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ABSTRACT

This research effort covered the development of 3He/4He dilution

cryocooler cycles for use in zero gravity. The dilution cryocooler is

currently the method of choice for producing temperatures below 0.3 Kelvin in

the laboratory. However, the current dilution cryocooler depends on gravity

for their operation, so some modification is required for zero gravity

operation. In this effort we have demonstrated, by analysis, that the zero

gravity dilution cryocooler is feasible. We have developed a cycle that uses

3He circulation, and an alternate cycle that uses superfluid 4He circulation.

The key elements of both cycles were demonstrated experimentally. The

development of a true "zero-gravity" dilution cryocooler is now possible, and

should be undertaken in a follow-on effort.



TABLEOF CONTENTS

Section

Abstract ........................................................... i

List of Figures and Tables ......................................... iii

1.0 INTRODUCTION ....................................................... i

2.0 BASIC PRINCIPLES OF DILUTION CRYOCOOLER OPERATION .................. 5

2.1 _Solution" Refrigerator ....................................... 7

2.2 _He Circulation Type .......................................... 13

2.3 _He Circulation, "Leiden" Type ................................ 16
2.4 _He Circulation, "ACE, Inc." Type ............................. 19

3.0 ZERO GRAVITY OPERATION OF DILUTION CRYOCOOLERS (THEORY) ............ 24

3.1 3He Circulation

3.2 _He Circulation,

3.3 4He Circulation,

Type ..... _................................... 25

"Leiden" Type ................................ 30

"ACE, Inc." Type ............................. 32

4.0 LABORATORY STUDIES OF "ZERO GRAVITY" DILUTION CRYOCOOLER CONCEPTS .. 34

4.1 Solution Refrigerator_ ........................................ 34
4.2 Phase Separators for OHe ...................................... 43

4.3 The "ACE, Inc." Cycle ......................................... 64

5.0 CONCLUSIONS ........................................................ 72

6.0 RECOMMENDATIONS .................................................... 77

7.0 REFERENCES AND BIBLIOGRAPHY ........................................ 81

8.0 APPENDICES ......................................................... 86

APPENDIX A - Theory of Solution Refrigerators ...................... A-I

APPENDIX B Theory of the "Vortex" Cryocooler ..................... B-]

APPENDIX C - Test Facility for Cryocooler Development .............. C-I

ii



Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 3.1

Figure 3.2

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

LIST OF FIGURES

The 3He/4He Phase Separation Diagram

(x = n3/n3 + n4) ................................

Basic Solution Refrigerator Cycle ...............

Solution Refrigerator Using Superleaks and He II
Circulation .....................................

Osmotic Pressure as a Function of Temperature and
Concentration ....................................

The 3He Circulation Dilution Cryocooler ..........

The "Leiden" Dilution Cryocooler .................

The "ACE, Inc." Dilution Cryocooler ..............

Schematic Diagram of the Superfluid Phase

Separator (SPS) ..................................

Two Possible Arrangement of Phases in a Zero-

Gravity Solution Refrigerator ....................

Schematic Representation of the Solution

Refrigerator Test Cell ...........................

Temperatures of Solution Refrigerator Stages

Versus Power Input to the Fountain Pump ..........

Temperatures of Solution Refrigerator Stages as a

Function of Power Input to the Fountain Pump .....

Temperatures of Solution Refrigerator Stages as a

Function of Power Input to the Fountain Pump .....

Temperatures of Solution Refrigerator Stages as a

_unction of fountain Pump Power for Another 7%
He Test Run .....................................

Temperatures of Solution Refrigerator Stages as a

Functiog of Fountain Pump Power for a Test Run
with a _He Concentration of 14% ..................

Schematic View of Cryostat .......................

3He-4He Mixture Gas Handling and Pumping System..

Scale Drawing of 3He Trapping Sponge Test

Cryostat .........................................

Paqe

6

10

12

14

17

20

28

31

36

38

39

40

41

42

46

49

51

iii



Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Schematic View of Trapping Sponge Holder .........

Temperature of _ponge and Below the Sponge Versus
Time for a 50% _He-_He Mixture Run ...............

Pressure Aboye t_e Sponge as a Function of Time
for the 50% _He-_He Mixture Test Shown in Figure
4.11 .............................................

Temperature Vs. Time for Another 50% 3He-4He

Mixture Test Run .................................

Pressure Above the Sponge Versus Time for the Run

Shown in Figure 4.13 .............................

Temperature Versus Heat Input to Each Station

When the Sponge is Running in Continuous Mode

(Mass Flux In = Mass Flux Out) ...................

Test Cell Schematic ..............................

Temperature Versus Time Behavior for Ge-3

Thermometer. Fountain Pump Power is 8.6 mV ......

Dilution Test Cell Schematic for Testing of the

ACE, Inc., Cycle .................................

56

59

60

61

63

65

67

69

Table 3- I

LIST OF TABLES

Baseline Specifications for a Space Based 3He/4He

Dilution Cryocooler .............................. 24

iv



1.0 INTRODUCTION

This report covers experimental and theoretical work on the application

of "dilution cryocoolers" in zero gravity. There are basically two ways to

reach temperatures below 0.3 K. These are:

i. The "Adiabatic Demagnetization Refrigerator" (ADR)

ii. The "Dilution Cryocooler".

The ADR is a magnetic refrigeration system. A magnetic salt is cooled to as

low a temperature as possible and at the same time is magnetized with a very

strong magnetic field. The salt is thermally disconnected from the precooler,

and then the magnetic field is removed. Depending on the salt, temperatures

below 0.I K can be easily reached using this method. For zero gravity

operation, the primary advantage of the ADR is that it doesn't depend at all

on gravity. The ADR can be tested in one-g and we can be relatively certain

of its zero gravity operation. The primary disadvantages of the ADR are:

i. The high magnetizing field means that large, heavy magnets are

required. Permanent magnets are not permitted, as the fields must

be turned on and off.

ii. The refrigeration is cyclic, as the salt must be remagnetized

periodically.

iii. The temperature of the salt is not constant during heat absorption.

In order to maintain the temperature, an "isothermal

demagnetization" can be used, but this requires a time programmed

magnetic field.



The dilution cryocooler does not suffer from these problems. Constant

temperatures as low as 3 mK can be reached. The currently available dilution

cryocoolers require an external 3He vapor circulation pump. A new design for

the circulator has recently become available, and this circulator makes long

lifetime, zero gravity operation possible. The circulator, called a molecular

drag pump, is produced by Alcatel Vacuum. In operation it requires roughly 50

watts of power. Therefore, there is an immediate trade off to consider in the

application of the dilution cryocooler. Is the total weight of the ADR system

(Magnetic salts, heat switch, magnet, power supplies, magnetic shields, etc.)

greater or less than the total weight of the dilution cryocooler (cold head,

gas lines, circulator, power supply)? Also, does the average power

requirement of the dilution cryocooler (50 watts) create more or less of a

system problem than the periodic power requirement of the ADR? These issues

must be resolved before a final choice is made for the design of an ultra low

temperature spaceborne cryocooler. A zero gravity dilution cryocooler is

clearly an attractive option that bears consideration in the selection

process.

Both the ADR and the dilution cryocooler require a "heat sink", and a

Hell space dewar system operating at 1.5 - 1.8 K can serve for both systems.

The heat given off by the cryocooler is absorbed by the evaporation of Hell.

Since there is only a finite amount of Hell in the dewar, the lifetime of the

mission can be determined by this heat absorption. The heat leaks of the ADR

include the heat of magnetization of the magnetic salt, the magnet charging

losses, the current lead losses for the magnet, and losses connected with the

heat switch. The losses connected with the dilution cryocooler include heat

rejected by the refrigeration cycle, losses connected with imperfect heat



exchange between the 3He being removed and the 3He being introduced, and

losses connected with the piping required for the vapor circulation. As far

as the cryogenic cycle itself is concerned, we expect the magnetic cycle to

have higher intrinsic efficiency than the dilution cycle. However, we expect

the losses to be relatively small, and the dominant losses will come from the

external "support" systems.

A new dilution cryocooler cycle, that we call the ACE, Inc. cycle, was

developed in this research program. It is different from the 3He circulation

machine in that no external circulator is required. Thus, the drive power for

the circulator is also eliminated. The "cost" for this simplification is a

higher heat input to the He II dewar system during operation. However, this

is balanced by the absence of pumping lines, etc. that are required for the

3He circulation machine. Also, a novel design for a spaceborne 3He

circulation dilution cryocooler has been developed that utilizes surface

tension in a porous metallic matrix to achieve phase separation. Experimental

data has been obtained that supports the feasibility of both of these newly

developed technologies.

In the earth laboratory, the choice between systems is clear. The

dilution cryocooler has replaced the ADR except for some very special

circumstances. This research program has begun the examination of the

situation for space flight. None of the currently available dilution machines

can operate in zero gravity.

The object of this research program was to develop dilution machines that

could function in zero gravity. This has been successfully accomplished. The



dilution units must now be applied to specific space applications so an

overall analysis can be carried out to see if the dilution cryocooler will

replace the ADRin space as it has on earth.



2.0 BASICPRINCIPLESOFDILUTIONCRYOCOOLEROPERATION

The "dilution" cryocooler is based on three basic principles. The first

principle is the heat of mixing of 3He in 4He. The reversible dilution of 3He

into 4He produces a cooling effect. This cooling is the basis of a "solution"

refrigerator using the two liquid helium isotopes. The second basic principle

is the phase separation of liquid 3He and 4He below 0.87 Kelvin. The third

basic principle is that the "dilute solution" contains roughly 6.4 % of 3He,

even at zero temperature. Thus, the heat of mixing is available even at very

low temperatures. The phase separation diagram of the two helium isotopes is

shown in Figure 2.1.

A fourth principle, that is not used in the conventional 3He circulation

dilution cryocooler, is useful for alternate cycles. This is the fact that

the two isotopes can be easily separated using a "superleak". This is only

possible below the superfluid transition temperature of 4He. The superleak

can serve as a separation membranein the solution refrigerator.

In this section we will review the basic operation of the solution

refrigerator. A more complete theoretical analysis is included as Appendix A

to this report. We will then give a brief analysis of the two currently

proven dilution cryocooler cycles. The 3He circulation machine is the

commercially available unit, and is almost universally used for laboratory

studies in the 5 mK to 300 mK temperature range. The 4He circulation,

"Leiden" type dilution cryocooler has been developed in the laboratory. It

can operate over the sametemperature range as the 3He circulation machine,

but has not been commercially produced.
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In the final section, a new dilution cryocooler cycle, that was developed

in the effort covered by this report, will be described. This machine will be

called the "ACE, Inc." 4He circulation, dilution cryocooler cycle. Even

though it was specifically developed for zero gravity use, it can also operate

in gravity, and is a possible replacement for the current commercial models.

In the report we will refer to the three different dilution cryocooler

cycles as

i. The 3He circulation cycle

ii. The Leiden cycle

iii. The ACE, Inc. cycle.

2.1 The Solution Refriqerator

The solution refrigerator is discussed by Radebaugh in Chapter 11 of

Walker's (1983) monograph on cryocoolers. The basic cycle is shown in Figure

2.2. The key to the device is availability of a permeable membrane (G) that

will allow the free circulation of one component (At) by restricting the

movement of the second component (A2). The heating and cooling effects at the

two membranes will be approximately

Q = TAS (2.1)

A more detailed discussion of the thermodynamics is included in Appendix A.

This analysis assumes that the two components are miscible. If there is a
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phase separation between the membranes, as is the case with the 4He/3He

dilution cryocooler, the analysis can get more complicated.

As the solution refrigerator operates, there is a continuous injection of

AI at the input and a removal of AI at the output. This means that if A1 and

A2 are miscible, A2 will take part in the mass transport from the input to

output membrane. However, since the net mass flow of A2 must be zero over

time, there must be a countercurrent of A2. This countercurrent will be by

diffusion, through the moving mixture. The diffusion can be driven by:

i. concentration gradients,

ii. temperature gradients,

iii. osmotic pressure gradients, or

iv. a combination of the above.

If the circulating fluid is superfluid 4He, and the stationary fluid is

liquid 3He, then the solution refrigerator is closely related to the dilution

cryocooler. However, as stated above, the simple analysis is only applicable

above the phase separation temperature (0.87 K). Therefore, we will restrict

the liquid helium solution refrigerator to temperatures above 0.87 K.

Packed, fine insulating powders can separate the two isotopes easily.

These superleaks transmit almost no 3He, and can be used to purify 4He. The

superleaks are connected in series with a drift tube (T) as shown in Figure

2.3. A "fountain pump" or other circulator provides the pressure necessary to

drive the superfluid through the device.
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The 3He concentration in the drift tube will change with temperature.

Radebaugh (1967) has shown that the osmotic pressure in the drift tube will

remain constant. This is true only for small relative velocities, however.

For a discussion of cases where the mutual friction can become important, see

deWaele et al. (1984). A chart of osmotic pressure vs. concentration and

temperature is given in Figure 2.4.

A demonstration calculation of a solution refrigerator will be given as

an example. Assume end temperatures of i K and 1.5 K, and that the 3He

concentration at the I K end is 0.10. The osmotic pressure corresponding to T

= I K and x = 0.1 is 208.6 Torr. The concentration corresponding to _ = 208.6

Torr and T = 1.5 K is 0.064. Therefore:

QI = TIASI = {1) (3.247) J/mol

-Q2 = T2AS2 = (1.5) (3.315) J/mol

For a Carnot engine operating between the same two limits, we have

Q2 Icarnot = (T2/TI) QI,

but (I.5)(3.315) > (1.5/I) (I) (3.247)

so the solution refrigerator is less efficient than a Carnot refrigerator, as

we would expect. In the above we have used the tables given in Radebaugh

(1967).

11
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2.2 The 3He Circulation Dilution Cryocooler

A detailed discussion of the conventional 3He circulation dilution

cryocooler is not necessary for the purposes of this report. For a complete

discussion, the reader is referred to Lounaasma (1974), Radebaugh's chapter in

Walker (1983), Betts (1976), or Richardson and Smith (1988). All these

authors use the same basic techniques and only differ in small details. The

theory of the 3He dilution cryocooler is well established, and has been

supported by over twenty years of laboratory experience.

The basic cycle of the 3He circulation machine is illustrated in Figure

2.5(a). 3He vapor is brought from room temperature and condensed to liquid in

the condenser. The liquid is then cooled, first in the still, and then in the

heat exchanger, before it is injected into the mixing chamber. The 3He

diffuses from the almost pure 3He floating on the top of the mixing chamber

into the dilute solution in the lower part of the mixing chamber. Below 0.1

K, the concentration of the dilute solution remains almost constant at 6.4%

3He, independent of temperature. The "heat of mixing" of the 3He into the

dilute solution provides the cooling power of the refrigerator.

A continuous column of dilute solution connects the mixing chamber to the

still. At the liquid interface, the 3He is removed by evaporation. At

temperatures below 0.7 K, almost pure 3He is evaporated, with no 4He removed

in the vapor. Thus the 4He can be seen as a fixed "mechanical vacuum", with

the 3He moving through it with no significant interaction. The dilute

solution fills the other side of the heat exchanger, and the exchange of heat

between the dilute solution and the incoming 3He forms one of the most

13



Q.
=E
D
,n

DO
DO
_),'0

>5

-r

o

M '±

o

c0

0

6

<5

C4

c_

o

x

.r-
C)

.r-

t_

OJ

0

Z

.r-

E

c-

c_

>_

.-g
v

0
_J
0

0

r--
.r-

c-
O

.p-

-.1--

e.-
b-

_d
0.)
L

.r-
I.L.

14



difficult technical problems in the design of the dilution cryocooler. A

discussion of this problem is outside the purpose of this report, but is well

covered in the previously cited literature.

The 3He concentration in the dilute solution follows the constant osmotic

pressure law. This was discussed in the section of the solution refrigerator.

For a 6.4% 3He concentration in the mixing chamber, we expect a I% 3He

concentration in the still, for a still temperature of 0.7 K. Since there

will be a deficit of 3He in the still, due to evaporation, and an excess of

3He in the mixing chamber due to inward diffusion; the 3He will flow from the

mixing chamber to the still. This is a diffusion current, driven by the

constant osmotic pressure requirement. The cycle is shown in Figure 2.5(b).

The cooling power of a 3He circulation machine, with the flow of 3He

returning to the cryocooler shut off (non-continuous operation) is

Qm = 84 n3 Tm2 J/sec (2.2)

Circulation of 3He will reduce this cooling power, depending on the

effectiveness of the heat exchanger. This can be used as a limiting value for

comparison to other dilution cycles. Since the cooling power is directly

proportional to the 3He circulation rate, n3, it is important to make this as

large as possible. However, this is set by the capacity of the room

temperature pump. Modest vacuum pumps will have a speed of 5 liter/sec.,

correspond to n3 = 30 x 10 -6 mole/sec. In order to get large flow rates,

Roots blowers and other high capacity vacuum pumps are employed. Circulation

15



rates of 2 x I0"3 mole/sec have been used, but these are extreme values due to

the pumping problems.

2.3 The _He Circulation, "Leiden" Dilution Cryocooler

In the "Leiden" type dilution cryocoolers, liquid 4He is circulated,

rather than 3He. The Leiden machine uses superleaks for injecting and

withdrawing superfluid 4He from the unit. A schematic of the cycle is shown

ro

in Figure 2.6(a). The system is arranged so that phase boundaries exist in

both the mixing and the demixing chambers. The dilute solution in the mixing

chamber is trapped below the "lip" of the counterflow tube. The 3He floats on

top of the dilute solution, and fills the counterflow tube down to the

demixing chamber. In the demixing chamber, the 3He floats on top of the

dilute mixture in the lower chamber. Pure 4He is injected through the inlet

superleak, and forms more dilute solution in the mixing chamber. This process

is accompanied by cooling. As excess dilute solution is formed in the mixing

chamber, it "pours" over the lip and falls through the counterflow tube as

drops of dilute solution or as a sheet of dilute solution covering the walls

of the tube. The cold dilute solution exchanges heat with the 3He as the

drops fall. The 4He is removed from the tube by an exit superleak that is

placed in the dilute solution in the demixing chamber. Heat is given off as

the demixing takes place. This heat must be removed by an external cooler at

a temperature below the phase separation point. This is typically done with a

3He vapor cycle refrigerator.

The cycle is indicated on a phase diagram in Figure 2.6(b). The entire

process in the counterflow tube is in phase equilibrium, so the state path is

16
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along the phase separation line. As the temperature changes, 3He must diffuse

into the falling drops to increase the concentration. As the 3He rich

solution increases in temperature, the 4He fraction increases also. This

means that the 3He rich phase has an increasing density as we move down the

tube. Therefore, there is no gravitational instability in this cycle.

One of the basic problems with the Leiden cycle machine is the outlet

superleak. The superfluid 4He is removed from a solution containing roughly

40% 3He. Therefore, as the 4He is removed, a relatively large amount of 3He

must be removed, and must "diffuse" away from the superleak. If 3He builds

up, it can form a blockage, and stop the superfluid 4He removal. This is a

limiting factor on the circulation rate of the machine.

The Leiden machine cooling power can be calculated from the 3He

circulation machine equation. For temperatures below 0.1 K, the 4He rate can

be written as:

n4 = [(I.0 - 0.064)/0.064]n 3 = 14.6 n3 (2.3)

Therefore, the maximum refrigeration rate according to Eqn. 2.2 will be:

Qm = 5.7 n4 T2m J/sec (2.4)

It is much easier to get large 4He circulation rates, as the entire

circulation circuit can be maintained at superfluid temperatures, and the flow

can be driven by a "fountain pump". Rates as high as 2 x 10-3 mole/sec are

easily obtained using this method.

18



The main drawback to the Leiden machine is the precooler requirement.

Since a 3He vapor cycle is required, we have gained no real advantage over the

3He circulation machine. All the external vacuumpumps are still required.

The primary advantage in the Leiden cycle is the elimination of the

recuperative heat exchangers in the low temperature section. This can lead to

a considerable simplification in the design of the cryogenic section.

The Leiden dilution cryocooler is described in detail in the same

references that were given for the 3He circulation machine. A recent paper by

Satoh, et al. (]g87) contains a description of the best machine built to date.

A base temperature of 3.4 mK was reached at a circulation rate of 3.5 x 10.3

mole/sec. This base temperature compares well with typical 3He machines.

2.4 The _He Circulation, "ACE, Inc. Dilution Cryocooler"

The schematic of the "ACE, Inc." cycle is shown in Figure 2.7(a). The

cycle is similar to the Leiden cycle, as 4He is circulated through superleaks.

However, it is different because there is only one phase boundary, and that is

in the mixing chamber. The principal differences between the Leiden and ACE,

Inc. cycles can be seen on the phase diagram, Figure 2.7(b). Only the mixing

chamber operating point is on the phase separation line. The rest of the

dilute solution in the counterflow tube and the demixing chamber has

sub-critical 3He concentration. The relative concentrations of 3He in the

mixing and demixing chambers are set by the "constant osmotic pressure"

requirement, as in the 3He circulation cycle.

19
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A substantial advantage of the ACE, Inc. cycle over the Leiden cycle is

that the demixing chamber can operate at temperatures above the phase

separation point. A higher demixing temperature will lower the overall cycle

efficiency. However, if the requirement of a 3He vapor cycle precooler can be

eliminated, it can result in a much simpler machine.

The 3He will be removed from the dilute solution in the demixing chamber.

Therefore, an excess concentration of 3He will exist there. This excess will

diffuse up the counterflow tube, then replenish the 3He being absorbed in the

mixing chamber. This diffusion is similar to the diffusion that takes place

between the mixing chamber and still of the 3He circulation machine. It is in

the opposite direction, however; and it moves against the mass transport

velocity, v, of the dilute mixture. From the experiments of Satoh, et al.

(1982) on vortex cryocoolers, we know that the 3He will be swept out of the

counterflow tube if the velocity exceeds the critical value. If we take the

critical velocity to follow:

vc = I0-6/d m/sec.

then: n4 <_ 2.8 x 10-2 d (2.5)

where d is in meters and n4 is in mole/sec. Therefore,

Qm _ 0.16 dTm 2 (2.6)

However, the counterflow tube also conducts heat. This is calculated from
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Qc = k (A/L) AT (2.7)

Experimentally, the thermal conductivity values for solutions from 1.3% to

6.4%, lie in the k = 0.I W/mK range. Also, AT = TD - Tm = TD, so we can write

the available cooling power as:

Qa " Qm - Qc " 0.]6 d[Tm 2 .49(d/L) TO]

we can define a critical value when Qa = O.

to the critical value is:

(2.8)

The value of (d/L) corresponding

(d/L)c = Tm2/.49TD

= 2.04 x 10-2 for Tm = 0.1K and TD = I K (2.9)

To insure that the conduction term is negligible, d/L should be less than one

tenth (d/L)c. Given this requirement, then the maximum cooling power is

Qalmax = 0.16 d Tm2

With a 4 mm tube, and Tm = 0.1 K, the maximum cooling power is 6.4 micro-watt.

The drift tube length, L, is 2 meters.

The above analysis depends critically on the critical velocity equation.

There is almost no data available on superflow at temperatures below ! Kelvin.

The temperature dependence is also unknown, except that theory indicates a

constant value with temperature. Finally, the mutual friction between the

superfluid and the 3He is not well known. Castelijns, et al. (1984) has
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considered the effect of the 3He velocity on the performance of the 3He

circulation dilution cryocooler. The velocity of 3He in the ACE, Inc.

cryocooler is not muchlarger than in the 3He circulation cycle, so we suspect

this effect is not important. If the critical velocity becomesthe limiting

element, the drift tube can be split into a number of parallel tubes having

small diameters. This increases vc for a given cross-sectional area.
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3.0 OPERATIONOFDILUTIONCRYOCOOLERSIN ZEROGRAVITY

In Section 2.0 the basic principles of dilution cryocooler operation were

presented. These principles apply to earth based machines, that use gravity

to provide physical separation of the phases present in the cryocooler. In

this section we will develop the theory of machines that will operate in zero

gravity. One approach to the problem is to provide an artificial gravity.

This could be done by rotation of the device (centrifugal forces) or by use of
_o

electric fields. The latter method has been demonstrated in models by the

group at the Jet Propulsion Laboratory, Israelsson (1988). We have rejected

this approach in this effort. We intend to design a machine for zero gravity

operation without artificial gravity.

For the design studies we have selected the baselined specifications

given in Table 3-I. The specifications are based on the Adiabatic

Demagnetization Refrigerator (ADR) systems that have been developed for space

based sensor systems and represent the current state of the art in detector

technology. The three dilution cryocooler types that were presented in

Section 2.0 will be discussed in turn. The solution refrigerator does not

depend on gravity in any way, so it will not be covered further.

TABLE 3-I

Baseline Specifications for a Space Based _He/_He Dilution Cryocooler

Operating Temperature 0.1K

Operating Heat Load 10 #W

Heat Sink Temperature (Superfluid Helium Dewar) 1.5 K to 1.8 K
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3.1 Operation of a 3He Circulation Dilution Cryocooler in Zero Gravity

The 3He circulation dilution cryocooler, Figure 2.5(a), has three phase

boundaries. These include:

i. The vapor/liquid interface in the 3He condenser.

ii. The "dilute solution"/"concentrated solution" interface in

mixing chamber.

iii. The vapor/liquid interface in the still.

the

Each interface will be discussed in turn.

The vapor/liquid interface in the condenser is set by the thermal

gradient in the condenser. Above the cold condenser section, the pressure is

below that saturation pressure at the wall temperature. The tube is thus

acting as a heat exchanger to cool the vapor. When the vapor reaches the

condenser, the wall temperature falls rapidly, over a short section, to a

value that is below the saturation temperature corresponding to the line

pressure. Thus the fluid goes from single phase vapor to single phase, over

pressurized liquid over a short distance. In addition, the tube has a small

diameter so the fluid in the tube is roughly isothermal. Under these

conditions gravity is not an important factor. The zero gravity heat transfer

coefficients are probably different from the one g values, but not drastically

so. We don't expect any free convective effects in such a confined space, so

this indicates no important gravity effects. In conclusion, we do not expect

the condenser to be a problem in a zero gravity 3He circulation dilution

cryocooler.

25



The next interface that we reach in the circuit around the refrigerator

is the phase boundary in the mixing chamber. This boundary is where the

actual cooling effect is produced, so in order to make use of the cooling

power, we must make thermal contact to the phase boundary. The usual

schematic of the 3He circulation unit shows the 3He being introduced into the

concentrated phase, and indicates "diffusion" across the phase boundary. As a

matter of fact, the 3He is usually introduced into the dilute solution

directly. This encourages stirring, and maintains concentration equilibrium

in the mixing chamber. This experimental evidence supports the conclusion

that a clear, defined phase interface is not a requirement for dilution

cryocooler operation. The thermal contact requirement is the vital one.

The position of the phase boundary in the mixing chamber is set by the

amount of 4He in the system. To first order, the 4He serves as a "mechanical

vacuum". If the 4He phase boundary in the "still" is fixed, then the position

of the phase interface will be fixed, depending on the volumes of the parts.

In this way we can insure that the still and connecting lines are full of

dilute solution, and that the phase boundary is somewhere in the mixing

chamber.

The phase arrangement in the dilute solution channel will be self

correcting. The 3He is being injected in the mixing chamber and removed in

the still. Therefore, we expect the mixing chamber to be colder than the

still with circulation on. Assuming such stable operation, now place a "blob"

of pure 3He in the dilute solution channel. The temperature in the channel

will be somewhere between the still temperature, Ts, and the mixing chamber

temperature, Tm. Therefore, the particular point should be somewhere between
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points A and B on the phase diagram, Figure 2.5(b). Nowall these points are

in the dilute phase, and are not in equilibrium with the concentrated phase.

Therefore, we expect the "blob" to slowly "evaporate" into the dilute mixture

and cease to exist. The only place where concentrated solution can exist is

in the coldest part of the cryocooler; that is, in the mixing chamber.

The final phase boundary is in the still. Here, the problem is muchmore

complex. In the still the dilute solution is a superfluid. This means that

the walls of the still are coated with a superfluid film (Rollin film). This

film can creep into the pumping lines and can contribute a substantial 4He

circulation to the cryocooler. This 4He will reduce the cooling power of the

machine, so somemethod of controlling the film is usually included in the

still. In zero gravity the situation is muchworse. The creeping 4He film

could reach throughout the cold section of the pumping lines and the 4He level

would be muchhigher than in one g operation. Therefore, the phase boundary

in the still must be controlled for successful zero gravity operation.

A similar control problem with superfluid helium exists for dewars filled

with He-II and operated in space. A device, called the superfluid porous plug

has been developed that controls the superfluid. A device, based on similar

principles can operate as a still phase separator (SPS). The SPS will be

formed of a relatively high thermal conductivity material. This could take,

the form of a plate perforated by small holes, or a pressed, sintered, porous

metal disk. A schematic is shown in Figure 3.1. The passages in the SPSare

represented by a uniform circular tube with diameter d. The matrix is

represented by the disk, having an effective thermal conductivity, k. The
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Figure 3.1 Schematic Diagram of the Superfluid Phase Separator (SPS).
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escaping from the high pressure area PHigh to the down-

stream low pressure PLow"
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disk will have n passages per unit area, and the effective length of the

passages is L.

A qualitative description of the device follows. The dilute solution, at

a temperature of 0.6 K to 0.8 K is on the upstream side to the plug. The

downstream side is connected to a pumping line, and the pressure on the

downstream side is reduced. Since it is a superfluid, a certain portion of

the dilute solution will leak through the plug. The 3He in the dilute

solution will evaporate and the liquid will cool. A fountain pressure,

Pf = pS AT (3.1)

will be generated that tends to drive the superfluid towards the hotter end of

the plug; that is, back into the SPS. In steady state, the downstream end of

the plug will be slightly colder, due to the 3He evaporation. Heat will be

removed from the dilute solution on the upstream end, and transmitted through

the SPS to the evaporating interface.

The holes in the SPS should have a small diameter, so that the surface

tension force

20

Pst= -- (3.2)
d

is relatively large. This will assist in the definition of the evaporation

interface. However, the holes should be large enough to allow the 3He to pass

through with a relatively small pressure drop. According to the mechanical

vacuum model, we can treat the 3He as a vapor, except that we replace the free
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mass, m3, by an effective mass m3 For stable operation, the sum of the

surface tension pressure and the fountain pressure should be much greater than

the pressure drop of the 3He passing through the SPS.

This device is related to the normal fluid phase separator that was

developed by Alabama Cryogenic Engineering, Inc. in an earlier research

effort.

_p

3.2 Zero-GravitY Operation of the "Leiden" Dilution Cryocooler

According to our analysis performed during this research program, the

"Leiden" cycle is not applicable in zero gravity. This in contrary to the

conclusions that were drawn in the Phase I effort, and this caused a

substantial adjustment in the Phase II program. To illustrate, consider the

situation shown in Figure 3.2(a). We assume that a solution type refrigerator

device is filled with 3He/4He mixture, and the end temperatures are set to the

values shown. Is the indicated phase arrangement stable? There are two

separate requirements:

i •

ii.

The concentrations along the phase boundary must following the phase

separation line.

The osmotic pressure in the dilute solution must be constant.

Reference to the property tables indicates that these two conditions cannot be

met at the same time. An additional indication that this is not an

equilibrium state is a calculation of the cooling power with circulation of
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Refrigerator.
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3He through the superleaks. We find that Qout at 0.6 K is less than Qin at

0.1K. Thus, the second law is violated.

The solution to the problem is shown in Figure 3.2(b). An internal

"convection" will take place, driven by the osmotic pressure. The 3He will

thus collect at the cold end of the tube, and the dilute solution will fill

the remaining space. Therefore, the "Leiden" machine becomes the ACE, Inc.

cycle. We conclude that the "Leiden" cycle is only possible in gravity, and

is not a candidate for zero gravity operation.

3.3 Zero-Gravity Operation of the ACE, Inc. Dilution Cryocooler

The ACE, Inc. cycle avoids the problems of the Leiden cycle by having a

phase boundary only in the mixing chamber. Since this is the coldest region

in the unit, the 3He phase can exist there stably at all temperatures. The

arrangement of the phases is similar to the 3He circulation dilution

cryocooler. To simplify things, the amount of 3He in the active region could

be reduced, so that at the lowest temperatures there would be not concentrated

3He phase. This is possible, but it will reduce the cooling power at

temperature higher than 0.1 K. For maximum refrigeration power there should

be enough 3He to provide a phase separation at a relatively high temperature.

This will speed up the cooldown process, and insure that the full cooling

power is available at the lowest temperatures.

Since the ACE, Inc. cycle is new, the question of testing for zero

gravity arises. As with all the dilution cycles there is a strong effect of

gravity. The pure 3He is much lighter than the dilute solution, so it tends
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to raise to the highest point in the machine. In addition, if the 3He

concentration changes along the counterflow tube, then the density also will

change. A "gravitational instability" of this type must be suppressed in the

3He circulation cycle. This is usually done by adding a "U-Tube" trap at the

exit of the still.

For testing in gravity, the ACE, Inc. unit must be in one of two

positions. Either the mixing chamber must be higher than the demixing chamber

or they must be at the same height (horizontal operation). If the demixing

chamber is above, a gravitational instability will occur, and the unit cannot

operate stably.
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4.0 LABORATORYSTUDIESOF "ZEROGRAVITY"DILUTIONCRYOCOOLERCONCEPTS

In this section, test results will be presented for a solution

refrigerator using 3He-4He liquids as working fluids. This type of

refrigerator was introduced in Section 2. A description of the experimental

apparatus will be given, and the test results for pure 4He and for two

different 3He-4He mixtures will be presented. It will be shown that these

results indicate that the principle of the 3He-4He solution refrigerator is

valid and that functioning of the solution refrigerator was observed as

expected.

4.1 Solution Refriqerator Test Results

In this section, test results will be presented for a solution

refrigerator using 3He 4He liquids as working fluids. This type of

refrigerator was introduced in Section 2. The solution refrigerator differs

from the dilution refrigerator in that the latter works at temperatures below

the 0.86 K threshold for the 3He rich 4He rich phase transition. Solution

refrigerators could in principal be tested for any two weakly interacting

species if a membrane can be constructed that is permeable to one species but

impermeable to the other. One component is trapped between two membranes,

which it cannot penetrate. The second component is circulated in through one

membrane, and out the other. An entropy increase occurs on the downstream

side of the first membrane as the two components mix together, while an

entropy decrease occurs at the second membrane where the two components are

separated. These changes are due to the entropy of mixing of the two

distinguishable, non-interacting components. At this point in the description
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of the solution refrigerator, the argument is usually given that these entropy

changes result in cooling at the first membraneand heating at the second one

since

Q = TAS (4.1)

where Q is the heat flow, T is the temperature, and AS is the change in

entropy of the system due to mixing. However, equation 4.1 may not always be

justified (see Appendix A).

Solution refrigerator tests were conducted on an auxiliary cryostat,

which will be described in detail in Section 4.2. This cryostat provides a

1.4 K superfluid helium supply and heat sink for test use. Figure 4.] shows a

schematic representation of the test cell used for the 3He - 4He solution

refrigerator. 3He is trapped between two superleaks, which consist of

stainless steel tubes tightly packed with jeweler's rouge. 3He is admitted to

the chamber between the superleaks by means of a stainless steel capillary

that runs to room temperature. 3He cannot pass through the superleaks, so it

is trapped between them. Superfluid 4He (T < 2.17 K) can go through the

superleaks, and is circulated through the refrigerator by a fountain pump.

The fountain pumpmakes use of the thermomechanical effects (see Guenin and

Hess, 1980) to drive fluid from the pot through the device and back into the

pot. An intermediate heat exchanger is required between the fountain pumpand

the solution refrigerator to ensure that the liquid entering the refrigerator

is at the base temperature of approximately 1.4 K.
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Figure 4.1 Schematic representation of" the solution refrigerator test cell.
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In Figures 4.2 and 4.3, the temperatures of three stations of the

refrigerator are shown plotted against fountain pump power. The data shown in

these figures are for pure 4He (X=O) in the chamber. The temperature at the

end of the exit superleak Te can be seen to decrease dramatically as the

fountain pump power is increased; the exit superleak and capillary is

effectively acting like a vortex cooler, and sharp cooling is observed. The

temperature of the bath heat sink TB rises slowly as the fountain pump power

is increased. This is to be expected because the heat input to the fountain

pump must be dissipated into the bath. The solution refrigerator's cooling

chamber temperature Tc shows no appreciable cooling for the pure 4He (X=O)

cases shown.

After completing these runs, pressurized 3He was forced into the test

cell, pushing out some of the 4He superfluid in there• Metering of the amount

of gas input gave estimates of the concentration. Figures 4.4 and 4.5 show

the same parameters plotted for the case when the cell was filled with

approximately 7% 3He (X=O.07); Figure 4.6 shows the same parameters for 14%

3He (x=O.14). In all three of these figures, a noticable cooling was observed

in the cooling chamber as the fountain pump power was increased. Thus, the

cooling seems to be related to the presence of 3He in the cell.

4.1.I Conclusions of the Solution Refriqerator Tests:

That the solution refrigeration principle was demonstrated for the

3He-4He system.
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Figure 4.2 Temperatures of solution refrigerator stages versus power input
to the fountain pump. Ts is the temperature of the cooling
chamber. These results are for pure 4He, so no refrigeration

effect is expected.
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Figure 4.3 Temperatures of solution refrigerator stages as a function of
power input to the fountain pump. This graph shows results
for another run with pure 4He as the working fluid,
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Figure 4.4 Temperatures of solution refrigerator stages as a function of
power input to the fountain pump. This data is for a 7% 3He
mixture test, and cooling of the cooling chamber is evident.
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Figure 4.5 Temperatures of solution refrigerat_]r stages as a function of
fountain pump power for another 7% °He test run.
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Figure 4.6 Temperatures of solution refrigeration stages as a function of
fountain pump power for a test run with a SHe concentration of
14%.
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o That further study is needed to optimize the performance of the

refrigeration effect and to discover the limits of attainable minimum

temperatures.

4.2 Dilution Crxocooler Phase Separators for 3-_l___e

Below 0.86 K, 3He - 4He mixtures undergo a phase transition that results

in the creation of a 3He rich and a 4He rich phase. This transition is

illustrated in the phase diagram presented in Figure 2.1. For the traditional

earth-based dilution refrigerator to operate gravity is used to separate these

two phases. The 3He rich phase floats on top of the 4He rich phase due to the

mass density difference between the two isotopes. In space based

applications, gravity will not be available to provide this needed phase

separation.

A possible alternative method would be to utilize surface tension to

separate the two phases. The surface tension of 4He is approximately 2.3

times as large as that of 3He at 0.5 K (Wilks, 1967, pg. 422). As the

temperature goes toward absolute zero, the 3He rich phase approaches pure 3He,

and the 4He rich phase decreases the concentration of 3He asymptotically to

6.4% 3He. Thus, separation of these two phases via their differences in

surface tension should be achievable.

A promising method for achieving phase separation for both binary liquid

and liquid-vapor systems involves using a porous metallic matrix to retain

liquid in zero gravity. Such a trapping method has been successfully

demonstrated by ACE, Inc., for pure 3He for the -1-g "inverted" configuration
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(see NASA contract # NAS8-35254 Final Report, Long Lifetime, Spaceborne,

Closed Cycle Cryocooler). In this application, the porous matrix or "sponge"

was used to trap liquid in a liquid-vapor phase separator. This sponge

corresponds to the still phase separator (SPS) discussed in Section 3.1.

Since 3He has the lowest surface tension of the two isotopes, successful

trapping of 3He indicates that trapping should be achievable for either the

3He rich phase or the 4He rich phase. Since the 4He rich phase has the higher

surface tension, it should cling more strongly to the porous material. The

exact distribution between the 3He rich and 4He rich components within the

pores is difficult to predict beyond the expected preferential attraction of

4He to the pore walls.

Phase separation between liquid and vapor must occur in the still of the

dilution refrigerator. In the still, pumping is applied to the liquid mixture

of 3He-4He to remove the 3He from the still for recirculation. Because of the

high partial pressure of 3He at this temperature, nearly pure 3He is removed

from the still. This 3He is circulated and introduced to the mixing chamber

to provide the cooling action of the refrigerator. In zero gravity, the

liquid must be prevented from escaping the system through the pumping lines.

Furthermore, the method used to achieve liquid-vapor phase separation in the

still must not interfere with the evaporation of the 3He. To explore the idea

of using the porous matrix to trap the mixture in the still, experiments with

3He-4He mixtures as the working fluid were conducted using the -1-g test

apparatus that was designed for the pure 3He experiment. What follows now is

a description of this test apparatus, followed by a presentation of the

mixture test data.
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4.2.1 Test Facility and Instrumentation

This section will describe the test facility that was used for the

surface tension phase separation tests for both pure 3He and 3He-4Hemixtures

and for the solution refrigerator tests described in Section 4.1. A

description will be given of the basic cryostat and dewar configuration, as

well as the electronic instrumentation.

4.2.1.1 Basic Cryostat

Figure 4.7 shows a schematic diagram of the basic cryostat

configuration. The cryostat consisted of a 6 liter liquid helium pot which

was suspended in a liquid nitrogen cooled Cryofab, Inc., model CSM-85dewar.

The space around the 4He pot was supported from the dewar top flange. A thin

walled stainless steel pumping line served as a helium vapor exhaust port. A

large capacity mechanical pumping system was used to pumpthe 4He pot down

below the lambda transition to a minimumtemperature of 1.4 K. At the bottom

of the superfluid pot 4 mini-conflat connectors made access to the liquid

helium in the pot possible. These connectors were welded to the pot and

provide access to the liquid. The 4He pot had a removable copper radiation

shield attached to it to protect the experimental space from radiation leaks

due to the dewar's 77 K walls. Copper radiation baffle plates attached to the

pumping line reduced radiation leaks to the pot from the room temperature

dewar top flange.

All electrical leads were of 0.005" manganin wire, and were passed

through the dewar top flange via room temperature ceramic feed-throughs.
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Figure 4.7 Schematic view of cryostat.
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These leads were well heat sunk on the pumping line. This made use of the

cold helium gas being removed from the system to minimize the heat leak to the

pot via the leads. All capillaries and electrical leads were also well heat

sunk to the superfluid pot itself.

When the cryostat radiation shield was in place, a thermal blanket

consisting of 20 layers of NRC-2 superinsulation was wrapped around the pot

and radiation shield to reduce the radiation leak to the pot from the 77 K

dewar walls. The pot walls and radiation shield were also covered with a

single layer of 3M No. 425 aluminum tape. Shu, Fast and Hart (1986) have

shown that this combination of superinsulation and aluminum tape can

significantly decrease heat leaks in cryogenic environments. With these

precautions taken, the 6 liter helium pot could hold liquid for up to 24

hours.

The experimental space inside the copper radiation shield was a

cylindrical chamber 7" in diameter and 11" in length. This space provided

adequate room mounting the cryocooler and associated hardware.

One final feature of the cryostat design that facilitated modification

of the apparatus was that the entire cryostat could be decoupled from support

vacuum lines and electrical leads and be lifted from the dewar. Also, the

dewar could be lowered as an optional method of obtaining access to the

experimental space.
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4.2.1.2 Electronic Instrumentation

The heart of the electronic instrumentation system is a Biomagnetic

Technologies Potentiometric ConductanceBridge (PCB). This bridge was used to

measure the resistance of Cryocal Model CRIO0and Lake Shore Cryotronics Model

GR-2OOA-IO0GermaniumThermometers. The PCBapplies very small load currents

(picowatts) to the resistors, and thus avoids self-heating in the thermometer

el ements.
ro

Hastings ST Series mass flowmeters were used to measure the helium gas

flow rates. These gauges give a 0-5 volt D.C. output that is linear with mass

flow over their calibration range; also, these devices are pressure

independent. Setra Pressure gauges were used to monitor pressures to the

system. These gauges give out a 0-5 volt D.C. voltage that is linear with

pressure.

4.2.1.3 Pumping and Gas Handling System

In Figure 4.8 a schematic representation of the pumping system is given.

In normal operation, the nearly pure 3He vapor was removed by the pump via the

"out" port of the sponge chamber. The vapor then passed through a low

impedance cold trap designed to prevent back streaming of pump oil into the

chamber. The pumping speed is then regulated by the block and metering valves

shown at the pump inlet. After passing through the Alcatel Model 2012H

hermetically sealed pump, the 3He vapor passes through an oil mist eliminator,

and into a charcoal cold trap.

Hastings ST-IO mass flowmeter.

The output of the pump is then measured with a

The gas then enters the main body of the gas
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panel, where pressure monitoring is done with Setra pressure gauges. After

passing through a needle metering valve, the 3He enters a Hastings ST-]O mass

flowmeter, and then back into the cryocooler via a return line. This is the

typical configuration used during a continuous cycle run.

Other important features of the system are a 37.4 liter storage volume,

where the 3He-4He sample is stored. A Metal Bellows hermetically sealed pump

is also attached to the gas handling panel to facilitate removal of the gas

from the storage can during its condensation into the trapping sponge. This

gas handling and pumping system offered great flexibility in controlling the

refrigeration cycle and in monitoring system parameters.

4.2.2 Porous Metallic Sponge Assembly

Figure 4.9 shows a scale drawing of the trapping sponge, pumping line,

and return capillary. 3He-4He mixtures entered the system via a 10 feet

length of coiled stainless steel capillary that passed through one of the

superfluid pot pumping lines. This scheme is designed to make use of the cold

4He vapor coming out of the superfluid pot to precool the incoming gas in the

capillary. The capillary is coiled to increase its total surface area, thus

improving heat transfer.

After it passed through the pumping line, the capillary entered the 4He

bath, where it was well heat sunk to the bath temperature by contact with the

high conductivity superfluid. In this region of the capillary, the incoming

gas condensed to form liquid, which trickled down below the bath.
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After passing through the bath, the liquid then dripped into the upper

chamber, where it was trapped by the porous sponge. A I/2" diameter thin

walled stainless steel pumping line was used to remove the vapor from the

cryocooler. This line was firmly heat sunk to the ].5 K bath at 4He pot

level, and had bends to eliminate radiation leaks from room temperature.

Finally, the 1.5 K radiation shield described in the cryostat section

surrounded the entire sponge assembly to block radiation leaks from the 77 K

walls of the nitrogen dewar after moving through the bath. Then the fluid

collected in the chamber above the sponge. This fluid was drawn into the

porous silver trapping sponge by capillary action. Evaporation then occurred

at the lower face of the sponge.

If a loss of trapping occurred, some or all of the fluid above the

sponge would fall into the lower chamber. This chamber was thermally isolated

from the liquid reservoir held above the sponge by the low thermal

conductivity of its stainless steel walls. The lower chamber and U-shaped

tube below the chamber were all made of copper and were isothermal. Thus, the

device is schematically represented as previously shown in Figure 4.10.

Presence of liquid in either the upper or lower chamber is determined by

applying heat loads to heaters shown and measuring the temperatures of the

chambers with resistive thermometers.

4.2.3 Porous Trapping Plug

The porous sponge used in the device was prepared in the following

fashion. First, 400 A silver powder was compressed to 3000 psi with a

hydraulic press. The powder was contained in a stainless steel jig and
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compressed with a stainless steel piston. This jig produced compressed

cylindrical silver plugs approximately I/4" in thickness and 3/4" in diameter.

These plugs were then placed in a vacuum oven, which was evacuated and then

backfilled with helium gas. The plug was then heated to 200 C in forty

minutes and kept at 200 C for I-I/2 hours. At this time, the oven was turned

off and allowed to cool slowly to room temperature. This method was similar

to that used by Franco (1984), and resulted in plugs with a packing fraction

of approximately 50%. The _esulting plug was then epoxyed into an OFHC copper

plug holder with Stycast 2850GT epoxy.

4.2.4 Results and Discussion

In this section, the results of the -I-g trapping tests of 3He-4He

mixtures in the porous silver sponge will be discussed. After the data is

presented, conclusions drawn from the tests will be given.

4.2.4.1 Preliminary Test: Pure 3He

To verify that the trapping plug apparatus was working properly, tests

were conducted with pure 3He. These results agreed well with previous tests

that demonstrated the sponge's ability to trap 3He against gravity (See NASA

Contract No. NAS8-35254). After condensing liquid 3He above the trapping

sponge, pumping from below the sponge was applied, and cooling occurred until

a steady equilibrium was reached at T = 0.6 K. This temperature was

maintained until the 3He was completely exhausted from the sponge. The mass

flow into and out of the sponge assembly was measured, along with the pressure

above the sponge and the temperature of both the sponge (Ts) and the chamber
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below the sponge (TBs). Loss of trapping could be detected by observing the

drop of TBS below Ts and by applying heat to each station. If liquid was

present in either station, the mass flow was seen to follow the latent heat

relation

Q = mL (4.2)

where Q is the heat input, m is the mass flow out, and L is the latent heat of

vaporization. Using this technique, loss of liquid trapping or film flow

through the plug could be easily detected.

4.2.4.2 Trapping Plug Results for 3He -4He Mixtures

In Figure 4.II, the temperature of the sponge station and the

temperature of the station below the sponge are shown as a function of time

for a test run with molar concentration X=O.5. Here we define the molar

concentration x as

x : N3/(N 3 + N4)

where N3 is the number of moles of 3He in the sample and N4 is the number of

moles of 4He. First, the sample was admitted above the sponge. Care was

taken to avoid fractionation of the mixture so that the concentration of the

sample would be well defined. After pumping was applied below the sponge the

system rapidly cooled to T = 0.6 K and stayed constant in temperature for

approximately one hour. During this time, nearly pure 3He was being pumped

from the system due to the high partial pressure of the 3He in the mixture.
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It should be noted that the same minimum temperature was reached during this

part of the run as was achieved using pure 3He as the working fluid. This is

because the 4He acts like a mechanical vacuum due to its low partial pressure,

and does not appear to interact with the mechanism of transport of 3He through

the sponge. During this phase, the sponge temperature is somewhat lower than

the temperature below the sponge, indicating that liquid had not broken

through. Liquid trapping was confirmed using the mass flow test described

previously.

At T : 160 minutes, a sharp rise begins in the temperature of both the

sponge and below the sponge. This temperature rise is due to the exhaustion

of the 3He from the liquid mixture, leaving only 4He trapped by the sponge.

Since the vapor pressure of 4He is much less than that of 3He at 0.6 K, the

system temperature rises due to the insufficient cooling power of the 4He.

Temperature equilibrium is again reached at T : 1.0 K, which is the often

observed practical minimum cooling temperature of 4He evaporative coolers.

The slight drop in temperature at the end of the run is not well understood,

but is thought to be due to a thin layer of 3He which phase separated when the

mixture was colder, and was excluded from the plug due to the surface tension

of the 4He rich phase. It should be noted that after the 3He is exhausted

from the system, the temperature of the station below the sponge decreases to

a lower value than the sponge. Also, heat tests then reveal the presence of

liquid in the station below the sponge. We believe that superfluid film flow

accounts for these effects. When 3He is present, the thermal conductivity of

the liquid mixture is greatly reduced, and the temperature gradient across the

sponge is relatively large. Thus, the sponge acts like a porous plug phase

separator (See Hendricks and Karr, 1986) when 3He is present, and all liquid
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is retained by the sponge. It is important that no film flow is seen when 3He

is present because downstream film flow in the still of dilution refrigerator

serves to introduce heat leaks into the system and decreases the rate of 3He

being pumped from the still.

In Figure 4.12, the pressure above the sponge is shown as a function of

time for the same run illustrated in Figure 4.11. After initially pumping down

the system, the pressure reaches a minimum value and stays at that minimum

throughout the duration of the run. This minimum pressure is somewhat higher

than the vapor pressure at Ts due to the pressure drop across the sponge. The

fact that the equilibrium temperature rises when the pressure remains constant

is another direct indication that 3He is pumped away from the mixture first.

Figure 4.13 shows the results from another test of the X-O.5 mixture.

Here, the general performance is the same as in Figure 4.11, but a lower

minimum temperature is reached. This graph is on a shorter time scale than

Figure 4.11; equilibrium at a higher temperature is not shown. Figure 4.14

shows the pressure above the sponge as a function of time for this test run.

Additional tests were conducted with a mixture concentration of 75% 3He

(X=0.75). Very similar results were obtained with this concentration to the

data from the X=O.5 test runs. The only difference in the results was that

the portion of the run with T = 0.6 K lasted much longer, since more 3He was

available. These results substantiate the observation that all the 3He is

preferentially removed from the sponge before the 4He in the mixture is

expelled.

58



100

X=0.5

NO HEATINGTO EITHER STATION

rY
n-
O

n

8O

6O

4O

2O

0

0

0

PRESSURE ABOVE SPONGE

%

0 100

I I

200 300

TIME (MIN)

Figure 4.12 pressure above the sponge as a function of time for the 50%
3He-4He mixture test shown in Figure 4.11.

59



0.8
0 -SPONGE

.. X=0.5
ALL POINTS SHOWN

•-BELOW SPONGE

LLI

I,I
0-

I,1
I--

0.7

0.6

0.5

0.4-

'0 0 0 0
0 0

0

• • II

0 0 0 0 (3D

I I I I I I I I

0 20 40 60 80 1O0 120 14-0 160

TIME (MIN)

Figure 4.13 Temperature vs. time for another 50% 3He-4He mixture test run.

60



14.0

X=0.5

NO HEATING

n,,'

0
I--

V

13..

()

12.0

10.0

8.0

6.0

4.0

0

PRESSURE ABOVE SPONGE

0
O0 0 0 0 0

I I I I I I I I

0 20 40 60 80 1O0 120 14-0 160

TIME (MIN)

Figure 4.14 Pressure above the sponge versus time for the run shown in
Figure 4.13.

61



The previous results were obtained by filling the chamber above the

sponge, shutting off the input mass flow, and then pumping on the sponge from

below. In an actual dilution cryocooler application, continuous circulation

of 3He through the system is required to provide constant operation. To test

the feasibility of continuous operation, the trapping sponge was filled with

mixture, and pumping started from below while the output flow from the pump

was brought to room temperature, sent back into the cryostat to recondense,

and fed back into the chamber on top of the sponge. This arrangement led to a

steady minimum temperature of the sponge that could be maintained

indefinitely, since the 3He was not depleted. In Figure 4.15, typical results

for such a continuous cycle run are shown. Equilibrium temperatures for each

station are plotted as a function of heater power applied to that station for

both the sponge and below the sponge. The rapid increase in the temperature

of the station below the sponge for a given input heat flux is proof that loss

of liquid trapping has not occurred, and that the liquid mixture is being held

above the sponge against gravity.

4.2.5 Conclusions

The following conclusions have been reached based on the results of the

surface tension phase control test program for 3He-4He mixtures:

I •

.

That a highly conductive, porous metallic matrix can be used to retain

liquid mixtures of 3He-4He against the pull of gravity (-l-g) provided

that the 3He concentration of the mixture is not severely depressed.

The above result implies that the porous metallic matrix method can be

used to achieve liquid-vapor phase separation in zero gravity, since
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zero-g operation is a less strenuous requirement than the inverted

(-l-g) configuration.

That the above mentioned phase separation technique was successfully

tested in a continuous operation mode, where 3He was reintroduced as

liquid above the porous sponge at the same rate 3He vapor was drawn from

the sponge by pumping from below.

The results listed above demonstrate the feasibility of operating the

"still" portion of a 3He circulation dilution cry,cooler in zero

gravity.

That the 3He rich - 4He rich phase separation that must occur in the

mixing chamber of the dilution cry.cooler can be accomplished using

porous matrix phase separation techniques. It should be noted that

direct testing of this concept was not carried out, but the differences

in the surface tension of the two phases indicates that it should be

possible.

That a 3He circulation dilution refrigerator that operates in zero

gravity is a viable technology that can be successfully achieved.

4.3 The ACE, Inc. Cycle

Testing of this cycle was done using the rig illustrated in Figure 4-16.

In this configuration, the cycle is run in a minus one-g situation. He II

flows through superleak I to dilution chamber I, up the counterflow tube to

dilution chamber 2, and then returns to the 4He pot through superleak 2. The

superleaks are 12" long by .092" O.D. and are packed with jewelers rouge

powder. The counterflow tube is .125" O.D. and is 10" long. It is spiraled

three times around a 2" rod to minimize the vertical separation between the

64



r_
I

i
F7

4. He POT

FILL CAPILLARY

(

b
I

F, I

I

I

FOUNTAIN PUMP

,_ HEAT EXCHANGER

I' I

3He POT _ _ , _ SUPERLEAK 2

.\

DILUTION CHAMBER I -----......_[_j_ _ _ FILM 3

GE-3

Figure 4.16 Test Cell Schematic

65



two dilution chambers, which is about 4". The 3He fill capillary is .020"

I.D. with a .018" O.D. wire inside, to minimize fluid thermal conduction from

the 4He pot to the test cell. All electrical leads to the thermometers are

anchored to the 4He pot and the 3He pot. A heat exchanger, between the

fountain pump and superleak I, dumps the heat load from the fountain pump back

to the 4He pot. The overall bath temperature does increase as a result of the

heat load from the fountain pump.

4.3.1 I K Testing

The rig was tested at I K and at 0.5 K. At I K, this system is just the

solution refrigerator, discussed in section 4.1. With the configuration shown

in Figure 4.16, a thermal oscillation in dilution chamber I was observed that

had not been seen with the previously described rig. These oscillations are

shown in Figure 4.17 which displays the response of thermometer Ge-3 on

chamber I. They are characterized by a rapid cooling followed by a relatively

slow heating. The frequency and amplitude of these oscillations varied. This

effect was only seen when 3He was present in the test ce11. During this run,

the fountain pump power was steadily increased. Only when the power level

reached 8.6 mW did the oscillations occur. After 20 minutes of observation

the fountain pump was turned off and the oscillations disappeared.

The oscillations indicate there is some hydrodynamic instability

associated with flowing He II through a tube containing a solution of 3He.

Since there is no phase separation at this temperature and 3He concentration,

a convective instability due to density differences is unlikely. It appears

that 3He is being flushed to the opposite end of the counterflow tube where it
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collects. Periodically, the 3He is then redistributed through the counterflow

tube, resulting in a cooling effect as for the solution refrigerator.

The principle difference between the two testing configurations lies in

the counterflow tube. The first test setup uses a 0.5 mm I.D. tube and the

second test setup uses a 3.5 mm I.D. tube. The surface area to volume ratios

of the two tubes are 8 mm "I and 1.1 mm -I, respectively. Any significant fluid

wall interaction could result in different flow characteristics between the

two testing arrangements. At this point, the reason for the different thermal

behavior is unknown.

4.3.2 0.5 K Testing

The previous test cell arrangement is not suitable for testing the ACE,

Inc. cycle. A second test cell, shown schematically in Figure 4.18, was

constructed. Dilution chamber I, the entrance side, is now above the exit

side, dilution chamber 2. The 3He rich solution would float at the top of the

test cell. 3He would dissolve into the flowing 4He by diffusing across the

phase boundary. A cooling effect would then occur in chamber I.

A number of important experimental aspects have affected the low

temperature (below ! K) testing of the ACE, Inc. cycle. Early testing at a

temperature of 0.4 K with no 3He present in the test cell showed that a

temperature difference of 0.1K existed between the two dilution chambers,

with dilution chamber I being warmer. In order to improve the thermal

isolation of the test cell, capillaries of O.I mm I.D. and 300 mm length were

inserted on the superleaks and fill capillary between the 4He pot and the test
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cell. As a result, the ends of the superleaks are no longer thermally

anchored to the 4He pot.

When 3He is loaded into the test cell, its temperature increases.

Generally, the test cell temperature, measured by thermometer Ge-3, rises

about 0.3 K. The test ceil is then cooled off by pumping on the 3He pot.

3He-4He mixtures have higher specific heats and lower thermal conductivities

than pure 4He. The cooldown rate of the first dilution chamber is about 60

mK/hr. Thus, to cool the test cell to 0.5 K from 1.3 K would take over 13

hours. We attempted to increase the cooldown rate by turning on the fountain

pump at a very low power level, .01 mW, in order to flow He II through the

test cell. Instead, the cooling rate decreased. An increase in the fountain

pump power to .034 mW resulted in dilution chamber ] warming up. Thermometers

film 2 and film 3 also showed warming trends, at a slower rate than Ge-3.

Higher fountain pump powers resulted in still further heating.

The theory of the ACE, Inc. cycle was developed during the time the

experimental testing was taking place. This theory has illuminated aspects of

the hardware design that affect the performance of the ACE, Inc. cycle. As

the overall cooling power is only a few microwatts, minute sources of heat

inputs can significantly degrade the operation of the cycle.

As discussed previously, the current test cell arrangement has the

superleaks connected to the 4He pot through 0.I mm I.D. capillaries. Since

the superleaks act as entropy filters, the specific entropy at the superleak

entrance increases while He II is flowing. This effect results in a heat load

on the test cell.
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Additionally, dilution chamber I is cooled by conduction through the

counterflow tube. It may be necessary to have the 3He rich phase in this

chamberbefore 4He is circulated in order to have a cooling effect. The mass

flow of 4He may be carrying the 3He downstreamto the exit chamber, dilution

chamber 2. If this is the case, then the entrance chamber could then be

considered to be acting as a vortex cooler, which does not cool below 0.7 K.

Instead a heating effect could be expected to be seen.

4.3.3 Conclusions

To summarize, the solution refrigerator has been shownto operate at I

K. The situation for the ACE, Inc. cycle has not been fully determined

experimentally. The theory of this cycle does point to crucial hardware

designs that can have significant affects on the operation of this cycle.

These designs can be readily modified so as to reduce the extraneous heat

loads on the test cell and allow validation of the ACE, Inc. cycle.
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5.0 CONCLUSIONS

The primary conclusion of the research program is that a zero gravity

cryocooler using the principle of the 3He/4He dilution refrigerator is

feasible. The zero gravity dilution refrigerator can take two forms:

a)

b)

A cycle in which the 3He is circulated as a vapor, and

A cycle in which the 4He is circulated as a liquid through

"superleaks".

Each of these methods have been demonstrated in the earth laboratory, but each

requires an innovation in order to successfully operate in a zero gravity

environment. The two cycles will be considered separately.

5.1. 3He Circulation Dilution Cryocooler

The 3He circulation dilution cryocooler has three phase

boundaries. These include:

a)

b)

c)

The 3He vapor/liquid interface in the condenser at the input of

the cycle.

The 3He/4He phase separation interfaces in the "mixing chamber".

The dilute mixture/vapor interface in the "still"

In this effort, we have demonstrated by analysis that the only interface that

must be controlled is the interface in the still. The other interfaces do not
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create a fundamental difficulty, and we do not have to provide a substitute

for gravity in order to preserve cycle operation.

The vapor/liquid interface in the still must be controlled for

successful zero gravity operation. In this research effort, we have

demonstrated that a sintered silver "porous plug" can serve as a "still" phase

separator. This was demonstrated with 3He/4Hemixtures in a "minus one g"

arrangement. That is, gravity is assisting the liquid breakout, and the

interface is maintained against the gravity forcevia surface tension. This is

more demanding than zero gravity conditions, and has been used for earlier

superfluid porous plug work to demonstrate zero gravity operation.

Measurements have shown, that as long as 3He is present in the liquid

above the plug, there is no "superfluid film" downstream of the phase

separator. This means that the phase separator is serving as a "superfluid

film" stopper. Thus, the phase separator provide the two necessary functions

of a "still" control device:

a)

b)

The liquid/vapor interface position is defined.

There is no superfluid film downstream of the still.

The 3He circulation dilution cryocooler requires a "circulator" for

operation. In the typical laboratory operation, this is provided by a

"diffusion" pump or a mechanical "Roots Blower". In both cases, a mechanical

pump is required as a high pressure "backing pump". These vacuum pumps are

not adaptable to zero gravity operation. In this effort, we have identified

two pumping systems that can be operated in zero gravity. These include:
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a)

b)

The "Molecular Drag" vacuum pump,

A charcoal "absorption pump".

In our original proposal, we excluded the use of an absorption pump as it is

not continuous. Therefore, our analysis focused on the "Molecular Drag" pump.

This pump is commercially available from Alcatel Vacuum Products. The key

characteristics include:

a)

b)

c)

d)

e)

f)

Full pumping speed at pressures as high as 0.1Torr

High fore-pressure tolerance (< 50 Torr) so the dilution cycle

condenser can be used as a forepump

Constant pumping speed at pressures down to 10.6 Torr

Low vibration

Long bearing life

No oils or other contaminants that can limit the operating time of

the cryocooler.

We conclude that the Molecular Drag pump is an excellent candidate for zero

gravity, continuous operation.

5.2. 4He Circulation Cycle

The previously demonstrated 4He circulation cycle, called the

"Leiden" cycle, has been shown to be unsuitable for zero gravity operation.

This was demonstrated by analysis, and was based on two principles. These

are:
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a)

b)

The phase separation condition

The requirement that the osmotic pressure is constant in the

dilute solution.

Using the analysis developed in this effort, we have developed a new 4He

circulation cycle that can operate in zero gravity. The new cycle is called

the ACE, Inc., cycle.

The ACE, Inc., cycle has been demonstrated at relatively high

temperatures, and was shown to produce some cooling. However, due to

experimental limits, we were not able to find the actual cooling power nor

could we measure the low temperature limits of operation. However, we can

draw some conclusions, based on the analysis and the experiments. These

include:

a)

b)

c)

d)

The ACE, Inc., cycle is closely related to the 3He circulation

and the solution refrigerator cycle, so it should be feasible.

The ACE, Inc., cycle will be limited by the thermal conductivity

of the dilute solution.

The flow velocities in the refrigerator must be below the

"critical" value. If the velocity is greater, then the 3He will

be swept out of the active volume, and it no longer operates as a

dilution refrigerator.

Our analysis, based on extrapolations of higher temperature

critical velocity values, indicate that a temperature of 0.1K is

possible with a reasonable geometry.
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e) The ACE, Inc., cycle is not "gravity independent". Therefore,

testing must be done in a portion that compensates for gravity

effects. However, the cycle does not depend on gravity for

successful operation.

We conclude that the ACE, Inc., cycle is feasible. However, its limits have

not been defined, and therefore it now has a higher degree of "technical risk"

than the 3He cycle with a still phase separator.

5.3. "Vortex" Cryocooler

The "vortex" cryocooler is a "solution" type refrigeration that

uses only the two phases (normal fluid and superfluid) of He II. Since this

device is analogous to the dilution refrigerator, it became vital to

understand the fundamental limits of its operation. We were successful in the

task of developing a theory of operation that can account for the observed

operation of the vortex cryocooler. The principal limit to low temperature

operation is the Joule-Thomson coefficient of the He If. This limits the

minimum temperature to the 0.6 K 0.7 K range.

The Joule-Thomson coefficient of 3He/4He mixtures is orders of magnitude

less than the value for pure He II, so the limiting effect in the "vortex"

cryocooler should be negligible in the dilution cryocooler. However, if the

3He concentration of the mixture becomes very small, due to velocity effects

or other non equilibrium processes, then the Joule-Thomson effect can become

large and can prevent low temperature (T < 0.6 K) operation.
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6.0 RECOMMENDATIONS

The feasibility of two different 3He/4Hedilution cryocooler cycles has

been proven in this research effort. The cycles could provide substantially

improved performance over the currently available adiabatic demagnetization

refrigerator (ADR). However, additional development work is necessary in

order to define the precise operational characteristics of the dilution

cycles. Since this development could have a substantial impact on the design

of current and future astrophysics observatories that use sensor temperatures

of approximately 0.1 Kelvin, we recommendthat the additional development work

be started immediately. This recommendedeffort should cover two parallel

concepts. These are:

i. The "phase separator" for a 3He circulation dilution cryocooler, and

ii. The effect of "critical velocity" on the operation of the ACE, Inc.,

4He circulation dilution cryocooler.

A statement of work for each of the efforts will be given to illustrate the

scope of the recommendations.

6.1. Phase Separator for a 3He Circulation Dilution Cryocooler

The object of this effort is to use the previously demonstrated

phase separator concept in an actual, operating, dilution cryocooler. Zero-g

operation will be simulated by a "minus one-g" setup. This is more demanding

than zero-g operation, and can serve as a "proof" of zero-g operation. The

effort will consist of the following tasks:
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I. Set Baseline Requirements

a) Dilution cry.cooler cooling power

b) Heat rejected at IK station

c) Heat rejected at 1.5 to 1.8 K helium pot.

2. Design high poweredvortex cry.cooler to serve as I K station.

. Design the dilution cry.cooler with phase separator included. This
_o

design will be based on the existing SHE "Mini-Fridge", except for

the different "still" concept.

4. Construct the high power vortex cry.cooler of task 2.

, Test the vortex cry.cooler of task 4, to verify operation. This

task will use the test facility constructed in an earlier develop-

ment effort (NAS8-35254).

. Construct the 3He circulation dilution cry,cooler with new "still"

concept.

7_ Test the dilution/vortex cry.cooler of task 6 to verify operation.

This will use the same test facility that was used in task 5.

o Submit a final report, including the test results developed in the

above tasks.

This technical effort will extend over a 12 month period of performance,
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6.2. 4He Circulation, ACE, Inc., Dilution Cryocooler Cycle

The object of this effort is to determine the effect of "critical

velocity" on the operation of the ACE, Inc., dilution cryocooler cycle.

Zero-g operation can be simulated by arranging the cryocooler components in

gravity, in order to eliminate gravity effects. The effort will consist of

the following tasks:

I. Design a series of heat exchangers for the experimental facility

developed under the technical effort covered by this report

(NAS8-37260). These include:

a. 300 K - 4 K heat exchanger

b. 4 K - 1.3 K heat exchanger

c. 1.3 K - 0.5 K heat exchanger

o Modify the existing test cell to minimize heat inputs to the

dilution cryocooler. This includes:

a. Re-work 3He flow circuit

b. New thermal anchors for superleaks.

3. Construct a new ACE, Inc., cryocooler. This will include:

a. New large area heat exchangers for the input and output

segments.

b. Use demountable "drift" tubes so a variety of L/D ratios can be

used.
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m Incorporate the improvements of the first three tasks into the test

facility. The emphasis is on very low heat leak (< i micro watt)

into the test cell.

5_ Perform a series of tests to define the effect of critical velocity

on the operation of the ACE, Inc., cycle. The variables to be

considered are:

a. L, D, and the L/D ratio of a drift tube

b. Temperature

c. Flow velocity (4He)

d. 3He concentration

, Submit a final report, including the tests results developed in the

above tasks.

The technical effort will extend over a 12 month period of performance.
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_v T_U_D FLOW THERMODYNAMICS

AND

4He-3He REFRIGERATORS

I. INTRODUCTION, SURVEY OF PROBLEM

Most discussions of He dilution refrigeration devices include at

least informal reference to cooling associated with entropy
I

production in mixing. For example, Radebaugh _ prefaces his

treatment of 4He-SHe dilution refrigeration by commenting that the

mixing of 4He with the 4He-3He mixture gives rise to entropy

production and thus heat absorption by the system (cooling). The

entropy production in mixing is of course a well known effect

discussed in most thermodynamics texts. How well Justified is the

imp_ica._on that this argument in fact leads to cooling?

Consider the following situation in which _ _ +"a_ d .... pa_/ve effects

such as viscosity and component interactions are neglected:

ENTROPY OF MIXING

IN FLOW THROUGH MEMBRANE

Side A Side B

NIA,VA NIB,VB,T

" IA' " " IB'"2B'" 2B

I

Equilibrium conf _ ÷'_gura.lo,., substances 1 and 2

In the diagram above, substance 1 is free to move thru the

membrane, while substance 2 is trapped on the right side.

._._.=_"4_ibrlum implies that T is the same on both sldes, as well as

the chemical potential of substance I. Thus,

MIA = _IB (I)

Since _ is intensive, it depends only on the ratios, N/V - n. Thus,

_I(T,NIA/VA,O) = #I(T,NIB/VB,N2B/VB) (2)

Further, assume that I and 2 do not interact strongly so that

_I/an2 _ 0 (3)

Thus, from (2) and (3) we get

NIA/V A = NIB/VB (4)
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The equation of state for substance I for pressure as a function

of T and N/V will then result in PIA = PIB' giving rise to osmotic

pressure, _ = PB - PA = PIB + P2B - PIA = P2B"

Now, consider an infinitesimal part of the left-to-rlght flow as

transferring a quantity 6N I across the membrane, resulting in a

new equilibrium configuration. Assume that this transfer is

accomplished by decreasing V A by _V. N.B. However, this

assumption may not be valid for the continuous flow in a

refrigerator. See more comments on this be2ow.

Obvious conservation laws then result in

N_A = NIA - 6N 1

NIB = NIB + 6N 1

N_B = N2B

VA = V A - 6V

VB = V B + 6B

(5)

Also, assume that the process does not change T or PIA' so

NIA/V _ = NIA/V A (6)

and thus

PIA : PIA 17)

6V = (VA/NIA).6N 1 (8)

_ ....... u ...... the new configuration requires _IA B '

O= (8_l/SnlA)IT,n 2 (nlA-nlA + nIB nlB) + ...

J

+ (8_l/Sn2)IT,n I (n2B n2B) (9)

From (3) and (6), this then gives

NIB/V _ = NIB/V B (i0)

From (4), (5) and (8) we then get

6B = (VB/NIB).SN 1 = (VA/NIA).6N 1 = 6V (11)

Now consider the entropy of mixing in this process. Let S i be the

extensive entropy of substance i and again assume that on side B,

the total entropy is the sum S 1 + S 2. The change in total entropy

is then

8S = (OSI/ONIA)IT,V.(-6N _). + (8S_/8VA)IT. ,N'(-6V) + ...

(0SI/ONIB)IT,V.(6N I) + (8SI/8VB)IT,N'6 B + (SS2/8VB)IT,N.6 B
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Now use the combined Ist and 2nd law and (8) and (11)

= 6s,, v---( :A/VAI - 'IA|- '
i

L ._B ._ " V

Equilibrium gives NIA = _IB" Further assume  / IT,v depends

only on T and that 8U/SVIT,N _ O. The result is

T.6S = _V.(PIB + P2B - PIA ) (14)

However, this is easily seen to be the net work done in the

process. In other words, under the assumptions above, valid for

ideal gases and presumably for dilute solutions, the heat

associated with the entropy of mixing in a continuous, reversible

flow across a membrane can be computed as the net work done by

plstcns driving this process in such a way as to maintain

equilibrium.

Now consider the sl ÷- +.,a,lon for superfluld 4He (substance I)

8He(substance 2) and a super!eak as the "membrane" From standard

&na!ysls of super!eaks, (I) is still val_d and, to whatever extent

the notion of partial pressure is applicable to 3He, so is the

"osmotic" pressure argument. Of course, it may be argued that the

quantity 8SI/8N I must be zero s_nce SF does not carry entropy, but

these terms do not contrlbute to +_,,.e resulting (14) an}u_ay. Thus,

at first glance, it seems that the entropy of mixing argument does

_ndeed predict 4He-lHe dilution cooling. However, two points must

be made: First, the above argument was for non-steady state

changes across a slng_e membrane, rather than for a continuous

f_ow which _s more appropriate to model a refrigerator, and

second, T.dS was directly equated to heat _nput. Both of these

points must be looked at more carefully.

CONTINUOUS FLOW, MIXING AND COOLING

To _1_ustrate the problems that might occur when the above "m_x_ng

implies coollng" ar_Tument _s appl_ed blindly to a continuous flow

problem, replace the flnlte volumes on s_des A and B by _nflnlte

volumes. Assume that the substances are _deal gas, with no
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viscosity and no interaction between each other. Now assume that

gas 1 _s moving from left to right freely across the membrane,

= "_"- the fluid dynamical equations forwith constant PIA PIB .......

gas I are satisfied with constant velocity, v I. Similarly, _ +

gas 2 be at rest. The energy and entropy flow equations are

consistent with constant T and specific quantities, SIA= SlB, and

UIA = UIB. Another way to describe the situation is that it is a

linear (i.e. completely non-lnteractlng) superpositlon of a freely

flowing gas i in an infinite volume with gas 2 at rest confined to

the seml-lnflnlte side B. Clearly, there is no absorption or

generation of heat at any point in this process. Nevertheless,

gas I is crossing a membrane from a region in which its

concentration is I to one in which it is diluted by gas 2. The

arguments leading to (14) above if taken naively, however, might

lead us to suspect that cooling would occur at the membrane. This

is certainly not intended to be a realistic model similar to the

He flow across a superleak. Diffusive and dissipative effects

must certainly be accounted for. Nevertheless, it does point out

difficulty in taking the "cooling thru mixing" argument literally

without further analysis.

v4 i _ _.._..." . the...na..y, it might be objected that the "_=te" extent o _

tWO _ides &s .... _ 4_÷Ic m• ,......... " . .h_s can be rectified by making a

f_nlte system:

! gas I, v _ i
I I

X gas I, v _I and t
i gas 2, v=O I
i I

gas I, v _ X

Here identify points M, either topologically or by wrapping the

system back on itself in a sufficiently big circle to make

centrifugal effects negligible. This model then mimics the one in

the diagram in section IV below.

In summary, we have a counter example to the idea that the mixing

alone necessarily provides cooling in a continuous flow system.

II. 4He-3He DILUTION REFRIGERATOR:REVIEW

An early discussion of this was provided by Wheatley 2. More

complete treatments on the Leiden dilution refrigerator are

provided by papers published by the group at the Onnes Lab 3 and at
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Eindhoven 4. These works generally use thermodynamic equations for

changes without explicit reference to flow. However, as point out

above, the refrigerator is _n fact a continuous operation,

involving steady-state fluid flow Thus, it is necessary to look

at heatlng/coollng from mlxlng/demlxlng in terms of fluid

thermodynamics. For superfluld He, the standard model was
5

presented by Landau and Lifshltz, as summarized by Khalatnlkov

Other treatments were provided by London 6 and Prlgoglne and

Mazur 7, and Jackson 8. All of these arrive at fluid flow equations

involving specific, local thermodynamic quantities such as

internal energy and entropy. Of course, _n liquid Helium

appl_catlons, the super and normal components are not in fact two

separate substances, but the two-fluid idea is very successful in

provldlng a successful mathematlcal model. However, the basic

question for _cat_ons is to predict heat flow into or cut of

system at various points. A standard work looking at such

questions is the book by deGroot and Mazur 9.

• _CA,ION OF u=_Ill THERMODYNAMICAL FLOW AND IDENTIFv _ .....

The identification of particular energy flow as heat is a

non-trlvlal problem. See e.g. deGroot and Mazur's 9 discussion in

9hapter III of various possible forms for Jq, heat flux. In the

• _nearly part of this chapter they point out that T dS cannot

general be equated to quantity of heat flowing into system. For

example from their (I) and (4), it follows that

T.dS = dQ + dis

where dis is "internal entropy production", which includes, among

others, terms involving Z _kdNk, which are non-trivlal when

considering -_',_ _........._, ..ow thru membranes or superleaks, etc. Thus,

in reviewing the works mentloned in II above, care must be taken

to _nsure the correct relatlonshlp between T. dS and heat input to

system.

Specifically consider the treatment by deGroot and Mazur, 413 ff,

with the assumption of no external forces, all _'_ = O, and no

ja
chemical reactions, Uk_ j = O.

Let _ =I,II,III index regions wlth I and II being left and right

chambers and IIIa membrane. Assume that substance I is flowing

from left to right in I thru III into II which contains both
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substance I and substance 2, which cannot pass thru III. Further,

assume steady state. In this approach, it is assumed that the

flow is caused by a piston moving with constant velocity from left

to right in I, which thus has a finite volume, V'(t). Similarly a

piston in II _ _ _ma.n,a_n_ it at a volume VII(t). For si=pllclty,

assume that V = are small, so that space variations can be
TTT

neglected. In particular, V**" is infinitesimal, representing a

thin membrane separating I and If. Thus the extensive quantities

can be obtained merely by multiplying densities by the

corresponding V u. dGM use symbols dl/dt and de/dr to represent

"internal" and "external" rates of changes of extensive quantities

such as entropy, S u and internal energy, U u, as well as heat flux

into the system. Thus, dIQ_/dt is the rate of heat flow into side

across the "internal" boundary, represented here by region III,

while deQ_/dt is heat flow across external boundaries

corresponding to system heatlng/cooling.

Now apply the assumptions above to expression for total entropy

production, Oto t, given in (55), using (42) and (!6).

II _( P_ diM
" _ /T II -T , " +

oto t = _d!U*/dt).(_/T" - I ) / , _

_=-y.< . dt

Thus,

d __
W2 Y'2 "_

i
T _ dt ]

T TT

Now, assuming I "T._ is a thin heat conductor, T _ = _. , so the f_-_+.._,
T TT

term on the right side is zero. From (16), dlM_/dt + dlM_/dt=0,
TT

" _ is reversible_I = _ if the flow of substance 1 across _T

......... _.les that the flrst term inside the sum is zero. The

second is also, since .M_ = constant for each _. Thus,

Oto t = O.

Combining this with (46) and (47) leads to

II II

I dS a

deQ_ II deQ_

(11T_)'_ = (11TI)' I --ai--- (15)

In other words, the total rate of heat input to the system from
T

external sources is Just T" times the time rate of change of the
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total entropy in regions I and II,

I_ de Q T _. t-- +
_ • dS dS I

dt _ dt dt
_=I L )

(16)

Assuming no change in density of substance I as It passes from I
TT

to II, the rates of changes of V _ and V _ are negatives of each

other. Also, for small V a, S _ = V_pUs _ where s a is the specific

entropy. Thus,

dec TI dV r Z (II
_=I--_ - _ [PlSl - P1"1

(17)

This _ Just the entropy of mixing _ ..... _a

IV STEADY FLOW ANALYSIS OF SOLUTION R.FR_G,RA.OR

4He MOVING THRU TRAPPED 3He

-_ 4He -_

/ SUPER /i
I" To" // _EA., I

///// I
/I/III l
J/lllJ

I

.3He +4He ....

• • • , • , , • • •

i

' SUPER / i
/

i

/ LEAK / ! -_ 4He

"It/1/ I I
11 l/ l/ / // l# II I

i

Qout

Let us now apply Landau-Lifshltz-Khalatnlkov 5 equations to this

diagram. Recall that, as mentioned in 11 above, although %he

fluid flow equatlon= are effective models, normal and super

components are not _n fact two separate fluids.

In this model,4He is moving thru SHe trapped between two super

leaks. All temperatures are assumed to be above phase separation.

System is adiabatically insulated except at z=O and z=L where Qin

and Qout can come in/out. Object of study is to build a

mathematical model predicting T(z) and Qi and Q u_ In terms ofn o _
known experimental parameters. SOURCE:Khalatnlkov , especially

chapter 24.
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P(z)

T(z)

v (z)
n

v (z)
s

0s(=)

vs(z)

Qin

Qout

x(z)

- - UNKNOWNS - -

Pressure

Temperature

Normal component velocity (4He)

Superfluid component velocity (4He)

Superfluld component density (4He)

Velocity of SHe

External heat in at z_O

External heat out at z=L

He 3 molar concentration • N3/(N3+N 4)

related to Khalatnikov's c • pS/(ps+p4) by

by c=x(ms/m4}/(1-x(l-m3/m4))

- - ASSUMPTIONS AND KNOWNS - -

Steady state . @ (All)/0 t = 0 v

Total mass ^_ 3H .... _* FO 3_. e _ .......... = Area dz ,
'0

0hand Ps as functions of T and P.

T(0)

v (0)
s

• P(0)

Expressions for chemical potential and dis_ipatlve

parameters in terms of T, P

Rewrite Khalatnikov's equations (24-36) and (24-37)

as (18) thru (19)

a_lat + v. Cn + _) = 0

_,s,'at + V.(_ -Zc/p + vs2/2 + h) 0

_Elat + v_ = qin 6(z) - qout 8(z-L)

and total matter conservation,

aplat + w_ = 0

for _ _ _= PnVn + PsVs + pc v 3

and p = Pn + Ps + p c

It is assumed that the 3He is diffusing thru the

normal component of 4He. Thus, _f Khalatn_kov's

g is the 3He "d!sslpatlve d_ffuslve current" then

referring motion to normal 4He means that the

c.o.m, velocity used in diffusion studies is v
n

(_)

(19)

(2o)

(21)
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The

thus v 3 = (pcv n + g)/(pc). In this way,

Kha!atnikov's (24-38) is equivalent to conservation

of 3He :

8(pc)/_t + Vo(pc_ 3) = o.

superleaks can be thought

concentrated at z=O and z=L

property that matter, temperature and chemical

potential (of 4He) are continuous across them,

(22)

of as membranes,

respectively, having

i.e., at z=0, z=L

- - ANALYSIS - -

Since everything is along z-axls, vectors and tensors reduce to a

single component. Apply @/@t = 0 to (18), thru (22) to get

_33 + r33 = constant (23)
2

p - Zc/p + v s /2 + h = ccnst (24)

N.B. (24) does not include a possible Sorter-Me!llnk term.

, o .... (25)pCV n _ g = C _÷

,(QL for z < 0

Q = _, Q0 for 0 < z < L (26)

I for L < zQR

where QL qO' and QR are constants

Qo Q" = Q'

QR - Q0 - -Qout

•_.n_ v + Dsvs + -3°cv- = const

T

Area ,!pc dz = Total mass He 3

Jo

Khalatnlkov and others provide an analysis of _, _, Z, h, g, Q

in terms of the variables listed above.

(28)

(29)

(30)

DETERMINATION OF FREE VARIABLES

Let the free variables be the functions T{z), P(z), Vn(Z), Vs(Z),

x(z), and the unknown constants Qin and Qout" First consider the

five equations: (23),(24),(25),the middle of (26),(29), and (30).

These five equations, with unknown constants on the right side of
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the first four, would then determine uniquely the five functional

unknov_s in the absence of d!sslpatlon, for which derivatives do

not occur, and assuming functional independence of the relevant

expressions on the left side. Thus, in the absence of

dissipation, and on2y then, each of the five functions, T, P, v n,

v s, x would be constant in the steady state, and Qin = Qout = o.

This is consistent with the points raised in the discussion of

disslpatlve-free ideal gas flow in section I above. This, of

course, is not an adequate model for an actual 3He-4He

refrigerator since dlsslpatlve terms and external work were

neglected. The presence of dlsslpat_on, however, means that

derivatives of these functlons are present in the expressions on

the rlght hand side, so that The determlnatlon _nvolves solving

first order differential equations yleld_ng the functions uniquely

_ terms of an _4÷_ set of f4_v_ constants This form o _ the

problem will require approximate computational work.

Finally, this model neglects external driving forces. The

discussion in I comparing driven versu_ free flow mixing

apparently indicates that these must be considered.

V. SUGGESTED FUTURE WORK

There seem tc be a good number of points in the theoretlcal

analysis of heat productlon/flow in classical fluid thermodynamics

that could well be studied more thoroughly, including especially

the identification of heat. The same can of course be said more

strongly for the superfluld case. Earth-bound e::perlmentz

necessarily involve _,_ty whose magnitude easily overwhelms that

of other effects Thus zero gravity fluid ÷_ .... A ...... , -_,_.....-2 .......cs could

be a very fruitful field for both theoretical and experimental

work.
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APPENDIX B

Theory of OPeration of the "Vortex Cryo¢ooler"

The "vortex cryocooler" is based on the concept of a "superleak". The

superleak can filter out the "normal" component of Helium II, leaving only the

"superfluid" component. Since the superfluid component carries no entropy or

heat, the "temperature" of the superfluid component should approach zero.

This effect was demonstrated by Darent and Mendelssohn (1) and schematic of

the apparatus is shown in Figure B-1. The superfluid component flows out of

the container through the superleak P. Since no entropy is carried away, but

the volume of Helium II in the vessel is reduced, the average entropy per unit

volume is increased. If the process is adiabatic, the temperature in the

vessel will rise. The heat that must be removed to keep the temperature

constant is:

Q*- T # S (B-l)

This process results in heating. The opposite process, resulting from the

injection of superfluid, can be used to provide cooling. This process is

called the "mechano-caloric" effect.

Stass and Severijns (1963) have developed a device that uses the

mechano-caloric effect to provide continuous cooling. They named the device

the "vortex cryocooler". A simplified schematic of the device is shown in

Figure B-2. Superfluid is injected into the cooling chamber (A) through a

superleak (SL). The Helium II in the cooling chamber then flows out through a

small capillary (C) and is returned to the Helium II bath. The cooling effect
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Figure B-I Apparatus used to demonstrate the Mecano-Caloric effect.
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Figure B-2 Schematic of the vortex cryocooler.
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is given by Eq. (B-I). This is balanced by the heat flow in the exit

capillary. The device will cool if the heat flow is less than the cooling

effect. The cooling effect for a typical device is illustrated in Figure B-3.

At low flow rates (small velocities), the device does not cool, due to the

large heat conduction in the capillary. Above the "critical velocity" of the

capillary, the "heat resistance" of the capillary increases and the device

begins to cool. As the velocity increases, the temperature continues to

decrease until a "plateau" is reached. If the velocity is increased further,

the chamber temperature begins to rise.

This plateau effect or minimum temperature has been one of the unsolved

issues in the understanding of the vortex cryocooler. In a long series of

papers, the Dutch have studied this effect, in order to resolve its source.

They have been unable to develop a theory that explains the observed behavior.

However, the extensive experiments have yielded an extensive "parametric"

model of the vortex cryocooler, and this provides a good basis for users

interested in applying the device.

In this Appendix we will present a theory of the vortex cryocooler that

explains the observed behavior of the device. The theory forms the closing

chapter in the development of the device, as the observed limits are shown to

be intrinsic to its operation, and cannot be avoided. The theory is

important, as it defines new limits on devices that utilize superfluid

injection, such as the solution refrigerator and the dilution refrigerator.

The Appendix will begin with a review of heat conduction in capillaries.

A section on the heat balance, and limiting behavior of the vortex cryocooler
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Figure B-3 Cooling effect of a vortex cryocooler (not to scale).

B-5



will follow. Finally, a section on the effect of hydrostatic pressure on the

operation of the vortex cryocooler will be given. In a summary, the limits to

operation will be given. This will be of use for considering the vortex

cryocooler for a particular application.

B.I Review of Heat TransDor_ in Capill_riQs

There is an extensive literature on the flow of heat in capillaries,

particularly under zero net mass flow conditions. This can be reviewed in the

work by Tough (1982). However, for the vortex cryocooler, we are interested

in heat transport under "forced convection" conditions. This has received

much less attention, but is an important issue for applications, such as

cooling of superconducting magnets. Here we will review the results developed

by Van Sciver (1986). A schematic of the experimental situation is shown in

Figure B-4.

The first assumption in the analysis is that the heat conduction can be

calculated as the sum of two mechanisms:

q " qfc + qic (B-2)

The forced convection term, qfc, is assumed to be described by the flow

of enthalpy:

Qfc " # u Ah (B-3)
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Figure B-4 Apparatus for measuring forced convection heat transfer in He-II.
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where Ah = hI h2 represents the specific enthalpy difference between two

points in the system between temperatures TI and T2. That is:

_T T2Ah = Cp dT (B-4)
]

Equation (B-3) assumes that the density, p, is a constant.

For internal convection, qic, we assume that the velocity is above the

critical value, so that the heat transport is in the Gorter-Mellink regime.

We will neglect the laminar flow regime, as this corresponds to low

velocities, and high heat transport. The Gorter-Mellink heat transport can be

described by:

qic = [(I/f(T)) (dT/dx)] I/3 (B-S)

The form of f(T) as a function of temperature and pressure is shown in Figure

B-5.

The heat balance equation can be written as:

d/dx [(1/f(T)) (dT/dx)] 1/3 - p u (dh/dx) - p (dh/dt) (B-6)

If we assume a steady state, then dh/dt - O. If we make the assumption of

constant properties, so Ah - Cp AT, we can write:

- d/dx* [(de*/dx*) 1/3] + K' (de*/dx*) - 0 (B-7)
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Figure B-5 The heat conductivity function f(T) for He-II as a function of

temperature and pressure.
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where

O* = (T-T2)/(T1-T2)

x* = x/L

K' = 2 p Cp u (fL) 1/3 (TI-T2)2/3 (B-B)

A graph of the normalized temperature distribution along a capillary for

various flow velocities, e.g. various values of K', is shown in Figure B-6.

We see that the temperature gradient is strongly affected by forced

convection.

Given the solution to the temperature profile, the heat transport can be

calculated. In normalized form the result is given by:

q/qo = "(dB*/dx*)]/3 + (K'/2) 9"

where

qo = [(T]'T2)/fL]]/3

(B-g)

(B-]O)

Results are given in Figure B-7. Compared to experimental results, the theory

seems to predict larger heat flows at relatively high velocities. The fit

seems reasonable over a wide range, however.

In summary, the heat transport in a capillary is substantially changed

when a transport current is present. In the case of interest, where the

velocity is opposite to the

substantially reduced. This

transport velocity is increased.

heat flow, the apparent conductivity is

reduction increases monotonically as the
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Figure B-6 Temperature distribution along a capillary for various flow
velocities (quantities defined in text).
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B.2. Heat Balan¢o in (iVqrl_ex Cryqcooler

The heat balance for a vortex cryocooler can be written as a series of

independent terms. There is one cooling term, due to the mecano-caloric

effect. The heating terms include:

i. heat conduction in the exit capillary, (internal and forced

convection)

ii. viscous heating in the exit capillary that is conducted back into

the cooling chamber,

iii. "Joule-Thomson" heating due to pressure gradients in the system, and

iv. direct heat inputs to the cooling chamber.

This can be written as:

Q* = qhc + qv + qjt + qi (B-II)

These terms will be discussed in turn, and then the equations will be solved

to give the minimum operating temperature.

B.2.1. Heat conduction in the capillary.

The heat conduction process via the Gorter-Mellink conduction, was

described in Section B-I. This process is usually the dominant one, however,

at low temperatures and high velocities It can be negligible. At all

temperatures, the direct "phonon" conduction process is available. In the

phonon conduction mode the helium II can be treated as an "insulating"
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crystal. In this regime the heat conduction is a function of temperature,

pressure, and "size". The size effect is well known for crystals at low

temperatures. Measurements of the thermal conduction of helium II in tubes is

shown in Figure B-8. The low temperature results are for the "phonon"

mechanism. At higher temperatures, other mechanisms are available, and the

conduction rapidly increases.

For the purpose of this study, we will use the phonon heat conduction as

the only heat conduction mechanism. This will underestimate the heat

conduction, but it will allow a closed form solution to the problem. The

experimental results can be approximately represented by (T _ 0.6 K):

kHell - 300 d T3 kW/m 2 • K4 (B-]Z)

This form is based on the assumption that the thermal conduction is limited by

boundary scattering, and that the mean free path is equal to the tube

diameter. In this analysis , the thermal conduction is directly proportional

to the speed of sound in the material. Therefore, the pressure dependence of

k is just the pressure dependence of the speed of sound. Therefore,

c(P)
k (P) - k(O)

c(O)
(B-13)

The speed of sound as a function of temperature and pressure can be obtained

from the NBS Helium Properties Program.
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B.2.2. Viscous heating in capillary.

The friction loss of the helium flowing along the capillary will be

converted to heat. The loss can be calculated from:

qf - fLu2/2d (B-14)

The friction factor, f, will have the following forms

f = 64/Re

f - 0.316 Re -1/4

f - 0.184 Re "I/5

Re < 2000

2000 < Re < 20,000

Re > 20,000

Re - pud/n (B-15)

From the form of the equations we expect this effect to be important at high

velocities. From the experimental work, we know that the flow velocity is in

the range of 25 _ u _ 100 cm/sec.

The viscosity of helium II at temperatures below 0.9 K is rapidly in-

creasing with temperature reduction. The form of the equation is complicated,

but for temperatures below 0.65 K, it can be approximated as:

- 16 x 10"6/T 2 MKS units (T < 0.65 K) (B-J6)

Taking representative values (d - 0.2 mm, Re - 20,000, u - 1.0 m/sec), we find

that the heat generated in the capillary is:
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Qf = 5.8 x 10-6 watt

Clearly, this is not large enough to affect the vortex cryocooler, so we can

assumethat frictional heating in the capillary is negligible.

B.2.3. Joule-Thomson Effect in Helium-II

The Joule-Thomson coefficient of a fluid is defined as:

Jm = (dT/dP)h (B-17)

It can be calculated from the thermodynamic identity:

Jm = (eT- 1) / pCp (B-18)

where T,a, p, Cp are the temperature, thermal expansion coeffient, bulk

density, and specific heat at constant pressure respectively. The values of

Jm for liquid He II have been calculated by Huang (]986). For temperatures

below 1.3 Kelvin, sT then becomes negligible, and the coefficient becomes:

Jm " - 1/p Cp T < 1.3 K (B-19)

Since the density of He II is roughly constant in this temperature range, the

JT coefficient is just proportional to the inverse of the specific heat at

constant pressure. The specific heat values become very small at low

temperatures, so this coefficient can become large. Also, it is always

negative so the He II tends to heat in a flow process.
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The specific heat values of He II have been measured by Greywall (Ig78).

An expression that fits the data over the range 0.2 K < T < I K and Psat < P <

25 atm is given. The equations have been incorporated into the National

Institute of Standards and Technology data base program for helium properties.

The subprogram is also available in a stand alone version called "Greywall"

B.2.4. Heat Balance Equation

The heat balance in the "mixing" chamber of the vortex cryocooler can be

witten as

TVS = qcap + qi (B-20)

That is, the cooling due to the mchano-caloric effect is balanced by the heat

flow for the capillary and by direct applied heat inputs. We have shown that

the heat input due to internal convection in the capillary is very small with

high flow velocities. Also, viscous heating flow are also negligible.

Therefore, the primary source of heat is due to the Joule-Thomson effect in

the capillary. This heat flow is proportional to the temperature gradient.

OJA - k VT (B-21)

However, from the Joule-Thomson effect, we know that the temperature gradient

is proportional to the pressure gradient. This can be written as:

0JA - k (dT/dP)h / (dP/dx) h (B-22)
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For the experimental situation, the flow in a capillary should be isenthalpic,

as indicated.

The form of k was given in part B.2.1. of this section. The form of the

Joule-Thomson coefficient was given in part B.2.3. The pressure drop can be

calculated from:

dP/dx = (fpu2/2d) (B-23)

The friction factor, f, was given in part B.2.2. Experimentally, the

friction factor has been found to be constant, rather than displaying the weak

dependance of Reynold's number given in part B.2.2. Therefore, we will assume

a constant value of f = 0.02. The terms can now be collected:

m Ta Sa = (3xi05) (dT 3Ac) (I/pCp) (0.02 pu2/2d) + Qi (B-24)

The term on the left is simplified by the assumption that:

VS - Sa - SO - Sa (B-25)

SO is the entropy of the superfluid component entering from the superleak, and

it is very small. Therefore, it is reasonable to neglect its contribution.

Using m - pu Ac, the equation can be rewritten as:

T a Sa = [3x103 (T3aU) / (pcp)] + Qi/m

If we assume that Qi is zero, then:
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(SaCp/Ta 2) - 3xlO 3 (u/p) (B-26)

This places all the quantities that are functions of temperature on the left.

Both S and C can be approximated by simple power law expressions.

S - 1.78 T 5.57 J/kg'K

C - 1.01 x 102 T6"56 J/kg'K (B-27)

If we assume that u = 1.0 m/sec, then:

Ta = 0.8] Kelvin

The observed minimum temperature of the vortex cooler is roughly in the

0.7 Kelvin range. The very simple model developed above has been able to

account for the experimental result, with no arbitrary assumptions. Note,

also, that the temperature rises with higher velocities in keeping with the

experimental results.

B.2.5. Pressure Effects in the Vortex Cryocooler

Satoh et. al (1982) have found that the minimum temperature of the vortex

cryocooler decreases with increasing background pressure, e.g., the pressure

drops are not changed, Just the background pressure. It would be a

confirmation of the theory if we could predict the observed change. There are

substantial problems that make this very difficult. The excitation spectrum

of He II is a function of pressure, the "crossover" point where the behavior

changes from "roton" domination to "phonon" domination changes, as does the
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magnitude of the two mechanisms. This means that "kinks" develop in the

temperature dependence and we are no longer able to get simple power law fits

to the parameters.

To approach this problem, we have started from the specific heat fit

equation given by Greywall (]g7g). The entropy values were obtained by

integration of the specific heat equation

CS - --dT (B-Z8)
T

The Greywall fit equations already include a formula for the density as a

function of pressure. The thermal conductivity is corrected for pressure

according to eqn. (B-]3). Rather than using a constant friction factor, we

used eqn. (B-15), with viscosity values given by eqn. (B-16). The resulting

equation was rearranged to put all functions of T and P on the left, and all

constants and functions of velocity and channel diameter on the right. Thus

the equation had the form

(T,P) = _(u,d)

The two functions are solved numerically, using the programs developed above.

The functions are plotted, and the actual solutions (Minimum Temperatures) are

taken from the charts.

An example calculation is illustrated in Figure B-9. The line @ - ]0980

corresponds to a velocity of ] m/sec and a capillary diameter of 0.] mm. The

@ = 8814 line corresponds to a velocity of ] m/sec and a capillary diameter of
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0.3 mm. An expanded scale version of the same situation is given in Figure

B-]O.

The two examples chosen above corresponds to the two capillaries used by

Satoh, et al. (1986). A comparison of the predictions and the experimental

results are shown in Figure B-]I. The fit is reasonable, considering the

number of approximations involved. However, we estimate that the primary

source of error is in the form of the thermal conductivity equation. The

experimental values given in Figure B-8 only fit the form used below 0.6 K.

We note that the agreement is better at the lower temperatures. The higher

temperature results are bound to have a different form and a different

dependence of T and P than the low temperature results.

The diameter dependence in Figure B-l] is only due to the pressure drop

equation. However, we know that the mean free path is temperature dependent,

and that this dependence is not included in the thermal conductivity equation.

This is another source of error.

The temperature as a function of position along the capillary has been

measured by $atoh et al. (]g86). The above analysis shows that the heating is

greatest at the lowest temperatures. Thus, this effect will be most

pronounced at the entry of the capillary. This is confirmed by experiment.

The temperature gradient along the capillary is uniform for relatively low

velocities. At high velocities, the entire temperature drop exists over a

short region at the entrance of the capillary. A further confirmation comes

from experiments with the bath cooled to 0.4 Kelvin. Even though the exit of
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the capillary is at 0.4 Kelvin, the Joule-Thomson effect always brings the

entrance to roughly 0.7 Kelvin.

B.3 Summary of Theory _nd Compari@on with Experiment

A typical TA vs. u chart is shown in Figure B-3. The three principal

operating regimes are identified. In regime I, the capillary flow is laminar,

and the thermal resistance of the He II in the capillary is relatively small.

Since the velocity is low, the mass flow is small, and the cooling effect is

small. Thus, in regime I there is almost no cooling effect.

In regime II the flow in the capillary is in the NGorter-Mellink" r_gime.

The thermal resistance of the internal convection mode is rising with

velocity. In addition, the forced convection due to the net mass flow also

increases the thermal resistance. The increasing mass flow causes an

increasing cooling effect, but the lower temperature means that the entropy

change per unit mass flow is smaller. In this regime we expect the tempera-

ture to monotonically decrease with increasing velocity.

In region III, the increasing pressure gradient in the capillary

generates increasing heating due to the Joule-Thomson effect. This effect

will create increasing heating with increasing velocity.

The vortex cooler is a useful device, when operated in its effective

range. At low pressures, a temperature of 0.8 Kelvin is easily reached, with

a cooling load of a few hundred microwatts. By raising the pressure to 25
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atm, the operating temperature can be pushed down to roughly 0.7 Kelvin with

the same cooling load. Some other general observations include:

i •

ii.

Small capillaries (approx. 0.] mm) have higher minimum temperatures,

lower cooling loads, and slower time constants•

Large capillaries (approx. 0.5 mm) have lower minimum temperatures,

higher cooling loads, and faster time constants• However, the

larger units require more drive power to supply the superfluid flow.
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APPENDIX C

Test Facility

The test facility is comprised of several components. These components

include; gas handling system, cryostat and instrumentation. A description of

each component is included in the following sections. Operating experience is

also discussed.

C.l DESIGN

A major concern in the overall design is to ensure long term leak-free

operation. Welded stainless steel construction was used wherever feasible.

If welding was impractical, components were brazed, as when joining Cu to

stainless steel. The use of PbSn solder was limited mainly to electrical

wiring, although it was used to plug a vacuum leak that developed in the 4He

pot late in the contract period.

C.l.l Gas Handlina SYstem

This system is used to contain a supply of 3He gas and to move it around

where needed. As the cost of 3He is approximately $150 per standard liter

there is also a financial incentive for keeping the system leak tight. Figure

C-I contains a schematic of the system. There are two gas panels, each panel

controls the flow from a separate reservoir of 3He. The two panels are

connected together through a Metal Bellows Corporation model MBC-135 bellows

pump, so that 3He can be moved between reservoirs.
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The valves on the gas panels are Nupro model SS-4D4L-V51 packless metal

diaphragm valves with VCR fittings. When a valve fails, usually from an

overtightened seat, it can be repaired and reinstalled without having to cut

out any welded sections. We use Ag plated Ni gaskets and have had no trouble

with the VCR fittings.

Gas panel No. I is used to control the 3He input to the 3He pot on the

cryostat. An Alcatel model 2033H hermetically sealed two-stage rotary pump is

used to pump on the 3He pot. This panel is operated at 5.9 psia for two

reasons. If the Alcatel pump is operated above 7.3 psia, some leakage

develops in the seals. Also, if a leak does develop, say for example in the

reservoir, air leaks into the system and the 3He stays put. The resulting

mixture can be purified by running it through a 4 K bath and freezing out all

contaminants. Operating above atmospheric pressure would result in the 3He

venting to the atmosphere.

The pumping line on the inlet of the Alcatel pump is a 1.5" O.D.

stainless tube. There are 1.5" high vacuum valve is on the inlet and outlet

of the pump, to isolate it when performing maintenance or repairs. The

demountable connections use conflats, to prevent unintended removal possible

when using quick flange type fittings. The pumping system is provided with a

foreline trap on the inlet and an oil mist eliminator filter and LN2 trap on

the outlet.

Gas panel No. 2 is used to meter quantities of 3He into the dilution test

cell. Only small amounts of 3He are consumed per run. The resulting 3He -

4He mixture is allowed to vent to the atmosphere as the dilution test cell
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warmsup. This reservoir was initially filled with 3He at a pressure of 21.5

psia. 3He is thus loaded into the test cell by the pressure differential

between reservoir No. 2 and the test cell, which is loaded with 3He while at a

temperature of 1.] K.

Two types of pressure sensors were installed on the gas panels. Each

panel has one absolute pressure sensor (0-25 psia, Setra model 204) and one

differential pressure sensor (0- ± 30" W.C., Setra model 239). We experienced

difficulty in making a leak free connection to the reference pressure port on

the differential sensor. The fitting was an anodized aluminum female pipe

thread connection. Teflon tape, epoxy and an aluminum solder were tried

without success. We determined that the absolute pressure sensor had enough

resolution so that we could operate without the differential pressure sensor.

The gas panel port for this sensor was then plugged.

C.I.2 CrYostat

The cryostat is designed to fit inside a 7.5" I.D. by 42" deep magnet

dewar. A 3" thick A1 hex flange mounts on top of the dewar, providing

additional feedthroughs. A relief valve, cracking pressure set to I psig, is

mounted on this flange along with a 3/4" ball valve. The cryostat mounts on

top of the hex flange. An illustration of the cryostat is shown in Figure

C-2.

There are three pumping lines, one each for the vacuum can, 4He pot and

3He pot, running through the top flange. Both lines for the helium pots are

1.5" O.D., the vacuum can pumping line is Z" OD. A hermetic 32 pin
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feedthrough is mounted onto the tee of the vacuum can line. Instrumentation

leads are run through this line, avoiding cold feedthroughs. The pumping

lines are graded inside the dewar; starting at 1.5" O.D. at the top flange,

they are reduced to .75" O.D. on top of the vacuum can lid. As shown in

Figure C-2, the lines are offset through 45 o ell fittings, forming a light

trap to keep room temperature thermal radiation from impinging directly into

the l|quid pots and the vacuum can. Additional feedthroughs on the top flange

are through Cajon Ultra-Torr fittings. The liquid helium level detector, 3He

filling capillary and liquid helium transfer line run through these fittings.

Unused ports are blanked off with brass plugs. Four Al radiation shields,

anchored to the pumping lines keep thermal radiation from the top flange from

impinging on the liquid helium in the dewar.

The liquid pots are insulated from the 4 K bath by a vacuum can. Its

dimensions are 6" O.D. by 11.5" high. Figure C-3 shows the configuration

inside the vacuum can. Copper cold fingers are welded into the vacuum can lid

to provide 4 K heat sinks (not shown). The 3He and 4He pumping lines, 3/4"

O.D. by .012" wall thickness, are welded to the top of the vacuum can lid and

are brazed to the top of the 4He pot. The 3He pumping line runs through the

4He pot and out the bottom, where it is brazed in place. The 3He pot connects

to the pumping line with an indium sealed flange. Conflats and VCR fittings

are welded to the top and bottom of the 4He pot. Note that these are

stainless steel to Cu welds. These welds have been very robust, no leaks have

developed in the course of our work.

Both helium pots were fabricated out of 101 alloy Cu. The 4He pot was

built in three pieces; the top, bottom and body are separate. After welding
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the fittings in place in the top and bottom, the lids were brazed in place to

the body. Initially, some leaks were present, but were sealed with PbSn

solder. There were no further leak problems until late in the contract period

when modifications to the 4He pot were deemed necessary. The 3He pot has a

lid, into which was brazed a .75" O.D. pumping line, and a chamber. The lid

and chamber are sealed with In. The bottom of the chamber has tapped mounting

holes for attaching and thermally anchoring the test cell to the 3He pot.

There have been no leaks associated with the 3He pot and pumping line.

C.1.3 Instrumentation

Several types of thermometers are used when running the cryostat. The

4He pot temperature can be regulated with a Lake Shore Cryotronics model

DRC-SIC temperature controller. An uncalibrated Si diode is the sensor input

to the controller. Although the sensitivity of Si diodes decreases for T <

1.8 K, it is adequate to regulate the 4He pot.

Calibrated Ge sensors were used to calibrate some thick film chip

resistors. The chip resistors are very small and have good sensitivity for T

< 3 K, Li et al. (1986). The film resistors are placed in several locations

on the dilution test cell. Mounting Ge resistors is impractical due to their

relatively large size. In Figure C-4, the calibration of film No. I is

displayed. Two different types of fits are compared to the calibration data.

For I _ O.g K, we calculate temperature from the equation

T nR-
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where A and B are fit parameters and R is the film resistance. This equation

is the form as reported in Li et al. (1986). Some experimental data were

later taken below 0.47 K, which is the lowest temperature reached during the

calibration run. This formula has some experimental justification for

extrapolating the film resistor's behavior beyond the calibration range.

For T > 0.9 K, a polynomial approximation is used

4

- Z at(In R - 7.55) iin T

i=O
I -

where the coefficients, ai, are fit parameters.

Temperature sensors are read with a Biomagnetics Technology Inc. model

1000 conductance bridge. The excitation voltage is 100 pV. At this

excitation level, sensor self heating has not been observed. All conductance

measurements are made using the 4-wire method. The AC excitation voltage of

the bridge eliminates contributions from thermal emfs.

C.2 OPERATION

The basic operation of the test facility is considered. Leak detection,

cooldown procedure and baseline operating characteristics are described.

C.2.1 Leak Detection

The most sensitive way to leak check the cryostat is with it mounted in

the dewar. Wlth the vacuum can in place (the Indium seal having been
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previously leak checked), the 3He pot, 4He pot and vacuum can are evacuated

with the high vacuum system. The leak detector is hooked to the 4He pot and a

small quantity of helium gas is admitted to the vacuum can. If the leak rate

does not change over a period of 15 minutes, the 4He pot is leak free. The

leak detector is connected to the 3He pot and helium is admitted to the 4He

pot. The entire 3He pumping line is thus leak checked.

Having the vacuum can evacuated is essential for leak checking the

dilution test cell. As the test cell uses a fountain pump to flow 4He, there

are three superleaks in series, resulting in a very large flow impedance.

During leak testing, the leak detector also pumps on the 3He fill capillary.

By evacuating the vacuum can, much lower background signal is present in the

leak detector when a leak is present. Adding helium gas to the vacuum would

then produce a noticeable increase in the leak detector signal.

Unfortunately, this method does not pinpoint the leak location so further work

is required. However, it is the best way to determine if a leak is present.

C.2.2 Cooldown

If the cryostat leak checks OK, the cryostat is pre-cooled with LN2. The

helium gas in the vacuum can from the leak test remains and acts as a heat

exchange medium. One problem with using LN2 to pre-cool the cryostat is that

LN2 collects in the packing of the 4He fill valve. Once the 4He pot

temperature, as read from the temperature controller, is near BO K, the

remaining LN2 is blown out with helium gas. The 4He pot is pressurized with

helium to about 4 psig and the fill valve is then opened. The helium flowing

through the valve boils off any LN2 in the stem. We then proceed to transfer
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LHe in the normal manner. When the 4He pot temperature reads < 5 K, the

exchange gas is pumped out. The vacuum can is pumped out overnight to ensure

a good quality vacuum is attained.

C.2.3 Baseline Operation

In order to be able to run for long period of time, the 4He pot was

designed with a continuous fill line. A temperature of 1.4 K was reached with

the fill capillary .020" I.D. by 10" long with a .018" diameter wire slid

inside. The pot temperature increased slowly for about go minutes at which

point the temperature rose rapidly to TX (2.17 K). We assume the 4He pot had

emptied. The fill valve was then opened, refilling the pot and subsequently

the 4He pot was pumped down to 1.4 K again. This 4He pot behavior was not

ideal, but was sufficient for some data collection at 1.4 K.

We attempted to run the 3He pot to cool the test cell below 0.6 K.

Initially the test cell cooled, however, there was a very long time constant

associated with cooling down the test cell with the 3He pot. The major

difficulty was with the temperature fluctuations in the 4He pot. Refilling

the 4He pot caused the test ceil to warm. The end result was that we could

not cool the test cell below 0.88 K.

To remedy this situation, a shorter continuous fill capillary was

installed. The drawback to this change was a higher 4He pot temperature. It

ran at ].7 K instead of 1.4 K. Very strong temperature oscillations also

occurred. The 4He pot temperature increased to Tx and then decreased to 1.7 K
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in a period of about ten minutes. We attributed this effect to film flow up

the pumping line.

To eliminate these thermal oscillations, an orifice was installed into

the pumping line at the top of the 4He pot. This was a major modification to

the cryostat and entailed cutting into the pumping line and brazing the

orifice into place. Unfortunately, the brazing opened up several leaks on the

lid of the 4He pot. As this occurred close to the end of the contract period,

an intense period of leak chasing the 4He pot began. Eventually, the leaks

were closed. In Figure C-5, the temperature vs. time behavior of the 4He pot

is compared before and after the orifice was installed. The thermal behavior

is substantially improved.

C.2.4 Thermal Analysis - 4_

Heat inputs to the cryostat come from a variety of sources. Conduction

and radiation are the two principal heat transfer mechanisms. Convection is

eliminated by the vacuum can. The estimated heat loads are compared to actual

cryostat performance.

Electrical Leads

A total of 32 wires run from the room temperature feedthrough to solder

tabs mounted on the side of the 4He pot. Where the leads enter the vacuum

can, they are wrapped around a Cu cold finger for thermal anchoring at 4 K.

The wires are;
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Figure C-5The upper trace sh_ws the steady state temperature behavior
of the unmodified "He pot. The lower trace shows the

behavior after the orifice was installed in the pumping line.

C-14



No. Wire_ Composition

28 No. 36 AWG Manganin

2 No. 36 AWG Cu

2 No. 32 AWG Cu

The overall length of the wires between the 4 K cold finger and the

feedthrough is 153 cm. The conduction heat leak, as estimated from White

(]g79), for each group of wires is;

28 - No. 36 AWG Manganin

2 - No. 36 AWG Cu

2 - No. 32 AWG Cu

1.2

7.1

.4g

Structure

In addition, there are conduction loads from the 4He and 3He pumping

lines and the 4He fill capillary. These contributions are estimated to be

ECE I

Pumping llne 0.90

Fill capillary .05

The estimated thermal radiation load on the 4 K pot is

Orad(4 K- 1 K) = 3 x 10 "8 W
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C.2.5 Thermal Analysi_ - 3_

To keep the heat load on the 3He pot as small as possible, the

instrumentation leads running from the 4He pot were 40 AWG manganin. The

large gauge Cu wires were for the temperature controller heater on the 4He

pot. The other Cu leads ran to the fountain pump heater. A total of four

thermometers are in place on the test cell. All thermometers are measured

with a 4-wire technique. The heat load on the 3He pot is

16 - No. 40 AWG manganin wires Q - 0.8 # W

The fluid lines from the 4He pot all have 0.I mm I.D. x 30 cm long capillaries

leading from the pot to provide thermal isolation. The heat leak along these

lines is estimated from Bertran and Kitchens (1968) to be around

capillary heat leak - 1.8 # W

In addition, the inlet and exit flow passages have .083" I.D. x ]0" long

superleaks that provide additional isolation. A conservative estimate of the

heat leak on the 3He pot is

Qheat leak (1 K - 0.4 K) - 2.6 /4 W

This is well within the cooling capacity of a pumped 3He bath.
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