nwiy
b

| | onnig
P

P

v

e

"

i

!

it S 1 1A N1 S

o

8

I

CHAPTER 4
Application to a Model of the PUMA 560 Arm

4.1 Introduction

This chapter continues with simulations to evaluate the use of the
modified MRAC algorithms. We will control the second and third joints of a
Puma 560 robot arm using the mlédcl"vgivcn in [11]. This is a multiple input-
multiple output (MIMO) system; however, we will see that the complexity of
programinrgrthc equations to implemcﬁt ‘thc algorithms is not greatly
increased. Again, wc: use the different variations of the MRAC algorithm
described in Chapter 2. In addition, to show the usefulness of adaptive control,
we will carry out éimulationéiwhic’:}ix demonstrate its performance during
unforeseen circumst;mces (i.e. sudden load changes). We continue to carry
out all the simulations using Advanced Cont;nuous Simulation Language
(ACSL) in a VAX computer system. The listings of the different programs used
to perform the simulations which appear in this chapter are given in the

appendix'.‘

4.2 Plant Description

To carry out our simulations, we used a model of the second and third joint
dynamics of the Puma 560 arm, which we will describe in this section
following the development that appears in [11]. In contrast to the flexible arm
considered in Chapt_cr 3, ‘h,ii is a multi input-multi output system, where the
inputs are the two trorqu;s;iarp‘iied at both joints of the manipulator, and the

outputs are the two joint angles. The matrix equation that describes this

32

33

&

L

|
system is the following:
=
@.1) T =M(©0)o +N(8,0) + G©) + H®) + mIT(®) [J(8)8 + 10,60 + g]
where the different terms in the equation are:
M(6) = Symmetric positive definite inertia matrix -
N(8,8') = Coriolis and centrifugal torque vector
G(0) = Gravity loading vector %
H(e") = Frictional torque vector
T = Vector of applied joint torques (control input)
8 = Joint angle vector (plant output))
' =
g = gravity vector
These terms arc described by the following equations %
a
a, + a,c0s9; aj +—2cosH; —
(4.2) M) = 2 -
a; +%2-cosez aj
] . L] '2 i
. ~(a,5in02) (8,62 +22)
(4.3) N(8,8) = 2
-2
(azsinez)g—’-
L 2 d
44) G@) ={ a4c088 + ascos(0y + 672)
ascos(0; + 63) =
. . =
(45) H(e) = Vl?l + VZSgn(e_l) jl B
V1082 + V4sgn(64) =
=

o

ot

RN
bl

e

LI

r
L

i

i

IMH"H [

i

I’

I

‘algorithms.

34
(4.6) 1(8) = [-Lsin®; - L;sin(8; + 62) - Lsin(0; + 63)
- Licos8; + Lacos(0; + 02) Lacos(8; + 63)
0
47 g =[}
9.81
"~ The 1crms(a1 . a5) appearing in the brcvious expressions are constants

that arc obtained from thc masses (my, m3) and lengths (L, L) of both robot

links. In the case of hnks 7. ‘and 3 of the Unimation PUMA 560 arm, the masses

are m; = 1591 kg and my = 11.36 kg respectively, and the lengths are L} = L3 =
0.432 m. These result in the following numerical values for the model

parameters:

4.8) (a, ay, a3, ag, 35) = (3.82, 2.12, 0.71, 81.82, 24.06)
The terms (Vy, V3) and (V3, V4) are coefficients of viscous and Coulumb

friction, respectively. The following values were assigned to these

coefficients: V) =V3 = 1.0 Nt-m/rad-scc'l, and V2 = V4 = 0.5 Nt-m. The payload

~ mass of the arm was set to m = 10 kg. Figure 4.1 shows a 2-D view of the two

links of the PUMA 560 arm that we want to control.
As for the case of the single-link, flexible joint arm, this description of
the PUMA 560 arm is used only to create an ACSL simulation of the plant's

behavior to different command inputs. We do not use any of the knowledge

s T P S PR 11 & BRI R ; X
that we have from ‘the equations describing the model in our control

Again, we chose a first 6;rdcr re‘fe'rcncc model for the MRAC algorithms.

This model is gwenby the following equations:

35

Figure 4.1: 2-D representation of the 2nd and 3rd links of Unimation
PUMA 560 robot manipulator.

4.9 = Yml
49) " Ymi (0.1s + 1)

4.10 = Um2
@10 Ym2 =750

We can see that there are two command inputs and two outputs. This is
necessary because the system to be controlled also has two inputs and two
outputs. We want the the angle at joint 1 (6;) and the angle at joint 2 (62),
which are the outputs of the system, to asymptotically track the outputs of the
model, ymi and ym2 respectively. The model was chosen so that its dynamics

are fast enough to have its output be approximately the same as the command

L] n R | |

L] mi

i

||u n

| I 5. W

Fv wu M 1|

I

et

r
W

amt |

y
I

nmr

Il

(I id

b

|

36

input. The two controls (um}, um2) are described by the following equations

which change much slower than the model dynamics:

(4.11) um1=:23-+0.25{2-;‘1+si:{2§‘1”rad. 0<t<3

=0 rad 3<t< 5
= 0.25{%1 i sin[zn(;—'s)”rad. 5<t<8

= - & rad 8<t
2

(4.12) Upp = Up; 12L rad 0<t

" "To test the robustness of our algorithms we introduced a sudden change in
the payload that the arm carries in some of our simulation runs that appear
later in this chapter. The change in the load occurs instantaneously 6.5
seconds into the simulation, and the value of m changes from 10 kg. to 20 kg.

w~a

4.3 Simulation Results

’”4.3.1 BarKana Algorithm

" ~2'In this section we control the PUMA 560 arm using the algorithm

described in section 1.2.4 which did not contain the new modifications to

““achieve asymptotic output tracking. This is done to compare the performance

of the previous algorithm with the new ones, and to be able to point out the
deficiencies that it has. The values used for the algorithm's parameters were

the following:

37

4.13) Dpz[o.oos 0 }
0 0.005
t = 50.0
300 000 |
00
T=T=| 003 000 |40
000 300
000
L 000 003 .

The results of the first 7simulation appear in Figurci 4.2, which shows the
outputs of the model and the outputs of the plant (in radians) versus time (in
seconds). Figure 4.2(a) shows the response of the joint angle between the first
and second links, and 4.2(b) between the second and third links of the PUMA
560. It is clearly apparent that there is a steady state error in the response.
This error can be decreased by making the value of D, smaller, however, if we
make Dp too small unstable oscillations can appear in the response. Figure 4.3
shows the results when Dp = 0 when a sudden change in the load is present
during the sirqulation. It is clearly appreciated - that the system is not
asymptotically stable since we have some increasing oscillations in the
response. These results give further reason for the modifications introduced

to the algorithm which will be used to simulate the control of the robot in the

subsequent sections.

il n Al] | | mil I

wi

LI

L] 0l I I NIRI. (]

[
low

!M o
I

il

| S

| 13RI

38

3 2
o ~Y
3 q
2 b
3
e
)
3 a
=1]
: L— :
- o
3 ?
M= T o ™ T &) “o. 0 1. LD oo 12
time time
(a)
. $
!
]
S
2
p
5

LR

Figure 4.2:

a
*
isa 1) ze «x T 3.60 13
time
(b)

Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "BarKana algorithm™ for (a) no change
in the arm's load, and (b) when the arm's load is
doubled at 6.5 sec.

'0,-0°

39

2w

[T}
i
k\

R 3 80 1 To.00 LW .80 T 2.60 12
time time

(a) (b)

f O
§

T
D - 4

Figure 4.3:

‘= 7 &0 3 50 2 T9.00) +.30 L) 2 %0 (2
time - time

(c) (d)

Plot using the "BarKana algorithm" when the arm's
load is doubled at 6.5 sec. for (a) the plant and
model's first output, (b) the error between plant and
model's first output, (¢) the plant and model's second
output, and (d) the error between plant and model's
second output

al bl " W m o o W | m i wl mi al

Efl

—

g

i

40

4.3.2 Kaufman Algorithm
The robot control is now simulated using the first of the modified
algorithms introduced to achieve asymptotic stability. The nominal values

used for the parameters of the algorithm are the following:

414) D, =[6 0}

06

02 0 O
0 02 0 0
_ 0 0 1.4 ,
T=T-= 1.4 0 O x 104
0 0 1.4 0
L 0 0 1.4
7 = 0.01

Figurc 4.4 shows the response of the plant and the model when no change
in the load is present, and we can see that the error between both is so small

that it cannot be observed. Therefore, the plots of the error are given in

Figure 4.5. In the future we will only present the plots of the errors when no

difference can be observed between model and plant outputs (as occurred in
Figure 4.4).

The results when 5, sudden change in the load is introduced at 6.5 sec.
appear in Figure 4.6, which shows the error betfvecn the model and the plant
outputs. A discontinuity is noticeable at the tim;: of the load change, however,
the error decays to zero even though there are some high frequency

oscillations present in the response.

41
2 3
o.- ~iY
2 7]
o
a 3
3) ¥
0 /
8 \ %
24 \ a7
\\
a \ 3
1 ' g
3 ?
R To) T 7 50 12 23 o F) 4.9 720) 82

time time

Figure 4.4: Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "Kaufman algorithm”™ for no change in
the arm's load.

2 60 00
40

EYS =10°¥
0 40

8 3

?' -

3 3

.00 .40 +.90) 3.60 by w0) %0 7.0 7.0 12
time time

Figure 4.5: Plot of the error between the plant and model outputs
(rad.) vs. time (sec.) usmg the "Kaufman algorithm" for
no change in the arm’'s load.

L W | u | 1 w Wi |

i |

o r i Wi mi

I' 1
i .

I

g

i

[

Py m

1.

42

40
)

A
2 m

1 4

R}
2

Lyl g

—

o

b

250
€

Figure 4.6: Plot of error between the plant and model outputs
(rad.) vs. time (sec.) using the "Kaufman algorithm”
when a sudden load change is present.

Figure 4.7(a) and (b) show the values of command torque and one of the
gains respectively. ~ Again, as expected, the discontinuity can be observed at 6.5
sec., but all the magnitudes remain bounded and achieve a steady state.

The error between the responses can be made as small as desired by
incrcasing the ratio between Dp and t (i.e. Dp/T) and increasing the weights T
and T accordingly to achieve the desired results. The larger the allowable
values of T and T, the smaller the error that cén be achieved.

To try to reduce the high frequency terms present at the time of the load
changec the derivative term described in section 2.4 was incorporated into the
algorithm for the next simulation, . We set a = 0.0065 and left unchanged all the

othcr paramcters of the algorithm given in eq. (4.14).

A

3
8
-
3
o™
§3
8 ’
[
8
.00 i .90 T 9.59 5
time
b
-
=2
-
a s
ay ™1
b
2
]
=300

43

-1 2

00

"~y T T T T 1
.00 .80 3.20 Tan 3.80 12
time

time

Figure 4.7: Plots using the "Kaufman algorithm” when a sudden
load change is present of (a) the command torques
(N-m) to both joints and (b) one of the controller

gains.

(RO al L

Wi Ll [(|] |

wi

|

LI
e i 0

A

!

t

roe

i1

 AERAN

"I"Wm
il

. L
s

l R

N

n ol

LU

nmey

"
i

o

i i

T EY) =102
2
i

44

Figure 4.8 shows the resulting error between the plant and model's
response, and it is clear that the high frequency oscillations have been
notably reduced. Figure 4.9 shows the command torque and one of the gains of
the controller, and again, the high frequency oscnllauons are grcatly dimini-
shed. The disadvantage of this approach, however, is that as figure 4.8 shows,
the error at the transients increases by a factor of three when compared to the
results obtained when no dcrivatich tcrm” was used (figure 4.6). A compromise
must be reached between the reduction of ‘the higﬁ frequency terms and the

size of the error by choosing the proper value of a. A larger value of a will

crcate a larger error but at the same time dampen out the oscillations.

X
[]

[
{
K
"

G 02

k3
~
Q 3

e i / o \\h////””—*_
‘ N

) 7. w0) 7.20 1.0 12 T0.00 W .60 T3 .90)
time time

Figure 4.8: Plot of error between the plant and model outputs
(rad.) vs. time (sec.) using the "Kaufman algorithm”

-with a derivative term (a = 0.0065) when a sudden
load change is present.

45
2 8
- Mg
8 2
pd "
3 2
2" 37
<]
ﬁ‘ \ 5?4
3 \—_— 2
-}
8]
T9.00 LW ™)) i) G) 740 .0 .10 .)
time time 3% 2
(a)
3
3
o
1
2
- ~ ™
2
-— /_‘.B__
=
"-4
3
et
8
) 1w % 7.0) 2
time
(b)

Figure 4.9: Plots using the "Kaufman algorithm™ with a derivative

term (a = 0.0065) when a sudden load change is
present of (a) the command torques (N-m) to both
joints and (b) one of the controller gains.

[l I’ N m mi m N

L

]

mllu oy

i

i

L=
;,
.

=5

it { IR N

Iﬂ” i

QT mer

(I

.

46

The simulations presented show that this modification to the original
algorithm is successful in controlling the given model of the PUMA 560 even

in the presence of sudden changes in the arm's payload.

4.3.3 Derivative Algorithm

In this section we will show the results of some simulations when a zero at
the origin of the feedforward was introduced to achieve asymptotic stability.
This algorithm was previously described in section 2.3. The values used for the

parameters of the algorithm were the following:

' (4.1—5) Dp=[0.1 0]
0 0.1
1.0 0 0]
0 1.0 0 0
_ 0 0 1.0
T=T-= 1.0 0 O x 10*
0 0 1.0 0
L 0 0 1.0 _

a=b=500

Figure 4.10 shows the difference between the plant and model outputs

when no sudden change in the load is present. It shows that the system has

" zéro steady state error, however, it does takes this algorithm twice as long to

reach steady state than using the "Kaufman algorithm".

47
8 3
- LAl
3
o '3!" /I q
i
7 | 2 \\
D) e |/
2 | Py
- ~,
72 — =
3 3
4 ™
8 3
.00 .40 .20 1.2 9.50 2 Y. 20 ™) 1o 150 i2
“time time

Figure 4.10:Plot of the error between the plant and model outputs
(rad.) vs. time (sec.) using the "Derivative algorithm”
for no change in the arm's load.

We also performed the §imulation when a sudden change in the amm's load
occurred at 6.5 sec. and the plots of the difference between plant an model
outputs appear in_Figure 4.11. A discontinuity appears at the time of the load
change, however, the plant’s output still tracks the model's output
asymploticﬁily. Notice, that in these simulations we did not have the high
frequency oscillations which were present when the “Kaufman algorithm”
was used, however, the error present in this case is twice as large than before.
In addition. Figure 4.12 shows the command torques o the joints of the robot
and ane of the gains of the ;on;roflrl;;, These results contain the discoatinuity,

but thcy also achieve a steady state and in the case of the control torques they

appcar o be the same as the ones obtained using the "Kaufman algorithm”.

Il m L NURE (IR |)
| I |

LI

2

| [

i
wodind

"
{h

II‘V |P

e (I [I A

1T 1L 1L U L B

LN

48

Ef) =10-

- 3
~ -1
2 3
- 51 |
| N .=)
<4 / gq ,
(:l
% ? ./
L}
2 N\— Za
21 i
] 3
2 3
~N T T 1 -t X T
0,50 T +.50) 9,50 (2 T9.00 T +.20 R 3.0 (z
time time

Figure 4.11:Plot of error between the plant and model outputs
(rad.) vs. time (sec.) using the "Derivative algorithm”
when a sudden load change is present.

4.4 Discrete Simulations

The previous simulations were conducted as if the interaction between
the plant and the controller was continuous. In this scction we will change
the program used to simulate the system in such a way that it takes into
account the sampling period which is used by the controller to get the
information it requires about the plant (i.e. joint encoder readings). The 1/O
program resident in the Unimation controﬁcr for the PUMA 560 arm allows
the sampling period to be chosen as 7, 14, 28, or 56 ms. [11], and for thesc
simulations we chose a value of 7 ms. To implement this, our program updated
the joint angles from the robot to be used by the controller and thc command
torque calculated by_‘ the cogtrollc'r once ecvery sample period.

In the simulations, the "Kaufman algorithm" was used w—ith thc following

values for its parameters:

49

3 &
- o~
1
b &
G -t
H\
2 s
o M it / \
> =4
: | :
-— [N——
= \
1
\
3 \ &
of -
3 8
Tu.00 R §.20, rm 3.60 (2 Moo w0 W 7.20 7.0 =
time time
(a)
&
v="
f
S ; t
R
4=.i
= |
W
s ;\\ Mh’__
2] \ /
,;-1
g
=50) v, T 4,50 (2
ER time
(b)

Figﬁréw 74; 12:Plots

using the "Derivative algoritim” when a sudden

load change is present of (a) the command torques

(N-m)
gains.

to both joints and (b) one of the controller

L il

m\lﬂ' LAl

’ny\ L

e

o

ln
b sl

m,‘ L) r

o

o

[(S |

(RS

tr

e

50
(4.16) Dp=[6°]
06
0.2 0 0]
0 0.2 0 0
_ 0 0 1.4)
T=T= 1.4 0O 0 x 10
0 0 1.4 0
L 0 0 1.4 _

t = 0.01

which are the same as those used in sec_tion 4.3.2,

The resulting response ofit'hl'e syétcm appedrs in Figure 4.13. We can see
that the difference between the plant and model outputs is small, however, we
can appreciate some high frequency oscillations of small magnitude. As the
Dp to T ratio and the weight matrices are increased, the magniiudc of these
oscillations decreases.

Another method of rdecreasing the magnitude of these oscillations is to
include the a term as before. Figure 4.14 shows the results of the simulation

using @ = 0.1. We can clearly appreciate that the magnitude of the oscillations

has decreased and that they arc barely perceptible in the plot of the response.

51
g 3
o e
3
1 s
3 3
ok - ’,
6, /
3 / '3_ §
- o
j /
/
] 3
-1 -5
2 ?
~ Y -] T 3 =) T - v r L
Q.00 3 | 43 T 20 3.80 12 “0ON R 428 720 9. 50 2
time .) time

Figure 4.13:Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "Kaufman algorithm" when discrete

control is simulated.

2)
= s
\
|
3! 4]
27 he -
\ f
R \ 3 /
9 !f \\ -1 fI
/
\ 0 f
. / \ 2, 1 \
< v I
7 ! % 3 III \
./ \ W, \
2 2
o0 I HE= L) 3% 12) T <m0 9.60 1
time time

Figure 4.14:Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "Kaufman algorithm"” when discrete
control is simulated and a derivative term is used to

augment the plant's output.

.

i O W

LR Wi ma .

mi

Ll

nin

LIS

mmm I
-

1 oo
[A

GRS RSN NEI SSEN At { i {

IU !“
R

1

1

52

4.5 Decentrahzed Control

In this section we are concerncd thh thc ivdréa éf tréatiﬁé each joint
angle and its input torque as independent from each other. In other words, we
want to use a first order controller to find the command torque of each ome of
the joints independently of each other. The advantage of such a system is that
it is easier to implement and that it involves less calculations and is therefore
faster. Both, the "Kaufman Algorithm" and the "Derivative algorithm" were
considered in simulating the application of decentralized control to the PUMA

560 robot.

4.5.1 Kaufman Algorithm
" To implement this algorithm we used the following parameters for the

two first order co;itrollers:

(4.17) D, = 0.001

(300
T=T={030 x 10*
003

1 =50.0
The results of the simulation are presented in Figures 4.15 and 4.16.
Figure 4.15 shows the response of the model and the plant. We can see that the
second joint angle tracks the model consistently, however, the first joint angle
has a large error between 2 and 5 seconds. Therefore, as expected the results
of using decentralized control Varc not as good as when the coupling between

the joints is considered. Figure 4.16(a) and (b) shows the command control and

- 53

‘one of the gains of the controllers. We can see that there are oscillations

present which are not desired, however, all the parameters are bounded.

[OR 1

B

I \ I \
9 / -3 4 \

6, ; / \ s !,, \
: - / \ . ; - "

wl PR \
::'1!/ :‘3’{/

T o 3 50 12

U, ‘U

R}

3. 00 2 an) 2 3.50 L2 iy v I ¢

time : time

Figure 4.15:Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "Kaufman algorithm” for decentralized

control.

L o III ® W m = u L [[I—] | L | (.] Ll

[mmv L.
i iy

IL_ N
p»

oid

| B it

Ll

mu"‘\w‘ L]

i

it

r

SR bt

rmv LT

i

54

8 §
4
. l\ fwwwwﬂﬁ E
% | 3 |
igd
| (—
2 0TSV |
X i |
3 5
.00 K) T o 950 03 Ta.0g T ¥, b, 50 I
time time
(a)
"
2
\
MW
- 2] \NV)
=
J
3 A
5w FT) 1.3 1T.m .50 s

time

(b)

Figure 4.16:Plots using the "Kaufman algorithm” for decentralized

control of (a) the command torque for each joint and
(b) one of the gains.

55

To sec if the problem of the oscillations can be reduced, the plant was

augmented by 2 derivative term as explained before using a valuec of o = 0.05.

Figures 4.17 and 4.18 show the results of this change, and wc can observe that

the oscillations are eliminated.

~7

O, 1

Ep—— |

3 ; T
.?"‘ —
0, \ 02
= e
1 3
i
3| - :
‘?';;_c-) 4') + .u TN 9. l“ "j') m .; 4t 4 :_-:u. 7T 2 3. 50 l‘.‘
time time
Figure 4.17:Plot of the plant and model outputs (rad.) vs. time

(sec.) using the "Kaufman algorithm" for decentralized
control with a derivative term augmenting the plant.

|| |l

|

I W

L [I//— A IR N (R n

56

TUIN]
...

V‘:\ l
1

PT
>

f :
b {
2 /, \\ & / /
1 i
. eéc J“J \ "‘gc fi \
— — ool
< 2
I =
- - '
-— - 3
e 271
= i
= 31 3 - -
00 o 2.0 v 00 3.5 2 9,040 2L s T 350 [
= time time
= (a)
_ 3
[~ - o
.. |
EY o
L 3
L N\
B A /
Ei - -
— 3
- /
= =R /
E3 -]
[= =2 {
E]
E: 2 |
- o
k] /
= 97 L T
o Ed 3.00) 4.5 L 3.53 2
. time

{1

= Figure 4.18:Plots using the "Kaufman algorithm" for decentralized
- control with a derivative term augmenting the plant

of (a) the command torque for each joint and (b) one
of the gains.

57

4.5.2 Derivative Algorithm
Finally we implement the decentralized control using the "Derivative

algorithm”. The parameters used for the two first order controllers used in

each of the joints were the following:

(4.18) D, =0.1

_ 1300
T=T=(0 30 x 10*
003

a=b=23500

The results of the simulation appear in Figures 4.19 and 4.20. Figure 4.19
shows the outputs of the plant and model, and again, as expected we can see
that the tracking is not as good as what was obtained in section 4.3. The
command input to both joints and one of the gains are plotted in figure 4.20. It

is apparent that “there are some oscillations; however, they are not as extreme

as those obtained using the "Kaufman algorithm"™ with no derivative term

augmenting the plant.

wii

mn

]

Ein o e

LT

uii Wil Wen o s W aii

s

i

e

e
b

T

T

I

T OE_E

H ==}

i

[AL
il

I.

o

g

M

m

= :
=]

I/
\1
3 \
1 \
8 f \
1
5|/ \
" { \

R 350

58

Tu‘; 40 v 0 3.89 1L

time

Figure 4.19:Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "Derivative algorithm” for decentrali-

zed control.

wa

59
3. :
i h .
AV n ,
| \
ey Al \J\u |
G 11T A N
Sz T2
- ‘:‘"‘
2 i_
i, Z.m 3 tl; me T T Ry t2 N s oL 4. ;m e T 380 [
(a)
k]
A
A ﬂ,l"‘-" A\
- \ li/\ ‘1
=
==

? .
) |
f
Jz "
3,00 M] (534 2] 1.EC ‘.‘:
time
(b)

Figure 4.20:Plots using the "Derivative algorithm” for decentrali-
zed control of (a) the command torque for each joint
and (b) one of the gains.

ul

m L [[f— A [LR I W e mii

E
E

[

Tl
|

e

60

4.6 Summary

This chapter was devoted to the control of the Unimation PUMA 560 robot.
It gavc a complete description of the model used to simulate the robot arm and
it showed the results of controlling the arm using the different algorithms
presented in Chapters 1 and 2. The results of the simulations show that it
possible to use model reference adaptive control to operate this type of robot.
The modifications introduced to the previous MRAC algorithms achieve the
desired result of eliminating the steady state error present in the response.

In addition, simulations showing the results of discrete implementation of
the MRAC and decentralized control of the robot were carried out. The results
show that these cases can achieve good results; however, the responses are not

as good as those obtained in the normal simulations.

CHAPTER 5

Overview

5.1 Discussion

In this project we simulated the implementation of several MRAC
algorithms to control two types of robots: a single-link flexible jointed arm and
a model of 2 links of the Unimation PUMA 560 manipulator. It was clear that
the existing MRAC algorithms used had major problems. The original
algorithm explained in Section 1.2.3 had the serious limitation that it restricted
its application to a very limited range of plants (almost strictly positive real
(ASPR) systems). This introduced the need to find modifications so to make the
algorithm applicable to a wider class of plants. An adjustment was proposed by
BarKana (see Section 1.2.4) which expanded the types of plants that could be
controlled with the algorithm, however, it did not achieve asymptotic tracking
because it led to~a steady state error. In our simulations, it was observed that
this steady state error could, in some instances, be quite large and that it would
change depending on the size of the load that the robot was carrying.

These resuits motivated the development of further modifications to the
existing MRAC algorithms. These modifications had the goal of achieving
asymptotic tracking, while at the same time expanding the class of controlled
plants beyond those which are ASPR. This project displays two of these new
algorithms which we called the "Kaufman algorithm” (Section 2.2) and the
"Derivative algorithm” (Section 2.3) respectively. The simulations of the
control of both robots using these algorithms were successful and showed that

the problems described above were solved.

61

!
i

I

it
ikl

L

WMM\ nm

rllllllﬂ nm

wpm
[

S

3
3

i
B
Baed

I‘H Al I[‘

E“

g

-
i e

o

IF I
!A 1\

Ld g

il 1

f

il

62

Certain simulations were carried out to observe the performance of the
algorithms for a decentralized case of the PUMA robot, that is, each one of the
to joint angles was controlled as a separate system. The results obtained, as

expected, were not as good as for the normal operation, however, in cases were

~very fast computation times are required and accuracy can be sacrificed, this

can yield acceptable results. Even so this should not usually be a necessity

sincc the normal algorithm involves few computations.

Simulations of discrete control of the PUMA robot were also performed.
These showed that we can obtain good results for the discrete case. However,
there were high frequency terms present in the response which required the
introduction of a derivative term to the output in order to weaken them. The
onfy :side effect of this is that the error during the transients is slightly
increased depending on the weight given to the derivative term.

Comparing the results between the Kaufman and Derivative algorithms

we could make several observations. First of all, the error in tracking (during

the transients and changes in the arm's load) tended to be smaller for the

_"Kaufman algorithm”. In addition, it was easier to adjust this algorithm to

obtain a satisfactory response of the system, and it was generally less affected

by changes in the plant's parameters. However, in using the "Derivative

i;zral:gori:'llzlm" the presence of high f;ckqucncy oscillations was less frequent.

Therefore, our recommendation for anyone using these algorithms is that

they first try to solve their control problem using one of the two, and if it does

not yield satisfactory results then the other should be tried instead.

In all the cases we looked at ‘the control torque that was applied to the

o e

joint angles, and at some of the adaptive gains. It was observed that the torque

63

and the gain's magnitude rcmained bounded throughout the simulations. We
also observed, as expected, that these parameters adapted when a change
occurred in the plant or in the model command input .

In summary, these algorithms can be successfully used in control
simulations of different types of robots. In addition they have the advantage
that they are easy to implement because no there is no need to have any
knowledge of the plant’s parameters and bccausci they can be readily
applicable to MIMO systems without a great in;rcasc in the complexity of the

calculations.

5.2 Future Work

This project dealt only with computer simulations of the systems,
therefore, the logical gominurawti“on is to actually implement the algorithms to
control a real robot. This stcpi is very important in validating the value of
using command “‘géncrator tracker based model reference adaptive control.

Another area in which some addi}iqnal rwork isﬂ possible is in
implementing some type of theoretical rules about the choice of the
parameters used in the implementation of the algorithms (i.e. Dp, T, T, f) This
might require some knowledge‘ of the system to be worked with, however, in
most cases we have some knowledge available about the plant that will be
controlled.

Finally, in the discrete simulations other sample times should be
considered. 7 All the work done in the discrete simulations performed for this

project involved using a sample time of 7 ms., but sample times of 14, 28, and 56

ms. are also possible with the PUMA 560 manipulator.

ul ol | am Wi &l mi W mEa wmnn . (N i |

[

n
A

i
i

"

| Ll

m 1

grr”

m

mrer o

B

[M'm [

APPENDIX A
ACSL Programs

This appendix contains a listing of all the ACSL programs used in the
simulation of the MRAC algorithms and the different types of robots. The

following are the names and a brief description of the programs listed:

BKFLEX "BarKana algorithm” used on single-link flexible-joint arm.

HKFLEX "Kaufman algorithm" used on single-link flexible-joint arm.

JDFLEX "Derivative algorithm" used on single-link flexible-joint arm.
PUMABK "BarKana algorithm™ used on PUMA 560 model.

PUMAHK "Kaufman algorithm” used on PUMA 560 model.

PUMADHK "Kaufman algorithm” used on PUMA 560 model (discrete case).

PUMAIJID "Derivative algorithm” used on PUMA 560 model.

Now we give a description of the variables with which the user must be

concerned in order to properly operate these programs, this, by no means, is

. an exhaustive listing of all the variables used in the programs.

The following types of gaﬁab(ch51appear in all programs: DP, TAU, TN, and
TB, which correspond to_thc_”_a_lgoriitl_xm parameters Dp, T, T, and T respectively
(see Chapter 1 for a desc‘ri‘l;tionuof these parameters). In the programs
involving the flexible arm, DP lS a constant and TN and TB are (3x3) matrices
becéusc;ihe Wplam is SISO. For%?the progréms simulating the PUMA 560, since we
have two inputs and two outputs and two first order models, DP will be a (2x2)
square matrix, and TN and TB are (6x6) matrices. In all the programs the

weighting matrices TN and TB are broken up into the terms that act on the

64

65

error, the command input, and model states respectively and are assumed to be
diagonal. In summary, the following variables compose the variable types

described above for the different type of robot:

DP=DP
TEN 0 O
TN=| 0 TXN 0
0 0 TUN
TEB 0 0
TB= 0 TXB 0
0 0 TUB
PUMA 560 -
DP_[DPIO}
0 DP2
T TEN 0 0 i
0 TEN 0 0
0 0 TUN
TN = TUN 0 O
0 0 TXN 0
L 0 0 TXN J

I

[

e

| il

o

P

l‘u“\ I\ “Ul

EN

i

|
i

i

66

TEB 0 O
0 TEB 0 0
0 0 TUB
TB = TUB 0 O
0 0 TXB 0
| 0 0 TXB _

Therefore, for example, if the user is controlling the flexible arm and he
wants Dp = 6 and weighting matrices

500
TB=TN=/06 0

007

then all he has o do is to let DP = 6, TEB = TEN = 5, TXB = TXN = 6, and TUB = TUN =

7. Notice that we assumcq :Ll'lgl all thc weighting matrices and DP matrices are
diagonal, and th‘;at the weights acting on all the errors, commﬁnd inputs, and
states are the same. Theret"ore._ t_hc_rc. are many combinations which are not
achievable due to these assumptions made in the program. However, making
all thcv_combinations available wouldmplustt_:; the programs with variables.

The other vanablc whxch appcars m all thc programs is TAU, and
corresponds to the parametcr ‘Cr(scc Sccuon 124 eq (1 34)) This is always a
constant except when using the "Derivative algorithm”, where there are two
TAY's (see Section 2.3, eq (2.13)). Therefore in all the programs that use the
"Derivative algorithm" (PUMAJD and JDFLEX) the user will have to specify two
constants: TAU1 and TAU2 which correspond to a and b respectively.

Now we come to variables which are used only in some of the programs.

These variables include DEC and ALPHA. The term ALPHA appears only in the

programs PUMAHK and PUMADHK, and it implements the parameter that is

67

described in Section 2.4. This is a constant, and the user sets it to the desired
value. If it is left cqﬁal to zero the program operates without adding a
derivative term (i.e. as if it doesn't exist). The term DEC appears only in the
programs PUMAHK, PUMADHK, and PUMAJD. It should only have one of two
possiblé Qalues. either 0 or 1. If it is set to O, the program implements
decentralized control on the system, if it is set to 1 normal control is
implemented (see Section 4.5).

Finally, there are several control variables which are important to
mention. These include FIN, IALG, and CINT. FIN just sets the time (in seconds)
at which the simulation stops. Therefore if we want the simulation to end at 60
sec just set FIN = 60. IALG determines the algorithm that ACSL uses to calculate
ther integrals, in the simulatiéns ”this was set to 9. For more information on this
variable see [12].- CINT sets the communication interval in ACSL and is usually
set in our simulations to 0.001. For more information on this variable see [12].

Wcr wxll not” go into rdcscrr:irbing thé command ir{pui variables, the model
variables, or the plant variables, inr any more detail. If the user needs to
chaﬂgc extherthe model, the crcr)mmégrrldr mput or the blarii :dcscription, he can

refer to the program listings which appear next.

| W W W Wy i Wi

mi o me w wi

il

[
b i b

L

L. v

o

EMW
gadi {0l |2

t

11l

"

NN

i

[T LLL]

P

68

% % % % %k %k Jk J J Kk dk Kk %k dk Kk ok Kk Jk Kk Kk Kk ok Kk J Kk %k sk ok sk de e gk Kk de do ke ke ke de e db de e vk gk ke sk ok ok e sk ok g ek sk ke ke %

*
*
*

BKFLEX

*
*
*

kdkhkhkkkhkhkhkkhkkhkhkkddkhkkhkrhkhhkhkkhhhkhkhkhkhkhkhhkhkhthkhkhkhkhhhrhkhkdkhhkhhhkkhhkhkhkdhkhkhixk

PROGRAM BKFLEX

INITIAL

"Gives initial conditions and values for all constants"

"Model Constants”

"Second order model of the form: (NO)/((-1/D0)s+1l)"

CONSTANT NO 1.0
CONSTANT DO -1.0
CONSTANT MIC1 = 0.0

"Plant Constants: (Kexp(-sT0)/(s + A))"

CONSTANT I = 0.031, J = 0.004, B = 0.007
CONSTANT K = 31.0, MGL = 0.8

CONSTANT ©PICl = 0.0, PIC2 = 0.0, PIC3 = 0.0
CONSTANT PIC4 = 0.0

"Adaptive Gain Initial Conditions:"

CONSTANT KEIC = 0.0, KUIC = 0.0
CONSTANT KX1IC = 0.0

"Scaling Coeffibiénts:(uSedrih gain calculation) :'

TXN = 1.0

CONSTANT TEN = 1.0, TUN 1.0,
1.0, TXB = 1.0

CONSTANT TEB = 1.0, TUB

"Feedforward Constants:"

CONSTANT DP = .1, TAU = 0.1, DIC = 0.0
"Used to stabilize flexible system (Ghorbel):"
CONSTANT KV = 0.0 | .

"These constants tell the system when to drop load"”

CONSTANT " 'DROP = 15.
CONSTANT NEWMGL=0

"Square wave constants (to create inpﬁﬁ):"

CONSTANT START1 = 0.0
CONSTANT PERIOD = 14.0, WIDTH = 7.0

"Program Control Constants:"

CONSTANT FIN = 28.0
CINTERVAL CINT = 0.01

"Set all wvariables to zero:"

CONSTANT INPUT1
CONSTANT KEQUT
CONSTANT KE
CONSTANT KU
CONSTANT DPPLA

= 0.0, UPLANT = 0.0, KXOUT
= 0.0, KUOUT = 0.0, ERROR
= 0.0, KX1 = 0.0, U0

= 0.0, XMOD = 0.0

= 0.0 YPLANT = 0.0

END $§ "of INITIAL"

DYNAMIC

DERIVATIVE

"

"Input to the System (square wave):"

U0 = 2*PULSE (START1,PERIOD,WIDTH) -1
PULSE (STARTZ2,PERIOD,WIDTH) "
U0 = U001 - uo2 "

Uo2 =

"Model

XMOD
YMODEL

"Plant

X1PLA
X2PLA_
X3PLA
X4PLA
YPLANT

D

D

nuanuu

escription:"

INTEG(DO*XMOD - DO*UQ, MICl)
NO*XMOD

escription:"

INTEG (X2PLA, PICI)

e NeNel

69

[eReNol

| mi alll l\ ll i

N

INTEG (- (MGL/I)*SIN(X1PLA) - (K/I) * (X1PLA- -X3pLa), PIC

INTEG (X4PLA, PIC3)

INTEG (- (B/J)*X4PLA+(K/J)*(XlPLA-X3PLA)+UPLANT/J, PI.

. X1PLA

"Feedforward Gain (Dp(s)):"

DUMM1
XDP
DPPLA

1/TAU
INTEG (-DUMM1*XDP + DUMMI1*DP*UPLANT, DIC)
XDP

"Adaptive Gains:"

IE
IX
IO
KE
KX1
KU

"Qutpu

KEOUT
KXOoUT

e unn

t

INTEG ((ERROR**2) *TEN, KEIC)
INTEG ((ERROR*XMOD) *TXN, KX1IC)
INTEG ((ERROR*UQ) *TUN, KUIC)
ERROR**2*TEB + IE
ERROR*XMOD*TXB + IX

ERROR*UO0*TUB + IU
of the Adaptive Gains:"

(ERROR*KE)
(KX1*XMOD)

_ NI 1]

|

(e

v u

o

by

WWW "
wadid 11

o

[

gl

1

U

1 I_“w "
alidi

L
in

il

pine

it

"
E

om

ik
PIADNIT N

r

||

END

KUOUT = (KU*UO0)

"Plant Input:"

UPLANT = KXOUT+KUOUT+KEOUT+KV* (X2PLA-X4PL2)

"Change the load"

PROCEDURAL
IF (DROP.GE.T)MGL=0.8
IF(T.GT.DROP) MGL=NEWMGL
END

"of DERIVATIVE"

"Error Calculation:"

ERROR = (YMODEL) - (YPLANT+DPPLA)

"Actual Error:"

ACERR = YPLANT -:xMODEL

"Specify Termination Condition:"

TERMT (T.GE.FIN)

"of DYNAMIC"
"of PROGRAM"

~

70

71

-
**

*

* HKFLEX
*

PROGRAM HKFLEX

INITIAL
"Gives initial conditions and values for all constants”

"Model Constants”
"Second order model of the form: NO/ (DOs+1) "

CONSTANT NO = 1.0
CONSTANT DO = -1.0
CONSTANT MICl = 0.0

"Plant Constants: (K*exp(-sT0))/(s + A)"

CONSTANT I =0.031, J = 0.004, B =0.007
CONSTANT K = 31.0, MGL = 0.8

CONSTANT PIC1 0.0, PIC2 =0.0, PIC3 = 0.0
CONSTANT PIC4 0.0

"Adaptive Gain Initial Conditions:"

CONSTANT KEIC = 0.0, KUIC = 0.0
CONSTANT KX1IC = 0.0

"Scaling Coefficients (used in gain calculation) : "

TON = 1.0, TXN

CONSTANT TEN = 1.0,
1.0, TUB = 1.0, TXB

CONSTANT TEB

1.0
1.0

"Feedforward Constants:"
CONSTANT DP = .1, TAU = 0.1, DIC = 0.0
"Square Wave Constants (to create input):"

CONSTANT START1 = 0.0
CONSTANT PERIOD = 60.0, WIDTH = 30

"These constant tells the system when to drop the load"

CONSTANT DROP = 15.0
CONSTANT NEWMGL = 0.0, INIMGL = 0.8

"Plant input constant (see paper by Ghorbel et al)"
CONSTANT Kv=20.0

"Program Control Constants:"

E T

*

[} | Wil i mi oW\t Wl Eme EE E o mnn . L)

WE

i g

it it s,

rm LR
4 Wi

g

wnon

L

(N

Ly
i

BN

CONSTANT FIN = 28.0
CONSTANT CINT = 0.01

72

"Initialize all variables used in program to zero:"

CONSTANT INPUT1 = 0.0, KEOUT = 0.0,
CONSTANT KXOUT = 0.0, KUOUT = 0.0,
CONSTANT KX1 = 0.0, KU = 0.0
CONSTANT UPLANT = 0.0, ERROR = 0.0,
CONSTANT X2PLA = 0.0, X3PLA = 0.0,

END $§ "of INITIAL"

DYNAMIC
DERIVATIVE

"Input to the System:"
U0 = 2*PULSE (START1,PERIOD,WIDTH) -1
"Model Description:"

YMODEL
XMOD

NO*XMOD
INTEG (DO*XMOD - DO*UQ, MIC1)

"Plant Description:"

X1PLA

= INTEG(X2PLA, PIC1)
X2PLA =

X3PLA = INTEG(X4PLA, PIC3)
X4PLA _ =

YPLANT = X1PLA

"Feedforward Gains (Dp(s)):"

XDP = 0.0
KE = 0.0

X1PLA

= 0.0
X4PLA = 0.0

INTEG(—(MGL/I)*SIN(XlPLA)-(K/I)*(XIPLA—X3PLA), PICZ

INTEG(-(B/J)*X4PLA+(K/J)*(XIPLA-XBPLA)+UPLANT/J, PIC

DUMM1 = 1/TAU
XDP = INTEG (-DUMM1*XDP - DUMM1*DP*KE*ERROR, DIC)
DPPLA = XDP

"Adaptive Gains:"

INTE = INTEG((ERROR**2)*TEN, KEIC)
INTX = INTEG((ERROR*XMOD)*TXN, KX1IC)
INTU = INTEG((ERROR*UO)*TUN, KUIC)

KE = (ERROR**2) *TEB + INTE

KX1 = ERROR*XMOD*TXB + INTX

KU = ERROR*U0*TUB + INTU

"Output of the Adaptive Gains:"

KEQUT = (ERROR*KE)
KXQOUT = (KX1*XMOD)
KUoUT = (KU*UOQ)

"Plant Input:"

73

UPLANT = KXOUT + KUOUT + KEOUT + KV* (X2PLA - X4PLA)

"Drop the load"

PROCEDURAL (MGL = NEWMGL, INIMGL)
IF (T.GE.DROP)MGL = NEWMGL -

IF (T.LE.DROP)MGL = INIMGL

END

"of DERIVATIVE"

"Error Calculation:”

ERROR = YMODEL - YPLANT + DPPLA
"Actual Error:"

ACERR = YPLANT - YMODEL
"Specify Termination Condition:"

TERMT (T.GE.FIN)

"of DYNAMIC"
"of PROGRAM"

e

74

**

— * *
* JDFLEX *
x

*

**

PROGRAM JDFLEX

-— INITIAL
"Gives initial conditions and values for all constants"

- "Model Constants"
"Second order model of the form: (NO) / ((-1/D0)s+1)"

- - CONSTANT NO = 1.0
CONSTANT DO = -1.0
CONSTANT MICl1 = 0.0

E; "Plant Constants: (Kexp (-sTO0) /(s + A))"
- CONSTANT I = 0.031, J = 0.004, B =0.007
£ CONSTANT K = 31.0, MGL = 0.8
CONSTANT PICl = 0.0, PIC2 = 0.0, PIC3 = 0.0
CONSTANT PIC4 = 0.0
%% "Adaptive Gain Initial Conditions:"
o CONSTANT KEIC = 0.0, KUIC = 0.0
= - CONSTANT KX1IC = 0.0
"Scaling Coefficients (used in gain calculation):"
- CONSTANT TEN = 1.0, TUN = 1.0, TXN = 1.0
CONSTANT TEB = 1.0, TUB = 1.0, TXB = 1.0
— "Feedforward Constants:"
CONSTANT DP = .10, TAUL = 0.1, TAUZ2 = 0.1
= CONSTANT DICl = 0.0, DIC2 = 0.0
- "Square wave constants (to create input) : "
: CONSTANT STARTi = 0,0
= CONSTANT PERIOD = 14.0, WIDTH = 7.0
= "Program Control Cohstants:"
- CONSTANT FIN = 28.0 $ "Execution stops in 28 seconds"
- CINTERVAL CINT = 0.001 $ "Communication Interval™
- "The following variables are used to change the load:"
- CONSTANT DROP = 15.0, NEWMGL = 0.0

75

"Set all variables to zero:" -
CONSTANT INPUT = 0.0, UPLANT = 0.0, KXOUT = 0.0 .
CONSTANT KEQUT = 0.0, RKOoUT = 0.0, ERROR = 0.0 -
CONSTANT KE = 0.0, KX1 = 0.0, Uuo = 0.0
CONSTANT KU = 0.0, XMOD = 0.0, XDP1 = 0.0
CONSTANT DpPLA = (0.0, YPLANT = 0.0, ACERR = 0.0 %
CONSTANT XDp2 = 0.0
END § "of INITIAL" E
=
DYNAMIC
DERIVATIVE =
"Input to the System (square wave):" -
U0 = 2*PULSE (STARTI,PERIOD,WIDTH) -1 %
n
"Model Description:"
XMOD = INTEG(DO*XMOD - DO*U0, MIC1) i
YMODEL = NO*XMOD
"Plant Description:™ ?
X1PLA = INTEG (X2PLA, PICl)
X2PLA = INTEG(- (MGL/I) *SIN (X1PLA) - (K/I) * (X1PLA-X3PLA) ;, PICI=
X3PLA = INTEG(X4PLA, PIC3) o =
X4PLA = INTEG (- (B/J) *X4PLA+ (K/J) * (X1PLA-X3PLA) +UPLANT/J, Pl!
YPLANT = X1PLA N
. "Feedforward Gain (Dp(s)):"]
INPUT = DP*UPLANT[TAUI —
XDP1l = INTEG (INPUT- (TAUZ/TAUL) *XDP1+XDP2, DICI1) =
XDP2 = INTEG (- (1/TAULl)*XDP1l, DIC2) -
DPPLA = XDP1
"Adaptive Gains:" i
IE = INTEG ((ERROR**2) TEN, KEIC) —
IX = INTEG (ERROR*XMOD) *TXN, KXI’IC) =
IU = INTEG ((ERROR*UQ) *TUN, KUIC) -
KE = ERROR**2*TEB + IE
KX1 = ERROR*XMOD*TXB + IX =
KU = ERROR*UQ*TUR + IU B
"Output of the Adaptive Gains:" —
KEOUT = (ERROR*KE) =
KXOUT = (KX1*XMOD)
KUOUT = (RU*U0) %
S =
"Plant Input:"
%

- UPLANT = KXOUT + KUOUT + KEOUT
"Change the load:"
- PROCEDURAL
IF (DROP.GE.T)MGL=0.8
B IF (T.GT.DROP) MGL=NEWMGL
- END
. END $ "of DERIVATIVE"
"Error Calculation:"
E ERROR = YMODEL - YPLANT - DPDLA

"Actual Error:"

IMMM‘
Lol i

ACERR = YPLANT - YMODEL

s "Specify Termination Condition:"

TERMT (T.GE.FIN)

END $ "of DYNAMIC"

me
¢

"o
Tik

Iy
i

i

o

ll!NW!‘ .
ol 1

s
J

oo

e

==

i

!
o

!

Kk kdkkkkkkkhkkkkhhkkk Rk k kK ek kxR A dedekkdekk ks ks ko sk ko ko s g e & o o & & & o
* *
* PUMABK *
* *

**

PROGRAM PUMABK

"This program implements the BK algorithm for 2 links of PUMA 560"
"robot arm (for decentralized control let variable DEC = 0.0)"

INITIAL

"Model Constants™ o L
"Two first order models of the form: N/ (TAUMs + 1)"

CONSTANT NUM1
CONSTANT MIC1

-1.570785, MIC2 = 0.0

"Plant Constants: (two link robot)"

.0, V2 = 0.5, V3 =
-1.570785, PIC2 =
0.0

CONSTANT PIC1
CONSTANT PICA4

CONSTANT M = 10.0, L = 0.432, Al = 3.82
CONSTANT A2 = 2.12, A3 = 0.71, A4 = 81.82, A5 = 24.06
CONSTANT vl = 1.0, V4 = 0.5

0

tHeen

.0, PIC3 = 0.0

"Adaptive Gain Initial Conditions:"

CONSTANT KE11lIC=0.0, KE12IC=0.0, KE21IC=0.0, KE22IC=0.0
CONSTANT KX11IC=0.0, KX12IC=0.0, KX21IC=0.0, KX22IC=0.0
CONSTANT KU1llIC=0.0, KU12IC=0.0, KU21lIC=0.0, KU22IC=0.0

"Constants used for the adaptive gains"

CONSTANT TEN = 1.0, TEB = 1.0
CONSTANT TXN = 1.0, TXB = 1.0
CONSTANT TON = 1.0, TUB = 1.0

"Feedforward Constants:"

CONSTANT pDpPll = 3.0, DP12 = 3.0, DP21 = 3.0, DP22 = 3.0
CONSTANT DICl = 0.0, DIC2 = 0.0

CONSTANT TAU = 0.1

"Constants for the cycloidal reference trajectories:”

CONSTANT PI = 3.14158
CONSTANT UR1F = 0.0, UR2F = 1.570795

"Constants to change parameters (drop the load):"

CONSTANT MINI = 10.0, MNEW = 0.0, TDROP = 10.0

1.0, NUM2 = 1.0, TAUMI = 0.1, TAUM2 = 0.1

@l w il Wi W s N m n W m

0

g W mn .

miin

"Prog

78

ram control constants:"”

CONSTANT FIN = 10.0, CINT=0.001

"Set

certain variables initially to zero:"

CONSTANT EYl = 0.0, EY2 = 0.0
CONSTANT ERROR1 = 0.0, ERROR2 = 0.0

END $§ "of INITIAL"

DYNAMIC
DERIVATIVE

"Syst

UR1
UR2
Fl

F2

GGl
GG2
FH1
FH2

n

"Mode

XMOD1
YMOD1
XMOD2
YMOD2

em input (cycloid)r(Theré are 2 reference inputs)"”

FENSW (T-3, (-PI/2.+.25% (2.*PI*T/3.-SIN(2.*PI*T/3.))),0,:
FCNSW (T-3, (.25% (2.*PI*T/3.-SIN(2.*PI*T/3.))), (PI/2.),F:

FCNSW(T-5.,0,GG1l, GG1l)
FCNSW(T-5., (PI/2.),GG2,GG2)

FCNSW(T-8.,FH1, (-PI/2.), (-PI/2.))
FCNSW(T-8,FH2,0.,0.)

-.25% (2 .*PI* (T-5.)/3-SIN(2.*PI*(T-5.)/3.))
PI/2.+FH1

1 Description: (Two first order models)"

INTEG((~XMOD1+NUM1*UR1) /TAUM1,MIC1)
XMOD1
INTEG ((-XMOD2+NUM2*UR2) /TAUM2, MIC2)
= XMOD2

"Plant Description:"

"Yl =

M1l1
M12
M21
M22

N1l
N2

Gl
G2

Hl
H2

J1i1l
Ji2
J21
J22

Thetal, Y2 = Theta2, Y3 = ThetalDot, Y4 = ThetalDot"

Al + A2*C0OS(¥Y2)

A3 + (A2/2)*C0OS(Y2)
M12

A3

- (A2*SIN(Y2)) * (Y3*Y4+ (Y4**2) /2)
A2*SIN(Y2) * (Y3**2) /2

A4*COS (Y1) + AS*COS (Y1+Y2)
AS5*COS (Y1+Y2)

V1*Y¥3 + V2*SIGN(1.0,¥3)
V3*Y4 + V4*SIGN(1.0,Y4)

-L* (SIN (Y1) +SIN(Y1+Y2))
-L*SIN(Y1+Y2)

L* (COS (Y1) +COS (Y1+Y2))
L*COS (Y1+¥2)

JD1l1l
JD12
Jp21
Jp22

G

"The

MTI11
MTI1l2
MTIZ21
MTI22

DETMT
INV11
INV12
INV21
INV22

"Now

DUM1

DUM2

hunuu

79

=L*Y3*COS (Y1) + JD12
-L* (Y3+Y4) *COS (Y1+Y2)
-L*Y3*SIN(Y1l) + Jp22
-L* (¥Y3+Y4) *SIN(Y1+Y2)

9.81

following matrix is multiplied times the vector”
"of derivatives in the equation of the robot, therefore™
"it will have to be inverted" -

wnn

we

-M11 - M* (J11%**2 + J21%%2)
=M12 - M*(J11*J12 + J21*J22)
-M21 - M* (J11*J12 + J21%J22)
-M22 - M* (J12%*2 + J22%%2)
MTI11*MTI22 - MTI12*MTI21
MTI22/DETMT

-MTI12/DETMT

-MTI21/DETMT

MTI11/DETMT

calculate the right hand side of the differential”
"equation for the last two state variables (y3 and y4):"

(JD11*Y3+JD12*Y4)

(JD21*Y3+JD22*Y4) -

ARHS1
ARHS2Z2
RHS1
RHS2

"Now

Yl
Y2
Y3
¥4

"Feedforward gain (DP(s)):"

DUM =
XDP1
XDP2

f0nnononun

W

IN
IN
IN
IN

1

DPPLAl
DPPLAZ2

N1+G1+H1-UPLA1+M*(G*J21+J11*DUM1+J21*DUM2)
N2+G2+H2-UPLA2+M*(G*J22+J12*DUM1+J22*DUM2)
INV11*ARHS1 + INV1Z2*ARHS?Z2
INV21*ARHS1 + INV22*ARHS2

can calculate the state variables:”

TEG (Y3, PIC1)
TEG (Y4, PIC2)
TEG (RHS1, PIC3)
TEG (RHS2, PIC4)

/TAU

INTEG (-DUM*XDP1+DUM* (DP11*UPLA1+DP12*UPLA2) ,DIC1)
INTEG (~-DUM*XDP2+DUM* (DP21*UPLA1+DP22*UPLA2) ,DIC2)
= XDP1 SR

= XDP2

"Adaptive Gains:"

IEll
IE12
IE21
IE22

INTEG ((ERROR1**2) *TEN, KE11IC)
INTEG ((ERROR1*ERROR2) *TEN, KE12IC)
INTEG ((ERROR2*ERROR1) *TEN, KE211IC)
INTEG ((ERROR2**2) *TEN, KE22IC)

Wil W W | w0 W mEr m

[l— Wl W N .,

i

o
sidi lbi

1

r7

it

i

B

IX1l1
IX12
IX21
IX22
IUll
IUl2
IU21
Iu22

KE11l
KE12
KE21
KE22
KX11
KX12
Kx21
KX22
KU1l
KU12
KU21
KU22

"Output

KEQUT1
KEQUT2
KXOUT1
KX0UT2
KUOUT1
KUouT2

"Now we. can obtain the Input to the Plant:"

UPLAl =
UPLAZ =

"The following lines change the load on the arm:"

PROCEDURAL

IF(T.LT
IF(T.GE
END

"Calculation of thé actual and augmented errors:"

EY1

EY2

ERROR1

ERRORZ2
end

INTEG ((ERROR1*XMOD1) *TXN, KX11IC)
INTEG ((ERROR1*XMOD2) *TXN, KX12IC)
INTEG ((ERROR2*XMOD1) *TXN, KX21IC)
INTEG ((ERROR2*XMOD2) *TXN, KX22IC)
INTEG ((ERROR1*UR1) *TUN, KU11lIC)
INTEG ((ERROR1*UR2) *TUN, KU12IC)
INTEG ((ERROR2*UR1) *TUN, KU21IC)
INTEG ((ERROR2*URZ2) *TUN, KU221IC)

ERROR1**2*TEB + IEll
ERROR1*ERRORZ2*TEBR + IE12
ERRORZ2*ERROR1*TEB + IE21
ERRORZ2**2*TEB + IE22
ERROR1*XMOD1*TXB + IX11l
ERROR1*XMOD2*TXB + IX12
ERROR2*XMOD1*TXB + IX21
ERROR2*XMOD2*TXB + IX22
ERROR1*UR1*TUB + IUll
ERROR1*UR2*TUB + IU1l2
ERROR2*UR1*TUB + IU21
ERRORZ2*UR2*TUB + IU22

of the Adaptive Gains:"

ERROR1*KE1l + ERROR2*KE1l2
ERROR1*KE21 + ERROR2*KE22
XMOD1*KX11 + XMOD2*KX12
XMOD1*KX21 + XMOD2*KX22
UR1*KUll + UR2*KU12
UR1*KU21 + UR2*KU22

KEOUT1 + KXOUT1 + KUOUT1
KEQUT2 + KXOUTZ2 + KUQUT2

. TDROP) M=MINI
. TDROP) M=MNEW

YMOD1 - Y1
YMODZ2 - Y2
EY1l - DPPLAL
EY2 - DPPLA2

"Specify termination condition:"

TERMT (T

.GE.FIN)

END $§ "of DYNAMIC"
END § "of PROGRAM"

80

81

el bl A R L R R LR R R R R R R Rt e L T L T e T T T L T
* *
* PUMAHK *
- . *
R A AR EEE LSRR LR R R Rt R R e

PROGRAM PUMAHK

"This program implements HK MRAC algorithm for 2 links"

"of the PUMA 560 robot (DEC = 0.0 for decentralized control) "

" (Set ALPHA = positive constant to add derivative term)" =

INITIAL
"Model Constants" =
"Two first order models of the form: N/ (TAUMs + 1)"
CONSTANT ~ NUM1 = 1.0, NUMZ = 1.0, TAUMI = 0.1, TAUMZ = 0. g
CONSTANT MIC1 = -1.570795, MIC2 = 0.0
"Plant Constants: (two link robot)™" —

-
CONSTANT M =10.0, L = 0.432, Al = 3.82
CONSTANT A2 = 2.12, A3 = 0.71, A4 = 81.82, A5 = 24.06 _
CONSTANT vi=1.0, v2 =0.5, v3 =1.0, v4 = 0.5 %i
CONSTANT PICl1 = -1.570795, PIC2 = 0.0, PIC3 = 0.0
CONSTANT PIC4 = 0.0
"Adaptive Gain Initial Conditions:" (]
CONSTANT KE11IC=0.0, KE1l2IC=0.0, KE21IC=0.0, KE22IC=0.0
CONSTANT KX11IC=0.0, KX12IC=0.0, KX21IC=0.0, KX22IC=0.0 =
CONSTANT KUllIC=0.0, KU1l21C=0.0, KU21IC=0.0, KU22IC=0.0
"Constants used for the adaptive gains" .
CONSTANT TEN = 1.0, TEBR =« 1.0
CONSTANT TXN = 1.0, TXB = 1.0
CONSTANT TUN = 1.0, TUB = 1.0 %
"Feedforward Constants:"
CONSTANT DP1 = 3.0, DP2 = 3.0]
CONSTANT DICl = 0.0, DIC2 = 0.0
CONSTANT TAU = 0.1 .
"Constants for the cycloidalr reference trajectories:” -
CONSTANT PI = 3.1415¢9 —
CONSTANT UR1F = 0.0, UR2F = 1,570795]
"Constants to change parameters (drop the load):" i
CONSTANT MINI = 10.0, MNEW = 0.0, TDROP = 10.0 =
-

82

— "Program control constants:"

CONSTANT FIN = 5.0, CINT=0.001

"Set certain variables initially to zero:"

CONSTANT EYl = 0.0, EY2 = 0.0, ERRORl = 0.0, ERROR2 = 0.0

"ThIS variable is set to 1.0 for normal control and to"
"0 if we want to use decentralized control"

— CONSTANT DEC = 1.0

"This constant is used to add derivative term"

CONSTANT ALPHA = 0.0

END $ "of INITIAL"

)

] DYNAMIC
-- DERIVATIVE
- "System input (cycloid) (There are 2 reference inputs) "
= UR1 = FCNSW(T-B,(-PI/2.+.25*(2.*PI*T/3.—SIN(2.*PI*T/B.))),O,F
- URZ = FCNSW(T-3, (.25% (2. *PI*T/3.-SIN(2.*PI*T/3.))), (PL/2.), 5~
Fl = FCNSW(T-5.,0,GG1l,GG1)
== F2 = FCNSW(T-5., (PI/2.),GG2,GG2)
— GGl = FCNSW(T-8.,FH1, (-PI/2.), (-PI/2.))
GG2 = FCNSW(T-8,FH2,0.,0.)
-, FHL = -.25%(2.*PI*(T-5.)/3-SIN(2.*PI*(T~5.)/3.))
=] FH2 = PI/2.+FH1 :
B "Model Description: (Two first order models) "
- XMOD1 = INTEG ((-XMOD1+NUMI1*UR1) /TAUMI,MIC1)
YMOD1 = XMOD1
.. XMOD2 = INTEG ((-XMOD2+NUM2*UR2) /TAUMZ2, MIC2)
B YMOD2 = XMOD2 _
"Plant Description:"”
Es "Y1l = Thetal, Y2 = Theta2, Y3 = ThetalDot, Y4 = Theta2Dot"
= M1l = Al + A2*%COS(¥2)
M12 = A3 + (A2/2)*COS(Y2)
M21 = M12
M22 = A3
N1 = - (R2*SIN(Y2))* (Y3*Y4+ (Y4**2) /2)
N2 = A2*SIN(Y2)* (Y3*%x2)/2
s Gl = A4*COS(Y1l) + AS5*COS(Y1+Y¥2)
B G2 = AS5*COS(Y1+Y2)

83

H1 = V1*Y3 + V2*SIGN(1.0,Y3) B
H2 = V3*Y4 + V4*SIGN(1.0,Y4)
J1l = -L*(SIN(Y1)+SIN(Y1+Y2)) —
J12 = -L*SIN(Y1+Y2) -
J21 = L*(COS(Y1l)+COS(Y1+¥2))
J22 = L*COS(Y1+Y2) =
PR i =
JD1l = -L*¥Y3*COS(Yl) + JD12
JD12 = -L* (Y3+Y4)*COS (Y1+¥2) _
JD21 = -L*Y3*SIN(Y1l) + JD22 =
JD22 = =-L* (Y3+Y4) *SIN(Y1+Y¥2) =
G = 9.81 —
o , T =
"The following matrix is multiplied times the vector"
"of derivatives in the equation of the robot, therefore” =
"it will have to be inverted" i
MTI1l = -Ml11l - M* (J11**2 4+ J21**2)
MTI1l2 = -M12 - M*(J11*J12 + J21*J22) _
MTI21 = -M21 - M* (J11*J12 + J21*J22) =
MTI22 = -M22 - M* (J12**2 + J22%*%2)
DETMT = MTI11*MTI22 - MTI12*MTI21 %
INV11l = MTI22/DETMT
INV12 = -MTI12/DETMT _
INVZ21 = -MTI21/DETMT B
INVZ2 = MTI11l/DETMT
"Now we calculate the right hand side of the differential" =
"equation for the last two state variables (y3 and y4):" L

DUM1
DUM2
ARHS1
ARHS2
RHS1
RHS2

(JD11*¥3+JD12*Y4)

(JD21*Y3+JD22*Y4)

N1+Gl+H1-UPLAl+M* (G*J21+J11*DUM1+J21*DUM2)
N2+G2+H2~ UPLA2+M*(G*J22+J12*DUM1+J22*DUM2)
INV11*ARHS1 + INV12*ARHS2 '

INV21*ARHS1 + INV22*ARHS2

nwwnwun

MR

"Now w

1)

can calculate the state variables:

Yl = INTEG(YB PIC1)
Y2 = INTEG(Y4, PIC2)
Y3 = INTEG(RHS1, PIC3)
Y4 = INTEG(RHS2, PIC4)

"Feedforward galn (DP(s)) :

XDPl INTEG ((-~ XDP1+DP1*KE11*ERROR1+DEC*DP1*KElZ*ERRORZ)/TA
XDP2 = INTEG((- XDP2+DEC*DP2*KE21*ERROR1+DP2*KE22*ERROR2) /TAU,
DPPLALl = XDP1
DPPLA2 = XDP2

S

il

o

Jhi

wiha i

LI

[

I

(I

"Adapt

IEll
IEl2
IE21
IE22
IX11
IX12
IX21
IX22
IULll
IUl2
IU21
IU22

1T I T O

KE1l
KEl2
KE21
KE22
KX11
KX12
KX21
KX22
KU1l
Kuliz2
Kuzl
Ku22

ive Gains:"

INTEG ((ERROR1**2) *TEN, KE1l1lIC)
INTEG ((ERROR1*ERRORZ2) *TEN, KE1lZ2IC)
INTEG ((ERRORZ2*ERROR1) *TEN, KE21IC)
INTEG ((ERROR2**2) *TEN, KE22IC)
INTEG ((ERROR1*XMODI1) *TXN, KXI11lIC)
INTEG ((ERROR1*XMOD2) *TXN, KX12IC)
INTEG ((ERROR2*XMOD1) *TXN, KX21IC)
INTEG ((ERROR2*XMOD2) *TXN, KX22IC)
INTEG ((ERROR1*UR1) *TUN, KUl1lIC)
INTEG ((ERROR1*UR2) *TUN, KU12IC)
INTEG ((ERROR2*UR1) *TUN, KU21lIC)
INTEG ((ERRORZ2*URZ2Z) *TUN, KU22IC)

ERRCR1**2*TEB + IEll
ERROR1*ERRORZ2*TEB + IE1l2
ERROR2*ERROR1*TEB + IE21
ERROR2**2*TEB + IE22
ERROR1*XMOD1*TXB + IX1ll
ERROR1*XMOD2*TXB + IX12
ERROR2*XMOD1*TXB + IX21
ERROR2*XMOD2*TXB + IX22
ERROR1*UR1*TUB + IUll
ERROR1*UR2*TUB + IUl2
ERRORZ2*UR1*TUB + IU21
ERROR2*UR2*TUB + IU22

"Output of the Adaptive Gains:”

KEOUT1
KEOUTZ2
KXOUT1
KX0UTZ2
KUOUT1
KUCUT2

~= ERROR1*KE1ll + DEC*ERROR2*KE1l2
DEC*ERROR1*KEZ2]1 + ERROR2*KEZ22
XMOD1*KX11l + DEC*XMOD2*KX12
DEC*XMOD1*KX21 + XMOD2*KX22
UR1*KUll + DEC*URZ2*KU1l2
DEC*URL1*KU21l + UR2*KUZ22

"Now we can obtain the Input to the Plant:"

UPLAl
UPLAZ

"The following lines change the load on the arm:"

KEOUT1 + KXOUT1 + KUOUTI
KEOUTZ2 + KXOUTZ2 + KUOUT2

PRCCEDURAL
IF (T.LT.TDROP)M=MINI
IF (T.GE.TDROP) M=MNEW

END

"Calculation of the actual and augmented errors:"

EY1
EY2

= YMOD1l - Y1
= YMOD2 -~ Y2

ERROR1 = EY1 - DPPLAl - ALPHA*Y3

ERROR2 = EY2 - DPPLA2 - ALPHA*Y4

end ,
"Specify termination condition:"

TERMT (T .GE .FIN)

END $ "of DYNAMIC"
END $ "of PROGRAM"

85

| e W e s omen W

86

- **
* - PUMADHK *
*

*

‘k***

PROGRAM PUMADHK

"This program implements the HK MRAC algorithm for a 2 link"

"PUMA 560 robot. (For decentralized control let DEC =
_ " (For derivative term set ALPHA to a small positive constant) "
- "In addition discrete implementation is simulated"

INITIAL

"Model Constants"
"Two first order models of the form: N/ (TAUMs + "

" newy
ik

CONSTANT NUMl = 1.0, NUM2 = 1.0, TAaUM1 = 0.1
CONSTANT TAUM2 = 0.1
CONSTANT MICl = -1.570795, MIC2 = 0.0
- "Plant Constants: (two link robot) "
= CONSTANT M = 10.0, L = 0.432, Al = 3.82
= CONSTANT A2 = 2,12, A3 = 0.71, A4 = 81.82, AS 24.06
CONSTANT Vi =1.0, V2 = 0.5, V3 = 1.0, v4 = 0.
CONSTANT PICl = -1.570795, PIC2 = 0.0, PIC3 = 0.0
- CONSTANT PIC4 = 0.0
- "Adaptive Gain Initial Conditions:" ‘
= CONSTANT ~ KE11IC=0.0, KE12IC=0.0, KE21IC=0.0, KE22IC=0.0
CONSTANT KXllIC=0.0, KX121C=0.0, KX21IC=0.0, KX22IC=0.0
%% CONSTANT KUllIiCc=0.0, KU12IC=Q.0, KU211C=0.0, KU22I1IC=0.0
é
"Constants used for the adaptive gains"
= 'CONSTANT TEN = 1.0, TEB = 1.0
= CONSTANT TXN = 1.0, TXB = 1.0
CONSTANT TUN = 1.0, TUB = 1.0
%f "Feedforward Constants:"
. CONSTANT DPl1 = 3.0, DP2 = 3.0
§§ CONSTANT DICl = 0.0, DICZ2 = 0.0
= CONSTANT TAU = 0.1
=2 »;"COnstantsffofwthe éfdléidal re?e;gnce;;rajectories:"
= CONSTANT PI = 3.14159
e CONSTANT UR1F = 010(7UR2F = 1,570295

"Constants to éh;ﬁge parameters (drop the load):"

B
—

END § "o

DYNAMIC
DISCRETE

“uPD1l

w

END $

DERIVATI

87
CONSTANT MINI = 10.0, MNEW = 0.0, TDROP = 10.0 -
"Program control constants:" —
-
CONSTANT FIN = 5.0, CINT=0.001
"Set certain variables initially to zero:" %
CONSTANT EYl = 0.0, EY2Z = 0.0, ERROR1l = 0.0, ERROR2 = 0.0
CONSTANT UPD1l = 0.0, UPD2=0.0, YID = -1.570795, ¥2D = 0. =
CONSTANT UPLAl = 0.0, UPLA2 = 0.0, Y1 = -1.570795 -
CONSTANT Y2 = 0.0
"This variable equalS 1.0 if we want normal control, if we%
"want decentralized control set DEC = 0.0"
CONSTANT DEC = 1.0 - =
L]
"This constant adds a derivative term to the output"
CONSTANT ALPHA = 0.0 i
f INITIAL" .
=
|

"Set the interval of communication between computer and rot

INTERVAL PERIOD 0.007

R

"The Bnly things sampled are the input to the robot and th
"current angles of its joints"

= UPLAL =
UPDZ = UPLAZ
Y1lD = Y1
Y2D = Y2 =
Y3D = Y3 |
Y4D = Y4
of DISCRETE" B
W R
"System inﬁut ké§cioia)'(Tﬁére are 2 reference inputs) " i

UR1 = FCNSW(T-3, (-PI/2.+.25% (2 .*PI*T/3.-SIN(2.*PI*T/3.))),Cu"
UR2 = FCNSW(T-3, (.25% (2.*PI*T/3.-SIN(2.*PI*T/3.))), (PI/2.) l
F1 = FCNSW(T-5.,0,GG1l,GG1)
F2 = FCNSW(T-5., (PI/2.),GG2,GG2)
GGl = FCNSW(T-8.,FH1, (-PI/2.), (-PI/2.)) - =
GG2 = FCNSW(T-8,FH2,0.,0.)]
FH1 = =-.25%(2.*PI*(T-5.)/3-SIN(2.*PI*(T-5.)/3.))
|
u

Q-2

mil

I\w L

Im [
16 i

p g
[

g
IR
oy

[

ey
1 [

|| | I
] o
i)

Ll

e

il

AT il

gl

Alilie

ki

FH2Z =

88

PI/2.+FH1

"Model Description: (Two first order models)"

XMOD1
YMOD1
XMOD2
YMODZ2

INTEG ((-XMOD1+NUM1*UR1) /TAUM1, MIC1)
= XMOD1
INTEG ((-XMOD2+NUM2*UR2) /TAUM2, MIC2)
XMOD2

"Plant Description:"

M1l
M12
M21
M22

N1
N2

Gl
G2

H1
HZ2

J1l1l
Jl2
J21
J22

JD1l1
JD12
JD21
JD22

G

D SRS

P

Thetal, Y2 = Theta2, Y3 = ThetalDot, Y4 = Thetal2Dot"

Al + A2*COS (Y2)

A3 + (A2/2)*COS (Y¥2)
M12

A3

= (A2*SIN(Y2)) * (Y3*Y4+ (Y4**2) /2)
A2*SIN(Y2) * (Y3**2) /2

A4*COS (Y1) + AS5*COS(Y1+Y2)
AS5*COS (Y1+Y2)

V1*¥3 + V2*SIGN(1.0,Y3)
V3*Y4 + V4*SIGN(1.0,Y4)

-L* (SIN(Y1) +SIN(Y1+Y2))
~L*SIN(Y1+Y2)]
L* (COS (Y1) +COS (Y1+Y¥2))
L*COS (Y1+Y2)

-L*Y3*COS (Y1) + JD12
-L* (Y3+Y4) *COS (Y1+Y2)
-L*Y3*SIN(Y1l) + JD22
=L* (Y3+Y4) *SIN(Y1+Y2)

9 81

"The follow;ng matrix is multlplled times the vector”
"of derivatives in the equation of the robot, therefore"
"it will have to be lnverted"

MTI11
MTI1l2
MTI21
MTI22

DETMT

INV11
INV12
INV21
INV22

-Mll - M*(Jll**Z + J21**2)
=M12 - M* (J11*J12 + J21*J22)
-M21 - M* (J11*J12 + J21*J22)
~M22 - M* (J12**2 + J22%*2)

MTI11*MTI22 - MTI12*MTI21

MTI22/DETMT
~MTI12/DETMT
-MTI21/DETMT
MTI1l1l/DETMT

89
"Now we calculate the right hand side of the differential™ -
"equation for the last two state variables (y3 and y4):"
DUM1 = (JD11*Y3+JD12*Y4) -
DUM2Z2 = (JD21*Y¥Y3+JD22*Y4)
ARHS1 = N1+4+Gl+H1-UPD1+M* (G*J21+J11*DUM1+J21*DUM2) -
ARHS2 = N2+G2+H2-UPD2+M* (G*J22+J12*DUM1+J22*DUM2)
RHS1 = INV11*ARHS]1 + INV12*ARHS2
RHS2 = INV21*ARHS1 + INV22*ARHS2
"Now we can calculate the state variables:"
¥l = INTEG(Y3, PICl) —
Y2 = INTEG(Y4, PIC2) -
Y3 = INTEG(RHS1l, PIC3)
Y4 = INTEG(RHS2, PIC4) —
"Feedforward gain (DP(s)):" =

XDP1 INTEG ((-XDP1+DP1*KE11*ERROR1+DEC*DP1*KE12*ERROR2) /TAl=
XDP2 INTEG((-XDPZ+DEC*DP2*KE21*ERROR1+DP2*KE22*ERRORZ)/TAG?
DPPLA]l = XDP1
DPPLAZ2 = XDP2

"Adaptive Gains:"

IEl1l = INTEG((ERROR1**2) *TEN, KE11lIC) _

IE12 = INTEG((ERROR1*ERROR2) *TEN, KE12IC) =

IE21 = INTEG((ERROR2*ERRCR1) *TEN, KE21IC)

IE22 = INTEG((ERROR2**2) *TEN, KE22IC)

IX1ll =_INTEG((ERROR1*XMOD1l) *TXN, KX11lIC) B

IX12 = INTEG((ERROR1*XMOD2) *TXN, KX12IC) =

IX21 = INTEG((ERROR2*XMOD1) *TXN, KX21IC)

IX22 = INTEG((ERROR2*XMOD2) *TXN, KX22IC) :

IUll = INTEG({(ERROR1*UR1l) *TUN, KU1llIC) E

IUl2 = INTEG ((ERRORL1*URZ)*TUN, KUG1lZIC)

IU21 = INTEG{(ERROR2*UR1l) *TUN, KU21lIC)

IU22 = INTEG((ERROR2*URZ) *TUN, KU22IC) ;
|

KE1ll = ERROR1**2*TEB + IEll

KE1l2 = ERROR1*ERROR2*TEB + IE1l2 —

KE21 = ERRORZ2*ERROR1*TEB + IE21 %

KE22 = ERROR2**2*TEB + IE22

KX1l = ERRORI*XMOD1*TXB + IX1l _

KX12 = ERROR1*XMOD2*TXB + IX12]

KX21 = ERRORZ*XMOD1*TXB + IX21 -

KX22 = ERRORZ*XMOD2*TXB + IX22

KU1l = ERRORL*UR1*TUB + IUll =

KUl2 = ERRORI*UR2*TUB + IU12 —

KU21 = ERROR2*UR1*TUB + IU21

KU22 = ERRORZ*URZ2*TUB + IU22

"Output of the Adaptive Gains:" |
|

B R

L

n:

‘Y non
I I

end

END $§
END §

KEQUT1
KEQUT2
KXOUT1
KXoUuT2
KUOUT1
KUuouTZ2

"Now we

UPLAL
UPLAZ2

"The following lines change the load on the arm:"

wnnnuun

ERROR1*KEll + DEC*ERROR2*KE1l2
DEC*ERROR1*KEZ21 + ERROR2*KE22
XMOD1*KX11l + DEC*XMOD2*KX1l2
DEC*XMOD1*KX21 + XMOD2*KX22
UR1*KUll + DEC*UR2*KU12
DEC*UR1*KU21 + URZ*KU22

can obtain the Input to the Plant:"

KEQUT1 + KXOUT1l + KUOUT1
KEQUT2 + KXOUT2 + KUQUT2

PROCEDURAL

IF (T.LT.
IF(T.GE.
END

"Calculation of the actual and augmented errors:”

EY1
EY2
ERROR1
ERROR2

"Specify

TDROP) M=MINI
TDROP) M=MNEW

YMOD1 - Y1D - ALPHAXY3D
YMOD2 - Y2D - ALPHA*Y4D
EY1l - DPPLAL
EY2 - DPPLA2

termination condition:"

TERMT (T.GE.FIN)

"of DYNAMIC"
"of PROGRAM"

90

91

****************************j{*************************************-

* *

* PUMAJD *
* *;

******************#***

PROGRAM PUMAJD

"This program implements JD algorithm for 2 links of the PUMA 560"
"robot arm (For decentralized control set variable DEC = 0)" _
%
INITIAL
"Model Constants" —
"Two first order models of the form: N/ (TAUMs + 1)"
CONSTANT NUMl = 1.0, NUM2 = 1.0, TAUMl = 0.1 =
CONSTANT TAUMZ = 0.1 U]
CONSTANT MICl1 = -1.570795, MIC2 = 0.0
"Plant Constants: (two link robot)" %
CONSTANT M = 10.0, L = 0.432, Al = 3.82 7
CONSTANT A2 = 2.12, A3 = 0.71, a4 = 81.82, A5 = 24.06 -
CONSTANT V1 = 1.0, V2 = 0.5, V3 = 1.0, V4 = 0.5 -
CONSTANT PICl = -1.570795, PIC2 = 0.0, PIC3 = 0.0
CONSTANT PIC4 = 0.0 _
"Adaptive Gain Initial Conditions:" -
CONSTANT KEI11IC=0.0, KE12IC=0.0, KEZ21IC=0.0, KE22IC=0.0 —
CONSTANT RKX11IC=0.0, KX12IC=0.0, KX21IC=0.0, KX22IC=0.0]
CONSTANT KU1lIC=0.0, KUl12IC=0.0, KU21IC=0.0, KU22IC=0.0
"Constants used for the adaptive gains” ;
CONSTANT TEN = 10000.0, TEB = 10000.0
CONSTANT TXN = 10000.0, TXB = 10000.0 =
CONSTANT TUN = 10000.0, TUB = 10000.0 —
"Feedforward Constants:" -
CONSTANT DP1 = 0.1, DP2 = 0.1 E
CONSTANT DICl = 0.0, DIC2 = 0.0, DIC3 = 0.0, DIC4 = 0.0
CONSTANT TAUL = 50.0, TAU2 = 50.0 =
B
"Constants for the cycloidal reference trajectories:"
CONSTANT PI = 3.14159 =
CONSTANT URIF = 0.0, UR2F = 1.570795 -
"Constants to change parameters (drop the load):" —
=
CONSTANT MINI = 10.0, MNEW = 0.0, TDROP = 10.0
ii

92

"Program control constants:"

CONSTANT FIN = 12.0, CINT=0.001

"Set certain variables initially to zero:"

CONSTANT EY1 =V0.0,>EY2 = 0.0, ERROR1 = 0.0, ERROR2 = 0.¢

"The following variable is set to 1 for normal control"
"and set to 0.0 if we want decentralized control:"

CONSTANT DEC = 1.0

END $§ "of INITIAL"

L HH

(EEE A1

i

ree

DYNAMIC

DERIVATIVE
"System input (cycloid) (There are 2 reference inputs)"
UR1l = FCNSW(T-3,(-PI/2.+.25*(2.*PI*T/3.-SIN(2.*PI*T/3.))),C
URZ2 = FCNSW(T-B,(.25*(2.*PI*T/3.-SIN(2.*PI*T/B.))),(PI/2.),:

Fl = FCNSW(T-5.,0,GG1,GGl)

F2 = FCNSW(T-5., (PI/2.),GG2,GG2)

GGl = FCNSW(T-8.,FH1, (-PI/2.), (-PI/2.))

GG2 = FCNSW(T-8,FH2,0.,0.)

FHL1 = -.25%(2.*PI*(T-5.)/3-SIN(2.*PI*(T-5.)/3.))
FH2 = PI/2.+FH1 , , o

XMODI" = INTEG ((~XMOD1+NUM1*UR1) /TAUMIL, MIC1)
YMOD1 = XMOD1 o

XMOD2 = INTEG ((-XMOD2+NUM2*UR2) /TAUM2, MIC2)
YMOD2 = XMOD2 .

"Plant Description:"

"Y1l = Thetal, Y2 = Theta2, ¥3 = ThetalDot, Y4 = Thetal2Dot"

M1l = Al + A2*COS(Y¥2)

M12 = A3 + (A2/2)*C0S(Y2)

M21 = M12 e o

M22 = A3

N1 = -(A2*SIN(Y2))*(Y3*Y4+(Y4**2)/2)
N2 = A2*SIN(Y2) * (Y3**2) /2

Gl = A4*COS (Y1) + AS*COS (Y1+Y2)
G2 = AS*COS (Y1+Y2)

Hl = V1*¥Y3 + V2*SIGN(1.0,Y3)

H2 = V3*Y4 + V4*SIGN(1.0,Y4)
J1l = -L*(SIN(Y1)+SIN(Y1+Y2))

J12
J21
J22

JD11
Jp1l2
Jbz21l
JD22
G

"The

93

~L*SIN(Y1+Y2)
L* (COS (Y1) +COS (Y1+Y2))
L*COS (Y1+Y2)

=L*Y3*COS (Y1) + JD12
~L* (¥Y3+Y4) *COS (Y1+Y2)
-L*Y3*SIN (Y1) + JD22
=L* (¥Y3+Y4) *SIN (Y1+Y2)

9.81

following matrix is multiplied times the vector"

"of derivatives in the equation of the robot, therefore"
"it will have to be inverted"

MTI11l
MTI12
MTI21
MTI22

DETMT

INV11
INV1Z
INV21
INV22

"Now
n equa

DUM1
DUM2
ARHS1
ARHS2
RHS1
RHS2

"Now

Y1
Y2
Y3
Y4

= -M11l - M* (J11**2 + J21**2)

= =M12 - M* (J11*J12 + J21*J22)
= -M21 - M*(J11*J12 + J21*J22)
= -M22 - M* (J12**2 + J22%x2)

= MTI11*MTI22 - MTI12*MTI21

= MTIZ22/DETMT

= ~MTI1l2/DETMT

= =MTI21/DETMT

= MTI11l/DETMT

we calculate the right hand side of the differential™
tion for the last two state variables (y3 and y4):"

(JD11*¥Y3+JD12*Y4)

(JD21*Y3+JD22*Y4)

N1+G1l+H1-UPLAl+M* (G*J21+J11*DUM1+J21*DUM2)
N2+G2+H2~UPLA2+M* (G*J22+J12*DUM1+J22*DUM2)
INV1I1*ARHS1 + INV12*ARHS2

INVZ1*ARHS] + INV22*ARHS2

e

we can calculate the state variables:"

INTEG (Y3, PICl)
INTEG (Y4, PIC2)
INTEG (RHS1, PIC3)
INTEG (RHS2, PICY)

"Feedforward gain (DP(s)):"

XDP1
XDP2
XDP3
XDP4

INTEG (~TAU2*XDP1+XDP2+DPL*UPLAL, DICL)
INTEG (-XDP1,DIC2)

INTEG (-TAU2*XDP3+XDP4+DP2*UPLA2,DIC3)
INTEG (-XDP3,DIC4)

nuuu

DPPLAl = XDP1l/TAUl
DPPLAZ = XDP3/TAU1L

"Adap

tive Gains:"

Wi i W u | i w o Emm

(I
!

Wi W Wi Wnn

N
|
I

IEll
IEl2
IE21
IE22
IX1l1
IX12
IX21
IX22
IULl
Ivul2
1021
Iy22

KEll
KEl2
KEZ21
KE22
KX1l1
KX12
KX21
KX22
KUll
KUl2
KU21
KUuz22

INTEG ((ERROR1**2) *TEN, KE11lIC)
INTEG ((ERROR1*ERRORZ2) *TEN, KE12IC)
INTEG ((ERROR2*ERROR1) *TEN, KE21IC)
INTEG ((ERROR2**2) *TEN, KE22IC)
INTEG((ERROR1*XMOD1) *TXN, KX11IC)
INTEG ((ERROR1*XMOD2) *TXN, KX12IC)
INTEG ((ERROR2*XMOD1) *TXN, KX21IC)
INTEG ((ERROR2*XMOD2) *TXN, KX22IC)
INTEG ((ERROR1*UR1) *TUN, KU1llIC)
INTEG ((ERROR1*UR2) *TUN, KU1l2IC)
INTEG ((ERRORZ2*UR1) *TUN, KU21lIC)
INTEG ((ERRORZ2*UR2) *TUN, KU22IC)

ERROR1**2*TEB + IEl1l
ERROR1*ERROR2*TEB + IE12
ERRORZ2*ERROR1*TEB + IE21
ERRORZ**2*TEB + IE22
ERROR1*XMOD1*TXB + IX1l1
ERROR1*XMOD2*TXB + IX12
ERRORZ2*XMODI1*TXB + IX21
ERRORZ2*XMOD2*TXB + IX22
ERROR1*UR1*TUB + IUll
ERROR1*UR2*TUB + IU12
ERRORZ2*UR1*TUB + IU21
ERROR2*UR2*TUB + IU22

"Output of the Adaptive Gains:"

KEQUT1
KEOQOUT2
KXQUT1

KXouTZ2

KUoUT1
KuouT2

"Now we

UPLAl
UPLAZ2

ERROR1*KE1l + ERROR2*KE12*DEC
ERROR1*KEZ21*DEC + ERROR2*KE22
XMOD1*KX1l + XMOD2*KX12*DEC
XMOD1*KX21*DEC + XMOD2*KX22
UR1*KUll + UR2*KU1l2*DEC
UR1*KU21*DEC + UR2*KU22

Hunuwuau

can obtain the Input to the Plant:"

KEOUT1 + KXOUT1 + KUOUT1
KEOUT2 + KXOUT2 + KUOUT2

"The following lines change the load on the arm:"

PROCEDURAL
IF(T.LT.TDROP)M=MINI
IF (T.GE.TDROP) M=MNEW

END

"Calculation of the actual and augmented errors:"

EY1
EY2
ERROR1
ERRORZ2

YMOD1I - Y1
YMODZ2 - Y2
EYl - DPPLAL
EYZ2 - DPPLA2

94

end
"Specify termination condition:"

TERMT (T.GE.FIN)

END $ "of DYNAMIC"
END $§ "of PROGRAM"

95

L

l\ m

f

e}
I

£x!

EMM LD
sk bl

Ll

"

g
o kbibbing

i)

[

AR

I

e 1 {

e

{

(1]

(2]

(3]

(4]

(5]

(6

(71

(8]

LITERATURE CITED

BarKana, 1., "Adaptive Control - A Simplified Approach." Advances in
Control and Dynamic Systems, C.T. Leondes, Ed., Vol. 25, Academic Press,
1987.

Sobel, K. M. and Kaufman, H., "Direct Model Reference Adaptive Control
of a Class of MIMO Systems." Advances in Control and Dynamic Systems,
C.T. Leondes, Ed., Vol. 24, Academic Press, 1986.

Sobel, K. M., Kaufman, H., and Mabius, L., "Implicit Adaptive Control for

“a Class of MIMO Systems." IEEE TAES, Vol. AES-18, No. 5, 1982.

Kaufman, H., and Neat, G. W., "Asymptotically Stable Direct Model
Reference Adaptive Controllers for Processes Not Necessarily Satisfying
a Positive Real Constraint." CIRSSE Report #66, Rensselaer Polytechnic
Institute, October 1990.

Neat, G. W, "Expert Adaptive Control: Method and Medical Application.”
PhD Thesis, Rensselaecr Polytechnic Institute, 1990.

BarKana, . and Kaufman, H., "Robust Simplified Adaptive Control for a
Class of Multivariable Continuous Systems.” 24[h IEEE Conference on
Decision and Control, Ft. Lauderdale, Florida, 1985.

BarKana, I. and Kaufman, H., "Global Stability and Performance of a
Simplified Adaptive Control Algorithm.” International Journal of
Control, Vol. 42, No. 6, 1985.

Steinvorth, R., Kaufman, H., aﬁd Neat, G. W., "Direct Model Reference
Adaptive Control with Application to Flexible Robots." SPIE International

Symposia, Boston, Mass., 1990.

96

(91

(10]

(11]

[12]

97

Kaufman, H., Neat, G., and Steinvorth, R., "Asymptotically Stable MIMO
Direct Model Reference Adaptive Controller for Processes Not Necessarily
Satisfying a Positive Real Constraint.” European Control Conference,
Grenoble, July 1991,

Ghorbel, F., Hung, J., and Spong, M., "Adaptive Control of Flexible Joint
Manipulators." IEEE Control Systems Magazine, pp 9-13, Dec 1989.

Seraji, H., "Decentralized Adaptive Control of Manipulators: Theory,
Simulation, and Experimentation." IEEE Transactions on Robotics and
Automation, Vol. 5, No. 2, April 1989.

Advanced Continuous Simulation Language Reference Manual. 4th ed.

Mitchell and Gauthier Associates. Concord, Mass., 1986.

~a

Wl ®/0 W05 = W W oW

