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ABSTRACT

This project presents the results of controlling two types of robots using

new Command Generator Tracker (CGT) based Direct Model Reference Adaptive

Control (MRAC) algorithms. Two mathematical models were used to represent a

single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were

then controlled in simulation using different MRAC algorithms. Special

attention was given to the performance of the algorithms in the presence of

sudden changes in the robot load.

Previously used CGT based MRAC algorithms had several problems. The

original algorithm that was developed guaranteed assymptotic stability only

for almost strictly positive real (ASPR) plants. This condition is very

restrictive, since most systems do not satisfy this assumption. Further

developments to the algorithm led to an expansion of the number of plants

that could be controlled, however, a steady state error was introduced in the

response. These problems, led to the introduction of some modifications to the

algorithms so that they would be able to control a wider class of plants and at

the same time would asymptotically track the reference model.

This project presents the development of two algorithms that achieve the

desired results and simulates the control of the two robots mentioned before.

The results of the simulations are satisfactory and show that the problems

stated above have been corrected in the new algorithms, in addition, the

responses obtained show that the adaptively controlled processes are resistant

to sudden changes in the load.
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1.1 Introduction

This project presents some new modifications to a Direct Model Reference

Adaptive Control (MRAC) algorithm proposed by BarKana and Kaufman [1].

that were introduced to achieve asymptotic tracking and thus eliminate a

...... steady state error that used to occur. _ in this project, we present the use of the

" new algorithms in simulations to control two different types of robot mani-

pulators, and we compare their performance with algorithms that were used

previously. "

Why do we want to use adaptive control when we deal with robot

manipuiators? The reason is that there are always uncertainties that occur

when we use robots to perform a given task, due to the changing environment

in which they operate. If we use a non-adaptive controller, a set of gains

which is adequat_ for a certain situation may not be adequate for another. The

idea of adaptive control is to adjust to account for unexpected changes that

occur in the system.

An example of a parameter that can suddenly change in a robot is the

force or the torque exerted by the load that they carry. This alteration could

be caused by different factors, such as unknown: mass of the load, slippage at

the end effector, or even drop of the load. Obviously, if no action is taken by

the controller to account for these changes, there can be a negative effect on

the performance of the robot. One solution to the problem presented by such

unforeseen changes in the plant is to use an adaptive controller. As its name

implies, an'adaptive controller incorporates gains which adjust (adapt) with
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time to account for changes that occur in the system.

Direct model reference adaptive control techniques are currently based

on one of three different approaches [4]: First is the full state access method,

which assumes that all state variables can be measured. This method has the

limitation that the plant states are assumed to be directly measured which is

not always possible. Second is the augmented error method which

incorporates observers into the controller to be able to have access to the

entire state vector. The disadvantage of this approach is that it becomes very

complex when dealing with multi input-multi output systems such as robot

manipulators where we have as input, several joint torques and as output,

several joint angles. Finally, the algorithms presented in this project, are

based upon command generator tracker theory as originally proposed by

Sobel, Kaufman and Mabius [3].

Several advantages of the command generator tracker based approach

over other methods include [4]:

- no need for direct estimates of the plant parameters

- direct applicability to multiple input-multiple output plants

- sufficiency conditions which are independent of plant dimension

- control calculation which does not require adaptive observers or the

need of full state feedback

- ease of implementation

- successful experimental validation

The major drawback with the original method proposed in [3] was the

need for the system to satisfy a positive real condition. This greatly limited the

number of plants which could be controlled using this algorithm. BarKana [1]
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expanded the algorithm to include a larger class of plants by adding a

feedforward term in parallel With the original plant; however, the difference

between the augmented plant and the model's output was not the true

difference between the model and plant outputs, and this situation introduced

.......... a steady state error. The modifications used in this project, eliminate this

- steady state error, while maintaining the larger number of plants that can be

controlled. The following section describes the development of the algorithms

- givenin [1] and [3] and explains their limitations in more detail.

• 1.2 Background

In this section we will show the development of the command generator

ti'acker based Model Reference Adaptive Control algorithm derived by Sobel

and Kaufman [2] and the extension provided by BarKana [1] which gene-

ralizes the approach to a wider class of plants.

1.2.1 Problem Description

We have a plant that is described by the following set of state equations:
o

..... _ (1.1) _p(t) = Apxp(t)+ Bpup(t)

(1.2) yp(t) = Cpxp(t)

where Xp(t) is the (npxl) plant state vector, Up(t) is the plant control

vector, yp(t) is the plant output vector, and Ap, Bp, and Cp are matrices having

the appropriate dimensions. Without knowing Ap, Bp, and Cp explicitly, we

want to find the plant's control vector Up(t) such that its output vector yp(t)

asymptotically tracks the output of a reference model given by the following

state equations:

w
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(1.3) _;m(t) = Amxm(t) + Bmum(t)

(1.4) ym(t) = Cmxm(t)

where Xm(t)is the (nmxl) model state vector with dimension nm, urn(t)is the

model control vector, ym(t) is the model output vector, and Am, Bin, and Cm are

matrices having the appropriate dimensions. It is important to note that the

only restriction on the model is that it must have the same number of outputs

as the plant; however, the dimension of the model state may be smaller than

the dimension of the plant state. Therefore, it is possible to choose nm < np in

order to simplify the problem. In addition, urn(t) can be any command signal

that can be described as the solution of a differential equation forced by a step

input as long as the time-varying portion of the command signal is augmented

to the model state vector [5]. The basic strategy is to choose a model that will

yield the desired output given a simple command input.
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1.2.2 Development of the CGT Concept

The development of the adaptive algorithm is based on the command

generator tracker (CGT) concept introduced by Broussard. Our description of

this concept will closely follow the ones given in [2] and [5]. This approach

assumes that there exist ideal trajectories of the plant X*p(t) and U*p(t) that

satisfy the following equations:

• * Apx;(t) *(1.5) Xp (t) = + Bpup (t)

(1.6) y;(t) = Ym = Cpxp(t) = Cmxm(t)

when perfect tracking occurs the real trajectories of the plant, Xp(t) and Up(t),

are the same as the ideal trajectories and therefore the real plant output
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becomes the ideal plant output which is defined to be the output of the model.

It is assumed that the ideal trajectories X*p(t) and U*p(t) are linear

functions of the model state and input Xm(t) and Um(t), mathematically,

(1.7)
Xp(t)

up(t)
:[slls12J Xm1

S2I $22 Um

In equation (1.7) Um is assumed to be a constant input (otherwise we will need

derivatives of the model input). We can rewrite equations (1.5) and (1.6) to

obtain

(1.8)
Xp

Yp

Xp

Up

Substituting this result into equation (1.7) yields

(1.9)
Xp

Yp
Bp][slls12]Ex J
0 S21 $22 tim

Sin_ce Um is a constant input we can differentiate the first equation in (1.7) to

... obtain the following (for simplicity from here on we will omit the reference to

time, t.)
.*

(1.10) Xp = Szzim

Substituting equation (1.3)- ]nt6- (1.10) and concatenating with (1.6) results in

I ]I lrJ(1.11) Xp = SllAm SllBm Xm

* C= 0 Um
........ _ Yp

We can now equate equations (1.9) and (1.11) to obtain



w

6

(1.12) ISIIAm SIIBm

" L e__ 0 ]Ixo  EApB JEs,,Sx2] XmIUm Cp 0 S21 S22 Um

and since Xm and Um are arbitrary this yields
?

(1.13) [SllAm SIlBm] =[ Ap Bp ][Sll S12]
Cm 0 C_.p O $21 $22

A sufficient condition for Equation (1.13) to have a solution is that

(1.14)
f2u f212 ]=[ Ap Bp ]"
_21 _"222 Cp 0

exists and no transmission zero of the plant is equal to any eigenvalue of Am

[5]. The resulting equations to be solved are

II

|
Z

i

[]

i

m

(1.15)

(1.16)

(1.17)

(1.18)

Sll = f211SIlAm + f212 C--m

S12 = f211SllBm

$21 = _2t SIlAm + f222 Cm

$22 = _221 SllBm

Even if (1.14) does not exist, a solution can almost always be found for Sij

[2]. For perfect output tracking, if yp = Ym at t=0, equation (1.7) shows that the

"" control trajectory for this constant gain command generator tracker method is

given by

(1.19) u_(t) = S21xm(t) + S22um

The sufficient conditions to assure that perfect output tracking will occur

using this control law are [5]:

A1) The matrices Ap, Bp, and Cp are known, linear, and time invariant.

A2)

A3)

The inverse of equations (1.14) exists.

No transmission zero of the plant is equal to any eigenvalue of Am.
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If Ym _ Yp at t=O, then we can achieve asymptotic output tracking if a

stabilizing output feedback is included in the control law. The first step in

obtaining this stabilizing feedback is to look at the error equation (i.e. the

difference between the ideal and real states Of the plant): _

w

=.-

m

sins

! _27-

!N

(1.20) e = x_ - Xp

We can differentiate equation (1.20) and substitute equations (1.1) and (1.5) to

obtain

(1.21) = Xp - _:p = Apxp + Bpu; - Apxp - Bpup

which is equivalent to

(1.22) d = Ape + Bp(u_ - Up)

Choosing the following control law

(1.23) Up = u_ + K(ym - yp) = Up + KeCpe

and substituting into equation (1.22) yields the following error equation

(1.24) e" = (Ap - BpKeCp)e

Obviously, the error will approach zero asymptotically provided that Ke is a

stabilizing output feedback gain.

Therefore, we conclude that in order to achieve asymptotic output

tracking when Ym * Yp at t=0, we require the following condition in addition to

those listed before (A1 - A3):

A4) A constant feedback gain Ke exists such that (Ap BpKeCp) is

asymptotically stable. ............

The resulting non-adaptive controller as given by equation (1.23) is

represented in figure 1.1.
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Figure 1.1: Non adaptive command generator tracker controller
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" 1.2.3 Development of the Adaptive Control Law

As we mentioned previously, we are interested in the case when we do not

have exact knowledge of the plant parameters, or in other words, condition A 1

is not satisfied. We want = to determine a control law Up(t) which will cause the

plant's output yp(t) to approxzmate "reasonably weild-the model's output ym(t)

without specific knowledge of Ap, Bp, and Cp. The adaptive control law chosen

to achieve this is of the same form as the non-adaptive law given by equation

(1.23) with the exception that the gains (Ke(t), Ku(t), and Kx(t)) are adaptive:
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(1.25) Up(t) = Kx(t)Xm(t) + Ku(t)um + IQ(t)(ym(t) - yp(t))

We are now faced With_the task of finding adaptive laws for KelKu, and Kx

such that e(t) -> 0 as t-> oo In order to simplify the equations we will define

the matrix Kr(t) and the vector r(t) as follows:

(1.26) Kr(t) =[ Ke(t) Kx(t) Ku(t) ]

i (1.27) r(t) =

ym(t) - yp(t)

Xm(t)

1.1m

therefore

(1.28) up(t) = Kr(t)r(t)

The adaptive gains are obtained using the following equations which

were proposed by Sobel, Kaufman, and Mabius [3]:

"" where

D

(1.29) Kp(t) =[ym(t) - yp(t)] rT(t) T

(1.30) I(i(t) = [ym(t) - yp(t)] rr(t) T

(1.31) Kr(t) = Kp(t) + KI(t)

and T are time invariant square matrices. Kp(t) and Ki(t) are

proportional and integral gains used only as an intermediate step in the

calculation of Kr(t). The following are sufficient conditions to achieve an

asymptotically stable error:

A$) _ and T are positive semidefinite and positive definite respectively.

Ar) The plant is almost strictly positive real (ASPR).

Condition A6 means that there exist some feedback gain matrix Ke such

that the fictitious stabilized plant described by the triplet (Ap- BpKeCp, Bp, Cp)

is strictly positive real. The proof of this stability result appears in [3]. Figure
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1.2 shows the block diagram for the resulting adaptive algorithm.

with Fig 1.1 shows that it is very similar to the non-adaptive case.

Comparison

am

, I Oa,nl' Calculation

Xm

Model

Ym

e

p _ _ ! _ _ m m m_ w

Controller

Up

Plant
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Figure 1.2: Model Reference Adaptive Controller
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1.2.4 Extension of the Original Algorithm

As it turns out, A6 is a very restricting condition. Many plants do not

satisfy the ASPR assumption and therefore the stability results from the

previous section do not hold. To alleviate this problem, BarKana and Kaufman

[6,7] suggested augmenting the plant with parallel dynamics such that the
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..... augmented plant is ASPR so that the adaptive controller may be used.

Here we show the basic idea of this approach [8]. Let a non-ASPR plant be

described by the following transfer matrix:

_,-...._....... (1.32) Gp(s) = Cp(sI - Ap)'lBp

then, choose another transfer matrix H(s) in such a way that the augmented

p|ant transfer matrix described by

is ASPR.

.... (1.33) Ga(s) = Gp(s) + H'I(s)

In [1] it is shown that the augmented plant Ga(s) will be ASPR

provided that both

• H(s) itself is ASPR

• H(s) stabilizes the closed loop output feedback system with

transfer function [i + Gp(s)H(s)]-tGp(s).

A choice for H(s), that is easy to implement and has been widely used, is

(1.34) K(s) = +

where Dp is a gain matrix and x is a positive constant which can be chosen to

-' satisfy the conditions stated previously. This results in the

augmented plant:

following

Ga(s) = Gp(s) +

.::= The block diagram of _e resulting system appears in Figure 1.3. In the

the rest of this report we will refer to this algorithm as the "BarKana

algorithm". As we can see in the figure, the error which is ensured to be

stable (ey) is not the true difference between the original plant's output and

the model's output.
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Figure 1.3: Extension to the CGT based MRAC system
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In this case, the error is the difference between the augmented plant output

and the model's output. This results in a steady state error. It is shown in [6]

that if a plant is output stabilizable via high gain output feedback, then IIDpll

can be Chosen to be small. In this case, the steady state error can be

considered to be negligible and the original plant's output will be
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approximately equal to the model's output.

1.3 Summary

We have presented a CGT based MRAC algorithm. The algorithm has the

disadvantage that it guarantees asymptotic tracking only for a very restricted

group of plants (i.e. ASPR plants). This algorithm was extended by BarKana

and Kaufman to comprise a wider range of plants. However, this extension has

the complication that a steady state error develops between the model and

plant outputs.
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CHAPTER 2

Modifications to Insure Asymptotic Tracking
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2.1 Introduction

It is apparent that there are some limitations with the CGT based MRAC

algorithms discussed in Chapter 1. The original algorithm has the restriction

that it requires the plant to be ASPR. An attempt to solve this problem by

BarKana and Kaufman [6,7] has the limitation that it results in a bounded

steady state error. What we want is an algorithm which expands the range of

plants for which asymptotic stability is ensured, in other words we want to

eliminate the steady state error. This chapter will cover two approaches that

achieve the desired results.

2.2 Modification #1: Adding a Feedforward to the Model

One approach to eliminate the steady state error resulting from the

addition of the feedforward term to the plant's output is to incorporate this

term into the model as well. 'The following is the development of this idea [9].

Consider the system defined by equations (1.1) and (1.2) and the model given

by equations (1.3) and (1.4). Define an augmented plant output

(2.1) zp(s) yp(s) + H'i(s)up(s)

where

(2.2) FF l(s) = Dp
l+xs

Substituting equation (1.28) into Equation (2.1) we obtain

B

14
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(2.3) Zp(S) -- yp(S) + H'l(s)[Kxxm + KuUm+ Keey]

Up to now, nothing new has been added to the algorithm, the new concept

is to define an augmented model output as we have done with the plant's

output:

(2.4) Zm(S) = ym(s) + I-I'l(s)[Kxxm + Kuum]

Now, in order to control the augmented plant we will consider the

augmented error between augmented plant and model outputs:

(2.5)

which is equivalent to

ez = zm - Zp

or

(2.6) ez = Ym - Yp - H'lKeez

where ey = Ym - Yp.

(2.7) ez (I + H'IKe)"I-= ey

Substituting equation (2.2) into (2.7) gives

(2.8) (I += ey
1 +xs

which is equivalent to

(2.9) ((1 + xs)I + DpKe)ez = (1 + xs)ey

We can now take the inverse Laplace transform to obtain

(2.10) xez(t) + (I + KeDp)ez(t) = X_y(t) + %(0

therefore if the MRAC is designed so that Zp -> zm asymptotically then ez and ez

will both approach zero and equation (2.10) reduces to
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(2.11) "_Cy(t) + ey(t) = 0

from which we can immediately tell that ey will decay to zero asymptotically;

= = this is the desired result. _ The stability proof for this approach is presented in

[9]. Figure 2.1 shows the block diagram of the resulting system. In the rest of

this report we will refer to this algorithm as the "Kaufman algorithm".
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Controller
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Figure 2.1: Modification #1 to the Model Reference Adaptive Controller to

achieve assymptotic tracking
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2.3 Modification #2: Adding a Zero to the Feedforward

Another way to achieve asymptotic tracking is by adding a zero at the

origin to the feedforward term in parallel with the plant. The reason for this

is that if the feedforward term has a zero at the origin it will asymptotically

decay to zero and thus eliminate the steady state error. To implement this, we

might make the feedforward term H'l(s) equal to one of the following two

transfer matrices:

(2.12) H-l(s) ; Dps
xs+ 1

or

(2.13) H_1(s) _ Dps
as 2 + bs + 1

where Dp is a gain matrix and '_, a, b are positive constants. The block diagram

of the system is the same as the one previously given in Figure 1.3. In our

simulations, which appear in the next chapter, we used equation (2.13)

because it gave better results. In the rest of this project we will refer to this

algorithm as the "Derivative algorithm".

2.4 Addition of a Derivative Term to the Plant Output

A modification to the algorithms presented in sections 2.2 and 2.3 which

might make the system less sensitive to change is the augmentation of the

plant's output with a derivative term as follows:

(2.14) Ya = Yp + c_}p

where O_ is a positive constant. The augmented plant's output would be used

instead of the actual plant's output in each of the previous algorithms. We now
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............ intuitively give some validation to this claim. We know that the plant output

can be expressed as follows:

(2.15) H(s)up(s)
and equation (2.14) is equivalent to

(2.16) ya(S) = (_s + 1)yp(S)

or

(2.17) ya(S) (=s + 1)H(s)Up(S)

which means that we are adding a zero to the plant, therefore making the

system "more strictly positive real", since we know that a system cannot be

strictly positive real if its relative degree is larger than one. Even though we

now have an augmented plant, its output at steady state will be the same as the

output of the real plant since at that point the derivative term will become

zero.

As we will see in later chapters, some of the algorithms presented above

will in some cases have high frequency oscillations. The alpha term

introduced in this section was observed to alleviate this problem. The larger

the magnitude of o_, the larger the reduction of the high frequency

components of the response. However, increasing a also increases the error

during the transient part of the response, because at these times the derivative

term is not zero, and therefore the difference between the augmented plant's

output and the model's output is not equal to the difference between the real

plant's output and the model's output. As we reach steady state, the derivative

terms decay to zero, and the augmented output is equal to the real output which

results in asymptotic tracking.
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To summarize, if there are high frequency components in the response

we can eliminate them at the expense of a larger error during the transient.

The amount of compromise will depend on the value that we choose for a.

Figure 2.2 give a block diagram of our augmented plant.

mDmuu_m_m_m_mgmm_

Up Plant

New Plant

Figure 2.2: Plant augmented by weighted derivative term.
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2.5 Summary

In this chapter we have shown two major modifications to the previous

" MRAC algorithms that accomplish asymptotic output tracking while at the

same time maintaining the capability of controlling non-ASPR plants. The

first modi_cation involved augmenting both the model and the plant outputs,

and the second included a zero at the origin in the feedforward. In addition,

the idea=::Of:::aUgmenting the original plant with a derivative term was

considered in order to make the system less sensitive to change.
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CHAPTER 3

Application to a Single-Link, Flexible-Joint Arm

m

L_
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3.1 Introduction

This chapter contains simulations to evaluate the use of the modified

MRAC algorithms. We will control a single-link, flexible-joint robot arm that

is described in [10], using the different variations of the MRAC algorithm

described in the previous chaptcr. In addition,, to show the uscfulness of

adaptive control, we will carry out simulations which demonstrate its

performance during unforeseen circumstances (i.e. sudden load changes). All

the simulations were carried out using Advanced Continuous Simulation

Language (ACSL) in a VAX computer system. A listing of the ACSL programs

used appears in the appendix.
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3.2 Plant Description

Here we present the model of the single-link, flexible-joint arm (as given

in [10]), that we will use to carry out our simulations. The joint is formed by

two aluminum plates joined by extension springs with an actuator directly

driving one plate. The dynamics of the system are given by the following

equations:

_z

u

Z--_--

II

(3.1) Iql + Mgl sin(ql) + k(q 1 - q2) = 0

(3.2) Jq2 + Bci2 - k(ql - q2) = Up

where: Up = control torque which is calculated from the adaptive algorithms

ql = angle at the drive end of the link

q2 = angle at the load end of the link

20
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I = link inertia = 0.031 kg-m 2

J = rotor inertia = 0.004 kg-m 2

B -- rotor friction = 0.007 N-m-sec/rad

Mgl -- loading effect - 0.8 N-m

k = joint stiffness -31.0 N-m/rad

Figure 3.1 shows a sketch of the link and the different parameters which

describe the above equations:

m

m

m

u

II

II

Up

m

m
B

mE

Figure 3.1: Model of single-link flexible -joint arm from [11]

i

II

It is very important to emphasize that the plant's model is used only to

simulate the plant's behavior and it is not used in the control algorithm in any

way. In other words, we use these equations to program the arm's behavior in

ACSL to see how it will handle when we use our algorithms to control it.

In order to implement the MRAC algorithms we need to define a reference

model. In our case we chose the following first order model:

(3.3) Ym =___L._
Um s+ 1
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so as to yield an undamped response with a settling time of about 4 seconds.

We want the output of the system, which is the angle at the end of the

link (i.e. yp = ql), to asymptotically track the output of the model (Ym)- The

command applied to the model (urn) was arbitrarily chosen to be one radian for

the first 30 seconds of the simulation, followed by a switch to a negative one

radian command for the rest of the simulation as shown in Figure 3.2. Some of

the 'simulations wHl involve a :sud_en change in the load the arm is carrying to

test how the algorithm adapts to this "unforeseen" circumstance. In these

occasions, the load change will occur at 15 seconds, and we will double the

parameter Mgl from its nominal value of 0.8 N-m to a new value of 1.6 N-m

instantaneously. Such a situation might occur in practice by an unwanted

shift in the arm's load.

B

u

III

f

U
m

-1

3O 60

i
time (see)

w

m

u

lira

Figure 3.2: Command given to the model
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3.3 Simulation Results

3.3.1 BarKana Algorithm

We will first show results of controlling the flexible arm using the

extended CGT based MRAC algorithm with no modification to achieve

asymptotic tracking (described in section 1.2.4), to be able to later compare its

performance with the algorithms that include the new modifications. In these

simulations we used the following values for the parameters for the algorithm:

(3.4) Dp = 1.0

100

T=T= 010

001

x =0.I

We can see in Figure 3.3 (a) a simulation of controlling the arm. The plot

shows both, thc output of the plant (i.e. the joint angle of the robot) and thc

output of the rcfcrence model. In this casc the load thc robot is carrying
: ".A

remains unchanged throughout the entire simulation. Figure 3.3 (b) depicts

the same situation, however, in this case the load on the arm is doubled (i.e.

-_ Mgl = 1.6) at time = 15 seconds.

In both cases, a large steady state error is present in the response. Figure

3.3(b) shows that this steady state error becomes larger when the load

increases. The steady state error is also directly dependent on the value of Dp,

in other words, increasing Dp results in larger error and decreasing it results

in smaller error. In addition, it was observed that decreasing Dp, while

decreasing the steady state error, results in larger oscillations and decreased

robustness. The results confirm the need for another algorithm which can
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Figure 3.3: Ploi _ of the plant and=m0del outputs =(rad.) vs. time

(see.) using the "BarKana algorithm" for (a) no change

_, _,_ : in the arm's load, and (b)when the arm's load is
doubled at 15 see.
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3.3.2 Kaufman Algorithm :=: .......

We will now deal with simulations that use the algorithm described in

section 2.2. This eliminates the steady state error that occurs in the previous

simulations. The values used for the algorithm parameters in the following

simulations were:

(4.5) Dp = 100.0

I
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10

T=T= 0

0

I:=0.1

0 0

10 0

0 10

It important to mention that the parameters used in this simulation and

all the others that come in this and the next chapters, were chosen to obtain a

satisfactory response, however, they are not optimal and it is most likely that

values which yield better responses exist. Also note, that we no longer have

the restriction of using a small value for Dp as for the "BarKana algorithm".

Figure 3.4 shows the result of using our new controller to operate the

robot arm. We can see that the difference between the plant and model outputs

is barely noticeable, and that we achieve asymptotic tracking (i.e. the steady

state error is eliminated). To test the robustness of the system, we doubled the

load (i.e. Mgl = 1.6 N-m) on the manipulator at time=15 see., and the results

appear in figure 3.5

As we Can"see in figure 3.5(a), there is a small discontinuity when the

load changes, however, the joint angle continues to asymptotically track the

output of the reference model. The difference between the reference model

and the arm's joint angle is very small after 20 seconds. Figure 3.5(b) shows

the actual difference between the model output and the joint angle. The

difference becomes large at three places: at the two transients and at the load

change, and then it rapidly decays to zero, as expected. In addition, figures

3.5(c) and 3.5(d) show the plots of the torque applied to the arm (i.e. input

command to the plant) and the value of one of the adaptive gains. Both of

these values are bounded and achieve a steady state when the response of the

system is also in steady state. Notice that the values for the control torque
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remain below 1.5 N-re. It is apparent that the large changes in the input and

the gains occur when there is something to "adapt" to, that is at the transients

and the changes in the plant parameters (i.e, changing the load). In further

simulations, both, the command input and the gains will be similar and

therefore plots of their values will not be given from here on.

With respect to the algorithm parameters we noticed that in general, a

larger value of Dp increases the rise time of the response. The opposite is

gencraily true for 'c and the weight matrices, the larger thcsc values are. the

faster the response of the system.
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Plot of the plant and model outputs (rad.) vs. time

(sec.) using the "Kaufman algorithm" when there is no

change in the arm's load.
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Figure 3.5: Simulation using the "Kaufman algorithm" with no

Change in the arm's I0ad. (a) Plot of the plant and

model outputs (tad.) vs. time (see.), (b) Plot of the

error between plant and model outputs vs. time, (c)

Plot of the torque applied to the arm (N-m) vs. time,

and (d) Plot of the gain Ke vs. time.
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These rules are only approximate, however, they are useful in finding

values for the parameters that will yield a good response.

It is apparent, that this modification to the previous algorithm achieves

asymptotic tracking and can perform quite well in controlling the single-link

flexible-joint arm. In addition, the system can successfully adapt to unex-

pected changes in the plant.

3.3.3 Derivative Algorithm

The other alternative to achieve asymptotic tracking was to use the

algorithm presented in section 2.3. Simulations were made using this algo-

rithm with the following nominal parameter values:

(3.6) Dr, = 0.2

600

T=T= 060

0O6

a=0.4

b=0.4

The result of the first simulation appears in Figure 3.6 and shows the

responses of the model and the arm. It verifies that the steady state error is

eliminated by using this algorithm. The actual error in the tracking is only

noticeable in the transient part of the response. Figure 3.7 shows the results

obtained when the torque at the load end of the robot is doubled to 1.6 N-m at

time =15 see. . The plot shows that there is a discontinuity at the instant of the

change in the load, however, the system continues to be stable and

asymptotically tracks the model. Figures 3.8(a) and (b) show plots of the
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values of command torque and the gain acting on the error respectively. Both

parameters are bounded and achieve a steady state value. As expected, at the

transients and at the load change we can observe changes in their

magnitudes. It is interesting to note that the steady state values achieved by

the command torque in this simulation arc the same as those achieved in the

previous section.

The effects of changing the algorithm parameter values are the same as

before. Generally increasing Dp results in a slower response, while increa-

sing a, b, and the weight matrices results in a slower response.

Again, the modification introduced achieved asymptotic tracking and

successfully controlled the robot arm. In addition, the system is resistant to

sudden changes in the system.
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Figure 3.6: Plot of the plant and model outputs (rad.) vs. time
(see.) using the "Derivative algorithm" for no change in

the arm's load.
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Figure 3.7: Plot of the plant and model outputs (rad.) vs. time

(see.) using the "Derivative algorithm" for a sudden

change in the arm's load at 15 see.
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Figure 3.8: Plots using the "Derivative algorithm" for a sudden

change in the arm's load at 15 see. of (a) torque

command (N-m) vs time (see.) and (b) gain I,_ vs. time

(see)
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3.4 Summary

This chapter described a single-link flexible-joint arm and showed the

results of simulations used to implement different MRAC algorithms to control

it. The algorithms used were the "BarKana algorithm" which had a steady state

error and the Kaufman and Derivative algorithms that contain the new

modifications to achieve asymptotic tracking. The results of the simulations

showed that the robot can be successfully controlled using the new algorithms

and that the resulting systems are resistant to sudden changes in the payload.

A comparison of the two algorithms with the modifications showed that it

is easier to find good parameter values for the "Kaufman algorithm" than for

the "Derivative algorithm". In addition, the first consistently resulted in

smaller error than the second. The range of values of Dp that can be used with

the Kaufman algorithm seems to be larger than for the Derivative algorithm

since it is difficult to achieve a good response with large values of Dp in the

latter method.
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CHAPTER 4

Application to a Model of the PUMA 560 Arm

4.1 Introduction

This chapter continues with simulations to evaluate the usc of the

modified MRAC algorithms. We will control the second and third joints of a

Puma 560 robot arm using the m0dci given in [11]. This is a multiple input-

multiple output (MIMO) system; however, we will sec that thc complexity of

programing the equations to implement thc algorithms is not greatly

increased. Again, we use the different variations of the MRAC algorithm

dcscribcd in Chapter 2. In addition, to show the usefulness of adaptive control,

we will carry out Simulations which demonstrate its performance during

unforeseen circumstances (i.e. sudden load changes). We continue to carry

out all the simulations using Advanced Continuous Simulation Language

(ACSL) in a VAX computer system. The listings of the different programs used

to perform the simulations which appear in this chapter arc given in the

appendix

4.2 Plant Description

To carry out our simulations, we used a model of the second and third joint

dynamics of the Puma 560 arm, which wc will describe in this section

following the development that appears in [11]. In contrast to the flcxible arm

considered in Chapter 3, this is a multi input-multi output system, where the

inputs arc the two torques applied at both joints of the manipulator, and thc

outputs are the two joint angles. The matrix equation that describes this

32
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system is the following:

(4.I) T = M(e)0" + N(e,0) + G(e) + H(0) + mJT(o) [ J(e)0 + i(e,o)o+ g]

where the different terms in the equation are:

M(0) = Symmetric positive definite inertia matrix

N(0,0') = Coriolis and centrifugal torque vector

G(0) = Gravity loading vector

H(0') = Frictional torque vector

T = Vector of applied joint torques (control input)

e = Joint angle vector (plant output)

g = gravity vector

These terms are described by the following equations

(4.2) M(e) =

a
a 1 + a2cosO2 a3 +-52-cos02

2

a 3 + 25Lcos02 a 3
2

(4.3) N(O,O) =

(4.4)

(4.5)

.2

-(a2sinO2)(6102 +_'-)

"2
el

(a2sinO2)_
2

G(O) =[
a4cosO1 + ascos(O1 + 02) ]

Jascos(Ol + 02)

ViOl + V2sgn(el) ]H(O) = V302 + V4sgn(04)
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(4.6) J(0) =[
-LlsinOl - Lzsin(el + 02)

L_cose_ + L2cos(e_ + 02)

"1

- L2sin(01 + 02) |

JL2cos(el + 02)

,,,>,-[9°1]
_ _ The terms (al _.. as) appearing in the previous expressions are constants

that are obtained from the masses (ml, m2) and lengths (L1, L2) of both robot

links. In the case of_llnks 2_and 3 of the Unimation PUMA 560 arm, the masses

are ml = 15.91 kg and m2 = 11.36 kg respectively, and the lengths are LI = L2 "-

0.432 m. These result in the following numerical values for the model

parameters"

(4.8) (al, a2, a3, a4, as) = (3.82, 2.12, 0.71, 81.82, 24.06)

The terms (V 1, V 3) and (V 2, V4) are coefficients of viscous and Coulumb

friction, respectq'vely. The following values were assigned to these

coefficients: V 1 - V 3 = 1.0 Nt-m/rad-sec "1, and V 2 = V4 = 0.5 Nt-m. The payload

mass of the arm was set to m -- 10 kg. Figure 4.1 shows a 2-D view of the two

links of the PUMA 560 arm that we want to control.
r ....

As for the case of the single-link, flexible joint arm, this description of

the PUMA 560 arm is used only to create an ACSL simulation of the plant's

behavior to different command inputs. We do not use any of the knowledge

that we have from -the equations describing the model in our control

:algorithms. ".......

Again, we chose a first order reference model for the MRAC algorithms.

This model is given by _ thOfollOWing_equatlons:
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Figure 4.1: 2-D representation of the 2nd and 3rd links of Unimation

PUMA 560 robot manipulator.
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U

(4.9) Ym1 = us 1
(0.1s + 1)

....Urn 2(4.10) Ym2 =
(0.1s + 1)

We can see that there are two command inputs and two outputs. This is

necessary because the system to be controlled also has two inputs and two

outputs. We want the the angle at joint 1 (01) and the angle at joint 2 (02),

which are the outputs of the system, to asymptotically track the outputs of the

model, Yml and Ym2 respectively. The model was chosen so that its dynamics

are fast enough to have its output be approximately the same as the command
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w

w

input.

which change much slower than the model dynamics:

The two controls (urn l, urn2) are described by the following equations

:= -0rad 3<t< 5

J

L_
i

u

w

h

m

_- . 0.252_( t 5)

3
5<t_<8

=- _-rad 8 < t
2

(4.12) 0 < tUrn2 = Um 1 " _ rad
- 2

To test the robustness of our algorithms we introduced a sudden change in

the payload that the arm carries in some of our simulation runs that appear

later in this chapter. The change in the load occurs instantaneously 6.5

seconds into the simulation, and the value of m changes from 10 kg. to 20 kg.

4.3 Simulation Results

BarKana Algorithm

_: :_ In this secti0n we control ihe PUMA 560 arm using the algorithm

described in section 1.2.4 which did not contain the new modifications to

_ achieve asymptotic output tracking. This is done to compare the performance

of the previous algorithm with the new ones, and to be able to point out the

deficiencies that it has. The values used for the algorithm's parameters were

the following:

w



(4.13) Dp=[0.005 0 ]
0 0.005
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m

III

m

T=T=

m

300 000

030 000

003 000 xl0 4
000 300

000 030

_000 003

The results of the first simulation appear in Figure 4.2, which shows the

outputs of the model and the outputs of the plant (in radians) versus time (in

seconds). Figure 4.2(a) shows the response of the joint angle between the first

and second links, and 4.2(b) between the second and third links of the PUMA

560. It is clearly apparent that there is a steady state error in the response.

This error can be" decreased by making the value of Dp smaller, however, if we

make Dp too small unstable oscillations can appear in the response. Figure 4.3

shows the results when Dp = 0 when a sudden change in the load is present

during the simulation. It is clearly appreciated that the system is not

asymptotically stable since we have some increasing oscillations in the

response. These results give further reason for the modifications introduced

to the algorithm which will be used to simulate the control of the robot in the

subsequent sections.
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Figure 4.2: Plot of the plant and +model outputs

(b) __

(rad.) vs. time

(see.) using the "BarKana algorithm" for (a) no change
in the arm's load_ and (b) when the arm's load is

doubled at 6.5 sec.
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Figure 4.3: Plot using the "BarKana algorithm" when the arm's

load is doubled at 6.5 sec. for (a) the plant and

model's first output, (b) the error between plant and

model's first output, (c) the plant and model's second

output, and (d) the error between plant and model's

second output
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4.3.2 Kaufman Algorithm

The robot control is now simulated using the first of the modified

algorithms introduced to achieve asymptotic stability. The nominal values

used for the parameters of the algorithm are the following:

m

T=T=

op=E6°1
06

0.2 0 0

0 0.2 0

0 0

(4.14)

0

1.4

0

1.4 0 0

0 1.4 0

0 0 1.4 -

x 10 4

x = 0.01

m

u

imo

rml

Figure 4.4 shows the response of the plant and the model when no change

in the load is pre'sent, and we can see that the error between both is so small

that it cannot be observed. Therefore, the plots of the error are given in

Figure 4.5. In the future we will only present the plots of the errors when no

difference can be observed between model and plant outputs (as occurred in

Figure 4.4).

The results when a sudden change in the load is introduced at 6.5 see.

appear in Figure 4.6, which shows the error between the model and the plant
C-

outputs. A discontinuity is noticeable at the time of the load change, however,

the error decays to zero even though there are some high frequency

oscillations present in the response.
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Plot of the plant and model outputs (rad.) vs. time

(see.) using the "Kaufman algorithm" for no change in
the arm's load.
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Plot of the error between the plant and model outputs

(rad.) vs. time (see.) using the "Kaufman algorithm" for

no change in the arm's load.
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I
' "1_ 0 t'' " " _ _0

at/

i

I'

time time

Figure 4.6: Plot of error between the plant and model outputs
(tad.) vs. time (see.) using the "Kaufman algorithm"
when a sudden load change is present.

Figure 4.7(a) and (b) show the values of command torque and one of the

gains respectively. "" Again, as expected, the discontinuity can be observed at 6.5

see., but all the magnitudes remain bounded and achieve a steady state.

The error between the responses can be made as small as desired by

increasing the ratio between Dp and X (i.e. Dp/'_) and increasing the weights T

and T accordingly to achieve the desired results. The larger the allowable

values of T and T, the smaller the error that can be achieved.

To try to reduce the high frequency terms present at the time of the load

change the derivative term described in section 2.4 was incorporated into the

algorithm for the next simulation. We set cc = 0.0065 and left unchanged all the

other parameters of the algorithm given in eq. (4.14).

m
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Figure 4.7: Plots using the "Kaufman algorithm" when a sudden
load change is present of (a) the command torques

(N-m) to both joints and (b) one of the controller

gains.
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Figure 4.8 shows the resulting error between the plant and model's

response, and it is clear that the high frequency oscillations have been

notably reduced. Figure 4.9 shows the command torque and one of the gains of

the _ controller, and again, the high frequency oscillations are greatly dimini-

shed. The disadvantage of this approach, however, is that as figure 4.8 shows,

the error at the transients increases by a factor of three when compared to the

results obtained when no derivative term was used (figure 4.6). A compromise

must be reached between the reduction of the high frequency terms and the

size or the error by choosing the proper value of a. A larger value of a will

create a larger error but at the same time dampen out the oscillations.

m

z

m

! m

i - -[J

$ 2

,Q.

it
time

Figure 4.8: Plot of error between the plant and model outputs

(rad.) vs. time (see.) using the "Kaufman algorithm"

with a derivative term (ct = 0.0065) when a sudden

load change is present.
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Figure 4.9: Plots using the "Kaufman algorithm" with a derivative

term (ct = 0.0065) when a sudden load change is

present of (a) the command torques (N-m) to both

joints and (b) one of the controller gains.
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The simulations presented show that this modification to the original

algorithm 'is successful in controlling the given model of the PUMA 560 even

in the presence of sudden changes in the arm's payload.

i

E =

L •

= :

m

n

4.3.3 Derivative Algorithm

In this section we will show the results of some simulations when a zero at

the origin of the feedforward was introduced to achieve asymptotic stability.

This algorithm was previously described in section 2.3. The values used for the

parameters of the algorithm were the following:

....415 o_El!o0101o
1.0 0

• 0 .0 0

T=¥= o

0

1.0 0 0

0 1.0 0

0 0 1.0

x 104

a = b = 50.0

=

B

[]

Figure 4.i0 shows the difference between the plant and model outputs

when no sudden change in the load is present. It shows that the system has

Zero steady state _err0r, however_-lt _does takes _this algorithm twice as long to

reach steady state than using the "Kaufman algorithm".
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Figure 4.10:Plot of the error between the plant and model outputs

(rad.) vs. time (see.) using the "Derivative algorithm"

for no change in the arm's load.

We also performed the simulation when a sudden change in the arm's load

occurred at 6.5 see. and the plots of the difference between plant an model

outputs appear in Figure 4.11. A discontinuity appears at the time of the load

change, however, the plant's output still tracks the model's output

asymptotically. Notice, that in these simulations we did not have the high

frequency oscillations which were present when the "Kaufman algorithm"

was used, however, the error present in this case is twice as large than before.

tn addition. Figure 4.i2 shows the command torques to the joints of the robot

anti one ol the gains of the controller. These results contain the discontinuity,

but they also achieve a steady state and in the case of the control torques they

appear to be the same as the ones obtained using the "Kaufman algorithm'.
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_z

Figui;e 4.11:Plot of error between the plant and model outputs

(rad.) vs. time (see.) using the "Derivative algorithm"

when a sudden load change is present.

I
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4.4 Discrete Simulations

The previous simulations were conducted as if the interaction between

the plant and the controller was continuous. In this section we will change

the program used to simulate the system in such a way that it takes into

. account the sampling period which is used by the controller to get the

information it requires about the plant (i.e. joint eneoder readings). The I/O

program resident in the Unimation controller for the PUMA 560 arm allows

the sampling period to be chosen as 7, 14, 28, or 56 ms. [11], and for these

simulations we chose a value of 7 ms. To implement this, our program updated

the joint angles from the robot to be used by the controller and the command

torque calculated by the controller once every sample period.

In the simulations, the "Kaufman algorithm" was used with the following

values for its parameters:
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Figure 4.12:Plots using the "Derivative algorithm" when a sudden
load change is present of (a) the command torques
(N-m) to both joints and (b) one of the controller

gains.
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(4.16) Dp=[6 0]
06

u

|
[W

_4

-!

L

w

T=T=

0.2

0

0

0

0.2

0

0

0

0

1.4

0

1.4 0 0

0 1.4 0

0 0 1.4

w

x 104

x = 0.01

which are the same as those used in section 4.3.2.

The resulting response of the system appears in Figure 4.13. We caI1 see

that the difference between the plant and model outputs is small, however, we

can appreciate some high frequency oscillations of small magnitude. As the

D p to "_ ratio and the weight matrices are increased, the magnitude of these

oscillations decreases.

Another method of decreasing the magnitude of these oscillations is to

include the a term as before. Figure 4.14 shows the results of the simulation

using o_ = 0.1. We can clearly appreciate that the magnitude of the oscillations

has decreased and that they are barely perceptible in the plot of the response.

n
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Figure 4.13:Plot of the plant and model outputs (rad.) vs. time

(see.) using the "Kaufman algorithm" when discrete

control is simulated.
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(sec.) using the "Kaufman algorithm" when discrete
control is simulated and a derivative term is used to
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4.5 Decentralized Control

In this section we are concerned with the idea of treating each joint

angle and its input torque as independent from each other. In other words, we

want to use a first order controller to find the command torque of each one of

the joints independently of each other. The advantage of such a system is that

it is easier to implement and that it involves less calculations and is therefore

faster. Both, the "Kaufman Algorithm" and the "Derivative algorithm" were

considered in simulating the application of decentralized control to the PUMA

560 robot.

4.5.1 Kaufman Algorithm

To implement this algorithm we used the following parameters for the

two first order controllers:

(4.17) Dp = 0.001
i

300

T---T= 0 3 0

003

x 104

x = 50.0

The results of the simulation are presented in Figures 4.15 and 4.16.

Figure 4.15 shows the response of the model and the plant. We can see that the

second joint angle tracks the model consistently, however, the first joint angle

has a large error between 2 and 5 seconds. Therefore, as expected the results

of using decentralized control are not as good as when the coupling between

the joints is considered. Figure 4.16(a) and (b) shows the command control and
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one of the gains of the controllers. We can see that there arc oscillations

present which are not desired, however, all the parameters are boundcd.
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Figure 4.15:_Plot of the plant and model outputs (rad.) vs. time

(sec.) using the "Kaufman algorithm" for decentralized

control.
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4.i6:Plots using the "Kaufman algorithm" for decentralized

control of (a) the command torque for each joint and

(b) one of the gains.
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To see if the problem of the oscillationscan be reduced, the plant was

augmented by a derivative term as explained before using a value of o: -- 0.05.

Figures 4.17 and 4.18 show the resultsof this change, and wc can observe that

the oscillations are eliminated.
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Figure 4.i7:Piot of the plant and model outputs (rad.) vs. time
(see.) using the "Kaufman algorithm" for decentralized
control with a derivative term augmenting the plant.
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Figure 4.18:Plots using the "Kaufman algorithm" for decentralized
control with a derivative term augmenting the plant

of (a) the command torque for each joint and (b) one

of the gains.
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4.5.2 Derivative Algorithm

Finally we implement the decentralized control using the "Derivative

algorithm". The parameters used for the two first order controllers used in

each of the joints were the following:

(4.18) Dp = 0.1

300

T=T= 030 x104

003

a = b = 50.0

The results of the simulation appear in Figures 4.19 and 4.20. Figure 4.19

shows the outputs of the plant and model, and again, as expected we can see

that the tracking is not as good as what was obtained in section 4.3. The

command input to both joints and one of the gains are plotted in figure 4.20. It

is apparent that "there are some oscillations; however, they are not as extreme

as those obtained using the "Kaufman algorithm" with no derivative term

augmenting the plant.
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Figure 4.19:Plot of the plant and model outputs (rad.) vs. time
(sec.) using the "Derivative algorithm" for decentrali-
zed control.
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4.6 Summary

This chapter was devoted to the control of the Unimation PUMA 560 robot.

It gave a complete description of the model used to simulate the robot arm and

it showed the results of controlling the arm using the different algorithms

presented in Chapters 1 and 2. The results of the simulations show that it

possible to use model reference adaptive control to operate this type of robot.

The modifications introduced to the previous MRAC algorithms achieve the

desired result of eliminating the steady state error present in the response.

In addition, simulations showing the results of discrete implementation of

the MRAC and decentralized control of the robot were carried out. The results

show that these cases can achieve good results; however, the responses are not

as good as those obtained in the normal simulations.
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CHAPTER 5

Overview

5.1 Discussion

In this project wc simulated the implementation of several MRAC

algorithms to control two types of robots: a single-link flcxiblc jointed arm and

a model of 2 links of the Unimation PUMA 560 manipulator. It was clear that

the cxisting MRAC algorithms used had major problems. The original

algorithm explained in Section 1.2.3 had the serious limitation that it restricted

its application to a very limited range of plants (almost strictly positive rcal

(ASPR) systems). This introduced thc need to find modifications so to makc the

algorithm applicablc to a wider class of plants. An adjustment was proposed by

BarKana (scc Section 1.2.4) which expanded the types of plants that could be

controlled with the algorithm, howcver, it did not achicve asymptotic tracking

because it led toga steady state error. In our simulations, it was observed that

this steady state error could, in some instances, bc quite large and that it would

change depending on the size of the load that the robot was carrying.

These results motivated the development of further modifications to the

existing MRAC algorithms. Thesc modifications had the goal of achieving

asymptotic tracking, while at the same time expanding the class of controlled

plants beyond those which are ASPR. This project displays two of these new

algorithms which we called the "Kaufman algorithm" (Section 2.2) and the

"Derivative algorithm" (Section 2.3) respectively. The simulations of the

control of both robots using these algorithms were successful and showcd that

thc problems dcscribed above were solved.
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Certain simulations were carried out to observe the performance of the

algorithms for a decentralized case of the PUMA robot, that is, each one of the

to joint angles was eontroiied: as a separate system. The results obtained, as

expected, were not as good as for the normal operation, however, in cases were

very fast computation times are-required and accuracy can be sacrificed, this

can yield acceptable results. Even so this should not usually be a necessity

since the normal algorithm involves few computations.

_Simulations of discrete control of the PUMA robot were also performed.

These showed that we can obtain good results for the discrete case. However,

there were high frequency terms present in the response which required the

introduction of a derivative term to the output in order to weaken them. The

only side effect of this is that the error during the transients is slightly

increased depending on the weight given to the derivative term.

Comparing the results between the Kaufman and Derivative algorithms

we couldSt:make several observations. I:irst of all, the_error in tracking (during

the transients and changes in the arm's load) tended to be smaller for the

"Kaufman algorithm". In addition, it was _ easier to adjust this algorithm to
*..

obtain a satisfactory response Of the" 'System, and it was generally less affected

by changes in the plant's parameters. However, in using the "Derivative

algorithm" the presence :bf _ hi_'_irequeney oscillations was less frequent.

Therefore, our recommendation for anyone using these algorithms is that

they first try to solve their control problem using one of the two, and if it does

not' yield satisfactory i'esults tfien the_other:sh0uld be tried instead.

In all the cases we looked at the control torque that was applied to the

joint angles, and at some of the adapiive gains. It was observed that the torque



63

and the gain's magnitude remained bounded throughout the simulations. We

also observed, as expected, that these parameters adapted when a change

occurred in the plant or in the model command input

In summary, these algorithms can be successfully used in control

simulations of different types of robots. In addition they have the advantage

that they are easy to implement because no there is no need to have any

knowledge of thc plant's parameters and because they can bc readily

applicable : to M!MO systems without a great increase in the complexity of the

calculations.

5.2 Future Work

This project dealt only with computer simulations of the systems,

therefore: the logical continuation is t o actually implement the algorithms to

control a real robot. This step is very important in validating the value of

using command "generator tracker ba_sed model reference adaptive control.

Another area in which some additional work is possible is in

implementing some type of theoretical rules about the choice of the

parameters used in the implementation of the algorithms (i.e. Dp, "t:, T, _. This

might require some knowledge of the system to be worked with, however, in

most cases we have some knowledge available about the plant that will be

controlled.

Finally, in the discrete simulations other sample times should be

considered. All the work done in the discrete simulations performed for this

project involved using a sample time of 7 ms., but sample times of 14, 28, and 56

ms. are also possible with ,the PUMA 560 manipulator.
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APPENDIX A

ACSL Programs

n

i

m

m
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This appendix contains a listing of all the ACSL programs used in the

simulation of the MRAC algorithms and the different types of robots. The

following are the names and a brief description of the programs listed:

BKFLEX

HKFLEX

JDFLEX

PUMABK

PUMAHK

"BarKana algorithm" used on single-link flexible-joint arm.

"Kaufman algorithm" used on single-link flexible-joint arm.

"Derivative algorithm" used on single-link flexible-joint arm.

"BarKana algorithm" used on PUMA 560 model.

"Kaufman algorithm" used on PUMA 560 model.

PUMADHK "Kaufman algorithm" used on PUMA 560 model (discrete case).

PUMAJD "Derivative algorithm" used on PUMA 560 model.

u

H

_==

IW

L_

__4

L

Now we give a description of the variables with which the user must be

concerned in order to properly operate these programs, this, by no means, is

-. an exhaustive listing of all the variables used in the programs.

The following types of variables appear in all programs: DP, TAU, TN, and

TB, which correspond to the algorithm parameters Dp, x, T, and T respectively
_-iH_ =_ _

(see Chapter 1 for a description of these parameters). In the programs

involving the flexible arm, DP is a constant and TN and TB are (3x3) matrices

because the plant is SISO. For the programs simulating the PUMA 560, since we

have two inputs and two outputs and two first order models, DP will be a (2x2)

square matrix, and TN and TB are (6x6) matrices. In all the programs the

weighting matrices TN and TB are broken up into the terms that act on the

64
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error, the command input, and model states respectively and arc assumed to be

diagonal. In summary, the following variables compose the variable types

described above for the different type of robot:

i

I

=

I

F'lexible arm:

DP = DP

I °olTN= 0 TXN

0 0

TB ""

-TEB 0 0

0 TXB 0

0 0 TUB

[]

[]

[]

b

I_UMA 560:

o,:[°P1°10 DP2

T_.,-

=

_Z

TEN 0 0

0 TEN 0

0 0 TUN

0

0

TUN 0 0

0 TXN 0

0 0 TXN

U

i

m

I

I

m

M

l
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,...

0

0

0

0

0

0

0 0

TUB 0 0

0 TXB 0

0 0 TXB

Therefore, for example, if the user is controlling the flexible arm and he

wants Dp = 6 and weighting matrices

..... :. [500

TB=TN=L060
O07

--4

W

m

W

!ll

m

=i -

u

--=

i _-_-
m

u

then all he has to do is to let DP = 6, TEB = TEN - 5, TX'B = TX'N = 6, and TUB = TUN =

7. Notice that we assumed that all the weighting matrices and DP matrices are

diagonal, and that the weights acting on all the errors, command inputs, and

states are the same. Therefore, there are many combinations which are not

achievable due to these assumptions made in the program. However, making

all the combinations available would cluster the programs with variables.

The other variable which appears in all the programs is TAU, and

corresponds to the parameter 't (see Section 1.2.4, eq (1.34)). This is always a

constant except when using the "Derivative algorithm", where there are two

TAY's (see Section 2.3, eq (2.13)). Therefore in all the programs that use the

"Derivative algorithm" (PUMAJD and JDFLEX) the user will have to specify two

constants: TAU1 and TAU2 which correspond to a and b respectively.

Now we come to variables which are used only in some of the programs.

These variables include DEC and ALPHA. The term ALPHA appears only in the

programs PUMAHK and PUMADHK, and it implements the parameter that is
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described in Section 2.4. This is a constant, and the user sets it to the desired

value. If it is left equal to zero the program operates without adding a

derivative term (i.e. as if it doesn't exist). The term DEC appears only in the

programs PUMAHK, PUMADHK, and PUMA.)'D. It should only have one of two

possible values, either 0 or 1. If it is set to 0, the program implements

decentralized Control on the system, if it is set to 1 normal control is

implemented (see Section 4.5).

Finally, there are several control variables which are important to

mention. These include FIN, IALG, and CINT. FIN just sets the time (in seconds)

at which the simulation stops. Therefore if we want the simulation to end at 6{)

sec just set FIN = 60. IALG determines the algorithm that ACSL uses to calculate

the integrals, in the simulations this was set to 9. For more information on this

variable see [12]. CINT sets the communication interval in ACSL and is usually

set in our simulations to 0.001. For more information on this variable see [12].

We will not" go into describing the command input variables, the model

variables, or the plant variables, in any more detail. If the user needs to

change either the model, the command input, or the plant description, he can

refer to the program listings which appear next.
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PROGRAM BKFLEX

INITIAL

"Gives initial conditions and values for all constants"

"Model Constants"

"Second order model of the form:

CONSTANT

CONSTANT

CONSTANT

NO = 1.0

DO = -I .0

MICI = 0.0

(NO) / ((-l/D0) s+l) "

"Plant Constants:

CONSTANT

CONSTANT

CONSTANT

CONSTANT

"Adaptive Gain Initial Conditions:"

CONSTANT KEIC = 0.0, KUIC = 0.0

CONSTANT KXIIC = 0.0

(Kexp(-sT0)/(s + A))"

004,I = 0.031, J = 0. B = 0 007

K = 31.0, MGL = 0.8

PICI = 0.0, PIC2 = 0.0, P!C3 = 0.0

PIC4 =0,0

"Scaling Coefficients (used in gain calculation):"

CONSTANT TEN = 1.0, TUN = 1.0,

CONSTANT TEB = 1.0, TUB = 1.0,

"Feedforward Constants:"

TXN = 1.0

TXB = 1.0

CONSTANT DP = .I, TAU = 0.i, DIC = 0.0

"Used to stabilize flexible system (Ghorbel):"

CONSTANT KV = 0.0

"These constants tell the system when to drop load"

CONSTANT ..... DROP = 15. _ _

CONSTANT NEWMGL=0

"Square wave constants (to'create input):"

CONSTANT START1 = 0.0

CONSTANT PEKIOD = 14.0, WIDTH = 7.0

"Program Control Constants:"



I

CONS TANT

CINTERVAL

FIN = 28.0

CINT = 0.01

69

"Set all variables to zero:" I

CONSTANT INPUTI = 0.0,

CONSTANT KEOUT = 0.0,

CONSTANT KE = 0.0,

CONSTANT KU = 0.0,

CONSTANT DPPLA = 0.0,

END $ "of INITIAL"

UPLANT = 0.0,

KUOUT = 0 .0,

KXI = 0.0,

XMOD = 0.0

YPLANT = 0.0

KXOUT = 0.0

ERROR = 0.0

U0 = 0.0
g

g

DYNAMIC

DERIVAT lYE
l

"Input to the System (square wave):"

U0 = 2*PULSE (STARTI, PERIOD, WIDTH) -I

U02 = PULSE(START2,PERIOD,WIDTH)

U0 = U01 - U02 "

"Model Description;"

XMOD = INTEG(D0*XMOD - D0*U0, MICI)

YMODEL = N0*XMOD

EB

B

B

"Plant Description:" B

XIPLA = INTEG(X2PLA, PICI)

X2PLA = INTEG (- (MGL/I) *SIN (XlPLA) - (K/I) * (XlPLA-X3PLA), PIC
X3PLA = INTEG (X4PLA, PIC3) m

X4PLA = INTEG (- (B/J) *X4PLA+ (K/J) * (X!PLA-X3PLA) +UPLANT/J, P_
YPLANT = X!PLA

m
"Feedforward Gain (Dp (s)) :"

DUMM1 = I/TAU

XDP = INTEG(-DUMMI*XDP + DUMMi*DP*UPLANT, DIC) m

DPPLA = XDP

"Adaptive Gains :" b

IE = INTEG ((ERROR**2) *TEN, KEIC)

IX = INTEG ((ERROK*XMOD) *TXN, KXIIC)

IU -_ INTEG ((ERROR*U0) *TUN, KUIC) []
KE = ERROR**2*TEB + IE

KXI = ERROR*XMOD*TXB + IX

KU = ERROR*U0*TUB + IU h

"Output of the Adaptive Gains: "

KEOUT = (ERROR*KE)

KXOUT = (KXI*XMOD)

m

b

l
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KUOUT = (KU*U0)

"Plant Input :"

UPLANT = KXOUT+KUOUT+KEOUT+KV* (X2PLA-X4PLA)

"Change the load"

PROCEDURAT,

IF (DROP. GE. T) MGL=0 .8

IF (T. GT. DROP )MGL=NEWMGL
END

END $ "of DERIVATIVE"

"Error Calculation :"

ERROR = (YMODEL) - (YPLANT+DPPLA)

"Actual Error :"

ACERR = YPLANT - YMODEL

"Specify Termination Condition: "

TERMT (T. GE. FIN)

END $ "of DYNAMIC"

END $ "of PROGRAM"

7O
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* HKFLEX ,__

PROGRAM HKFLEX

INITIAL

"Gives initial conditions and values for all constants"

"Model Constants"

"Second order model of the form: NO/(D0s+I) "

CONS TANT

CONSTANT

CONSTANT

NO = 1.0

DO = -i. 0

MICI = 0.0

"Plant Constants: (K*exp(-sT0)) / (s + A)"

CONSTANT

CONSTANT

CONS TANT

C ON S TANT

I = 0.031,

K = 31.0,

PICI = 0.0,
PIC4 = 0.0

J = 0. 004,
MGL = 0.8

PIC2 = 0.0,

B = 0.007

PIC3 = 0.0

"Adaptive Gain Initial Conditions: "

CONSTANT KEIC = 0.0, KUIC = 0.0

CONSTANT KXlIC = 0.0

"Scaling Coefficients (used in gain calculation):"

CONSTANT

CONSTANT
TEN = i .0,

TEB = i. 0,

TUN = 1.0,

TUB = !.0,

TXN = 1.0

TXB = 1.0

"Feedforward Constants :"

CONSTANT DP = .I, TAU = 0.i, DIC = 0.0

"Square Wave Constants (to create input):"

CONSTANT START1 = 0.0

CONSTANT PERIOD = 60.0, WIDTH " 30

"These constant tells the system when to drop the load"

CONSTANT

CONSTANT

DKOP = 15.0

NEWMGL = 0.0, INIMGL = 0.8

"Plant input constant (see paper by Ghorbel et al) "

CONSTANT KV = 0.0

"Program Control Constants :"

mR
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CONSTANT FIN = 28.0

CONSTANT CINT = 0.01

"Initialize all variables used in program to zero:"

CONSTANT INPUT1 = 0.0, KEOUT = 0.0,

CONST T KXOUT.....°= 0.0, KUOUT 0.0,
CONSTANT KXI = 0.0, KU = 0.0

CONSTANT UPLANT = 0.0, ERROR = 0.0,

CONSTANT X2PLA = 0.0, X3PLA = 0.0,

END $ "of INITIAL"

XDP = 0.0

KE = 0.0

XIPLA = 0 .0

X4PLA = 0.0

DYNAMIC

DERIVATIVE

"Input to the System: "

U0 = 2*PULSE (START1, PERIOD, WIDTH) -I

"Model Description : "

YMODEL = N0*XMOD

XMOD = INTEG(D0*XMOD - D0*U0, MIC!)

"Plant Description: "

XIPLA = INTEG (X2PLA, PICl)

X2PLA = INTEG (- (MGL/I) *SIN (XlPLA) - (K/I) * (XIPLA-X3PLA), PIC2

X3PLA = INTEG(X4PLA, PIC3)

X4PLA -- INTEG (- (B/J) *X4PLA+ (K/J) * (XIPLA-X3PLA) +UPLANT/J, PIC
YPLANT _ = XIPLA

"Feedforward Gains (Dp (s)) :"

DUMMI

XDP

DPPLA

= I/TAU

= INTEG (-DUMMI*XDP - DUMMI*DP*KE*ERROR, DIC)
= XDP

"Adaptive Gains:"

INTE

INTX

INTU

KE

KXI

KU

= INTEG ((ERROR**2) *TEN, KEIC)

= INTEG ((ERROR*XMOD) *TXN, KXIIC)

= INTEG ((ERROR*U0) *TUN, KUIC)

= (ERROR**2)*TEB + INTE
= ERROR*XMOD*TXB + INTX

= ERROR*U0*TUB + INTU

"Output of the Adaptive Gains:"

KEOUT = (ERROR*KE)

KXOUT = (KXI*XMOD)

KUOUT = (KU*U0)

L
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"Plant Input :"

UPLANT = KXOUT + KUOUT + KEOUT + KV* (X2PLA - X4PLA)

"Drop the load"

PROCEDURAL (MGL = NEWMGL, INIMGL)
IF (T. GE. DROP) MGL = NEWMGL

IF (T.LE.DROP) MGL = INIMGL
END

END $ "of DERIVATIVE"

"Error Calculation: "

ERROR = YMODEL - YPLANT + DPPLA

"Actual Error :" _

ACERR = YPLANT - YMODEL

"Specify Termination Condition: "

TERMT (T. GE. FIN)

END $ "of DYNAMIC"

END $ "of PROGRAM"
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PROGRAM JDFLEX

INITIAL

"Gives initial conditions and values for all constants"

"Model Constants"

"Second order model of the form: (N0)/((-1/D0)s+I) "

CONSTANT

CONSTANT

CONSTANT

NO = 1.0

Do = -l.0
MICI = 0.0

"Plant Constants: (Kexp(-sT0)/(s + A))"

CONSTANT I = 0_031,

CONSTANT K = 31.0,

CONSTANT PICI = 0.0,
CONSTANT PIC4 = 0 ........

J = 0 .004,
MGL = 0.8

PIC2 = 0.0,

B = 0. 007

PIC3 = 0.0

"Adaptive Gain Initial Conditions:"

CONSTANT

CONSTANT

KEIC = 0.0,

KXlIC = 0.0

KUIC = 0.0

"Scaling Coefficients (used in gain calculation):"

CONSTA_T TEN = i. 0, TUN = I. 0, TXN = i. 0

CONSTANT TEB = 1.0, TUB = 1.0, TXB = 1.0

"Feedforward Constants :"

CONSTANT

CONSTANT
DP = .I0,

DICl = 0.0,

TAUi = 0. i,

DIC2 = 0.0

TAU2 = 0. i

"Square wave constants (to create input):"

CONSTANT _ STARTing=0,0

CONSTANT PERIOD = 14.0, WIDTH = 7.0

"Program Control Constants :"

CONSTANT FIN = 28.0

CINTEKVAL CINT = 0.001
$ "Execution stops in 28 seconds"
$ "Communication Interval"

"The following variables are used to change the load: "

CONSTANT DROP = 15.0, NEWMGL = 0.0

= ,
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"Set all variables to zero:"

CONS TANT INPUT

CONSTANT KEOUT

CONSTANT KE

CONS TANT KU

CONSTANT DPPLA

CONSTANT XDP2

= 0 0,

= 0 0,

= 0 0,

= 0 0,

= 0 0,
= 0 0

D-PLANT = 0.0, KXOUT = 0.0

KUOUT = 0.0, ERROR = 0.0

KXI = 0.0, U0 = 0.0

XMOD = 0.0, XDPI = 0.0

YPLANT = 0.0, ACERR = 0.0

END $ "of INITIAL"

DYNAMIC

DERIVATIVE

"Input to the System (square wave):"

U0 = 2*PULSE (STARTI,PERIOD,WIDTH) -I

"Model Description :"

XMOD = INTEG(D0_OD - D0*U0, MICI/_

YMODEL = N0*XMOD

"Plant Description :"

XIPLA = INTEG (X2PLA, PICI)

I

i

m

m

m

I
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X2PLA = INTEG(- (MGL/I)*SIN(XlPLA)-(K/I)*(XIPLA-X3PLA), PIC?_

X3PLA = INTEG (X4PLA, PIC3) _

X4PLA = INTEG (- (B/J) *X4PLA+ (K/J) * (XIPLA-X3PLA) +UPLANT/J, P

YPLANT = XIPLA

"FeedfOrward Gain (Dp (s)) :" []

= DP*UPI2%NT /TAUI

= INTEG (INPUT- (TAU2/TAUI) *XDPi+XDP2, DICI)

= INTEG(-(I/TAU!)*XDPI, DIC2)
XDPI

INPUT

XDPI

XDP2

DPPLA

"Adaptive Gains:"

= INTEG ((ERROR**2) TEN, KEIC)

= INTEG ((ERROR*XMOD) *TXN, KXIIC)

= INTEG ((ERROR_U0) *TUN, KUIC)_

ERROR**2*TEB + IE

= ERROR*XMOD*TXB + IX

ERROR*U0*TUB + IU

IE

IX

IU

KE

KXl

KU

"Output of the Adaptive Gains:"

KEOUT = (ERROR*KE)

KXOUT = (KXI*XMOD)

KUOUT = (KU*U0)

"Plant Input :"

r

U
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UPLANT = KXOUT + KUOUT + KEOUT

"Change the load:"

PROCEDURAL

IF (DROP. GE. T) MGL=0.8

IF (T. GT. DROP )MGL=NEWMGL
END

END $ "o f DERIVATIVE"

"Error Calculation :"

ERROR = YMODEL - YPLANT - DPPLA

"Actual Error: "

ACERR = YPLANT - YMODEL

"Specify Termination Condition:"

TERMT (T. GE. FIN)

END $ "of DYNAMIC"
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, PUMABK
* i

PROGRAM PUMABK

"This program implements the BK algorithm for 2 links of PUMA 560"
"robot arm (for decentralized control let variable DEC = 0.0) "

m

INITIAL

"Model Constants"
"Two first Order models of the form N/(TAUMs + I) "

W

CONS TANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

NUMI = 1.0, NUM2 = 1.0, TAUMI = 0.i, TAUM2 = 0.I _=

MICI _ -1.570795, MIC2 = 0.0

"Plant Constants: (two link robot)"

M = I0.0, L = 0.432, A! = 3.82

A2 = 2.12, A3 _ 0.71, A4 = 81.82, A5 = 24.06

Vl = 1.0, V2 = 0.5, V3 = 1.0, V4 = 0.5

PICI = -1.570795, PIC2 = 0.0, PIC3 = 0.0 M

P IC4 _ 0.0

=_

U"Adaptive Gain Initial Conditions:"

CONSTANT KEIIIC=0.0, KEI2IC=0.0, KE211C=0.0, KE22IC=0.0

CONSTANT KXIIIC=0.0, KXI2IC=0.0, KX21IC=0.0, KX221C=0.0

CONSTANT KUIIIC=0.0, KUI2IC=0.0, KU211C =0.0, KU22IC=0-0

"Constants used for the adaptive gains"

TEN = 1.0, TEB = 1.0

TXN = 1.0, TXB = 1.0

TUN = 1.0, TUB = 1.0

CONSTANT

CONSTANT

CONSTANT

,'Feedforward Constants:"

CONSTANT DPII = 3.0, DPI2 = 3.0, DP21 = 3.0, DP22 = 3.0

CONSTANT D!CI = 0.0, DIC2 = 0.0

CONSTANT TAU = 0.I

"Constants for the cycloidal reference trajectories:"

g

I

I

I

i
CONSTANT PI = 3.14159

CONSTANT URIF = 0.0, UK2F = 1.570795

"Constants to change parameters (drop the load):"

CONSTANT MINI = 10.0, M_EW = 0.0, TDROP = I0.0 I

U

I
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"Program control constants : "

CONSTANT FIN = i0.0, CINT=0.001

"Set certain variables initially to zero:"

CONSTANT

CONSTANT

EYI = 0.0, EY2 = 0.0

ERRORI = 0.0, ERROR2 = 0.0

END $ "of INITIAL"

DYNAMIC

DE_IVAT IVE

"System input (cycloid) (There are 2 reference inputs) "

UR1 = FtNS_(T-3, (-PI/2.+.25" (2_.*P!*T/3.-SIN(2.*PI*T/3.))),0,-

UR2 = FCNSW(T-3, (.25* (2.*PI*T/3.-SIN(2.*PI*T/3.))) , (PI/2.),F _

F1 = FCNSW(T-5.,0,GGI,GGI)

F2 = FCNSW(T-5., (P7/2.) ,GG2,GG2)

GGI = FCNSW(T-8.,FHi, (-PI/2.), (-PI/2.))

GG2 = FCNSW(T-8,FH2, 0.,0.)

FH1 = -.25" (2.*PI* (T-5.)/3-SIN(2.*PI* (T-5.) /3.))

FH2 = PI/2.+FHI

"Model Description: (Two first order models)"

XMODI = INTEG ((-XMODI+NUMI*URI) /TAUMI,MICI)

YMODI = XMODI

XMOD2 = INTEG ((-XMOD2+NUM2*UR2)/TAUM2, MIC2)

YMOD2-= XMOD2

"Plant Description:"
"YI = Thetal, Y2 = Theta2, Y3 = ThetalDot, Y4 = Theta2Dot"

MII = Ai + A2*COS(Y2)

MI2 = A3 + (A2/2)*COS(Y2)

M21 -- MI2

M22 = A3

N1

N2
= - (A2*SIN (Y2)) * (Y3*Y4+ (Y4"'2)/2)

= A2*SIN (Y2) * (Y3"'2) /2

Gl

G2

= A4*COS(YI) + AS*COS (Yl+Y2)

= A5*COS (YI+Y2)

HI

H2

= VI*Y3 + V2*SIGN(I.0,Y3)

= V3*Y4 + V4*SiGN(I.0,Y4)

Jll = -L*(SIN(YI)+SIN(YI+Y2))

J!2 = -L*SIN(YI+Y2)

J21 = L*(COS(YI)+COS(YI+Y2))

J22 = L*COS(Yi+Y2) •



JDII = -L*Y3*COS (YI) + JDI2

JD12 - -L* (Y3+Y4)*COS (YI+Y2)

JD21 = -L*Y3*SIN(YI) + JD22

JD22 = -L*(Y3+Y4)*SIN(YI+Y2)
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i

[]

G = 9.81

"The following matrix is multiplied times the vector"

"of derivatives in the equation of the robot, therefore"
"it will have to be inverted"

MTIII = -MI! - M* (Jll**2 + J21"'2)

MTI12 = -M12 - M*(JII*JI2 + J21*J22)

MTI21 = -M21 - M*(JII*JI2 + J21*J22)

MTI22 = -M22 - M* (J12"'2 + J22"'2)

R

n

DETMT = MTIII*MTI22 - MTII2*MTI21 =

INVII = MTI22/DETMT

INVI2 = -MTII2/DETMT
INV21 = -MTI21/DETMT

INV22 = MTIII/DETMT

"Now we calculate the right hand side of the differential"

"equation for the last two state variables (y3 and y4) :" i

DUMI = (JDII*Y3+JDI2*Y4)

DUM2 = (JD21*Y3+JD22*Y4)

ARHSI = NI+GI+HI-UPLAI+M* (G*J2!+JII*DUMI+J21*DUM2)

ARHS2 = N2+G2+H2-UPLA2+M* (G*J22+JI2*DUMI+J22*DUM2)

RHSI = INVlI*ARHSI + INVI2*ARHS2

RHS2 = INV21*ARHSI + INV22*ARHS2

i

[]

"Now we can calculate the state variables:"

Y1 = !NTEG(Y3, PIC1)

Y2 = INTEG(Y4, PIC2)

Y3 = INTEG(KHSI, PIC3)

Y4 = INTEG(RHS2, PIC4)

i

"Feedforward gain (DP (s)) :"

DUM = I/TAU

XDPI = INTEG(-DUM*XDPI+DUM* (DPII*UPLAI+DPI2*UPLA2),DIC1)

XDP2 = INTEG(-DUM*XDP2+DUM* (DP21*UPLAI+DP22*UPLA2),DIC2)

DPPLAI = XDPI

DPPLA2 = XDP2

"Adaptive Gains :"

IEII = INTEG((ERRORI**2) *TEN, KEllIC)

IEI2 = INTEG ((ERRORI*ERROR2) *TEN, KE12IC)

IE21 = INTEG ((ERROP/2*ERRORi) *TEN, KE21!C)

IE22 = INTEG((ERROR2**2) *TEN, KE22IC)

[]
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IXll = INTEG ((ERRORI*XMODI) *TXN, KXIIIC)

IXl2 = INTEG ((ERRORI*XMOD2) *TXN, KXI2IC)

IX21 = INTEG((ERROK2*XMODI) *TXN, KX21IC)

IX22 = INTEG ((ERROR2*XMOD2) *TXN, KX22IC)

IUII = INTEG ((ERRORI*URI) *TUN, KUllIC)

IUI2 = INTEG ((ERRORI*UR2) *TUN, KU12IC)

IU21 = INTEG ((ERROR2*URI) *TUN, KU21IC)

IU22 = INTEG ((ERROR2*UR2) *TUN, KU22IC)

KEII = ERRORI**2*TEB + IEII

KEI2 = ERRORI*ERROK2*TEB + IEI2

KE2! = ERROK2*ERRORI*TEB + IE21

KE22 = ERROR2**2*TEB + IE22

KXll = ERRORI*XMQDI*TXB + IXll

KXI2 = ERRORI*XMOD2*TXB + IXl2

KX21 = ERROK2*XMODI*TXB + IX21

KX22 = ERROR2*XMOD2*TXB + IX22

KUII = ERROKI*URi*TUB +IUII

KUI2 = ERROKI*UR2*TUB + IUI2

KU21 = ERROK2*URI*TUB + IU21

KU22 = ERROR2*UR2*TUB + IU22

"Output of the Adaptive Gains :"

KEOUTI = ERRORI*KEII + ERROR2*KEI2

KEOUT2 = ERRORI*KE21 + ERROR2*KE22

KXOUTI = XMODl*KXll + XMOD2*KXI2

KXOUT2 = XMODI*KX21 + XMOD2*KX22

KUOUTI = URI*KUII + UR2*KUI2

KUOUT2 = URI*KU21 + %rR2*KU22

"Now w_ can obtain the Input to the Plant:"

UPLAI = KEOUTI + KXOUTI + KUOUTI

UPLA2 = KEOUT2 + KXOUT2 + KUOUT2

"The following lines change the load on the arm:"

PROCEDURAL

IF (T. LT. TDKOP)M=MINI

IF (T. GE. TDROP) M=MNEW

END

"Calculation of the actual and augmented errors: "

end

EYI = YMODI - Y1

EY2 = YMOD2 - Y2

ERROR1 = EYI - DPPLAI

ERROR2 = EY2 - DPPLA2

"Specify termination condition: "

TERMT (T. GE .FIN)

END $ "of DYNAMIC"

END $ "of PROGRAM"
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PUMAHK *_

PROGRAM PUMAHK

"This program implements HK MRAC algorithm for 2 links"
"of the PUMA 560 robot (DEC = 0.0 for decentralized control)"

"(Set ALPHA = positive constant to add derivative term)"

I

D

INITIAL z

"Model Constants"

"Two first order models of the form: N/ (TAUMs + I)"

CONSTANT NUMI = 1.0, _2 = i.0, TAUMI = 0. I, TAUM2 = 0. [i

CONSTANT M!CI = -1.570795, MIC2 = 0.0

"Plant Constants: (two link robot)"

CONSTANT M = 10.0, L = 0.432, A1 = 3.82

CONSTANT A2 = 2.12, A3 = 0.71, A4 = 81.82, A5 = 24.06

CONSTANT Vl = 1.0, V2 = 0.5, V3 = 1.0, V4 = 0.5

CONSTANT PICI = -1.570795, PIC2 = 0.0, PIC3 = 0.0

CONSTANT P!C4 = 0.0

"Adaptive Gain Initial Conditions:"

CONSTANT KEIIIC=0.0, KEI2!C=0.0, KE21IC=0.0, KE22IC=0.0

CONSTANT KXIIIC=0.0, KXI21C=0.0, KX21IC=0.0, KX221C=0.0

CONSTANT KUIIIC=0.0, KUI2IC=0.0, KU21iC=0.0, KU22IC=0.0

"Constants used for the adaptive gains"

CONSTANT

CONSTANT

CONSTANT

TEN = 1.0, TEB = 1.0

TXN = 1.0, TXB = 1.0

TUN = 1.0, TUB = 1.0

"Feedforward Constants:"

CONSTANT

CONSTANT

CONSTANT

DPI = 3.0, DP2 = 3.0

DIC! = 0.0, DIC2 = 0.0

TAU = 0 .i

"Constants for the cycloidal reference trajectories:"

CONSTANT PI = 3.14159

CONSTANT URIF = 0.0, UR2F = 1.570795

"Constants to change parameters (drop the load):"

CONSTANT MINI = I0.0, MNEW = 0.0, TDROP = i0.0

m

F

i
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"Program control constants: "

CONSTANT FIN = 5.0, CINT=0.001

"Set certain variables initially to zero:"

CONSTANT EYI = 0.0, EY2 = 0.0, ERROR1 = 0.0, ERROK2 = 0.0

"Thls variable is set to 1.0 for normal control and to"

"0 if we want to use decentralized control"

CONSTANT DEC = 1.0

"This constant is used to add derivative term"

CONSTANT ALPHA = 0.0

END $ "of INITIAL"

DYNAMIC

DERIVATIVE

"System input (cycloid) (There are 2 reference inputs) "

URI = FCNSW(T-3, (-PI/2.+.25" (2.*PI*T/3.-SIN(2.*PZ*T/3.))),0,-

UR2 = FCNSW(T-3, (.25*(2.*PI*T/3.-SIN(2.*PI*T/3.))), (PI/2.),FS

F1 = FCNSW(T-5.,0,GGI,GGI)

F2 = FCNSW (T-5., (PI/2.), GG2, GG2)

GGI = FCNSW(T-8.,FH1, (-PI/2.), (-PI/2.))

GG2 = FCNSW(T-8,FH2,0.,0.)

FH1 = -.25" (2.*PI* (T-5.) /3-S!N(2.*PI* (T-5.) /3.))

FH2 = ?I/2.+FHI

"Model Description: (Two first order models)"

XMODI = INTEG ((-XMODI+NUMI*URI)/TAUMI,MIC!)

YMODI = XMODI

XMOD2 = INTEG ((-XMOD2+NUM2*UR2) /TAUM2,MIC2)

YMOD2 = XMOD2

"Plant Description:"
"Y1 = Thetal, Y2 = Theta2, Y3 = ThetalDot, Y4 = Theta2Dot"

MIi

MI2

M21

M22

N1

N2

= A1 + A2*COS(Y2)

= A3 + (A2/2)*COS (Y2)

= MI2
A3

= - (A2*SIN (Y2))* (Y3*Y4+ (Y4"'2)/2)

= A2*SIN (Y2) * (Y3"'2)/2

G1

G2

A4*COS(Y1) + A5*COS(YI+Y2)

s A5*COS (YI+Y2)
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HI

H2

= VI*Y3 + V2*SIGN(I.0,Y3)

= V3*Y4 + V4*SIGN(I.0,Y4)
mm

Jll = -L*(SIN(YI)+SIN(YI+Y2))

J12 = -L*SIN(YI+Y2)

J21 = L*(COS(YI)+COS(YI+Y2))

J22 = L*COS(YI+Y2)

JDII = -L*Y3*COS(YI) + JDI2

JD12 = -L*(Y3+Y4)*COS(Yi+Y2)

JD21 = -L*Y3*SIN(YI) + JD22

JD22 = -L*(Y3+Y4)*SIN(YI+Y2)

|

M

G = 9.81

"The following matrix is multiplied times the vector"

"of derivatives in the equation of the robot, therefore"
"it will have to be inverted"

MTIll = -MII - M*(JII**2 + J21"'2)

MTI12 = -MI2 - M*(Jll*Jl2 + J21*J22)

MTI21 = -M21 - M*(JII*JI2 + J21*J22)

MTI22 = -M22 - M*(JI2**2 + J22"'2)

DETMT = MTIII*MTI22 - MTII2*MTI21

INVll = MTI22/DETMT

INVI2 = -MTI12/DETMT

INV21 = -MTI21/DETMT

INV22 = MTIII/DETMT

B

l

[]

"Now we calculate the right hand side of the differential"

"equation for the last two state variables (y3 and y4):"
l

DUM! = (JDII*Y3+JDI2*Y4)

D_2 = (JD21*Y3+JD22*Y4)

A/AHSI = NI+GI+HI-UPLAI+M*(G*J21+JII*DUMI+J21*DUM2)

AB/_S2 = N2+G2+H2-UPLA2+M*(G*J22+JI2*DUMI+J22*DUM2)

RHSI = INVlI*ARHS1 + INVI2*ARHS2

RHS2 = INV21*ARHSI + INV22*ARHS2

!

|
"Now we can calculate the state variables: "

Y1 = INTEG(Y3, PIC1)

Y2 = INTEG(Y4, PIC2)
Y3 _ INTEG(RHSI, P_C3)

Y4 = INTEG(RHS2, PIC4)

|
[]

|

"Feedforward gain (DP (s)) :" j

XDPI = INTEG ((-XDPI+DPI*KEII*ERRORI+DEC*DPI*KEI2*EB/AOR2) /TA

XDP2 = INTEG ( (-XDP2+DEC*DP2*KE21 ERROKI+DP2 KE22*ERROR2) /TA B
DPPLAI = XD_I []
DPPLA2 = XDP2 []
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"Adaptive Gains :"

IEII = INTEG ((ERROR1**2) *TEN, KEIIIC)

IEI2 = INTEG ((ERROKI*ERROR2) *TEN, KEI2IC)

IE21 = INTEG ((ERROK2*ERRORI) *TEN, KE211C)

IE22 = INTEG ((ERROR2**2) *TEN, KE22IC)

IX11 = INTEG ((ERRORI*XMODI) *TXN, KXI!IC)

IX12 = INTEG ((ERROKI*XMOD2) *TXN, KXI2IC)

IX21 = INTEG ((ERROR2*XMODI) *TXN, KX21IC)

IX22 = INTEG ((ERROR2*XMOD2) *TXN, KX22IC)

IUI1 = INTEG ((ERRORI*URI) *TUN, KUIIIC)

IUI2 = INTEG ((ERRORI*UK2) *TUN, KUI2IC)

IU21 = INTEG ((ERROK2*UR1) *TUN, KU21IC)

IU22 = INTEG ((ERROK2*UK2) *TUN, KU22IC)

KEII = ERRORI**2*TEB + IEII

KEI2 = ERRORI*ERROK2*TEB + IEI2

KE21 = ERROR2*ERROKI*TEB + IE21

KE22 = ERROR2**2*TEB + IE22

KXII = ERRORI*XMODI*TXB + IXll

KXI2 = ERRORI*XMOD2*TXB + IX12

KX21 = ERROR2*XMODI*TXB + IX21

KX22 = ERROK2*XMOD2*TXB + IX22

KUII = ERRORI*URI*TUB +IUII

KUI2 = ERRORI*UR2*TUB + IUI2

KU21 = ERROK2*URI*TUB + IU2!

KU22 = ERROK2*UR2*TUB + IU22

"Output of the Adaptive Gains: "

KEOUTI -_= ERRORI*KEII + DEC*ERROR2*KEI2

KEOUT2 = DEC*ERRORI*KE21 + ERROR2*KE22

KXOUTI = XMODI*KXII + DEC*XMOD2*KXI2

KXOUT2 = DEC*XMODI*KX21 + XMOD2*KX22

KUOUTI = URI*KUII + DEC*UR2*KUI2

KUOUT2 = DEC*URI*KU21 + UR2*KU22

"Now we can obtain the Input to the Plant: "

UPLAI = KEOUTI + KXOUTI + KUOUTI

UPLA2 = KEOUT2 + KXOUT2 + KUOUT2

"The following lines change the load on the arm:"

PROCEDURAL

IF (T. LT. TDROP) M=MINI

IF (T. GE. TDROP )M=MNEW

END

"Calculation of the actual and augmented errors:"

EYI = YMODI - Y1

EY2 _ YMOD2 - Y2

ERROR1 = EYI - DPPLAI - ALPHA*Y3

84



end

ERROR2 = EY2 - DPPLA2 - ALPHA*Y4

"Specify termination condition: "

TERMT (T. GE. FIN)

END $ "of DYNAMIC"

END $ "of PROGRAM"
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PKOGRAM PUMADKK

"This program implements the HK MRAC algorithm for a 2 link"

"PUMA 560 robot. (For decentralized control let DEC = 0.0)"

"(For derivative term set ALPHA to a small positive constant)"

"In addition discrete implementation is simulated"

INITIAL

"Model Constants"

"Two first order models of the form: N/(TAUMs + i)"

CONSTANT

CONSTANT

CONSTANT

NUMI = 1.0, NUM2 = 1.0, TAUMI = 0.I
TAUM2 = 0.1

MICI = -1.570795, MIC2 = 0.0

"Plant Constants: (two link robot)"

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

M = i0.0, L = 0.432, A1 = 3.82

A2 = 2.12, A3 = 0.71, A4 = 81.82, A5 = 24.06

Vl = 1.0, V2 = 0.5, V3 = 1.0, V4 = 0.5

PICI = -1.570795, PIC2 = 0.0, PIC3 = 0.0
PIC4 = 0.0

"Adaptive Gain Initial Conditions : "

CONSTANT KE!IIC=0.0, KEI2!C=0.0, KE21IC=0.0, KE22iC=0.0

CONSTANT KXIIIC=0.0, KXI2IC=0.0, KX21IC=0.0, KX22IC=0.0

CONSTANT KUIIIC=0.0, KUI2IC=0.0, KU21IC=0.0, KU22IC=0.0

"Constants used for the adaptive gains"

CONSTANT TEN = 1.0, TEB = 1.0

CONSTANT TXN = 1.0, TXB = 1.0

CONSTANT TUN = 1.0, TUB = 1.0

"Feedforward Constants:"

CONSTANT DPI = 3.0, DP2 = 3.0

CONSTANT DICI = 0.0, DIC2 = 0.0
CONSTANT TAU = 0.1

-/'Constants for the cycloidal reference _rajectories: "

CONSTANT PI = 3.14159

CONSTANT URIF = 0.0, UK2F = 1.570795

"Constants to change parameters (drop the load):"



CONS TANT MINI = I0.0, MNEW = 0.0, TDROP = I0.0
mm

"Program control constants:"

CONSTANT FIN = 5.0, CINT=0.001

"Set certain variables initia!ly_to -zero:"

CONSTANT

CONSTANT

CONSTANT

CONSTANT

i

J

EY1 = 0.0, EY2 = 0.0, ERROR1 = 0.0, ERROR2 = 0.N

UPDI = 0.0, UPD2=0.0, YID = -1.570795, Y2D = 0.
UPLAI = 0.0, UPLA2 = 0.0, Y1 = -1.570795 i

Y2 = 0.0

"This variable equals 1.0 if we want normal control, if wej
"want decentralized control set DEC = 0.0"

CONSTANT DEC = 1.0

"This constant adds a derivative term to the output"

CONSTANT ALPHA = 0.0

END $ "of INITIAL"

DYNAMIC

DISCRETE

!
l

|

I

"Set the interval of communication between computer and rok_

INTERVAL PERIOD = 0.007

"The only things sampled are the input to the robot and theJ

"current angles of its joints"

|
UPD2 = UPI_

YID = Y1

Y2D = Y2

Y3D = Y3 _ []

Y4D = Y4

END $ "of DISCRETE"

DERIVATIVE

mm

"System _nput _(cycioid) (There are 2 _reference inputs) " i

UR1 r. FCNSW(T-3, (-PI/2.+.25*(2.*PI*T/3.-SIN(2.*PI*T/3.))),C.-
UR2 = FCNSW(T,3, (.25* (2.*PI*T/3.-SIN(2.*PI*T/3.))), (PI/2.) ,3
F1 = FCNSW(T-5., 0,GGI,GG1)

F2 = FCNSW(T-5., (PI/2.),GG2,GG2)

GGI = FCNSW(T-8.,FHI, (-PI/2.), (-PI/2.))

GG2 = FCNSW(T-8,FH2,0.,0.)

FH1 = -.25" (2.*PI*(T-5.) /3-SIN(2.*PI* (T-5.)/3.))

i

m

[]

m
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FH2 = PI/2.+FH1

"Model Description: (Two first order models)"

XMODI = INTEG ((-XMODI+NUMI*URI) /TAUMI,MICI)

YMODI = XMODI

XMOD2 = INTEG ((-XMOD2+NUM2*UR2)/TAUM2,MIC2)

YMOD2 = XMOD2

"Plant Description: "

...."YI = Thetal, Y2 = Theta2, Y3 = ThetalDot, Y4 = Theta2Dot"

MII = A1 + A2*COS (Y2)

M12 = A3 + (A2/2)*COS(Y2)

M21 = MI2

M22 = A3

N1

N2

= - (A2*SIN (Y2)) * (Y3*Y4+ (Y4"'2) /2)

= A2*SIN (Y2) * (Y3"'2) /2

G1

G2

= A4*COS(YI) + A5*COS(YI+Y2)

= A5*COS (YI+Y2)

HI

H2

= VI*Y3 + V2*S!GN(I.0,Y3)

= V3*Y4 + V4*SIGN(I.0,Y4)

Jll

J12

J2i

J22

- -L* (SIN (YI) +SIN (YI+Y2))

= -L'SIN (YI+Y2)

= L* (COS (Xl) +COS (Xl+X2))

= L'COS (YI+Y2)

JDII = -L*Y3*COS(YI) + JDI2

JDI2 = -L*(Y3+Y4)*COS(YI+Y2)

JD21 = -L*Y3*SIN(YI) + JD22

JD22 = -L*(Y3+Y4)*SiN(YI+Y2)

G = 9.81

"The following matrix is multiplied times the vector"

"of derivatives in the equation of the robot, therefore"
"it will have to be inverted"

MTIII = -MII .....M* (JlfW'*2 + J2_i*'2)

MTII2 = -M12 - M*.(JII*J!2_ t_J2!*J22)

MTI21 = -M21 - M*(JII*JI2 + J21*J22)
MTI22 = -M22 - M*(JI2**2 + J22"'2)

DETMT = MTIII*MTI22 - MTII2*MTI21

INVll = MTI227DETMT ......

INVI2 = -MTII2/DETMT

INV21 = -MTI21/DETMT

INV22 = MTIII/DETMT

E_....
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"Now we calculate the right hand side of the differential"

"equation for the last two state variables (y3 and y4):"

mm

DUMI = (JDII*Y3+JDI2*Y4)

DUM2 = (JD21*Y3+JD22*Y4)

AR_SI = NI+GI+HI-UPDI+M* (G*J21+JII*DUMI+J21*DUM2)

ARHS2 = N2+G2+H2-UPD2+M* (G*J22+JI2*DUMI+J22*DUM2)
RHSI = INVlI*ARHSI + INVI2*ARHS2

RHS2 = INV21*ARHSI + INV22*ARHS2

ms

m

"Now we can calculate the state variables:" ms

Y1 = INTEG(Y3, PICI)

Y2 = INTEG(Y4, PIC2)

Y3 = INTEG(RHSI, PIC3)

Y4 = INTEG(RHS2, PIC4)

"Feedforward gain (DP (s)) :"

mm

m

XDPI = INTEG((-XDPI+DPI*KEII*ERRORI+DEC*DPI*KEI2*ERROR2)/TA[_-

XDP2 = INTEG((-XDP2+DEC*DP2*KE21*ERRORI+DP2*KE22*ERROR2)/TA_"
DPPLAI = XDPI

DPPLA2 = XDP2

"Adaptive Gains:" •

TEll = INTEG((ERRORI**2)*TEN, KEIIIC)

IEI2 = !NTEG ((ERRORI*ERROR2) *TEN, KEI2IC)

IE21 = INTEG ((ERROR2*ERROR1) *TEN, KE21IC)

IE22 = INTEG((ERROR2**2)*TEN, KE22IC)

IXll =._iNTEG((ERRORI*XMOD1)*TXN, KX!IIC)

IX12 = INTEG ((ERRORI*XMOD2) *TXN, KXI2IC)

iX21 = INTEG ((ERROR2*XMODI) *TXN, KX21IC)

IX22 = INTEG ((ERROR2*XMOD2) *TXN, KX22IC)

IUII = INTEG ((ERRORI*UR1) *TUN, KUll!C)

IUI2 = INTEG ((ERROKI*UR2) *TUN, KUIZIC)

IU21 = INTEG ((ERROR2*UR1) *TUN, KU21IC)

IU22 = INTEG ((ERROR2*UR2) *TUN, KU22IC)

KEII = ERRORI**2*TEB + IEII

KEI2 = ERRORI*ERROK2*TEB + IEI2

KE21 = ERROR2*ERRORI*TEB + IE21

KE22 = ERROR2**2*TEB + IE22

KX!I = ERRORI*XMODI*TXB + IXll

KXi2 = ERRORI*XMOD2*TXB + IXl2

KX21 = E_O_*XMOD!*TXB + IX21

KX22 = ERROR2*XMOD2*TXB + IX22

KUII = ERRORI*URI*TUB + IU%I

KUI2 = E_RORf*_*TUB + IUI2

KU21 = ERROR2*URI*TUB + IU21

KU22 = ERROR2*UR2*TUB + IU22

"Output of the Adaptive Gains: "

mm

l

m
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KEOUTI = ERRORI*KEI1 + DEC*ERROK2*KE12

KEOUT2 = DEC*ERROKI*KE21 + ERROK2*KE22

KXOUTI = XMODI*KX!I + DEC*XMOD2*KXI2

KXOUT2 = DEC*XMODI*KX21 + XMOD2*KX22

KUOUTI = URI*KUII + DEC*UR2*KUI2

KUOUT2 = DEC*URI*KU21 + UR2*KU22

"Now we can obtain the Input to the Plant: "

UPLAI = KEOUTI + KXOUTI + KUOUTI

UPLA2 = KEOUT2 + KXOUT2 + KUOUT2

"The following lines change the load on the arm:"

PROCEDURAL

IF (T .LT. TDROP) M=MINI

IF (T. GE. TDROP) M=MNEW

END

"Calculation of the actual and augmented errors:"

EYi = YMODI - YID - ALPHA*Y3D

EY2 = YMOD2 - Y2D - ALPHA*Y4D

EP/%OK1 = EYI - DPPLAI

ERROK2 = EY2 - DPPLA2

end

"Specify termination condition:"

TERMT (T. GE. FIN)

END $ "of DYNAMIC"

E_D $ "of PROGRAM"
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, PUMAJD *

PROGRAM PUMAJD m

"This program implements JD algorithm for 2 links of the PUMA 560"

"robot arm (For decentralized control set variable DEC = 0)"

INITIAL

"Model Constants"
"Two first order models of the form: N/ (TAUMs + I) "

CONSTANT

CONSTANT

CONSTANT

NTJMI = 1.0, NUM2 = 1.0, TAUMI = 0.!

TAUM2 = 0.1
MICI = -1.570795, MIC2 = 0.0

"Plant Constants: (two link robot)"

CONSTANT

CONSTANT

CONSTANT

CONSTANT

CONSTANT

J

i

"Adaptive Gain Initial Conditions:"

M = I0.0, L = 0.432, A1 = 3.82

A2 s 2.12, A3 = 0.71, A4 = 81.82, A5 = 24.06 i
Vl = 1.0, V2 = 0.5, V3 = 1.0, V4 = 0.5

PIC1 = -1.570795, PIC2 = 0.0, PIC3 = 0.0

PIC4 = 0.0 []

CONSTANT

CONSTANT

CONSTANT

KEIIIC=0 0, KEI2IC=0.0, KE21IC=0.0, KE22IC=0.0
• iKXIIIC=0.0, KXI2IC=0.0, KX21iC=0.0, KX22IC=0.0

KUIIIC=0.0, KUI2IC=0.0, KU211C=0.0, KU22IC=0.0

"Constants used for the adaptive gains"

TEN = i0000.0, TEB = i0000.0

TXN = I0000.0, TXB = i0000.0

TUN = i0000.0, TUB = 10000.0

CONSTANT

CONSTANT

CONSTANT

I

i

"Feedforward Constants:"

CONSTANT

CONSTANT

CONSTANT

DP! = 0.I, DP2 = 0.I

DICI = 0.0, DIC2 = 0.0, DIC3 = 0.0, DIC4 = 0.0

TAUI = 50.0, TAU2 = 50.0

"Constants for the cycloidal reference trajectories:"

CONSTANT P! = 3.14159

CONSTANT URIF = 0.0, UK2F = 1.570795

"Constants to change parameters (drop the load):"

CONSTANT MINI = I0.0, MNEW = 0.0, TDROP = I0.0

i
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"Program control constants: "

CONSTANT FIN = 12.0, CINT=0.001

"Set certain variables initially to zero:"

CONSTANT EY1 = 0.0, EY2 = 0.0, ERROR1 = 0.0, ERROR2 = 0.C

"The following variable is set to 1 for normal control"
"and set to 0.0 if we want decentralized control: "

CONSTANT DEC = i. 0

END $ "of INITIAL"

DYNAMIC

DERIVAT IrE

"System input (cycloid) (There are 2 reference inputs)"

URI = FCNSW(T-3, (-PI/2.+.25*(2.*PI*T/3.-SIN(2.*PI*T/3.))),C

UR2 = FCNSW(T-3, (.25*(2.*PI*T/3.-SIN(2.*PI*T/3.))) , (PI/2.) ,_

F1 = FCNSW(T-5., 0,GGI,GGI)

F2 = FCNSW(T-5., (PI/2.),GG2,GG2)

GGI = FCNSW(T-8.,FHI, (-PI/2.), (-PI/2.))

GG2 = FCNSW(T-8,FH2,0.,0.)

FHI = -.25" (2.*PI* (T-5.) /3-SIN(2.*PI* (T-5.) /3.))

FH2 = PI/2.+FH1

"Model Description: (Two first order models)"

XMODI "'= INTEG ((-XMODI+NUMI*URI) /TAUMI,MICI)

YMODI = XMODI

XMOD2 = INTEG((-XMOD2+NUM2*UR2)/TAUM2,MIC2)

YMOD2 = XMOD2

"Plant Description:"

"YI = Thetal, Y2 = Theta2, Y3 = ThetalDot, Y4 = Theta2Dot"

Mll

M!2

M21

M22

= A1 + A2*COS (Y2)

= A3 + (A212)*COS(Y2)

= MI2 ......
= A3

N1

N2

= - (A2*STN (Y2)) * (Y3*Y4+ (Y4"'2) 12)

= A2*SIN (X2) * (Y3"'2)/2

G1

G2

HI

H2

= A4*COS (YI) + AS*COS (YI+Y2)

= AS*COS (YI+Y2)

= VI*Y3 + V2*SIGN(I.0,Y3)

= V3*Y4 + V4*SIGN(I.0,Y4)

Jll = -L*(SIN(YI)+SIN(YI+Y2))

w



J12

J21

J22

= -L'SIN (Yi+Y2)

= L* (COS (YI) +COS (YI+Y2))

= L'COS (Yl+Y2)

JDll -- -L*Y3*COS (YI) + JDI2

JD12 = -L* (Y3+Y4)*COS(Yl+Y2)

JD21 = -L*Y3*SIN(YI) + JD22

JD22 = -L*(Y3+Y4)*SIN(YI+Y2)

i

i

|

G _ 9.81

"The following matrix is multiplied times the vector"

"of derivatives in the equation of the robot, therefore"
"it will have to be inverted"

MTIll = -Mll - M*(JII**2 + J21"'2)

MTII2 = -MI2 - M*(JII*JI2 + J21*J22)

MTI21 = -M21 - M*(JII*JI2 + J21*J22)

MTI22 = -M22 - M*(J12**2 + J22"'2)

D

R

J

DETMT = MTIll*MTI22 - MTII2*MTI21
J

INVII = MTI22/DETMT

INVI2 = -MTII2/DETMT

INV21 = -MTI21/DETMT : J

INV22 = MTIII/DETMT

"NOW we calculate the right hand side of the differential"

"equation for the last two state variables (y3 and y4) :"

DUMI = (JDII*Y3+JDI2*Y4)

DUM2 .4= (JD21*Y3+JD22*Y4)

ARHSI = NI+GI+HI-UPLA!+M*(G*J21+JII*DUMi+J21*DUM2)

ARHS2 = N2+G2+H2-UPLA2+M*(G*J22+JI2*DUMI+J22*DUM2)

RBSI = INVI!*A2/4SI + INVI2*AR/_S2

RHS2 = _NV21*_KHSI + Ik_r22*ARH.S2

[]

[]

"Now we can calculate the state variables:"

Y1 = INTEG(Y3, PICI)

Y2 = INTEG(Y4, PIC2)

Y3 = INTEG(RHSI, P!C3)

Y4 = INTEG(RHS2, PIC4)

"Feedforward gain (DP (s)) :"

XDPI = INTEG (-TAU2*XDPI+XDP2+DPI*UPLA1,DICI)

XDP2 = INTEG(-XDPI,DIC2)

XDP3 = INTEG (-TAU2*_P3+_P4+DP2*UPLA2, DIC3)

XDP4 = !NTEG(-XDP3,DIC4)
DPPLAI = XDPI/TAUI

DPPLA2 = XDP3/TAUI

"Adaptive Gains :"

|
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IEII = INTEG ((ERROR1**2) *TEN, KEIIIC)

IEI2 = INTEG ((ERRORI*ERROR2) *TEN, KEI2IC)

IE21 = INTEG ((ERROR2*ERRORi) *TEN, KE21IC)

IE22 = INTEG((ERROK2**2)*TEN, KE22IC)

IXll = INTEG((ERRORI*XMOD1) *TXN, KXlI!C)

IX12 = INTEG ((ERRORI*XMOD2) *TXN, KX12IC)

IX21 = INTEG( (ERROK2*XMODI)*TXN, KX21IC)

IX22 = INTEG ((ERROIA2*XMOD2) *TXN, KX22IC)

IUI1 = INTEG((ERRORI*UR1)*TUN, KUIIIC)

IUI2 = INTEG ((ERKOKI*UR2) *TUN, KU12IC)

IU21 = INTEG ((ERROK2*URI) *TUN, KU21IC)

IU22 = !NTEG((ERROR2*UR2) *TUN, KU22IC)

KEI1 = ERRORI**2*TEB + IEII

KEI2 = ERRORI*ERROK2*TEB + IEI2

KE21 = ERROR2*ERRORI*TEB + IE21

KE22 = ERROR2**2*TEB + IE22

KXll = ERRORI*XMODI*TXB + IXll

KXI2 = ERROKI*XMOD2*TXB + IX12

KX21 = ERROR2*XMODI*TXB + IX21

KX22 = ERROK2*XMOD2*TXB + IX22

KUII = ERROKI*URI*TUB + IUII

KUI2 = ERRORI*UR2*TUB + iUI2

KU21 = ERROR2*URI*TUB + IU21

KU22 = ERROR2*UR2*TUB + IU22

"Output of the Adaptive Gains:"

KEOUTI = ERROKI*KEII + ERROR2*KEI2*DEC

KEOUT2 = ERRORI*KE21*DEC + ERROR2*KE22

KXOUTI = XMODI*KXII + XMOD2*KXI2*DEC

KXOUT_ = XMODI*KX21*DEC + XMOD2*KX22

KUOUTI = UKI*KUII + UK2*KUI2*DEC

KUOUT2 = URI*KU21*DEC + UR2*KU22

"Now we can obtain the Input to the Plant:"

UPLAI = KEOUTI + KXOUTI + KUOUTI

UPLA2 = KEOUT2 + KXOUT2 + KUOUT2

"The following lines change the load on the arm:"

PROCEDURA_

IF (T. LT. TDI%OP) M=MINI

IF (T. GE. TDROP) M=MNEW
END

"Calculation of the actual and augmented errors:"

EYi = YMODI - Y1

EY2 = YMOD2 - Y2

ERROR1 = EYI - DPPLAI

EB/_OP.2 = EY2 - DPPLA2



end

"Specify termination condition : "

TERMT (T .GE. FIN)

END $ "of DYNAMIC"

END $ "of PROGRAM"
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