
N

(NASA-TM-I08124) WORKING NOTES

FROM THE 1992 AAAI SPRING SYMPOSIUM

ON PRACTICAL APPROACHES TO

SCHEDULING AND PLANNING (NASA)

186 p

G3/63

N93-18659

--THRU--

N93-18694

Unclas

0137226

Working Notes from The 1992 AAAI

Spring Symposium on
Practical Approaches to Scheduling and

Planning

MARK DRUMMOND

STERLING FEDERAL SYSTEMS

MARK Fox

UNIVERSITY OF TORONTO

AUSTIN TATE

UNIVERSITY OF EDINBURGH

_ONTE ZWEBEN

NASA AMES RESEARCH CENTER

Ame: Resea r

Research Branch

FIA-92-17

1992

: ± 7 7 _E_ _

........ i

F
i

i

i-

I±

v

r

. i

m

w

w

m
w

r_

W

w_

W

m__

m

m

m

w

i

1992 Spring Symposium Series

Practical Approaches to
Scheduling and Planning

Working Notes
(Distribution limited to symposium attendees)

March 25 - 27, 1992

Stanford University

Spons0i;ed by the
American Association for Artificial Intelligence

im

m
i

E

n

? -

w

N?

r_

N

m

m

Practical Approaches

to
Scheduling and Planning

Government and industry require practical approaches to a diverse set of

complex scheduling and planning problems. While scheduling has been stud-

ied in isolation for many years, recent advances in artificial intelligence, con-

trol theory, and operations research indicate a renewed interest in this area.

In addition, the scheduling problem is being defined more generally, and work

is beginning to consider the closed-loop use of scheduling systems in opera-

tional contexts. This symposium will serve to bring together theorists and

practitioners from diverse backgrounds, with the aim of disseminating recent
results and fostering the development of a cross-discipline understanding.

I The symposium will focus on issues involved in the construction and deploy-
ment of practical scheduling systems that can deal with resource and time
limitations. To qualify as "practical", a system must be implemented and

tested to some degree on non-trivial problems (ideally, on real-world prob-

lems). However, a system need not be fully deployed to qualify. Systems that

schedule actions in terms of metric time constraints typically represent and

'- reason about an external numeric clock or calendar, and can be contrasted

with those systems that represent time purely symbolically.

Issues to be discussed at the symposium include, but are not strictly limited

to, the following.

• Integrating planning and scheduling.

• Integrating symbolic goals and numerical utilities.

• Managing uncertainty.

• Incremental rescheduling.

• Managing limited computation time.

• Anytime scheduling and planning algorithms, systems.

• Dependency analysis and schedule reuse.

• Management of schedule and plan execution.

• Incorporation of techniques from discrete event control.

J

• Incorporation of techniques from operations research.

• Learning.

• Measures of schedule and plan quality.

• Search techniques.

• Methodology.

• Applications.

m
m

m

m

I

Program Committee

Mark Drummond
NASA Ames Research Center

MS: 269-2

Mo_ettField,CA 94035UISlA.
Email: med@ptolemy.arc.nasa.gov

Mark Fox

Department of Industrial Engineering

University of Toronto
4 Taddle Creek Road : :

: Toronto::O_t_o_:MSS 1A4 Canada

Email: msf@phoenix.rose.utoronto.ca

Austin Tare

AI Applications Institute

University of Edinburgh

80 South Bridge

Edinburgh EH1 1HN U.K.

Emaih A.Tate%ed@nsfuet-relay.ac.uk

Monte Zweben

NASA Ames Research Center

MS: 269-2

Moffett Field, CA 94035 U.S.A.
Email: zweben@ptolemy.arc.nasa.gov

m
m
m

t
J

|
I

g

i

u

W

W

--=

[]

li

w

mS

i
m

1 t Schedule

Practical Approaches to Scheduling and Planning

AAAI 1992 Spring Symposium Series

Stanford University

March 25 - 2T 1992

W

W

u

II!ll

W

Wednesday, March 25

9:00 - 10:30 am

Presentations: Applications

Spike: AI Scheduling for HubbIe Space Telescope

After 18 Months of Orbital Operations
Mark D. Johnston

Temporal Planning for Trans_rtation Planning and Scheduling

Robert E. Frederkingand NicolaMuscettola

A Simulated Annealing Approach to Schedule Optimization for the SES Facility

Mary Beth MeMahon and jack Dean

10:30 - 11:00 pm

Break

11:00 - 12:30 pm

Presentations: Methods

Decomposability and Scalability in Space-Based Observator_ Scheduling

Nicola Muscettola and Stephen F. Smith

Managing Disjunction for Practical Temporal Reasoning

Mark Boddy, Bob Schrag, and Jim Carciofmi

TOSCA: The Open Scheduling Architecture
Howard Beck

12:30 - 2:00 pm

Lunch

iii

m

ql

W

2:00 - 3:30 pm

Presentations: Applications

Scheduling of an Aircraft Fleet

Massimo Paltrinierl, A_Voerto Momigliano, and Praneo Torquati

Adaptive Planning For Applications With Dynamic Objectives

Khosrow Hadavi, Wen-Ling Hsu, and Michael Pinedo

Global Planning of Several Plants

Sylvie Bescos

Space Shuttle Ground Processing
Eric Clanton _ ' "

3:30 - 4:00 pm

Break

4:00 - 5:30 pm " _

Panel: Robustness and Schedule Quality
Donald Rosenthal

Monte Zweben

Austin Tate

Mark Drummond

6:00 - 7:00 pm

Reception, Oak Lounge, Tressider Union

m

i

m

I

i
m

i

m

g

mm

m

V

11

m

g

J.v

m

m
W

F_

ra-

m

r_i.F

m

l

L

_R

Thursday, March 26

9:00 - 10:30 am

Presentations: Methods

The MICRO-BOSS Scheduling System: Current Status and Future Efforts
Norman M. Sadeh

Iterative Refinement Scheduling
Erie Biefeld

CABINS: Case-Based Interactive Scheduler

Kazuo Miyashita and Katis Syeara

10:30 - 11:00 pm

Break

11:00 - 12:30 pm

Panel: Learning and Scheduling
Steven Minton

Monte Zweben

Steve Chien

Stephen Smith

12:30 - 2:00 pm

Lunch

m

i

I

m

i

m

V

7

V

2:00 - 3:30 pm : ,

Presentations: Applications

Scheduling Lessons Learned from the Autonomous Power System

Planning for the Semiconductor Manufacturer of the Future

Hugh E. Fargher and Richard A. Smith

Uncertainty Management by Relaxation

of Confllct-(n9 Co_traints in P_duct_on Scheduling

Jtirgen Dora, Woffgang Siany, and Christian Stary

3:30 - 4:00 pm

Break

4:00 - 5:30 pm

Panel: Relevance of AI Planning Systems
Nicola Muscettola

Roberto Desimone

Austin Tate

Mark Drummond

7:30 - 10:00 pm

Public Forum, Kresge Auditorium

m

i

U

i

m
w

_w

i

i

m

i

m

g

!
i

m

II

D
mm

D

i
m

IS

!

II

vi !l

m

m

u_
O

m

m

m

IB

Friday, March 27

9:00 - 10:30 am

Presentations: Methods

Ezperiments urith a Decision-Theoretic Scheduler

Othar Hansson, Gerhard Holt, and Andrew Mayer

Generating Effective Project Scheduling Heuristics by
A bstraction and Reconstitution

Bhaskar Janakiraman and Arman_d Prieditis

Real-time Scheduling Using Minimin Search

Prasad Tadepalli and Varad Joshi

10:30 - 11:00 pm

Break

11:00 - 12:30 pm

Panel: Reschedullng
Mark Johnston

Stephen Smith

Katia Sycara
Mark Fox

I@

m

!
111

w
m
m

m

vii

J

m

ilJ

Table of Contents

Practical Approaches to Scheduling and P|anning

AAAI 1992 Spring Symposium Series

Stanford University
March 25 - 27 1992

Q

m

u

Spike: AI Scheduling for Hubble Space Telescope After 18 Months of Orbital Operations

Mark D. Johnston ... 1

Temporal Planning for Transportation Planning and Scheduling

Robert E. Frederldng and Nicola Muscettola .. 6 _

A Simulated Annealing Approach to Schedule: Optimization for the SES Facility

Mary Beth McMahon and Jack Dean .. 11-9

Decomposability and ScaIability in Space-Based Observatory Scheduling i
Nicola Muscettola and Stephen F. Smith .. 15 -_

Managing Disjunction for Practical Temporal Reasoning
Mark Boddy, Bob Schrag, and Jim Carciofmi 20-_

Scheduling of an Aircraft Fleet

Massimo Paltrinieri, Alberto Momigliano, and Franco Torquati 25 A_

Adaptive Planning For Applications With Dynamic Objectives

Khosrow ttadavi, Wen-Ling Hsu, and Michael Pinedo 30 I"_

Global Planning of Several Plants

Sylvie Bescos ... 32

The MICRO-BOSS Scheduling System: Current Status and Future Efforts

Norman M. Sadeh .. 37

Iterative Refinement Scheduling

Eric Biefeld .. 42

CABINS: Case-Based Interactive Scheduler

Kazuo Miyaskita and Katia Sycara .. 47

Scheduling Lessons Learned from the Autonomous Power System

Mark J. Ringer ... 52

viii

J

W

Ll

D

U

B

m

i J
L
i

m

W

m

V

L •

rr_ _

igj

WJI_,

W

i
I

m

m

w

Planning for the Semiconductor Manufacturer of the Future

Hugh E. Fargher and Richard A. Smith ... 57

Uncertainty Management by Relaxation

_ of Conflicting Constraints in Production Scheduling

Jurgen Dorn, Wolfgang Slany, and Christian Stary 62

Experiments with a Decision-Theoretic Scheduler

Othar Hansson, Gerhard Holt, and Andrew Mayer 67

Generating Effective Project Scheduling Heuristics by Abstraction and Reconstitution

Bhaskar Janakiraman and Armand Prieditis 72

Real-time Scheduling Using Minimim Search

Prasad Tadepalli and Varad Joshi .. 77

Planning, Scheduling, and Control for Automatic Telescopes

Mark Drummond, Keith Swanson, John Bresina, Andy Philips, and Rich Levinson . 82

O-Plan$: The Open Planning Architecture

Brian Drabble, Richard Kirby, and Austin Tare 87

RescheduIing with Iterative Repair

Monte Zweben, Eugene Davis, Brian Daun , Michael Deale 92

Realization of High Quality Production Schedules:

Structuring Quality Factors via Iteration of User Specification Processes

Takashi Hamazaki .. 97

Scheduling Revisited Workstations in Integrated-Circuit Fabrication

Paul J. Kline .. 102

Multi-Agent Planning and Scheduling Execution Monitoring and

Incremental Rescheduling: Application to Motor'way _affic

Pascal Mourou and Bernard Fade .. 107

Real-Time Contingency Handling In Maestro

Daniel L. Britt and Amy L. Geoffroy .. 112

ix

9

Learning to Integrate Reactivity and Deliberation
in Uncertain Planning and Scheduling Problems

Steve A. Chien, Me/inda T. Gervasio, mad Gerald P. DeJong 117

Completable Scheduling: An Integrated Approach to Planning and Scheduling

Melinda T. Gervasio and Gerald F. DeOong = 122

IOPS Advisor: Research in Progress on Knowledge-Intensive Methods

for Irregular Operations Airline Scheduling

John E. Borse mad Christopher C. Owens .. 127

A Heuristic Repair Method for Constraint-Satisfaction and Scheduling Problems

Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird 131

Combining Constraint Satisfaction and Local Improvement Algorithms

to Construct Anaesthetists' Rotas

Barbara M. Smith and Senna Bennett .. 136

JIGSAW: Preference-Directed, Co-operative Scheduling

Theodore A. Linden a_ad David Caw ... 141

A Hybrid Job-Shop Scheduling System

Bernd Hellingrath, Peter Rossbach, Fahid Bayat-Sarrnadi, and Andreas Marx 145

PREDIT: A Temporal Predictive Framework for Scheduling Systems

E. Psx)lueci, E. Patriarca, M. Sere, and G. Gini 150

Time Management Situation Assessment (TMSA)
Michael B. Richardson and Mark J. Ricci .. 155

Constraint monitoring in TOSCA
Howard Beck ..160

SOCAP: Lessons learned in applying SIPE-# to the militaw operations

crisis action planning domain

Roberto Desimone ... 166

User-Centered Scheduling Support in the Milita_ Airspace Management

System Prototype

P. O. Perry .. 170

J

ira,

I

m

II

x

h ¸

--=
W

R

m
V

m

!
i

m

lit

w

i

[]

m
lllmf

-__-:_

wag;

g

N98-18360

/

7
r

i
/
I

_#

/

Spike: AI Scheduling for Hubble Space Telescope

After 18 Months of Orbital Operations

Mark D. Johnston

Space Telescope Science Institute
3700 San Martin Drive,

Baltimore, ME)21218 USA
johnston_stsci.cdu

Abstract

.This paper is a progress report on the Spike schedul-
ing system, developed by the Space Telescope Sci-
ence Institute for long-term scheduling of Hubble
Space Telescope observations. Spike is an activity-
based scheduler which exploits AI techniques for
conswajn"t representation and for scheduling search.
The systemhasbeeninoperational usesinceshortly
afterHST launchinApril1990.Spikehas been
adoptedforseveralothersatelliteschedulingprob-
lems:ofparticularinteresthasbeenthedemonstra-
tionthattheSpikeframeworkissufficientlyflexible
tohandlebothlong-termandshort-termscheduling,
on timescalesofyearsdown tominutesorless.We
describethe recentprogressmade in scheduling
searchtechniques,thelessonslearnedfromearly
HST operations,and theapplicationof Spiketo
otherproblemdomains.We alsodescribeplansfor
thefutureevolutionofthesystem.

1 Introduction

Efficientutilizati'onofexpensivespace-basedobservatories
isanimportantgoalforNASA and theastronomicalcommu-

nity:thecostof facilitieslikeHubble Space Telescope
(HST) isenormous,and theavailableobservingtimeis
much lessthanthedemand from astronomersaroundthe

world.The Spikeschedulingsystemwas developedby the
SpaceTelescopeScienceInstitutestartingin1987tohelp
withthisproblem.The aim ofSpikeistoallocateobserva-
tionsto time scales of days to a week, observing all schedal-
ingconslra_,and_ng l_refercncesthathelpensure

thatobservationsaremade atoptimaltimes.Spikehasbeen
inuseoperationallyforHST sinceshortlyafter theobserva-
torywas launched in April 1990.

Although developed specifically for HST scheduling,
Spike was carefully designed to provide a general frame-
work for similar (activity-based) scheduling problems. In
particular, the tasks to bescheduled are defined in the system
in general terms, and no assumptions about the scheduling
timescale were built in. The me chanis.ms for describing,
combining, and propagating temporal and other constraints
and preferencesweredesignedtobe general.The successof

thisapproachhasbeendemonstratedby theapplicationof
Spike totheschedulingof othersatelliteobservatories:
changestothesystemarerequiredonlyinthespecificcon-

swaintsthatapply,and notintheframeworkitself.
Inthefollowingwe firstprovidea briefdescriptionof

theHST schedulingproblemand oftheSpikescheduling
framework.We thendiscusssome oftheexperiencegained

2 7

withthesystemsincethestartofHST flightoperations.This
isfollowedby adescriptionofthechangesrequiredtoadapt
Spiketoothersatelliteschedulingproblems.We conclude

withsome comments on theimplementationofSpike,and
on ourplansforfuturework.

2 Overview of HST Scheduling

HST scheduling is a large problem: some 10,000 to 30,000
observations per year must be scheduled, each subject to a
large number of operational and scientific constraints. Most
of the operationalconswaintsarisefrom the lowearthorbital

environmentofthetelescope.Withanorbitalperiodofabout
96 minutes,potentialtargetsareonlyvisiblefora portionof
eachorbitbeforetheyareoccultedby theearth.Thereare
constraintsduetoguidestaravailability,avoidingtheearth's
radiationbelts,and swaylightfromthesun,moon, orbright
earth.Therearealsoconstraintsarisingfromthermaland
powerconsiderations_,which tendtorestricttheallowable

attitudeofthesatelliteatdifferenttimesduringtheyear.Sci-
entificconstraintsarespecifiedby astronomerswhen they
definetheexposurestoaccomplishtheirscientificgoals.
Thesefrequentlytaketheformofminimum exposuretimes,
temporalrelationshipsamong exposures(before,after,

groupedwithinsome timespan,separatedby some mini-
mum and/ormaximum interval,etc.).Astronomersmay also
constrainthestateofthetelescopeinotherways,e.g.by
requiringexposureswhen HST isinearthshadow (to
excludescatteredcarthligh0,by specifyingtheorientationof
thetelescope,orby configuringoneofthesixinstrumentsin

a particularmode.A recentchangetotheHST groundsys-
temsnow permitstheschedulingof two instrumentsfor
simultaneousoperation:thisisexpectedtosignificantly
increase the amount ofuseful datataken by thetelescope.

Because of the design of the telescope and ground sys-
tem, nearly all HST activities must be scheduled in detail in
advance. The detailed schedule specifies what commands
will be executed by the onboard computers, and when com-
munications contacts will be available for uplinking com-
mands and downlinking data. Real-time interaction by
observersis limited essentially to smallpointing corrections
to place targets accurately into the proper instrument aper-
ture.

Scheduling HST has been divided into two processes:
the first is long-term scheduling, which allocates observa-
tions to week-long time segments over a scheduling period
of a year or more in duration. This is the responsibility of the
Spike system. Individual weeks are then scheduled in detail
by theSciencePlanningand SchedulingSystem (SPSS),

1

which orders observations within the week and generates a
detailed command sequence for the HST control center at
NASA Goddard Space Flight Center. Further details on HST
scheduling may be found in [1,2].

3 Spike and HST Long-Term Scheduling

HST observing programs are received at STScI in machine-
readable form over national and international computer net-
works. They are then translated by an expert system called
Transformation [3] into a form suitable for scheduling. The
Transformation system collects exposures into "scheduling
units" which are collections of exposures to be executed con-
tiguonsly. Transformation makes use of the Spike temporal
constraint mechanism to collect and propagate temporal con-
straints: these are made path-consistent and saved in files
along with the scheduling unit definitions. Spike takes the
saved scheduling units and derives scheduling constraints
and preferences for them, based on operational and scientific
factors such as those described above. Spike then determines
an allocation of scheduling units to weeks which satisfies all
hard constraints and as many soft constraints as possible.
Constraints from different sources are combined using a
weight-of-evidence mechanism generalized to cover a con-
tinuous time domain, as described in detail elsewhere [4].
The result is a set of "suitabifity functions" which indicates
goodness over time for each scheduling unit, and also indi-
cates times when a scheduling unit cannot be scheduled due
to violations of strict constraints. Most of the HST-specific
scheduling details go into the definition of the suitability
functions, which, for long-term scheduling, are defined at a
high level of abstraction and relatively coarse time granular-
ity. More details about Spike constraint representation and
manipulation may be found in [5].

Spike treats schedule construction as a consU'alned opti-
mization problem and uses a heuristic repair-based schedul-
ing search technique. An initial guess schedule is
constructed, which may have temporal or other constraint
violations as well as resource overloads (in fact, given that
HST observing time is intentionally oversubscribed by about
30%, it is known ahead of time that there is no feasible
schedule that can accommodate all the requested observa-
tions). Repair heuristics are applied to the initial guess
schedule until a preestablished level of effort has been
expended. At that point observations are removed to elimi-
nate remaining constraint violations, until a feasible sched-
ule remains. There are several important measures of
schedule quality employed, including the number of obser-
vations on the schedule, the total observing time scheduled,
and the summed degree of preference of the scheduled
observations. The heuristic repair method is fast, and typi-
cally many runs are made and the best schedule is adopted as
a baseline. The Spike algorithm has desirable "anytime"
characteristics: at any point in the processing after the initial
guess has been constructed, a feasible schedule can be pro-
duced simply by removing any remaining activities with
constraint violations, as described further below.

The repair heuristics used by Spike are based on a very
successful neural network architecture developed for Spike
[6,7] and later refined into a simple symboli c form [8] which
has ma& the neural network Obsolete. The Spike repair heu-
ristics make highly effective use of conflict count informa-

tion, i.e. the number of constraint,,!iolations on scheduled
activities or on potential schedule times. Min-conflicts time
selection is one such repair heuristic, in which activities are
moved to times when the number of conflicts is minimized.
Both theoretical analysis and numerical experiments have
shown that min-c0nflicts can be very effective in repairing
good initial guesses [9]. We have found that further improve-
ment comes from the use of a max-conflicts activity selec-
tion heuristic, which selects activities for repair which have
the largest number of conflicts on their current assigned
time. Spike permits different constraints to have different
conflict weights, which can be used to cause the repair of the
most important constraints first; in practice, however, all
constraints have so far been given the same weight. Both
hillclimbing and backtracking repair procedures have been
tried, bui-hmcHm_6ing has_n_hown to be the most cost-
effective on probIems attempted m date.

The choice of a good initial guess is important for
repair-based methods, and to this end we have conducted
experiments on different combinations of variable and value
selection heuristics to find the "best" combination. Over a
thousand combinations of heuristics were tried by making
multiple runs on sample scheduling problems. The adopted
initial guess heuristic selects most-constrained activities to
assign first, where the number of min-conflicts times is used
as the measure of degree of constraint. Min-conflict times
are assigned, with ties broken by maximum preference as
derived from suitability functions. _

Spike currently uses a rather simple technique to
remove conflicting activities from an oversubscribed sched-
ule: activities to be removed are selected based on lower pri-
ority, higher numbers of conflicts, and lower preference time
assignments. If there remain gaps when all conflicting activi-
ties have been deleted, then a simple best-first pass through
_e_u_scheduled activities ks used Lo_ therfi. This final
phase of"schedule deconflicting" has been tittle studied and
is an area which could benefit from further effort.

Spike provides support for rescheduling in several ways.
Two worth mentioning in particular are task locking and
conflict-cause analysis. Tasks or sets of tasks can be locked
in place on the schedule_ and will _ereafter not be consid-
ered during search or repair (unless of course the user
unlocks them). These tasks _represent fixed points on the
schedule. Conflict-cause analysis permits the user to force a
task onto the schedule, then display whatconstraints are vio-
lated and by which other tasks, The conflicting _ _ be
unassigned if desired, either individually or as a group, and
returned to the pool of unscheduled tasks. This helps with
the most common rescheduling case, where a specific activ-
ity must be plaid 0nthe sci_eduie, thereby disrupting at
least some tasks which are already scheduled. A limited
study of minimal-change rescheduling has been conducted
[10]. bfit mu_chmore work remains robe done in thiS_

Hillclimbing repair methods like the one used in Spike
have much in common with simulated annealing techniques
such as described by Zweben et a1.[11]. One of the open
research issues is which technique has an advantage on
which types of problems.

j

gi

J

tP

!

i

I

i

ril

i

m

IF

i
!

m

E

g

!

II

!

|

m

11

!

i

!l

_a

ILB_

M

! !I
B

E

i
E
m

=

V

4 The Experience of HST Operations

Shortly after HST was launched it was discovered that the
tele_ope main mirror had been figured incorrectly, resulting
in lower resolution than anticipated. This has not only lim-
ited the scientific usefulness of HST (although it still remains
far superior to any ground-based telescope), it has als0
greatly disrupted the scheduling process. Observing plans
made years in advance of launch have had to be revised,
leading to a shortage of ready-to-schedule observing pro-
grams and thus reducing the efficiency with which schedules
could be generated. This problem still affects ongoing opera-
tions, and as a result Spike has only once been used to gener-
ate a true long-term schedule. Instead, Spike is used
routinely to identify observations to place in the schedule
approximately two months into the future. As the character-
istics of the telescope and instruments have become better
understood, the pool of observing programs has been grow-
ing: the second round of open proposal selection will be
completed in December 1991, and we anticipate that by the
Spring0f 1992 a sufficient pool will exist to permit long-
range planning as originally expected. NASA is now plan-
ning a servicing mission to correct the HST optics in early
1994.

The most signiticani lesson learned since launch, how-
ever, is the impact of high levels of change on the planning
and scheduling systems. Instead of the anticipated level of

$ Hierarchical and Short-Term Scheduling

Spike has been adopted for scheduling three future astro-
nomical satellite missions:
• the Exa_ne Ultraviolet Explorer (EUVE), an ultraviolet

telescope built and operated by UC Berkeley and God-
dard Space Flight Center,

• ASTRO-D, a joint USJapan X-ray telescope, and
• XTE, the X-ray timing Explorer (MIT/GSFC) to study

time-variability of X-ray sources.
The adaptation of Spike for these problems has led to

the successful demonstration of the flexibility of the Spike
scheduling framework. As indicated above, Spike was
designed so that new tasks and constraints can be defined
without changing the basic framework. For ASTRO-D and
XTE, Spike is operated in a hierarchical manner, with long-
term scheduling first allocating observations to weeks much
as they are for the HST problem (and with similar types of
long-term constraints and preferences). Then each week is
scheduledin detail,subject to the detailed minute-by-minute
constraints elbow earth orbit operation. The major changes
required to implement short-term scheduling were:
• a new type of task that can have variable duration

depending on when it is scheduled, and which can be
interrupted and resumed when targets are occulted by the
earth or the satellite is in the radiation belts

• new classes of short-term scheduling constraints which
about 10% of proposals changing, the actual rate of change more precisely model target occultation, star tracker
has been cl0ser to 100%. While some of this change is occultation, ground station passes, entry into high radia-
clearlyattributabletothediscoveryofHST's sphericalaber-
ration,many otherfactorshavecontributedaswell:nearly
everyinstrumenton thetelescopehasdemonstratedunex-
pectedbehaviorinoneformoranother,and eachhasledto
revisionsin_observingplanstocompensate.The neteffectis
that change is the norm, not the exception, to the extent that
stress has been high on the software systems and on the peo-
ple who operate them. The problem stems from the fact that
an observing program may consist of many hundreds of
exposure_,whichcanallbe atdifferentstagesofthesched-
ulingpipeline.Ifan observingprogramischanged,users
mustback up tothebeginningoftheprocessforthatpro-
gram,thuswork doneon thepreviousversionispotentially
wasted.Alternatively,anew observingprogramcanbe cre-
atedto describe the changed portions of the original one, but
then keeping track of active and obsolete portions of the
original is required.

if there is any recommendation to be made to develop-
era of future systems like those for HST, it is to build in the
expectation of change from the outset [12]. Even though the
ini_ c0s t will be higher, the operationalcosts will bd_gnff-
icantlylower.

Spikeand theotherHST groundsystemshave been
exercisedseveraltimeson "targetsofopportunity"---pro-

grams to be scheduled and executed on ancrashbasis. Turn-
around has been as short as a few days, which is well within
the pre-launch expectations. One such target of opportunity
programtookthepictures ofthedramaticstormon Saturn in
December 1990, which were subsequently made into a time-
lapse movie.

tion regions, maneuver and setup times between targets,
etc.

• an interface 5etween different hierarchical levels, by
which a long-term schedule constrains times for short-
termschedulingand conversely

• apost-processorwhich examinesshort-termschedules
foropportunitiestoextendtaskdurationsandthusutilize
any remaining small gaps in the schedule to increase effi-
ciency
All of the general constraint combination and propaga-

tion mechanisms, and the schedulesearch techniques, apply
directly to both long-term and short-term scheduling. Figure
1 illuslrates the application of Spike to short-term scheduling
for a sample of X-ray targets such as might be observed by
ASTRO-D or XTE. Note that several observations are bro-
ken to fit around occultations and so are taken in multiple
segments.

Most of the effort required to apply Spike to the new
problems was limited to the specific domain modelling nec-
essary, which typicallyinvolvescomputationrelatedtothe
geometryofthesatellite,sun,target,andearth.Theseprob-
lemscanbe expectedtodifferfromonesatellitetoanother,
and itisnotsurprisingthatdifferentmodelsarerequired.
Some ofthemodellingincludesstateconstraints,although

Spikedoesnotperformexplicitplanning(see,e.g.[13]).
EUVE isunusualinthatitmakes long(2-3day)obser-

vations,incontrasttoHST,XTE, andASTRO-D whichtypi-

callymake numerousshort(15-40minute)observations.As
aconsequence,EUVE isschedulableoveryear-longinter-
valswithoutbreakingthescheduleintohierarchicallevels.
One ofthemore interestingresultsfrom a comparisonof
searchalgorithmsforschedulingELrVE was thattheSpike

repair-basedmethodsgainedan extra20 daysofobserving

3

i_ a n ..J...¶ l ..n n I: |.."_VJ ¶ I f _ u ..! I ! I | .._I I. .. I l J I

AI_ _17._.11h__ 17_(17d_) _1_1_ P_:3

t._.lSWt 0tJan_21hS¢_, ('_,dw: 0.1?d,eKpllme$_Ool_q 10000q._l= 0.00.eoonl:0,pHCe0.COWeCm_:1.00 II_ n n n n n n I n n n n n n

CYG-X-2-NUM_ RA: 325.654 {21 h 42m 37.0z) Dec: 39.001 (38d 0,_n 29s) Exp. time 14,000 zec Pdor_/: 1

;,_ Itarl: 10RJeng_ 0_I_ (311_. _: 0,244. mpime 13_00_o (tog 140001),q_lc 0Z_9, #¢oddl:0, lxll-Zd).00 pr_u: t.00

:_ O n 1 _ fl n a n n fl ! n_

_ n n n _ n g g n n = n n n n I
_: 313o "1 i"--i i'--t i-'-'--1 _ I----'1 m i r--1 _ r--I O r--"l O r--1 r----'l _ i'--

_-A_3 _: _ _ 21m I0.1t I _: 58.542 l_ _ 31m1 Exp. tlrne _ sec P_: 3

(_:_ F T 7Irla_i" _ 0_1 14,317), : O.03d, tk,no _l'_l _q dl_X_, r Tl°° i:0, pr_,,l_Oi_ .00 pr¢_,e,l(: I.(30n n

',1,_, O_: ,_ "--_ r'--I _ I:::! r----! I::1 _ C:::] I r'-'--t r--t I _ O

EDS-CETUS ,,F_ 16.500 [lh 06m 0.0s I Dec: -4.000 (-,4d 00m 0s) Exp. time 3000 sec Pdo_),: 2

I 'T T:°"I"'1°'C ""T °''T'''i 1.
o_ _ g I1

II,.7,o_: 11_" -t _ r--'-t _ r_] r"--'q r_z _ _ I _ 0r7 rli--_

-_79 RA: 1_045 (12h 51_n 11.0a I Dec: -5.788 (-St 47m 20s} Exp. time 5000 sec Priority': 3

: _a_t O2,1an_ i_2Cm (_). dw: 0.10d. gap _ S_ (r_l S000_. elk 0.16. #toni:0. _ot_ I_'ta_rnu: 0.M

::_ n I] t] , _ n n n n o

A13G7 RA: 175_458 (I lh 41m 49._) Dec: 20.133 (20d 07m 59_) Exp. time 4000 lec Ptiorlrf: 1

,:;It_ _"_ 1,,_ _I)...: ,p,.., ,,_=_o.(,._,o_, ..1 oo,,_,:o,,... = oo...=:, _0

:i_t I 0 n O n n

n , B I t
r"'-'--i / _

i 1:
CTA1 _ _: _.7._ _ _m 7._) Dec: 11.640 {I 1d _ 241) Exp. tn _ lec P_. 3

_ n n g fl o H , n fln fl

....,.....,.....,. ,,.....,.....,.....,.....,.....,....,.....,.....,....,.....,.....,.....,.....,.....,.....,.....,.....,.....,....._ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_ 10_ 11_ 12_ 13._ 14_ 15_ 16_ 17_ 18_ 19_21_ _

Fi_eU_el:An example o.f.S.pikeoutputon sho_-m.msche.du]ingof astronomicalobsa'vadons.Shownisa 24-hourl_'tion of a 7-day sched-
, Ine staxz-umesmm_mtyfor each exposure is ploRedas theuppergraph, with interruptionsdue to target blockage by theearthand by

sateRjtepassage throu.glz,hi.'gh-radiationregions.The availableexposure intervals are shown below as open bars,which arefilled in to indi-
cate me acma_scneamea umes, Some of theobservationscan be fit within one orbit;othersmustbe interrupted and thus span several orbits

time in a year,when comparedto the best incremental sched-
uling approach.

6 Spike Implementation

The implementation of Spike started in early 1987 and was
initially based on Texas Instruments Explorers as the hard-
ware and software environment. The Spike graphical user
interface was implemented in KEE CommonWindows
(Intellicorps, Inc.), but the remainder of the system (about
40,000 lines of code) used only Common Lisp and the Fla-
vors object system. At HST launch, STScI had a complement
of 8 TI Explorers and mieroExplorers used for Spike opera-
don, development and testing.

Since the initial development of Spike began there has
been a great deal of evolution in Lisp hardware and software.
A significant amount of effort has gone into modifying the
system to keep current with these changes. In late 1991 we
are in the process of moving from Explorers to Sun SparcS-
tation IIs as the pr_ operations and development work-
station. All of the Flavors code has been automatically

converted to the Common Lisp Object System. The Lisp
used on the SparcStation is Allegro Common Lisp from
Franz Inc. Allegro CL supports a version of CommonWin-
dows based on X-windows, and so the user interface contin-
ues operate on Unix platforms as it did on the Explorers. We
are presentlyinvestigatingthe use of alternative window sys-
tems, and have prototyped the use of CLX, CLIM, and Motif
for the user interface (the latter is based on the publicly
available GINA/CLM). We expect to see a complete rede-
sign of the user interface in the next year. Spike can also gen-
erate high-resolution Postscript versions of schedules and
constraints; one example of this is shown in Figure l.

Updating Spike for new Lisp language featqres ha#_not
been difficult. There are, however, plans to remove some fea-
tures that were developed for Spike which have since
become part of the language (such as a logical filename
mechanism). At present there are no plans to convert any of
the system to C or C++.

I

I

I

I

!

W

m
I

|
[]
w

:I

I

lay

E

I

I

I

4

E

=

L•
"i_it

v

m

F

7 Future Directions

Several significant enhancements to Spike are planned
over the next year. One of these, a rewrite of the graphical
user interface, has already been mentioned above. Another
enhancement deals with wacking the Status of HST observ-
ing programs and exposures. All scheduled programs pass
from the proposal entry system through Spike, while feed- [2]

back on scheduling and execution status is received by Spike
both from SPSS and from the HST data analysis pipeline.

This provides information to Spike users which forms the

basis for rescheduling decisions. We plan to integrate this

data into a relational database, along with additional infor-
mation from the HST optical disk data archive, which will [3]
provide a central source of information on the status of all
HST observations.

We are also planning several systematic studies of the
Spike scheduling search heuristics to see what further

improvements can be made, either in performance or in qual- [,11
ity of schedule. These will include the initial guess, repair,
and deconflict strategies. We also plan to investigate whether
the use of short-term scheduling on the HST observations [5]
can improve the quality of the long-term schedule sent to
SPSS. There are, however, no plans to have Spike d6the
final short-term scheduling for HST, due to the extreme cost
of integration with the existing telescope and instrument
commanding software which generates the command [6]

sequences for the spa_t.

8 Conclusions

The Spike system has performed as planned in the first 18
months of I-IST operations. The success of Spike helps dem-
onstrate the utility of AI technology in NASA flight opera-
tions projects. The flexibility of Spike has been
demonstrated by adapting it for several other missions, and
by integrating long-term and short-term scheduling at differ-
ent hierarchical levels of abstraction in the same constraint

representation and scheduling search framework.

References

[I] Miller,G., Rosenthal, D., Cohen, W., and Johnston, M.D.

1987: "Expert System Tools for Hubble Space Telescope
Observation Scheduling," in Proc. 1987 Goddard Conf. on

Space Applications of Artificial Intelligence; reprinted in

Telematics and lnformatics 4, p. 301 (1987).

Miller, G., Johnston, M.D., Vick" S., Sponsler, J., end Linden-
mayer, K. 1988: "Knowledge Based Tools for Hubble Space
Telescope Planning and Scheduling: Constraints and Strate-
_es", in Prac. 1988 Goddard Conf. on Space Applications of

Artificial Intelligence; reprinted in Telematics and lnformatics

$, p. 197 (1988)

Gerb, A. 1991: "rransformation Reborn: A New Generation

Expert System for Planning HST Operations", in Proc. 1991
Goddard Conf. on Space Applications of Artificial Intelli-

gence, ed. J.L. Rash, NASA Conf. Publ. 3110 (Greenbelt:

NASA), pp. 45-58; to be reprinted in the Dec 1991 issue of
Telematics and Informatics.

Johnston, M.D. 1989: "Reasoning with Scheduling Con-
straints and Preferences," Spike Tech. Report 89-2, Jan. 1989.

Johnston, M.D. 1990: "SPIKE: AI Scheduling for NASA's

Hubble Space Telescope", M.D. Johnston, in Proc. Sixth IEEE

Conf. on Artificial Intelligence Applications (Santa Barbara,
March 5-9, 1990), (Los Alamitoa" CA: IEEE Computer Soci-

ety Press), pp. 184-190.

Adorf, H.-M., and Johnston, M.D. 1990: "A Discrete Stochas-

tic 'Neural Network' Algorithm for Constraint SatiSfaction
Problems", H.-M. Adorf and M.D. Johnston, in Proc. Int. Joint

Conf. on Neural Networks (IJCNN 90), (San Diego, June i7-
21 1990), (Piscataway, NJ: IEEE), Vol. rll, pp. 917-924.

[7] Iohnston, M.D,, andAdoff, H.-M. i991: "Scheduling with
Neural Networks - The Case of Hubble Space Telescope", to

appear in Int. J. Computers and Operations Research.

[8] Minton, S., Johnston, M.D., Philips, A., and Laird, P. 1990:

"Solving Large-Scale Constraint Satisfaction and Scheduling
Problems Using a Heuristic Repair Method", in Proc. of the
Eighth National Conf. on Artificial Intelligence (Boston July

29-Augmt 3, 1990), (Menlo Park, CA: AAAI Press), pp. 17-
24.

[9] Minton, S., Johnston, M.D., Philips, A., and Laird, P. 1991:

"Minimizing Conflicts: A Heuristic Repair Method for Con-
straint Satisfaction and Scheduling problems", submitted.

= ,

Sponsler, J.L., and Johnston, M.D. 1990: "An Approach to

Re.scheduling Activities Based On Determination of Priority

and Disruptivity", in Proc. 1990 Goddard Conf. on Space

Applications of Artificial Intelligence (Greenbelt. Maryland,
May 1-2, 1990), ed. J. L. Rash, NASA Conf. Pub. 3068

(Greenbelt: NASA), pp. 63-74, reprinted in Telematics and

Informatics, 7, pp. 243-253.

[11] Zweben, M., Davis, E., Stock, T., Drascher, E., Deale, M.,
Gargan, R., and Daun, B. 1991: "An Empirical Study of

Rescheduling Using Constraint-Based Simulated Annealing",
submitted.

[12] Miller, G. and Johnston., M.D. 1991: "A Case Study of Hub-
ble Space Telescope Proposal Processing, Planning and Long-
Range Scheduling",inProc. AIAA Conf. Computing in Aero-

space 8, Oct 21-24, 1991, Baltimore.

[13] Muscenola" N., Smith, S., Cesta, A., and D'Aloisi, D. 1992:
"Coordinating Space Telescope Operations in an Integrated
Planning and Scheduling Architecture", to appear in IEEE

Control Systems Systems Magazine 12 Feb. 1992.

[10]

Acknowledgments: The author wishes to thank Dr. Glenn
Miller and the present and former members of the Spike
development team (Jeff Sponsler, Short Vick, Tony Krueger,
Dr. Mark Giuliano, and Dr. Michael Lucks) for their efforts
which have led to the successful deployment of Spike. The
patience and support of the Spike user group, led by Dr.
Larry Petro, chief of the STScI Science Planning Branch, has
been much appreciated. Stimulating discussions with Dr.
Steve Minton, Monte Zweben, Don Rosenthal, and Hans-
Martin Adorf are gratefully acknowledged. The EUVE
project at UC Berkeley helped with the initial Unix port, and
the ASTRO-D and XTE staff at MIT have continuedtohelp
push the system in new and fruitful directions. The Space
Telescope Science Institute is operated by the Association of
Universities for Research in Astronomy for NASA.

r

__= =

=

Temporal Planning for Transportation

Planning and Scheduling

Robert E. Frederking and Nicola Muscettola

The Robotics Institute

Carnegie Mellon University

5000 Forbes Av.

Pittsburgh, PA 15213

Introduction

Many problems in transportation can be represented
as flow problems, and can be optimally solved us-
ing efficientlinearprogramming techniques [BHM77]

[BGAB83]. But in some cases this approach isseri-
ously oversimplified.If the problem includes depen-

denciesbetween differentoperations,planning isnec-

essary.Ifthe system parameters change dynamically,
the assumptions on which flow models are based be-

come false,as in the case when the capacity of trans-

portation facilitiescan change during the intervalbe-
ing analyzed. Finally,ifdetailedschedules are to be

produced, answers in terms of bulk quantitiesdo not
SUffice.

These problems requireapproaches that combine ca.

pabilitiestraditionallyassociated with planning and
with scheduling,and that do not requiretheirparam-

etersto remain constant. Historically,temporal plan-

ners [DFM88] [AK83] have dealt with combining gen-
eral operators to achieve a set of goals over time but

have poorly attended to issues related to the optimiza-
tion of resource usage. On the other hand, schedulers
[SOP+90] [Sad91] have been concerned with allocat-

ing times and resources to operations in fixed pro-
cess plans, ignoring questions of goal-oriented prob-
lem solving. The HSTS temporal planning framework
[MSCD91] is an attempt to combine the capabilities of
the two approaches. HSTS has been previously used
for planning and scheduling the observations for the
Hubble Space Telescope. HSTS emphasizes the de-
scription of the problem domain as a dynamical system
organized through the use of state variables, i.e. per-
sistent properties of objects in the domain. It also al-

lows the development of opportunistic planners, where
constraint posting and temporal inferences are not re-
stricted to predefined directions on the time horizon
(asin simulation and temporal projection)but the fo-

cus of problem solving can concentrate on the most

congested areas of the time line.

In thispaper we describepreliminary work done in

the CORTES project[FS90],applying HSTS to a trans-

portation planning and scheduling domain. First,we
describe in more detailthe transportation problems

that we are addressing. We then describe the funda-
mental characteristicsof HSTS and we concentrateon

the representationof n_uR]-_-c_p-_[ty resources.We

continue with a more detaileddescriptionof the trans-

portation planning problem that we have initially ad-
dressed in HSTS and of its solution. Finally we de-
scribe future directions for our research.

......ThetransPortati°n prbblem -

We are interested in addressing large-scale, complex
transportation planning and scheduling problems, such
as are found in disaster relief operations or other large-
scale, international responses to emergency situations.

For example, the transportation aspects of military op-
erational plans (or OPLANs) must be feasible, given
the allocated transportation resources [Han88]. If notl
they must be reworked, or have more resources al-
located to them. OPLANs are very large, involving
the movement of tens of thousands of individual units,

which vary immensely in size and composition, from::

a singleperson or piece of cargo to an entiredivision.
However, OPLANs do not explicitlyrepresent justi-
ficationsfor precedence constraintsdue to the struc-

ture of the domain and are thereforedifficultto mod-

ifyor adapt toother situations.To concentrateon the

representation of domain structure in atr_portation
schedule, we addressed the 'bare base' deployment sce-
nario used at the Armed Forces Staff College (AFSC)
to train joint planning officers. The goal is to turn a
bare runway into a fully functioning air base. Doc-
uments are available from AFSC describing scenario
assumptions and types of available units, including rec-
ommended sequencing, and some hints at the depen-
dencies between units. This domain includes only 92
unit types, in 40 general categories. It is also simpli-
fied in that OPLANs generally involve much more than
deploying a single air base, and more than one armed
service.

Our analysis of the bare base domain revealed two
facts:

• The domain requires the ability to represent and rea-
son about aggregate capacity resources.

• This domain consists primarily of a mbderate num-
ber (order of 10) dependency cycles, each centered
around a different support function, such as air traf-

fic control, aircraft refueling, personnel or cargo un-
loading, etc. The arrival of support units increases

the possible arrival rate of additional support units.

We isolated one of the dependency cycles, the refu-

eling capacity/throughput loop, as an initial 'atomic'

6

J

m

i

m

I
V

J

4ii
mm

|

m

=

i
W

U

9

r
!
R

i

ffi

i --m

m

! m

i

m

Z

domain. A demand on the base refueling capac-
ity, an aggregate resource, can be satisfied by bring-
ing more refueling units to the base. The arrival of
a unit permanently increases refueling capacity, which
in turn affects the rate at which planes can arrive,
since they use some amount of refueling capacity im-
mediately after moving. This increases also the rate at
which additional units can be brought in. These sim-
plified refueling units have no support requirements,
so when they are operational at the base they increase
its capacity, without requiring any other units to be
brought in.

The representation and solution of this problem is
an important step toward a solution of the bare base
scenario.

Representing plans in HSTS
Transportation problems require to be able to deal
with dependencies involving state and resource capac-
ity (e.g., a unit that requires a plane to move from A
to B can be allocated space only on a plane that is also
moving from A to B). This can be done by using the
HSTS planning and scheduling framework [MSCD91].
The two main components of the framework are a do-
main description language, for modeling the struc-
ture and dynamics of the physical system at multiple
levels of abstraction, and a temporal data base, for
representing possible evolutions of the state of the sys-
tem over time.

In this section we describe the basic primitives pro-
vided by HSTS and the extensions needed to represent
aggregate resource capacity.

Representing state

An HSTS model is subdivided into state variables,
each of which can assume one and only one value in any
instant of time. A value has the form R(zl, z2,..., zn).

For example, a plane .qp has a location, represented
by state variable Loc(?p), that can assume value
MOVE(?p, ?u, ?src, ?dst) representing the fact that ?p
is in transporting unit gu from location fsrc to location
?dst. HSTS is interval based, i.e., if a value occurs on a
state variable, it persists for a continuous non-zero time
interval. A value can occur under conditions specified

through a duration specification and a compatl-
billty specification.

Figure I shows a hypothetical value descriptor. The
duration is expressed as a range constraint, [d,D],
with d and D representing respectively a lower bound

_ and an upper bound function. The rest of the descrip-
tor specifies the compatibilitles that have to be sat-
isfied. A compatibility specification is an AND/OR

graph connecting several elementary compatibilities.
Each compatibility is composed of a temporal rela-
tion and the specification of a segment of behav-

ior on a state variable. For example the compat-

ibility [met_by (u, Loc(?p),AT(?src))] associated to
(Loc(?p), MOVE(?p, ?u, ?src, ?dsZ)) in Figure 1 speci-
ties that in every legal behavior, the value MOVEmust

occur immediately after the value ATon Loc(?p). The
symbol u is one of two different kind of segments of
evolution of a state variable: u, constraining a single

compatibiliti_:
AND ([met_by (v, Loc(? p), AT(?src))]

[meets (L,,Loc(?p),REFUEL(?dst))]

lee(_,,Loc(?_),MOW(?p, ?_,?s,_,?dsO)])

Figure 1: HSTS value descriptor

value, as in the example above, and _, for sequence
compatibilities. A sequence that can be substituted by
an unspecified number of values occurring on the same
state variable, all of which must satisfy a constraint
associated with the sequence. We will see examples

of sequences when we will discuss aggregate capacity
state variables.

Behaviors can be constructed within the HSTS Tem-

poral Behavior Data Base. The unit of descrip-
tion of temporal behavior is the token, s quadruple
(sv, type, st, et), where sv is one of the state variables
in the system model, type is a subset of the state vari-
able's possible values, and st and et are the token's
start and end times respectively. Tokens represent an
uninterrupted segment of evolution of a state variable.
During the planning process a token can be refined
by being split into any number of component tokens;
however, a token that has been designated to repre-
sent the occurrence of a value cannot be further split.

• A token that can be split is referred to as a plan con-
straint; one that cannot be split is referred to as a
plan value. The TDB also allows the representa-
tion of token sequences which implement the occur-
rence of a sequence specification. Tokens and token

:sequences are connected by a network of constraints:
temporal constraints, relating the start and end
times of each token, and type constralnts, referring
to the type of each token. Temporal and type con-
straints derive either from the expansion of compatibil-
ities and durations extracted from the model of the sys-
tem, from requirements directly imposed by the user
and therefore constituting the problem to be solved,
or from refinement decisions taken during the prob-
lem solving process where one of multiple alternatives
needs to be explored.

Representing Aggregate Resource
Capacity

At the base of the HSTS representation philosophy is
the assumption that it is possible to identify each state
variable into which a system model is decomposed and
that each state variable can assume one of a handful

of symbolic values. However, this basic mechanism of
representation can become very cumbersome. For ex-
ample, to reason on the allocation of available space
on a plane to materials, we would have to subdivide
space on the plane into "unit of space" state variables,
with values 'free' or 'used', subdivide also the materials
into units of space, and allocate capacity each unit of
material space to a unit of plane space. Although this
might be necessary for a detailed map of the allocation

of plane space, it is overly detailed for cases when we
need only an aggregated characterization of the use of

space,
HSTS can represent aggregated capacity as an ag-

gregate state variable. The value of an aggregate

state variable at a given time is a summary of the value
of a corresponding set of atomic state variables at the
same instant of time. In the transportation planning
domain, the use of cargo or parking space or the gen-
eration or use of refueling capacity by a unit or plane

at a base falls into this category.
A set of atomic state variables constitutes the con-

ceptual base on which the aggrega_on is built. In our
discussion, they are atomic resources that can be

used by one and only one operation at a time. An
operation OP, is the value assumed by the state state

variable of a job fj, St(?j), while fj is undergoing the
specified operation. If fj is not undergoing any opera-
tion, the value of St(?j) is IDLE. An atomic resource fr
has a single atomic state variable, St(?r), with possible

I I I "_nd-I _,,,i m- $

,-1, r'mUq-cm_

I I(--''l)l' I

[m-l[I-I [---I I --'3 I ss'$

_s.4, ret=d_c=p*dV

¢.)

Figure 2: Posting a sequence constraint on an aggre-
gate capacity state variable

suppose we have n_ entries of type (OPER, INC(c_))
and niaze entries of type (IDLE, INC(cj)), the value
{(OPER, nl), (IDLE, n2)} at time r satisfies the rein-values OPER (processing some operation) and IDLE.

The occurrence of OP_ and of OPER is regulated by

the following bidirectional compatibility:

iv, St(?j), oei)[eql ()', St(?)'), OPER)]

If the atomic resources in a pool fr_), are perfectly
substitutable, they can be aggregated into a single ag=
gregate state variable, the aggregate processing ca-
pacity of the pool, Ca),(?r_),). At any instant of time,
the aggregate state variable will assume a single value
that will summarize the distribution of values over its

component state variables at that time. Ca),(?r_),)
gives the number of resources in the pool that hold
each of the values OPER and IDLE; its values are rep-
resented as follows:

{ (OPER, nl), (IDLE, n2)}

indicating that nl atomic resources in fr=), are in an
OPER state and n2 are in an IDLEstate. The number
of resources in fr_), at that instant of time is nl + n2.
In general, a value for an aggregate state variable is a
list of such entries (value, counter).

Compatibility constraints on values of aggregate
state variables specify one or more atomic values and,
for each value, the number of atomic resources affected.
For example, assuming that OPi requires ci atomic re-
sources, we will have:

(St(?j), OP,) -.,, [_l (#, Ca),(?,_),), (OPER, I_rC(+_)),
(IDZE,

This means that whenever OPi occurs, a sequence of
values must be found on Ca),(?r_p), and the start and
end times of the sequence must coincide with the start
and end of OPt, as indicated by the temporal relation
eql. The type specification describes the local effect of

the compatibility on each of the values in the sequence,
i.e, the number of atomic resources that are OPER is
incremented by +c_, while the number of those that
are IDLE is decremented by c,.

At time r, the actual value of an aggregate state
variable can be computed once the set of constraints
that contain r is known. In the case of Cap(?r-),), if we

YAoPr flid|6

i=l jml

where ei and ej can be both positive (creation) or
negative (consumption). _ _: :. "

During the planning process, the evolution of an ag-
gregate state variable is represented in the temporal
data base by a sequence of plan constraints determined
by the imposition of a set of sequence constraints (Fig-

ure 2). Note that the temporal extension of each ag-
gregate state variable's value is not fixed. This is an
important difference from other scheduling systems,
where the times must be fixed if the values of aggregate
capacities are to be fixed [SOP+90] [Sad91].

Consistency of the state of a temporal data base can
be checked by temporarily assuming that no more se-
quence constraints will be posted and, therefore, the
plan constraints can be safely substituted with plan
values that can be computed by applying constraints
like those for nl and n_, above. The data base will
be inconsistent when an aggregate value contains a
counter whose value is negative. Notice however that,
in the case where the physical system allows the gen-
eration of capacity (as for aggregate processing ca-
pacity), partial inconsistency can be resolved without

backtracking by posting additional compatibilities pro-
viding the missing capacity.

Planning within HSTS
The atomic domain was intended to demonstrate that

the new extensions to HSTS for this type of do-
main (principally those for handling aggregate capac-
ity) function correctly, and provide the necessary prim-
Rives to solve the fundamental problems that such a
domain presents.

The atomic domain representation

The state variables in this domain are the refueling and
throughput properties of three types of objects: units,
planes, and bases.

I

i

J

$

w_
D

|
r
r

W
B

J

k

M

1ks

8

r_

W

L--

!
m
n

m

mm
'_llF

m
!

l

I

I
D

m

._mw

Each unit has two associated state variables, its lo-
cation Locand its state St' A unit's Loe can have the

values AT and MOVE. These correspond to the unit
being stationed at some base (e.g., home or destina-
tion) or being in transit. A unit's St can have the val-
ues NOT_OPER or OPER. These indicate Whether it is

capable of providing refueling capacity. When OPER,
it adds enough capacity to refuel one additional plane.
Each plane has one state variable, Loc, which can have
the values IDLE, MOVE, and REFUEL. 1. A base
has one aggregate state variable, its refueling capac-
ity R_C, containing distributions of two values, AVAIL
and USED, indicating the total amount of available
and nsed refueling Capacity at any time. The principal
compatibilities describing this problem are:

• The MOVE of a unit is followed by it being OPER
some non-zero amount of time later2:

(Loc(?u),MOVE(?p, ?u,?src,?b))--.

[bf([6t,St])(u,St(?u),OPER(?u, ?b))]

• The MOVE ofa unit isconcurrent with the MOVE

of a plane:

(Loc(?u),MOVEiep, ?u,?src,?b))---,

[eql(u,Loci?p),MOVE(?p, ?u,?src,?b))]

• The MOVE of a plane is immediately followed by
REFUEL:

(Loci?p),MOVE(?p, ?u, ?src,?b)) ---,

[meets (u, Loc(?p), REFUELi?p, ?b))]

• The unit increases R_C(?b) while it is OPER:

(st(?.),OeER(? ,?b))-
[eql(_,R_Ci?b), {(AVAIL, INC(+I))}]

• The REFUEL of the plane creates a demand on

(Loc(?p),REFUEL(?p, -. [eqt(,,,
{(USED,I::C(+1)),(AVAIL,INC(-1))})]

The atomic domain planner

The HSTS model of a domain describesdomain con-

attaints in terms of durations of and compatibilities
between values of state variable tokens, as described
previously. This creates an implicit space of legal sets
of state variable value sequences, within which any par-
tial (or complete) solutions to problems in this domain
must lie.

However, in order to describe any specific partial
solution, a particular set of legal choices must be made.
Many such sets of choices will result in inconsistent sets
of compatibilities, not corresponding to any possible

system behaviors. Finding a consistent set of choices
(i.e., planning) can still be very difficult. Within the
HSTS least-commitment framework, the final solution

aFor this abstract model, representing refueling state
and location separately would have introduced irrelevant
complications.

2This is necessary to prevent a degenerate problem,
where each unit brought in adds enough capacity to han-
dle its own plane, thus immediately allowing an arbitrary
number of units to be brought in.

is a representation of a range of behaviors that can be
directly simulated, all guaranteed legal.

In the case of transportation planning and schedul-
ing, one must select actual units to supply required
support, and select actual ranges of arrival times for
these units. This selection is ultimately based on the
needs of some set of units whose operation at the desti-
nation directly fulfills external itop-level) goals. These
top-level units require support of various kinds, and
their support units in turn require support. Any of
these units not already at the destination need to be

transported there.
Thus, any unit that needs to be transported ulti-

mately serves a top-level goal through some chain of
dependencies. This means that the planner can work
by finding 'operators' that satisfy goals, and then other
'operators' that provide these operators' preconditions
and fix problems from their postconditions; except
that, in HSTS, the planner is assigning values to cer-
tain time intervals of state variables, and using the
compatibilities between these values and other values
as 'preconditions' and 'postconditions'.

The planning goal is represented as a request for a
large amount of USED refueling capacity during some
future interval. The posting of the request creates an
interval of time in which the AVAIL capacity is nega-
tive.

The planning process begins with an HSTS fetch
for intervals where the base refueling capacity is below
zero, locating the top-level problem. The planner then
finds which types of values provide the type of capac-
ity needed, and which state variables can have these
values. It selects enough instances of these variables
to satisfy the demand, creates the appropriate value
tokens for them, and constrains these tokens to occur
over the required interval. This solves the top-level
problem.

Then, for each of these state variables, its token's
compatibilities are implemented, that is, constraints
between the token and other values are enforced, to
guarantee that this is a legal behavior. Single-unit
compatibilities are done first, followed by those that
affect other units. This ordering is important in gen-
eral, since local constraints may limit the choices avail-
able to more global ones. This corresponds to classical
systems having process plans for individual jobs be-
fore scheduling their operations. Since dependencies
between different units of the same type are expressed
through aggregate variables, this ordering is equivalent
to saying that compatibilities that do not affect aggre-
gate variables are done first. The set of local compat-
ibilities in this domain are simply the first three listed
in the previous subsection.

Next, the compatibility for the effect of plane refuel-
ing on the aggregate capacity is implemented. This
requires the choice of a particular time interval for

plane refueling, relative to the intervals of different lev-
els of aggregate capacity. This is done in one of three
modes: planes are allocated times as late as possible,
as early as possible, or at user-selected times. This

variability demonstrates the complete flexibility of the
order of decisions in 'simulated time' (time in the rood-

W

eled domain). This flexibility allows for opportunis-
tic decision-making, where decisions are made in the
most ef_cient order, not in any pre-determined tempo-
ral order. Other temporal planners generally cannot
make decisions this flexibly when working at the most
detailed level.

Finally, the effect of the unit becoming operational
on the aggregate capacity is implemented. In both of
these last two steps, some search may be needed. The
interval initially chosen may not produce a legal con-

figuration, due to the simple mechanism for picking
an interval and a limitation of the current aggregate
variable mechanism. Currently, once the contribution
from a state variable to an aggregate variable is calcu-
lated, its relative position in the aggregate cannot be
changed without backtracking. This violates the least-
commitment principle, and leads to problems: some
intervals on the aggregate variable have zero length. If
our simple interval selection rule selects a zero-length

interval for a non-zero length event, an inconsistency
results. Currently the easiest way to handle this is
to implement, detect the inconsistency, and backtrack.
Very limited search is needed, since non-zero intervals
are much more frequent. Fixing this failure of least-
commitment is high on our research agenda.

When these steps have been carried out for the nec-
essary number of variables, a complete and consistent
behavior has been described that fulfills the top-level
goals.

Conclusion

Temporal planning methodologies can be applied to
solve transportation planning problems that are be-
yond the scope of traditional linear programming tech-
niques. In our work we have addressed one such
problem and identified a fundamental type of depen-
dency among its entities. We have then demonstrated
that problems involving this kind of dependency can
be solved within the HSTS temporal planning and
scheduling framework. To solve the full bare base de-
ployment scenario, we need to extend our current prob-
lem solver to incorporate heuristic knowledge in order
to select the most appropriate units and time intervals
for values, and carry out local search if necessary.

In order to deal with real-world scale problems,
it will be necessary to develop further problem ag-
gregation and abstraction techniques. One promis-
ing direction concentrates on taking advantage of the
temporal flexibility of the HSTS framework by com-
bining least-commitment constraint posting method-
ologies with probabilistic estimates of resource usage
[MS87]: the goal is to avoid spelling out unnecessary
details whenever possible while insuring high quality
possible executions of the temporal plan.

[AK83]

References

J.Allen and J.A. Koomen. Planning using

a temporal world model. In Proceedings of
the 8th International Joint Conference on

Artificial Intelligence, pages 741-747, 1983.

[BGAB83] L. Bodin,

[BHM77]

[DFM88]

[FSg0]

[Han88]

[MS87]

[MSCD91]

[Sadgl]

[soP+9O]

B. Golden, A. Assad, mad

M. Ball. Specialissueon the rou_ng and

scheduling ofvehiclesand crews. Comput-

ers and Operations Research, 10(2), 1983.

S.P. Bradley, A.C. Hax, and T_L' Mag-
nanti.App//ed Mathematical Programming.
Addison-Wesley Publishing Co., 1977.

T_ i)eanlR.J. Firby,and D. Miller.Hierar-

chicalplanning involvingdeadlines,travel
time, and resources. Computational Intel-
ligence, 4:381-398, 1988.

M.S. Fox and K. Sycara. Overview of
cortes: A constraint, based approach to

production planning, scheduling and con-
trol. In Proceedings of the Fourth Inter-
national Conference on Ezpert Systems in
Production and Operations Management.
ESPOM-90, 1990.

S.H. Hanes, editor. The Joint Staff Of-

liter'sGuide. U.S. Government Printing

Oi_ce, 1988. Publication I,Armed Forces

StaffCollege.

N. Muscettola and S.F. Smith. A proba-
bilisticframework forresource-constrained

multi-agentplanning. In Proceedingso.fthe
lO_h International Joint Conference on Ar-
tificial Intelligence, pages 1063-1066. Mor-
gan Kanfmann, 1987.

N. Muscettola, S.F. Smith, A. Cesta, and
D. D'Aloisi. Coordinating space telescope
operationsina an integratedplanning and

scheduling architecture.In Proceedings of

the 1991 IEEE International Conference
on Robotics and Automation, pages 1369-
1376, 1991.

N. Sadeh. Look-ahead Techniques for
Micra-opportunistic Job Shop Scheduling.
PhD thesis, Schhol of Computer Science,
Carnegie Mellon University, March 1991.

S.F. Smith, P.S. Ow, J.Y. Potvin,
N. Muscettola, and D. Matthys. An inte-
grated framework for generating and revis-
ing factory schedules. Journal of the Op-
erational Research Society, 41(6):539-552,
1990.

i

i

D

i

II

m

II

m!

i
!
m

Ill

U

i

m

W

ml

m

m

w

m
im

a

_mm

10 ltw

_T

V

I

m

!

B

l

N93-18662

A Simulated Annealing Approach to Schedule

.... Optimization for the SES Facility

Mary Beth McMahon and Jack Dean
Planning and Scheduling Technology Group

McDonnell Douglas Space Systems Co.

16055 Space Center Blvd
Houston, TX 77062

Introduction

_The SES is a facility which houses the software and
hardware for a variety of simulation systems. The sim-
ulators include the Autonomous Remote Manipulator,
the Manned Maneuvering Unit, Orbiter/Space Station
docking, and shuttleentry and landing. The SES sim-

ulatorsare used by variousgroups throughout NASA.

For example, astronauts use the SES to practicema-

neuvers with the shuttleequipment; programmers use

the SES to test flight software; and engineers use the
SES for design and analysis studies.

Due to its high demand, the SES is busy twenty-
four hours a day and seven days a week. Scheduling

the facility is a problem that is constantly growing and
changing with the addition of new equipment. Cur-
rently a number of small independent programs have
been developed to help solve the problem, but the long-
term answer lies in finding a flexible, integrated system
that provides the user with the ability to create, opti-
mize, and edit the schedule.

COMPASS is an interactive and highly flexible

scheduling system. However, until recently COMPASS
did not provide any optimization features. This paper
describes the simulated annealing extension to COM-
PASS. It now allows the user to interleave schedule

creation, revision and optimization. This practical ap-

proach w_ necessary in order to satisfy the operational

requirements of the SES. _. _;_:, _

Statement of Problem
The SES facility is scheduled a week at a time. A work

week consists of seven days, each of which is divided
into six 4-hour "sessions." Each session has two sides,

side-a and side-b. This allows two people to work in
the facility at the same time. Each person requiring
time at the facility makes a request telling what equip-
me nt is needed for the simulation. A request consists
of the required simulators, the preferred days and ses-
sions, and optionally, a preferred side. Each person
may make one or more requestsper week and may _k

for multiple iterationsof the same request. The SES

scheduler satisfiestheirrequests by creating a sched-

ule based on priorities.The SES manager determines

the priority of each request by the type of work being
done and the number of repetitions requested. For ex-
ample, mission related activities have a higher priroity
than software development activities. And the fourth
repetition of a request typically has a much lower pri-
ority than the first. Each week there are about 60 -
70 requests and 76 session slots to be filled. There are
additional requests at the last minute for empty slots,

as well as high priority requests coming through that
may bump lower priority items.

There are a few guidelines by which the SES fa-

cility is scheduled. First, there is only one instance
of each simulator; therefore the persons working on
side-a and side-b must use mutually exclusive sets of
equipment. Second, certain pieces of equipment re-
side only on certain sides; therefore side assignments
must coincide with equipment requirements. Third, a
person may state a preference for particular sessions,
may state which sessions are acceptable, and may state
which sessions are unacceptable. The schedule should
try to accommodate the preferences, but can place the
person in an acceptable session when the preferred ses-
sions are not available. Under no circumstance should

a person be placed in a session which has been marked
as unacceptable. Fourth, a person can only work up
to two sessions in one day, and if they do, the sessions
should be consecutive so that a straight eight hour day
is__worked. Fifth, each person should have at least an
eight hour break between non-consecutive scheduled
sessions. Sixth, if a person works more than one third

shah (session five or session six) then the third shift
sessions worked should be on consecutive days or at
least two days apart.

Each request has a primary and secondary requestor.
The above rules must be satisfied in the event that

either the primary or secondary requestor work the
session.

There are two goals to consider when scheduling the
SES facility. One is to produce a weekly schedule in
which the largest number of requests are satisfied. The
other is to fill the schedule with the highest priority

items. These two goals must be satisfied simultane-
ously, but there are no rules defining the trade-offs be-

= =

mm

11

tween quantity and priority.Itisleftup to the sched-

ulerto produce a schedule which, inhisopinion, works

the best. In fact,ifso inclined,the schedulermay actu-

allyviolateresourceor timing constraintslistedabove

when producing the schedule.

Currently,the requestsare enteredon a PC and then

transferredto a Cyber computer where an optimiza-
tion routine written in FORTRAN finds 10 candidate

schedules. The SES manager then selectsone of the

10 schedules and hand edits it. The editingusually

consistsofadding lateassignments and moving assign-

ments around forsubjectivereasons.This isdone with

paper and penciltokeep trackof resourceassignments.

Finallythe handwritten schedule isentered into a PC,

using a drawing program, where itisprinted out for
distribution.

When providing an integratedsolution for the SES

problem, allphases of the scheduling process must be

considered. First,the scheduling system must be able

to accept and handle allof the constraintsand pref-

erencesdescribed by the requests.Second_ the system

must provide the SES manager with an initialfeasible

schedule which isatleastas "good" asthe initialsched-

ulesproduced by the FORTRAN program. Third, the

system must allow the schedule to be modified,even if

itmeans overridingconstraints.And fourth,the sys-

tem must printthe schedule in the prescribedSES for-
mat.

Background

An interactivescheduling system allows the user to
impose subjectiveconstraintssuch as the trade-offbe-

tween the quantity of requestssatsifiedand the prior-

itiesof the activitiesscheduled. A non-chronological

system allowsthe user to place activitiesanywhere in

the week, so that high priorityitems can be scattered

throughout the week and low priorityitems can fillthe

leftovertime slots. These two characateriatics,along

with the fact that COMPASS only produces feasible

schedules, lay the ground work for solving the SES

scheduling problem. The significanceof these char-
acteristicsisdescribed further.

An interactivescheduling system provides an envi-

ronment where a mixed initiativeispossible;that is,

itletsthe computer do what itdoes best (check con-

straintsand calculatefeasibleintervals)and letsthe

human do what he/she does best(provide heuristicand

subjectiveinputs into the schedule).Together the two

can cooperatively produce a schedule which reflects

both the hard constraintsand subjectivepreferences.

Subjective preferencesmay be controlledthrough in-

put from the user. The input may reflectscheduling
heuristics,such as the order in which to schedule the

activitiesand whether to schedule as soon as possible

or as late as possible. The input may reflectthe de-

siredlook of the schedule, such as choosing where to

place the activityfrom among the feasibleintervalsof

time. Or the user may interactivelydirectthe search,

by specifying which items to freeze and which items to

optimize.

In contrast, a fully automated system requires that

all data be completely loaded before the system begins
scheduling. All rules about scheduling preferences and
optimization must be coded into the system before the

schedulingprocess begins.The system then runs unin-

terrupted untilitfindsone solution(or many depend-

ing on the system) and then presentsitsfindingsas the

finalschedule. There isgenerallyno effectiveway of

editingthe schedule once the solution isfound. This

method ofscheduling isperfectlyacceptable when the

problem isbounded and the domain can be described

completely. However, ina highlysubjectivescheduling

domain, coding allof the rules(and exceptions-to-the

rules)may become very laboriousor even impossible.

A non-chronologicalscheduler allows the system to
place activitiesanywhere on the timeline. The sys-
tem has an omniscient view of time and can determine

allthe feasibleintervalsof time where the next activ-

ity may be placed. As each activityisplaced on the

schedule,constraintscreated by that activitymust be

propagated (eitherin the environment or directlyto

other activities).When new activitiesare placed on

the schedule,they are constrained by the activitiesal-

ready on the schedule. A benefitof non-chronological

scheduling is that high priorityitems may be placed

on the schedule firstand guaranteed that they be com-

pleted.Then the schedule may be filledwith the lower

priorityitems.

[n contrast,a simulation-based scheduler startsat

the beginning time of the schedule and as it pro-

gressesthrough time, itplaces activitieson the sched-

ule. When resources become available, the system has
a choice about which item to place next on the sched-
ule. Once the schedule reaches the ending time, the
schedule can be evaluated and another pass may be
made, perhaps making different choices about what to
place at each decision point. Historically, simulation-
based schedulers are very popular in the job shop arena

as they naturally model the behavior of plant opera-
tions.

COMPASS, with its simulated annealing extension,

searches only the feasible solution space. Some sched-
ulers only search the feasible solution space, while
others search both the feasible and infeasible solution

space. It may be substantially easier to find good
lutions if the scheduler is allowed to wander through

the infeasible solution space. However, allowing in-
feasible solutions also greatly increases the size of the
search space. There are far more infeasible solutions
than feasible solutions. By prohibiting the search of
the infeasible solution space, the scheduler has more
time to spend evaluating-fe_ib|esolutions. Deciding

which solutionspace tosearch depends on the optimiz-

ing algorithm.

12

D

i
m

i

II

I

I

|

i

m

B

ii
m

m
B

k

I

l

Approach

This section describes how the simulated annealing

routineisused in conjunction with COMPASS.

Given a group of selectedactivitiesto optimize,the

simulated annealing algorithm callsupon the COM-

PASS scheduling engine to unschedule then reschedule

the selected activitiesin a differentorder. The ac-

tivitiesare continuouslyrescheduled and the objective

functionisevaluated foreach new schedule untila user

specifiedtime limitisup. When time isup COMPASS

displaysthe schedule with the best score.

The user designatesthe focusofattentionforthe op-
timizationby selectinga subset of activities.The user
can _selectallof the activities,in which case the en-

tireschedule isoptimized with respectto the objective
function.Or the user may selecta subset of activities,

in which case only part ofthe schedule isoptimized. A
benefitofthis isthat the user can selectivelyoptimize

partsof the schedule which need improvement, leaving
the restofthe schedule intact.

The user may also specifythe amount of time in

which to run the simulated annealing algorithm. For

simple schedules or small subsets of activitiesa small

amount of time may be allthat isnecessary. COM-

PASS displayseach new try as itiscreated. The user

can actually sit and watch as the schedule is being

modified. Once time isup, COMPASS redisplaysthe
best schedule.

A scenario for using COMPASS and itssimulated

annealing extension isas follows. A firstcut at the

schedule can be created using the optimization func-

tion. The user can edit the schedule by unscheduling

some activitiesor by forcingunscheduled high priority
activities(overridingany constraints)onto the sched-

ule. By evaluating the schedule, COMPASS willdis-

play allactivitieswhich now have conflicts.The user

can unschedule the conflictingactivitiesand resched-

ule them (using the optimization function or by plac-

ing each down interactively).The interactionbetween

user placement and optimization continues untilthe
finalschedule isreached.

Implementation

Simulated annealing is an optimization technique

which combines gradient descent with randomness to

find global optima. The process used to control the

optimization is analogous to the annealing of metal;

hence the name simulated annealing. The annealing

process isbased on the laws of thermodynamics which

statethat atoms tend toward a minimum energy state.

A metal isannealed by raisingthe metal to tempera-

tureover itsmelting point and then gradually cooling

it. At high temperatures the atoms are in s high en-

ergy state,violentlyand randomly moving about. As

the metal cools,lower and lower energy statesbecome

increasinglylikely.By cooling the metal slowly,the

lowest possibleenergy state,the globalminimum, can
be achieved.

Simulated annealing is used to find global minima in
optimization problems in the following fashion. An ini-
tial solution to the optimization problem is found by
some means. The search space of solutionsbecomes

the statespace of the simulated annealing algorithm.

An objectivefunction,for which a globalminimum is

to be found, isdefined over the search solutionspace.

The objectivefunctioncorresponds tothe energy func-

tion. For each iteration,a random change ismade to
the state to obtain a new state. Ifthisnew statehas

a lower energy than the previous state,the new state

iskept. Ifthe new state has a higher energy than the

old state,itiskept with a probabilitythat varieswith

the simulated temperature. Continuing the analogy to

the annealing of metal, thisprobabilityisproportional

to the exponential of-c/kT, where c isthe change in

the energy level,k isconstant analogous to the Boltz-

mann's constant for physical systems, and T is the

simulated temperature. At very high temperatures,

most changes instateare accepted, and the resultap-

proaches a random walk through the solutionspace.

At very low temperatures, the probabilityofaccepting

a change that increasesthe totalenergy vanishes,and

the random walk islimitedto changes which decrease

the totalenergy. This resultsin a gradient descent to

the localminima. To achieve the globalminimum, the

temperature isstartedoff"very high and gradually re-

duced. For each localminimum there isa temperature

which willallow the random walk to escape the local

minimum, but not the globalminimum.

Inorder toapply thisalgorithm tothe SES optimiza-
tionproblem, the followinghave to be defined:(1) the

statespace ofsearched solutions,(2) the energy or ob-

jectivefunction to be minimized, (3) the method for

calculatingthe initialsolution,(4)the method forran-

domly changing from one stateto the next,and (5) the

temperature decay algorithm. ..

The solutionspace consistsof allfeasibleschedules.
A feasibleschedule is one that satisfiesall the con-

straints. The constraintsthat are applicable to the

SES scheduling problem are the resource availability

constraints,the temporal constraints,and the rules
discussedin the Statement of Problem sectionof this

paper.

The objectivefunction isthe negative ofthe sum of
the values of the scheduled activities.(The negative

isused so that minimization of the objectivefunction

indicates improving schedules.) The value for each ac-
tivity is derived from the priority input field of the

schedule request. The priority is an integer between
I and 22 inclusive, with I being the highest priority

(most important). The value for the activity is set to
23 minus the request priority. Thus increasing value
means increasing importance of the task.

An initial solution is found using a first fit decreas-

ing algorithm. The activities to be scheduled are
sorted into decreasing value order. The sorted activ-

ities are then scheduled using a front loading, or first

a

13

fit, scheduling algorithm.
Once a feasible schedule is found, a new random

schedule is calculated in the following fashion. First,
the probability that a scheduled task should be re-
moved is calculated, based upon the current simulated
temperature. The probability of removal is calculated
using an equation of the form of the Boitzmann equa-
tion described above. Thus the probability of removal
is higher at high temperatures than it is at low tem-
peratures. This has the effect of allowing larger state
changes at high temperatures and minor changes at
low temperatures.

Next, each activity is examined in decreasing value
order. If the activity is already scheduled, and a ran-
domly generated number is less than the probability of
removal, the activity is removed from the schedule. If
the examined activity is previously unscheduled, and
a randomly generated number is less than a constant
probability of placement, the activity is placed on a
list of activities to be scheduled.

Once the entire activity list is examined, with some
of the activities randomly selected and unscheduled,
the list of activities to be scheduled is examined. For

each activity, the program first tries to schedule the
activity in one of the preferred sessions. If that fails
(the activity is not scheduled), the program attempts
to schedule the activity in any one of the acceptable
sessions.

Once the new schedule has been created, the energy
value for this new schedule is calculated. If the new

energy value is lower than the current energy, the new
schedule is kept since it reflects an improved schedule.
If the new energy is greater than the current energy
(reflecting a poorer schedule), the probability of ac-
cepting thisscheduleiscalculatedusingtheBoltzmann
equationdescribedabove.

Finally,the temperaturedecay used isa simplein-
verselinearfunction.The simulatedtemperatureisset

accordingtotheequationT --TO / (I+ t),whereT is
thecurrenttemperature,TO istheinitialtemperature,
and t isthesimulatedtime.

Conclusions

The simulated annealing algorithm has been success-
fully implemented and integrated into the COMPASS
architecture. This new addition allows the user to au-
tomatically, as well as interactive[y, create schedules.
This combination of automatic and interactive capabil-
ities provides the user with greater functionality and
control over the development of the schedule. The user
can define the level of interaction/automation neces-
sary in order to produce the best schedule.

The user selects the activities that are to be opti-
mized. The user may optimize the whole schedule by
selecting all of the activities or part of the schedule by
selecting a subset of the activities. (In the SES prob-
lem the objective function is based on the priorities of
the activities, so it is feasible to apply it to subsets

of activities as well as the entire set.) The previously _
scheduled activities that have not been selected remain __
frozen on the schedule. This is especially beneficial in I
rescheduling once the initial schedule is underway and
an eventoccurswhich requires partsofthescheduleto

be reworked, j
The SES scheduling problem requires an integrated

system which will create an initial feasible schedule, al-
low the userto alteroroptimizepartsoftheschedule, E
and will print out the schedule in the desired format. •
COMPASS now provides all of these capabilities in one

cohesive package. The user can schedule both interac- _!
tivly and automatically. The user can override any P_
constraints by forcing an activity onto the schedule W
at a specific time. The user can validate the sched-
ule using existing evaluation functionalities. And the __
user can print out reports in the desired format using
PostScript.

n

II

m

References

[1] Fox, Barry R., Mized lnitiatire Scheduling, AAAI -
Spring Symposium on AI in Scheduling, Stanford,
CA, March 1989.

[2] Fox, Barry R., Non-Chronological Scheduling, Pro-
ceedings AI, Simulation and Planning in High Au-
tonomy Systems, Universityof Arizona, March
1990,IEEE Computer SocietyPress.

[3] Lurid, Chet, Ezper_ System for Scheduling Simula-
tion Lab Sessions, Proceedings of the 1991 CLIPS
Conference, pp 784-791.

[4] Wasserman, Philip D., Neural Computing Theory
and Practice, pp 80-83.

|

i

W

i

V

k

I

g

g

m

E

14

= . =

y"

,Decomposability and Scalability

m Space-Based Observatory Scheduling

Nicola Muscettola and Stephen F. Smith
- -- The Robotics Institute

Carnegie Mellon University
. 5000 Forbes Av.

Pittsburgh, PA 152i-3 "

N 9 3 - lfij 6 o

o Introduction

fThe generation of executable schedules for space-based _-

observatories is a challenging class of problems for the

m

__ _ planning and scheduling community. Existing and
: planned space-based observatories vary in structure
_ and n'ature, from very complex and general purpose, =

like the Hubble Space Telescope (HST), to small and
L- _ targeted to a specific scientific program, like the Sub-

£

i _ J millime.ter Wave Astronomy Satellite (SWA_S). How-
"_ _ ever the fact that they share several classesofoperating :

constraints (periodic loss of target visibility, limited on-

_ _ board resources, like battery charge and_data storage,"" _ etc.) suggests the possibility of a common approach.
The compIexity of the problem stems _om two sources.

m

D

W
mm

First, they display the difficulty of classical scheduling
problems: optimization of objectiv_ relating to overall
system performance (e.g., maximizing return of science
data), while satisfying all constr&ints imposed by the
observation programs (e.g., precedence and temporal
separation among observations) and by the limitations
on the availability of capacity (e.g., observations re-
quiring different targets cannot be executed simultane-
ously). Second, a safe mission operation requires the
detailed description of all the transitions and interme-

diate states that supp_ ort_the achievement of observing
goals and are consistent with an accurate description
of the dynamics of the observatory; this constitutes a
classical planning problem.

Another characteristic of the problem is its large

scale. The size of the po01 of observations to be per-
formed on a yea_y horizozl can typically range from
thousands to even tens of'thousands, and, for large
observatories, the dynamics of system operations in-

volves several tens of interacting system components.
To effectivelydeal:with problen_s of this size, it is es-

sential to e/nploy problem and model decomposition
techniques. In certain cases, this/'equires the ability
to represent and exploit the availablestatic structure of

_ HSTS was developed and originally applied in the con-
text of the HST scheduling problem, motivated by the
limitations of the current solution and, more generally,
the insufficiency of classical planning and scheduling
approaches in this problem context. We first summa-
rize the salient architectural characteristics of lISTS
and their relationship to previous scheduling and AI
planning research. Then, we describe some key prob-
lem decomposition techniques supported by lISTS and
underlying our integrated planning and scheduling ap-
proach, and discuss the leverage they provide in solving
space-based observatory scheduling problems. _-

Planning and scheduling for

space-based observatories

The management of the scientific operations of the
Hubble Space Telescope is a formidable task; its solu-
tion is the unique concern of an entire organization, the
Space Telescope Science Institute (STScI). The work of
several hundred people is supported by several software
tools, organized in the Science Operations Ground Sys-
tem (SOGS). At the heart of SOGS is a FORTRAN-
based software Scheduling system, SPSS, originally en-
visioned as a tool which would take astronomer viewing
programs for a yearly period as input and produce ex-
ecutable spacecraft instructions as output. SPSS has
had a somewhat checkered history [Wa189], due in part
to the complexity of the scheduling problem and in part
to the difficulty of developing a solution via traditional
software engineering practices and conventional pro-
gramming languages. To confront the computational
problems of SPSS, STScI has developed a separate,

knowledge-based tool for long term scheduling called
SPIKE [Johg0]. SPIKE accepts programs approved
for execution in the current year and partitions obser-
vations into weekly time buckets, each of which can
then be treated as a smaller, more tractable, short

m Lm

m

term scheduling problem. Detailed weekly schedules
the problem (e.g., interacting System _mp0nents)i-in _ are generated through the efforts of a sizable group of
other cases, where an explicit structure is not immedi- operations astronomers, who interactively utilize SPSS
ately evident (e.g., interaction among largenumbers of
temporal and capacity constraints), the problem solver
should be able to dynamically focus on different parts

of the problem, exploiting the structure that emerges
during the problem solving process itself.

_ In this paper, we discuss issues of problem and model
decomposition within the HSTS scheduling framework. ;

to place observations on the time line.

In the HSTS project we have addressed the short

term problem in the HST domain, efficiently gener-
ating detailed schedules that account for the major
telescope's operational constraints and domain opti-
mization objectives. The basic assumption is to treat
resource allocation (scheduling) and auxiliary task ex-

15

W

pansion (planning) as complementary aspects of a
more general process of constructing behaviors of a dy-
namical system [Mnsg0].

Two basic mechanisms provide the basis of the HSTS
approach:

1. a domain description language for modeling the
structure and dynamics of the physical system at
multiple levels of abstraction.

2. a temporal data base for representing possible evolu-
tions of the state of the system over time (i.e. sched-
ules).

The natural approach to problem solving in HSTS
is an iterative posting of constraints extracted either
from the external goals or from the description of the
system dynamics; consistency is tested through con-
straint propagation. For more details, see [MSCD91].

Three key characteristics distinguish the HSTS
framework from other approaches:

1. the explicit decomposition of the state of the mod-
eled system into a finite set of "state variables"
evolving over continuous time. This enables the

development of scheduling algorithms that exploit
problem decomposability and provides the necessary
structure for optimizing resource utilization.

2. the flexibility along both temporal and state value
dimensions that is permitted by the temporal data
base (e.g., the time of occurrence of each event does
not need to be fixed but can float according to the
temporal constraints imposed on the event by the
process of goal expansion). This flexibility con-
tributes directly to scheduling efficiency, since over-
commitment (and hence the greater possibility of the
subsequent need to backtrack) can be avoided.

3. the flexibility of the constraint posting paradigm
to accommodate a range of problem solving strate-
gies (e.g., forward simulation, back chaining, etc.).
This allows the incorporation of algorithms that op-
portunistically exploit problem structure to consis-
tently direct problem solving toward the most criti-
cal tradeoffs that need to be made.

The importance of integrating these three features
within a single framework can be appreciated by con-
sidering the limitations of other approaches that ad-
dress them separately or partially.

Planning research has focused on the problem of
"compiling _ activity networks that bring about de-
sired goal states from more basic representations of
the effects of actions in the world. In contrast to

HSTS, however, the modeling assumptions of most ap-
proaches [FHN72, Wi188] do not support explicit repre-

sentation of temporal constraints depending on contin-
uous time (e,g., task duration, temporal separation be-
tween events), and representation of the world state is
not structured into state variables. More recent plan-
ning frameworks have only partially addressed these
issues [Lan88, DFM88, Ver83]. Furthermore, in most
cases, these frameworks have placed fairly rigid con-
straints on the manner in which solutions are developed

(e.g., strict reliance on top down goal refinement with
forward simulation[DFM88]), preventing an adequate

consideration of efficient resource allocation over time,
an issue of fundamental importance in the space-based
observatory scheduling domain.

The monitoring of state variables over continuous
time has always_b_at: the_c0re of scheduling research
[Bak74]. Operations research has produced optimal
solutions for very simple scheduling problems [GraB1,
BS90] or has focused on the definition of dispatch pri-
ority rules [PI77] for more realistic problems. More re-
cent research in constraint-based scheduling [SOM+90,
Sad91], has demonstrated the advantages of dynami-

cally focusing decision-making on the most critical de-
cisions first. FISTS differs from other scheduling ap-
proaches in its temporal flexibility and in its ability to
dynamically expand auxiliary goals and activities.

Issues in Integrating Planning and

Scheduling
We now highlight some aspects of our approach th_at
support the development of solutions for large scale
scheduling problems in complex dynamical domains
and, in particular, their relevance to space-based ob-

servatory domains.

Use of Abstraction

The use of abstract models has long been exploited
as a device for managing the combinatorics of' plan-
ning and scheduling. In FISTS, where models are ex-
pressed in terms of the interacting state variables of
different components of the physical system and its op-
erating environment, an abstract model is one which
summarizes system dynamics in terms of more aggre-
gate structural components or selectively simplifies the
represented system dynamics through omission of one
or more component state variables. Given the struc-
ture of space-based-observatory scheduling pr0blems,
the use of an abstract model provides a natural basis
for isolating overall optimization concerns, and thus
providing global guidance in the development of de-
tailed, executable schedules. In the case of the HST, a
two-level model has proved sufficient. At the abstract
level, telescope dynamics is summarized in terms of a
single state variable, indicating, at any point in time,
whether the telescope (as a whole) is taking a picture,
undergoing reconfiguration, or sitting idle. The dura-
tion constraints associated with reconfiguration at this
level are temporal estimates of the time required by
the complex of actual reconfiguration activities implied
by the detailed model (e.g., instrument warmup and
cooldown, data communication, telescope repointing).
Execution of an observation at the abstract level re-

quires only satisfaction of this abstract reconfiguration
constraint, target visibility (a non-controllable state
variable accessible to both the abstract and detailed

models), and any user specified temporal constraints.
Thus, the description at the abstract level looks much
like a classically formulated scheduling problem: a set
of user requests that must be sequenced on a single
resource subject to specified constraints and allocation
objectives.

Planning relative to a full detailed level is neces-

sary to ensure the viability of any sequencing decisions

16

g

R
R

g

|
m
U

U

m

g

|
i

J
J

|
!
W

i

J

m
i

m

J

made at the abstract level and to generate and coor-
dinate required supporting system activities. The de-
gree of coupling between reasoning at different levels
depends in large part on the accuracy of the abstrac-

-L_ tion. In the case of HST, decision-making at abstract

levels is tightly coupled; each time a new observation is
inserted into the sequence at the abstract level, control
passes to the detailed level and supporting detailed sys-

= = tern behavior segments necessary to achieve this new
goal are developed. Given the imprecision in the ab-
stract model, goals posted for detailed planning cannot
be rigidly constrained; instead preferences are specified
(e.g., "execute as soon as possible after obsl"). The re-
sults of detailed planning at each step are propagated

upward to provide more precise constraints for subse-

quent abstract level decision-making.

--_ Model Decomposability and Incremental

Scaling

Large problems are naturally approached by decom-

posing them into smaller sub-problems, solving the
sub-problems separately and then assemble the sub-

_a solutions. We can judge how the problem solving
framework supports modularity and scalability by two
criteria:

* the degree by which heuristics dealing with each
sub-problem need to be modified when adding sub-

" problem assembly heuristics to the problem solver;

* the degree of increase of the computational effort
needed to solve the problem versus the one needed
to solve the component sub-problems

To test the scalability of the HSTS framework, we
conducted experiments with three models of the HST
operating environment of increasing complexity and
realism, respectively denoted as SMALL, MEDIUM and

-- LARGE model. All models share a representation of the
[]__ telescope at the abstract level as a single state variable;

they differ with respect to the number of components
modeled at the detailed level. The SMALL model con-

_-- tains a state variable for the visibility of each of the
_ celestial objects of interest with respect to the orbit-
----" ing telescope, a state variable for the pointing state of

the telescope, and three state variables for the state
_- of an instrument, the Wide Field Planetary Camera
_--- (WFPC). The MEDIUM model adds two state variables

for an additional instrument, the Faint Object Spec-
__ trograph (FOS), while the LARGE model includes eight

additional state variables accounting for data commu-
nication. The LARGE model is representative of the
major operating constraints of the domain. Figure 1
shows the relations among the various models.

solver for the SMALL domain ContainsThe problem

-- heuristics to deal with the interactions among the dif-
ferent components of the WFPC (e.g., when a WFPC
detector is being turned on, make sure that the other
WFPC detector is kept off), with the pointing of the
HST (e.g., select a target visibility window to point

-- the telescope), and with the interaction among WFPC
_ state and target pointing (e.g., observe while the tele-

scope is pointing at the proper target). The heuristics

WF/PC

i,41tOll

Targets

I-LVr
Po/nting

Figure I:The SMALL, MEDIUM and LARGE HST mod-
els.

added for the MEDIUM domain deal with the interac-

tions within the FOS, between FOS and HST pointing
state, and between FOS and WFPC. Since the nature
of the new interactions is very similar to those of the
SMALL model, the additional heuristics are obtained

by simply extending the domain of applicability of the
SMALL's heuristics. Finally, for the LARGE model we
have the heuristics used in the MEDIUM domain, with

no change, plus heuristics that address data commu-
nication and interaction among instrument states and

data communication (e.g., do not schedule an obser-
vation on an instrument if data from the previous ob-
servation has not yet been read out of its data buffer).
The previous discussion supports the scalability with
regard to the structure of the problem solvers.

To verify scalability with respect to the degree of
computational effort, we run a test problem in the
SMALL, MEDIUM and LARGE domain; the test consists
of a set of 50 observation programs, each containing
a single observation with no user-imposed time con-
straints. The experiments were run on a TI Explorer
II+ with 16 Mbytes of RAM memory.

Table 1 supports the claim of scalability with re-
spect to the required computational effort. The mea-
sure of the size of the model (number of state variables)
excludes target and communication satellite visibili-
ties since these can be considered as given data. The
number of tokens indicates the total number of dis-
tinct state variable values that constitute the sched-

ule. The temporal separation constraints are distance
constraints that relate two time points on different
state variables; their number gives an indication of the
amount of synchronization needed to coordinate the
evolution of the state variables in the schedule.

Notice that since the heuristics that guide the plan-
ning search exploit the modularity of the model and
the locality of interactions, the average CPU time (ex-
cluding garbage collection) spent implementing each
required compatibility constraint (corresponding to an
atomic temporal relation among tokens) remains rela-
tively stable. In particular, given the high similarity of
the nature of the constraints between the SMALL and

the MEDIUM models, this time is identical in the two

17

Model

S_s Vtriablm
Tekem
Time Puin_
Tempenl Comu_w

C:FLTT'm_e/ Ob, ervation
CPU Time t Comp,_
Temi CI_ tlme

!T_tl Ehpmt T_me
Schedule Hormm

SMALL MEDIUM • LARGE

4 6 13
5S7 604 843

,. 588 605 716
1296 13211 1,474

11.62 12.25 21.74
0.29 0.29 0.33

9:41.00 10:11.50 1g._7.00
1:0g:36.00 1:13:16.00 "2:34.'07.00

41"37:20.00 54:25.'46.00 52.'4'4.'41.00

Table 1: Performance results. The times are reported
in hours, minutes, seconds and fraction of seconds

cases. The total elapsed time spent generating an ex-
ecutable schedule for the 50 observations is an accept-
able fraction of the real time horizon covered by the
schedules; this indicates the practicality of the frame-
work in the actual HST operating environment.

Exploiting Opportunism to Generate
Good Solutions

In the experiment just described, a simple dispatch-
based strategy was used as a basis for overall sequence
development: simulating forward in time at the ab-
stract level, the candidate observation estimated to in-

cur the minimum amount of wait time (due to HST
reconfignration and target visibility constraints) was
repeatedly selected and added to the current sequence.
This heuristic strategy, termed "nearest neighbor with
look-ahead" (NNLA), attends directly to the global ob-
jective of maximizing the time spent collecting science
data. However, maximization of science viewing time
is not the only global allocation objective.

One critical tradeoff that must be made in space-
based observatory scheduling is between maximizing
the time spent collecting science data and satisfying
absolute temporal constraints associated with specific
user requests. The scheduling problem is typically
over-subscribed; i.e., it will generally not be possible
to accommodate all user requests in the current short
term horizon and some must necessarily be rejected.
Those requests whose user-imposed time windows fall
inside the current scheduling horizon become lost op-
portunities if rejected. Those without such execution
constraints may be reattempted in subsequent schedul-
ing episodes.

As indicated above, the first objective (minimizing
telescope dead time) is amenable to treatment within a
forward simulation search framework. However, a for-
ward simulation provides a fairly awkward framework
for treating the second objective (minimizing rejection
of absolutely constrained goals). A goal's execution
window may be gone by the time it is judged to be
the minimum dead time choice. Look-ahead search

(i.e. evaluation of possible "next sequences" and po-

tential rejections) can provide some protection against
unnecessary goal rejection but the general effectiveness

of this approach is limited by combinatorics. A sec-
ond sequencing strategy of comparable computational
complexity that directly attends to the objective of
minimizing rejection of absolutely constrained goals

18

Sequencing Pctg. Constrained Pctg. Telescope
Strategy Goals Scheduled Utilization

NNLA 72 2139
MCF 93 17_0
MCF/NNLA 93 20.54

Table 2: Comparative Performance of NNLA, MCF
and MCF/NNLA

is "most temporally constrained first" (MCF). Under
this scheme, the sequence is built by repeatedly select-
ing and inserting the candidate goal that currently has
the tightest execution bounds. This strategy requires
movement away from simulation-based sequence build-

ing, since the temporal constraints associated with se-
lected goals will lead to the creation of availability
"holes" over the scheduling horizon. Adopting a se-
quence insertion heuristic that seeks to minimize dead--
time can provide some secondary attention to this ob-
jective, but effectiveness here depends coincidently on
the specific characteristics and distribution over the
horizon of the initially placed goals:)ks is the case
with the simulation-based NNLA strategy, one objec-
tive is emphasized at the expense of the other. This
second MCF sequencing strategy, incidentally, is quite
close to the algorithm currently employed in the oper-
ational system at STScI.

Both NNLA and MCF manage combinatorics by
making specific problem decomposition assumptions
and localizing search according to these decomposition
perspectives. NNLA assumes an event based decom-
position (considering only the immediate future) while
MCF assumes that the problem is decomposable by
degree of temporal constrainedness. Previous research "
in constraint-based scheduling[SOM+90] h_ indicated
the leverage of dynamic problem decomposition selec-
tive use of local scheduling perspectives. In tI_e case of
NNLA and MCF, one aspect of current problem struc-
ture that provides a basis for selection at any point
during sequence development is the current variance
in the number of feasible start times remaining for in-
dividual unscheduled goals. If the variance is high,
indicating that some remaining goals are much more
constrained than others, then MCF Canbe used to em-

phasize placement of tightly constrained goals. If the
variance is low, indicating similar temporal flexibility
for all remaining unscheduled goals, then emphasis can
switch to minimizing dead time within current avail-
ability "holes" using NNLA.

To test this multi-perspective approach, a set of
short-term (i.e. daily) scheduling problems where
solved with each base sequencing strategy and the
composite strategy just described (referred to as
MCF/NNLA). The results are given in Table 2 and
confirm our expectations as to the limitations of both
NNLA and MCF. We can also see that use of the op-

portunistic MCF/NNLA strategy produces schedules
that more effectively balance the two competing objec-
tives. Further details of the experimental design and
the strategies tested may be found in [SP92].

i

i

m

=

!

These results should be viewed as demonstrative and

we are not advocating MCF/NNLA as a final solu-
tion. We can profitably exploit other aspects of the
current problem structure and employ other decom-
position perspectives. For example, the distribution
of goals over the horizon implied by imposed temporal

constraints has proved to be a crucial l_uideline in other
scheduling contexts [SOM+90, Sadglj, and we are cur-

_ rently investigating the use of previously developed
techniques for estimating resource contention [MS87,
Mus92J. There are also additional scheduling criteria
and preferences (e.g., priorities) in space-based obser-
vatory domains that are currently not accounted for.

Conclusions

In this paper, we have considered the solution of a

specific class of complex scheduling problems that re-

quire a synthesis of resource allocation and goal ex-
pansion processes. These problem characteristics mo-
tivated the design of the HSTS framework, which we

briefly outlined and contrasted with other scheduling
and AI planning approaches. To illustrate the ade-
quacy of the framework, we then examined its use in
solving the HST short-term scheduling problem. We
identified three key ingredients to the development
of an effective, practical solution: flexible integration
of decision-making at different levels of abstraction,
use of domain structure to decompose the planning
problem and facilitate incremental solution develop-
ment/scaling, and opportunistic use of emergent prob-
lem structure to effectively balance conflicting schedul-
ing objectives. The HSTS representation, temporal
data base, and constraint-posting framework provide
direct support for these mechanisms.

[Bak74]

[BS90]

-- [DFM88]

z -_ [FHN72]

_ [Gra81]

_ U [Joh90]

V

[Lan88]

[MSST]

[MSCD92]

[Mus90]

[Mus92]

[PI77]

[Sad91]

[SOM+90]

References

K.R. Baker. Introduction to Sequencing
and Scheduling. John Wiley and Sons, New [SP92]
York, 1974.

K. R. Baker and G.D. Scudder. Sequenc-
ing with earliness and tardiness penalties: a

review. Operations Research, 38(1):22-36, [Ver83]
January-February 1990.

T. Dean, R.J. Firby, and D. Miller. Hierar-

chical planning involving deadlines, travel

time, and resources. Computational Intel- [Wal89]
ligence, 4:381-398, 1988.

R.E. Fikes, P.E. Hart, and N.J. Nilsson.

Learning and executing generalized robot [Wil88]
plans. Artificial Intelligence, 3:251-288,
1972.

S.C. Graves. A review of produc-
tion scheduling. Operations Research,

29(4):646-675, July, August 1981.

M.D. Johnston. Spike: Ai scheduling for
nasa's hubble space telescope. In Proceed-
ings of the 6th IEEE Conference on Arti-
ficial Intelligence Applications, pages 184-
190, 1990.

19

A. Lansky. Localized event-based reason-
ing for multiagent domains. Computational
Intelligence, 4:319-340, 1988.

N. Muscettola and S.F. Smith. A proba-
bilistic framework for resource-constrained

multi-agent planning. In Proceedings of the
lOth International Joint Conference on Ar-
tificial Intelligence, pages 1063-1066. Mor-
gan Kaufmann, 1987.

N. Muscettola, S.F. Smith, A. Cesta, and
D. D'Aloisi. Coordinating space telescope
operations in an integrated planning and
scheduling architecture. IEEE Control Sys-
tems Magazine, 12(1), February 1992.

N. Muscettola. Planning the behavior
of dynamical systems. Technical Report
CMU-RI-TR-90-10, The Robotics Insti-
tute, Carnegie Mellon University, 1990.

N. Muscettola. Scheduling by iterative par-
tition of bottleneck conflicts. Technical

report, The Robotics Institute, Carnegie
Mellon University, 1992.

S.S. Panwalker and W. Iskander. A survey
of scheduling rules. Operations Research,
25:45-61, 1977.

N. Sadeh. Look-ahead Techniques for
Micro-opportunistic Job Shop Scheduling.
PhD thesis,School of Computer Science,
Carnegie Mellon University,March 1991.

S.F. Smith, J.Y. Ow, P.S. Potvin,

N. Muscettola, ,and D. Matthys. An inte-

grated framework for generating and revis-
ing factory schedules. Journal of the Op-
erational Research Society, 41(6):539-552,
1990.

S.F Smith and D.K. Pathak. Balancing
antagonistic time and resource utilization

constraints in over-subscribed scheduling
problems. In Proceedings 8th IEEE Con-
ference on AI Applications, March 1992.

S. Vere. Planning in time: Windows and
durations for activities and goals. IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-5, 1983.

M. Waldrop. Will the hubble space tele-
scope compute ? Science, 243:1437-1439,
March 1989.

D.E. Wilkins. Practical Planning, vol-
ume 4. Morgan Kaufmann, 1988.

18 _-_-

Extended Abstract:

./ Managing Disjunction for Practical
Temporal Reasoning

Mark Boddyt Bob Schrag Jim Carciofini

{schrag, boddy, carciofi}Qsrc, honeywell.corn
Honeywell Systems and Research Center, MN65-2100

3660 Technology Drive
Minneapolis, MN 55416

Abstract

one ofthe problems that must be dealtwith inei-
ther a formal or implemented temporal reasoning

system is the ambiguity arisingfrom uncertain
information. Lack of preciseinformation about

when events happen leadsto uncertaintyregard-

ing the effectsof those events. Incomplete infor-
mation and nonmonotonlc inferenceles_toSltua.

tionswhere thereismore than one setof possible

inferences,even when there isno temporal un-

certaintyat all.In an implemented system, this
ambiguity isa computational problem as well as
a semantic one_

In thispaper, we discusssome of the sourcesof

thisambiguity,which we willtreatasexplicit_b-

znctlo in the sense that ambiguous information
can be interpreted as defining a set of possible
inferences. We describe the application of three
techniques for managing disjunction in an imple-

mentation of Dean's Time Map M_ager. Briefly,
the disjunction is either: removed by limiting the
expressive power of the system, explicitly repre-
sented, one disjunct at a time, or approximated
by a weaker form of representation that subsumes
the disjunction. We use a combination of these
methods to implement an expressive and efficient
temporal reasoning engine that performs sound
inference in accordance with a well-defined for-
mal semantics.

1 Introduction

One of the problems that must be dealt with in either a
formal or implemented temporal reasoning system is the
disjunction arising from uncertain information. Lack of
precise information about when events happen leads to
uncertainty regarding the effects of those events, and thus
to uncertainty in what propositions are true at some point
in time. Incomplete information regarding what proposi-
tions are true when, and nonmonotonic inference (e.g., the
persistence assumption or qualified causal projection) lead
to situations where there is more than one set of possible
inferences, even when there is no temporal uncertainty at
all [6]. In a formal system, this ambiguity is noted and in

tThis work k supported by DARPA and the Air Force
Rome Laboratory under Rome Laboratory contract F30602-
90-C-0102.

W

some way dealt with, either by changing the semantics to
exclude it (e.g. by assigning a preference relation to the

possible models of a given theory), or simply by acknowl-
edging it (i.e. couching conclusions in terms of the se_ of UJ
possible models).

In an implemented system, this ambiguity is a computa- ___
tional problem as well as a semantic one. In this paper,
we discuss some of the sources of this ambiguity, which
we will treat as explicit dis_nction, in the sense that am-

bignous information can be interpreted as defining a set --
of possible inferences. We describe how these sources of

disjunction are dealt with in our current implementation
of Dean's Time Map Manager [5; 2]. Briefly, we take one -

of three approaches: i

1. The disjunction is removed by limiting the expressive
power of the system.

2. The disjunctionisexplicitlytreated,but the system
considers only a single dlsjunct at a time.

3. The disjunction is approximated by a weaker form of

representation that subsumes the disjunction.

The semantics that we are attempting to capture in our l
implementation are definedin [1],which providesa precise

formal semantics for the current versionof the TMM.

Intherestofthispaper,we b eflydiscusstheontology
and semantics ofthe TMM, providesome specificexamples
of the kinds of disjunction that arise, and discuss the costs

and benefits of various ways of handling these types of _M
disjunction.

W2 The TMM =_-
J

Dean's Time Map Manager [5; 2] is an implemented tem-
poral reasoning system, intended as &foundation for build-
Lug p]annlng and scheduling systems. The TMMincludes ca-
pabilities for reasoning about partially-ordered events, per-
sistence and clipping, and two simple forms of causal rea-

|

soning: projection and temporal implication(sometimes

calledUoverlap chaining" in previous work). The version S
ofthe system describedin [5;2]that was distributedfrom

Brown (hereinafterreferredto as aa-TMM") implements
forward persistenceonly,and does not implement tempo- ._
ral implication. •

Besides these limitations, the inference performed by a-

TMM is not sound for partially-ordered time points [3], and .=
so has no well-defined semantics. For partial orders, the in- l[_
ference done by the system is interpreted as quantification
over total orders consistent with a given partial order: a
formula of the form holds(t, P) is interpreted to mean that _'_
the proposition P holds at the time point t in all possible
total orders. The sense in which the original system is un-

sound is that it will sometimes infer holds(t, P) when there __

were total orders in which P does not hold at t. As Dean
and Boddy show in the same paper, reasoning about what
is true in the total orders consistent with a given partial
order is an NP-complete problem.

We have addressed these difficulties by implementing a m
sound but incomplete decision procedure that approxi-

mates quantification over time points (i.e., if the system ._

infers holds(t, P), the proposition P does in fact hold at the

20

time point t in every total order, but sometimes this prop-
erty will be true and the system will not infer holds(t, P)

"" [4]. We have made other extensions, including generalising
persistence to run backward as well as forward (in order to
handle cases like Kauts's "parking lot problem." [7]), and

_ implementing temporaiimplication: reasoning in which the
-_ truth of some set 0ffacts at a point can be used to conclude
' that some other fact is true at the same point. We have

retained from the old system the concepts of peraistence
clipping and causal Frojection (referred to hereinafter as

= simply aprojection").1 The new TMM implementation we
will refer to as u/_-TMM."

--_ As far as we know, _-TMM i8 the first implementation of
sound-and-lncomp]ete temporal reasoning as described in

[4]. The process of implementing this decision procedure
has made clear precisely how the resulting system is in-

complete; this point will be addressed in Section ??.

t=J

Y_

L_

giO

gm

w

[]

2.1 Ontology and Inference

In this section we present a simplified version of the TMM
representations that is sufficient for this discussion. A do-

main _heor,j in the language includes a time map and a
causal theory. The time map consists of a set of time points
T and a set of formulas. Time map formulas include the
following:

• Temporal relations between time points, denoted by
the binary infix predicates <, _<, =, >__,and >, and
the predicate distance('cl, 1:2, bounds), where 1_1,1:2E
T and bounds = [rl r23 where rl, r2 E R are the

'_ bounds of a closed interval. We represent temporal
relations in the time map as constraints.

• Temporal formulas, holds(1:1, 1:2, P), where tl, ¢2 E
T and P E 7>, the set of propositions. The period
between ¢1 and t2 is called the %bservatlon interval"

(throughout which the proposition must necessarily
hold.) We use the abbreviation holds(1:, P) when this
interval is a point. We represent temporal formulas
on the time map using time tokens.

• Peraistence assumptions, persistsf(1:l, P)

and pers]stsb(1:2, P), where 1:1, 1:2, and P appear in
some temporal formula as above. We associate persis-
tence assumptions with time tokens on the time map.

The causal theory for a TMM theory includes causal rules,
intended to encode the physics of a domain in a simple
way, of the following kinds.

• Projection rules, project((and (PI,...,Pr.)), E, R).
The propositions Px,...,P_ are antecedents; r is a
etrigger" proposition; R a forward;persistent ¢result _
proposition. When the antecedent propositions are
believed to hold throughout the trigger, the result is
believed starting at a specified time after the trigger.
Temporal implication rules, (and (Pl,..., P_)) =_t R.
At any point for which the propositions of the an-
tecedent conjunction are all believed to hold, the re-

The TMM implements an epistemic semantics, in the sense
that a proposition may be known (or believed) to hold at
a point, or known not to hold at that point, or we may not
know either way. This semantics is described more care-

fully in [1]. The failure of the excluded middle in this se-
mantics is useful for representing problems where we have
only partial information. All of the propositions in the
domain theory are believed necessarily. Temporal proposi-
tions are believed necessarily at all points throughout their
observation intervals. Inference from projection and tem-
poral implication result in the addition of new tokens to
the time map, representing belief in propostions holding
for new intervals of time. Persistence is captured in a pref-
erence over models: those in which the appropriate facts
persist are preferred over those in which they don't. Con-
flicts in these preferences result in ambiguous situations,
where no single set of inferences can be preferred to all
others.

The theory including the time map and causal rules is in-
tended to support the following kinds of inference.

• holds(1:l, t2, P-):P is true]n all possible worlds.
• holdsm('_l, 1:2, P): P is true in some possible world.
• Inferences about necessary and possible temporal re-

lations.
• Boolean combinations of these.

The first two kinds of inference concern belief in quantifica-
tions of temporal formulas over possible worlds consistent
with the user-supplied domain theory. The simplest form

of ambiguity in the domain theory that can lead to multi-
ple possible worlds results from a set of temporal relations
that defines only a partial order on the set of time points.

2.2 Sources of Disjunction

There are several sources of disjunction in the TMM. There
is one source of disjunction we have explicitly removed:
there is no way to assert an explicit disjunction in the
domain theory. You can say that proposition P is true
at time 1:, and that point 1:1 is ordered before point 1:2.
You cannot, for example, say that 1:1 and 1:2 cannot occur
simultaneously (i.e., they are definitely ordered one way
or the other).

This leaves us with two main classes of disjunction to deal
with. The first is the temporal uncertainty resulting from
the fact that we do not require time points to be totally
ordered. Actually, there is additional metric uncertainty:
we can specify the distance between two time points only
as a range without that meaning that there is any uncer-
tainty in ordering anywhere in the time map. Metric tem-
poral uncertainty is straightforward to deal with. It affects

no inference more complicated than directly determining
whether a proposition holds at a point. Partially ordered

points are a more complex problem because ordering af-
fects which inference rules fire. For either projection or

temporal implication, whether the rules fire is based solely
suit proposition E is believed to hold. _==onordering re]ationshlps: all the possible assignments to

temporal relations consistent with a given total order are

IDetails of extensions planned and accomplished can be oh- equivalent, as far as which causal rules will afire." For this
tained by request from Bob Schrag, st the address st the he-- source of disjunction, the Uposslble worlds" are the total
ginning of this paper, orders consistent with the given partial order. Deciding

21

whether a proportion holds at a point necessarily, possi-
bly, or not at all becomes a question of quantifying over
the set of total orders. In Section 3, we discuss how this is
accomplished (approximated, actually) in the TMM.

The other source of disjunction we must consider is a di-
rect result of the semantics we impose on the system: the
persistence assumption. Nonmonotonlc reasoning has been
recognised by many people at many times as a source of

ambiguity and unintended conclusions (most relevant to
our work is Hanks and McDermott's paper on applying
nonmonotonic logic to temporal reasoning [6]). Unfortu-
nately, it appears to be too useful to dispense with. Simply
stated, the persistence assumption says that things tend
not to change unless something changes them. If I walk
into a room, see that the light is on, and walk out again,
it seems both reasonable and useful to conclude that the

light was on before I got there, and again after I left. _
Contradictory information (e.g., walking into the room at
a later point and noticing that the light is of) will cause
the system to draw different conclusions. The persistence
assumption can lead to ambiguous conclusions in a wide
variety of situations, a representative sampling of Which
are discussed in Section 4.

In the examples in the following sections, we represent
time maps as follows: A time point is represented by a
dot: e. An observation interval is represented by two
time points connected by a line: @.-----@. Temporal or-
dering is from left to right, and all points are drawn
with respect to a given frame of reference. When a time
point is connected to a solid line, we know its relation
with respect to the reference exactly. A dashed line as
in@--------@ indicates uncertainty about the point's]oca-
tion. Forward and backward persistence are represented
by forward- and backward-pointing arrows: -,--, ---,-. We
label tokens with the corresponding propositions and we
label time points when we need to refer to them: e. A lone
timepoint with a proposition label is a sero-lengtf_1observ_ -
tion interval: • P. A single time point with a persistence
symbol is a persistent version of the same thing: _ P.

To illustrate, here is a simple time map situation demon-
strating the firing of a projection rule. Relevant textual
information is displayed above the time map.

project(P, E, R)

= = P
= = E

@.-..- R

3 Partial Orders

The problem with partially-ordered time maps is that in-
ference such as projection and temporal implication de-
pend on what facts hold at a given point. This relation
is defined only for totally ordered points, and so we are
reduced to determining what facts might possibly or nec-
essarily hold at a point, in some or all of the total orders

2How "reasonable m persistence is, is context-dependent.
Consider the same example where I see a cat sleepi_on a
chair, or s newspaper on a seat on a train.

22

w

consistent with the given partial order. With even a very
simple causal model, this is an NP-complete problem [4]. =
The solution we have implemented (first presented in [3])
is to approximate the necessary quantification, d

_-TMM includes two holds definitions which together pro-
vide a sound:_md'incomplete temporal reasoning algorithm
which executes in polynomial time. Each definition ap- i
proximates a quantification over the possible worlds con-
sistent with the domain theory, holdss (s_rong holds) is
a sound-and-incomplete approximation to holds. We use
holdss to identify a _zbme_ of all necessarily believed tern-
poral propositions, holdsw (weak holds) is a complete-and-

unsound approximation to holdsm. We use holdsw to [den-
tify a _perae_ of all possibly believed temporal formulas.
In the presence of inference such as projection, the strong
version requires the weak version: a proposition necessarily
holds over an interval unless there is a possibly-derived to- m

ken (the result of a projection rule, or added by the user),
which possibly contradicts (clips) that proposition for some
part of that interval

i

holdss is/stomp/ere in two ways: Ii_

• Itavoids combinatorics by looking for a singletoken

to span the query intervalfor _//possibleworlds. It ,._

willfailin a case where the intervalis spanned by
dlferent tokens in differenttotalorders.

• It relies,ultimately,on the over-achievingholdsw to

defeat the strong tokens' persistences.
holdsw is unJound in two wayI:

• It avoids combinatorlcs by checking for a conjunction

of possibilities rather than a possible conjunction. It _m

succeeds sometimes when the conjuncts are not mu-
tually satisfiable.

• It relies, ultimately, on the under-achieving holdss to

defeat the weak tokens' persistences.

Some of these points are illustrated in the following exam- m
plea.

Example 1" Incompleteness in holdss can arise directly
from opposing contradictory persistences.

project(P, E, R)
project(-P, E, R) s_m

P _ @-_--- -,p

tl • t_ E

ts

Our semantics says that the persistences for P and -_P clip
at some point between tl and t21, but not where. One of
P or -_P covers E in all total orders, so holds(t3, It). We are j
limitedto holdsw(t3, It).

Example 2: Unsoundness in holdsw can arisedirectly -
from partially ordered timepoints.

distance_t3, t4,

P@-"" '-'--'-"'" "@
tl _ _t2 E

P does i
m$

m_I

H

not cover E in any ponible world, so -_holdsm(t3, t4, P)--
but the conjunction of po_ible temporal relations in

holdsw(t3, _t4, P) is utisfied, and it succeeds, unsoundly.
Even though we do not have (tl <: t3 Am t2 _ t4), we do
have (tl __m t3 ^ t2 __m t4).

Example 3" Incompleteness in hoidss can arise indirectly,
through weakly and unsoundly derived defeaters.

distance!tl, t2, 3)
distance_t3, t4, 8)
project(P, E, It)

p

t5

_ _ From ExarnpIe 2 above, we know the token for It is weakly
and unsoundly derived, and we should have holds(iT, -_R).

__ But --R is defeated weakly and unsoundly and we are lira-

; --_ ited to holdsw(t7, _it).
U

While strong inference (holdss) is incomplete in a well-
defined and limited sense (checking a slngle token), the

! H approxln_te nature of weak inference (holdsw) is less pre-
cise. There are tradeoffs that can be made. For example,

it is possible to add or omit a check on the maximum pos-
sible extent of a given token, rather than just the ordering

of the endpoints. Adding such a check would result in a
U system that handled Example 2 correctly. At an additional

computational expense, of course.

m

E_

m

r_

P.

Z

w

P
q

M

_iglllliilllilillllillllilliilOOlillllilllllillllq

P
C_

,.in,m, "-IM

M

(world 1) _ N

P
q

- M

(world_.) _ •

P
_ Q

14

(worldS) a

4

In the first possible world (below the first dashed line) we
maximise the extent of P's persistence. The result of the
temporal implication rule RL forces us to clip the persis-
tence of M just after the end of Q. This world will be pre-
ferred to any world that is the same as this world except
that P stops being true at some point after the end Q due
to the persistence assumption: we prefer for P to persist
as long as possible. Multiple models, and thus ambiguity
or disjunction, result when there are several models none
of which is preferred over any of the others, s There is a

symmetric case, in which H's persistence is maximized. In
the second model, the persistence assumptions for P and
M are maximised with respect to each other. Neither of
the rules come into play in this interpretation. They are
maximal with respect to each other in the sense that if

Ambiguous Models Resulting you extended either,the others'extent would be reduced.
Finally,consider a case where P (or symmetricaly X) isal-

From Persistence lowed to persist to some point within the extent of Q (i).

The persistence assumption combines with temporal impli-
cation or projection to generate situations in which there
ar_several possible models for a given domain theory. In
otl_er words, we can construct theories in which P is true at
solve time T in some models (possible worlds) and false in
others. These situations arise even if we l_it ourselves to

_ .
thS0nes where all temporal relations are precisely specified
for every point in the time map. In the following scenario,
there are two temporal implication rules and four tokens

specified in the domain theory (the dashed llne on the right
hand side separates a picture of the initial conditions from
three different "possible worlds" corresponding to different
models that can be constructed).

Example 4: Temporal implication with persistence can

be ambiguous.

Itl: (and P Q) =_t -_g
R2: (and M I) =#t "_P

........ The third picture shows one of an infinite number of pos-
sible worlds that can be obtained in this way. In each of

these worlds, the persistence of P and Q are maximised
_] with respect to each other in the same sence as described

above.

It is not dii_cult to come up with similar scenarios in-
volving projection and backward persistence; or temporal
implication and forward persistence. In fact fairly complex
scenarios can be created using chains of projection rules,
temporal implication rules, and persistence. There is an
easily-identifiable condition of the causal theory that is
necessary but not sufficient condition for theories to entail
these kinds of ambiguities. Basically, we look for certain
kinds of cycles using static analysis of the rules. Consider
a DAG created from the rules as follows:

• Create a node in the DAG for each unique antecedent

......... _d consequent proposition
• For each rule create an arc from each antecedent node

_For a more careful discussion of the use of model preference
to model persistence see e.g., [8; I]

23

to theconsequentnode
• Foreachconsequentnodecreate an arc to each con-

tradictory antecedent

If any cycles exist in this DAG then our theory may entail
the kind of non-monotonic disjunction describe above.

We have identified two approaches to implementing a prac-
tical system that deals with this kind of disjunction:

• Don't deal with it at all. Use the static rule analysis
technique described above to reject rule sets that may
entail this kind of disjunction.

• Use an approximation that is sound and incomplete.
The idea is to be extremely conservative when looking
for possible ambiguities. Any time there is a rule that
may participate in a cycle of the sort described above,
prohibit any backward persistence from being used as

!i' an antecedent.

Both approaches are rather heavy-handed: the analyze-
and-complaln approach leaves the user either without func-
tionality or without predictability; both approaches over-
react to prevent situations that may not occur, on the
grounds that specific situation detection is too expensive.

This will he a further source of incompleteness in the infer-
ence the system does. The complaining approach can be
turned into a warning approach that goes on to do weak
clipping.

References

[1] Boddy, M.S., eta/., Semantics for Pratical Temporal Rea-
so_g, in preparation, i

[2] Dean, T.L., Temporal Imagery: An Approach to Reasoning
about Time for Planning and Problem Solving, YS]e Univer-

sity, University MicroK]ms 1986. _
[3] Dean, T.L. and Boddy, M.S., Increments] Causal Reason-

Jug, Prooeedings AAAI-87, 196-201.
[4] Dean, T.L. and Boddy, M.S., Reasoning about Partially

Ordered Events, Artij_ciai Intelligence 36 (1988) 375-399.

[5] Dean, T.L. and McDermott, D.V., Temporal Data Base
Management, ArriVal Intelligence 32 (1987) 1-55.

[6] Hanks, S. and McDermott, D., Default Reaosning, Non-
monotonic Logics, and the Frame Problem, Proceedings
AAAI-86, 328-333. _

[7] Kauts, H., The Logic of Persistence, ProceeJings AAAI-86, g
401--405.

[8] Shoham, Y., Reasoning abold Change: Time and Ca_a.
tion from the Standpoint of Artiflc_a] Intelligence MIT Preu, i1988.

5 Summary

In this paper, we have identified the sources of disjunction
that must be considered in a temporal reasoning system
that handles partially-ordered time points, forward and
backward persistence, and two simple forms of causal rea-

soning. These sources can be grouped roughly into two
classes, one corresponding to problems arising from tern-
poral uncertainty (partial orders), the other the result of
the nonmonotonic persistence assumption. There is actu-

ally a third source of disjunction that we have finessed by
restricting the expressive power of the system: we do not
permit the expression Of explicit disjunctive propositions.

We have demonstrated three general classes of methods
for dealing with disjunction, and proposed specific lutes for
specific problems. Where possible, we have described im-
plemented solutions from our work on the TMM. This per
per presents the first clear characterisation of the sources of

incompleteness in the sound-and-incomplete decision pro-
cedure described in [4].

The techniques we have developed for managing disjunc-
tion are crucial to our implementation of an e/_cient tern
poral reasoning system. In particular, the representation
of_a set of disjunctions by some simpler description of a

larger set including those disjunctions is a powerful tech-
nique that has found repeated use for handling disjunctions
with a wide variety of sources and characteristics. With
a little care, the resulting system retains the property of
soundness, which we regard as crucial to the implementa-
tion of a useful system for temporal reasoning.

g

g

u

m

m
m

m

w
_m

I

m

m

*_i
ffi =

Scheduling
of an

Aircraft Fleet

--63

r

v

_=

Massimo Paltrinieri (') Alberto Momigliano c") Franco Torquati

Bull HN Italia

Direzione Sistemi Esperti

Pregnana Milanese. Milano

Italia

Abstract

Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they

describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as

the routing problem. In particular, if vehicles are aircraft and stations •re airports, the probhan is known •s

aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative

Management of Aircraft Routing), a system implemented by--italY. In our approach, aircraft
routing is viewed •s • Constraint Satisfaction Problem. eT_olving strategy combines network

consistency and tree search techniques.

1. Introduction

Two of the main concerns for a major airline are
flight planning and aircraft routing.

Flight planning involves both technical and
market issues, such as the choice of the cities to
be served and the weekly frequency of flights. It
produces an aircraft rotation, valid for a whole
season, which we shall refer to as the virtual plan
(see fig. 1); it consists of a periodical time table
where flights are organized in lines, one for each
virtual aircraft, an hypothetical resource that
could perform them in absence of technical and
maintenance constraints.

Aircraft routing assignes tail numbers - the
identifiers of the aircraft - to flights, usually for a
time window of 24 hours. This process, called
predictive routing, is trial and error: routes are
drawn on the virtual plan, performing switches,
i.e. connections between flights on different lines
of the plan, to satisfy the constraints that prevent
an aircraft to cover the next flight on the same
line. When there are no more tasks available for

the given aircraft, an assignment to an already
scheduled task is possibly invalidated. If the
scheduler is not able to cover all theactivities

with the available resources, maintenance are

delayed or, in some extreme cases, flights are
dalayed or even cancelled. The schedule

produced by predictive routing is coded in the
routing plan, which differs from the virtual plan
in replacing virtual with actual aircraft and
arranging programmed maintenance. The routing
plan is often modified in real time to avoid or
contain, propagation of delays. Such an activity
is said reactive routing.

This paper describes the Prolog kernel of OMAR
(Operative Management of Aircraft Routing), an
interactive system designed to provide predictive
and reactive routing of the Alitalia fleet. Routing
is formulated as a Constraint Satisfaction

Problem (CSP): each variable (task) has a

domain of possible values (aircraft) while
constraints (relations between variables) are used
to restrict such domains. Since the refined

domains are not in general single-valued,
solutions must be found by search, iteratively
selecting an aircraft and assigning it to a set of
consecutive flights. Aircraft selection is driven by
the first fail principle: the most constrained
aircraft is scheduled first. A controlled form of

backtracking is implemented to partially recover
from heuristics flaws while maintaining

predictable response time.

Present addresses:

(*) Stanford University - Department of Computer Science - Stanford, CA 94305 - pa]mas@cs.stanford.cdu

(**) Carnegie Mellon University - Department of Philosophy - Pittsburgh, PA 15213 - am4e@andrew.cmu.edu

25

2. Problem Definition

In this section we give a formal definition of both
predictive and reactive aircraft routing.

The constraints of the problem are captured by
the function label, that associates to each task the

set of aircraft that can perform it. The function
startqs returns the airport from which an aircraft
has to depart after time qs, the start time of the

scheduling window.

Predicn've Routing

nlar_

set T of tasks - _ : _ r

set AP of airports
set AC of aircraft
set Q of times

schedule start time qs and schedule end time qe

total order _ on Qu {qs} _ {qe} s-t-Vq_Q, qs<q<qe
total function departing time.
total function arrival time,
total function departing airport,
total function arrival airport,

total function label,

total function starq,,

dt: T -> Q
at: T -> Q
da: T-> AP
aa: T -> AP

label: T -> 2AC

star_,: AC -> AP

an aircraft routing, i.e a total function s: T -> AC, s.t.

(i)

(ii)
Vm T, s(t)¢ label(t)

if s'l(ac) is not empty, then its elements can be

ordered in a sequence (the routing path of ac)

rac=<tae.o,t,e.l ,--.,tae.n>

aa(t_._) = da(t,_.0
at(t,c,i-l) < dt(t,c,i)

such that

i=l n

i=l,..,n

Reactive Routing

aircraft muting as defined above

an unexpected event

an aircraft routing that copes with the unexpected event
and most closely conforms to the given routing.

26

3. Aircraft Routing as a
Constraint Satisfaction Problem

A task is said programmed if its departure and
arrival airports and times are fixed. Flights, as
well as main maintenance, are programmed,
whereas secondary maintenance not necessary.
The duration of each task is a given constant. Let

us assume that we have a set T = {Th,

h=l, m} of programmed tasks to be scheduled
in a time window of 24 hours.

Two tasks T h and T k are said to be connectible

(denoted T h -> Tk), if the following Prolog
clause holds:

connectible(Th.Tk) :.

task__val_ airport(Th ,4z'rp),
task aemn_d._rrt_ff-(7_Arp),
taskarrival time(Th ,MinArr T).

task..departuretime(TkAlaxDepT).

ground_time(Airp,GrT). :'
ArrTO is MinArrT + GrT,

ArrTO < MaxDepT.

In other words, task T h is connectible to task T k

iff the arrival airport of the former is equal to the
departure airport of the latter and the arrival time

of the former plus the ground time precedes the
departure time of the latter. The graph of the
connectibility relation is said the connection
graph. It is directed and acyclic. Fig. 2 shows the

connection graph for the portion of virtual plan in
fig. 1.

We say that T h precedes T k and write T h < T k iff

(Th,Tk) is in the transitive closure of->. If

neither T h <:Tk= nor Tk-< Th, thenTh and Tk are

said incompatible, denoted T h >/< Tk:

incompatible tasks cannot be assigned to the
same aircraft. A routing path P is a finite
sequence of elements from T

P = <TI, T2,...,Tn>

such that Th -> Th+l for each h, 1 < h < n. A
path S is operable by aircraft Ac if each task in
the path is operable by Ac, i.e. there are no

technical reasons that forbid the assignment to
Ac.

|
m
B
u
m

!1

|

|

i
i

!

g

|

II

|
l

J

U

z

W

I

Ib

!

RII

°

= =

+

L

An initial state for the fleet is a one-to-one map
from Acs, the set of aircraft in the fleet, to a
subset of T, the set of programmed tasks. The

image of Acs under such map is the set of initial
tasks of T, which correspond to those nodes in

the connection graph with no entering arcs. The
set of final tasks is the set nodes in the
connection graph with no exiting arcs. In the
following, paths will have an initial task as first
element of the sequence; the idea is that paths are
the formalization of the routes that an individual

aircraft may cover, starting from its initial state.

We look at the elements of T as variables which
take their values from the domain Acs. As

already mentioned, a label of a task is the set of
aircraft that can perform it. This concept can be
extended to the set of all tasks: the labeling of the

set T is a map 1 : T -> P(Acs), where P(Acs) is
the powerset of Acs.

Constraints are relations in Acs x P(T) that are

used to refine the labels of tasks. They come in

two types: a commitment constraint between
aircraft Ac and tasks T1 Tn requires that Ac
executes at least one of those tasks; an exclusion
constraint between an aircraft Ac and and tasks

T1 Tn requires for Ac to be excluded from
those tasks.

eC_ 8 10 12 14 16 18 20 22

sto lin

1 /
391

lka fee bru

2
005 274/5

etbo Ice I_ leo

3 F-I [
231 410/1

leo _rn fee blq

4 I--II

115e/l 242/1239

w'n [co p_ LUa bre

5 F--I 7--+ I--

7.

fco lin gva lin dus

092 442/3 448

leo par leo ¢b©

332/3 I12

par fee fra lop

1452,,/3 1458/42 !

leo tciq leo lkn leo

t [ti--1

l

1155 1120 1272/3] 121 1154

muc fco |o,, leo _ fco psa

1--! t-t
4"t7 1052/3 1158/9 1102

par lia leo Ira leo lin hem.

7---q V--qr I vq 7-7
317 095 1440/I '.10 1484

Fig. 1. A portion of about one-fourth of

the virtual plan for the DC-9 fleet.

Each singleton labeling that satisfies all the
constraints is an aircraft routing, i.e. a solution to

the routing problem formalized in sect. 2. Such a
singleton labeling generates a partition of the set
T of tasks such that each element of the partition

is a routing path for a distinct aircraft.

4. Routing Process

The routing process implemented in OMAR starts
loading the state of the fleet and the relevant
information on the tasks to be scheduled from the

Alitalia database. A necessary, but not sufficient,
condition for the existance of a fleet routing is

checked, namely whether the number of
resources available to be assigned to each task is

always greater than or equal to zero. We briefly
describe the algorithm, linear in the number of
tasks, that tests such condition.

Each airport airport served by the fleet identifies a

sequence of chronologically ordered events
belonging to one of two classes: departures or
arrivals. Each task entails two events, its arrival

and departure, unless it is initial, in which case
we consider only the arrival. A resource counter

representing, at each time; the balance between
arrivals and departures, is associated at every

airport. The resource counter is initially set to 0
and is incremented or decremented, at each flight

arrival or flight departure, respectively. If,
scanning the whole plan, the counter of some
airport becomes negative, the necessary condition
is not satisfied and no routing exists. On the
other hand, if the counters are always grater than

or equal to zero, then the condition is satisfied
and the system enters its next stage.

Fig. 2. The connection graph for the

virtual plan in fig. 1.

27

A sample list of events at Linate airport is shown
below.

Time Event Flight Resource Level

17:50+0 d 448 0

17:25+35 a 267 1

17:45+35 a 074 2

18:30+0 d 316 1

Observe that the arrival of flight 267 at 17:25,
given the ground time of 35 minutes, follows the
departure of the flight 448 at 17:50.

The constraint satisfaction algorithm refines the
labels so that most dead-ends are avoided and

expiry maintenance requirements are implicitly
satisfied: this means that aircraft planned for the
latter tasks are excluded by those routes that do
not lead to the set of airports where maintenance

jobs are possible.

If the network is not found consistent, no

complete routing exists and the control goes to
the human scheduler who relaxes the constraints.

It is our opinion that this kind of expertise cannot
be adequately simulated by a computer, since the
knowledge required to recogmz¢ the causes of an
inconsistent situation and suggest a solution is
too extended and fuzzy. If, on the other hand,
everything is succesfull, the system is ready to
schedule.

The aircraft are sorted in decreasing order
according to the number of occurrences inside the
labeling; the idea is that the aircraft coming f'urst
in this order are the most constrained ones, since

they have a smaller number of tasks on which
they can be enrouted. Routes _¢ then created
according to such an order by the Prolog
procedures sketched below.

route..gen([Ac/Acs1,Lab,NewLab):-

path gen(A c,Lab,TmpLab) ,
!,

route..gen(Acs,TmpLab,NewLab).
routegen(U J.,ab_). _

pat h_g en(A c,Lab,N ewLab) :- :

last..star ted(Ac,Task),

path gen(Ac,Task,Lab_lewLab).

path_gen(Ac,Task,Lab,NewLab) :-
sel ect(A c,Task,Lab jVextTask,TmpLab),

path_gen(Ac jVextTask,TmpLab,NewLab).

path_gen(_Ac, Taskl.,ab l..ab).

The recursive procedure route..gen/3 terminates
when the list of aircraft to be scheduled is empty.
It searches for a solution in depth-first mode,

generating a descendant of the most recently
expanded node and backtracking if some dead
end is reached. If we relied exclusively on
backtracking, the process duration would be
unpredictable. Fortunately, we have developed
some criteria that help us to discard paths likely
to fail. On each aircraft Ac, route_gen/3 calls
pathgen/3, passing as parameters the aircraft Ac
and the labeling Lab and returning a new labeling
TmpLab in which the tasks assigned to Ac are
the generated path. The procedure pathgen/4
builds a path recursively, task after task, starting
from the fast one returned by laststarted/2.

A limited amount of backtracking is= allowed:
different choices are considered only during the

coupling of a task with one of its direct
offsprings. Yet paths cannot be invalidated after
its completion (note the use of the cut sign '!'
after pathgen/3). In case of failure, the interaction
with the user is more effective. In our

experience, after therelevant modifications have
been performed, another run of the scheduler is
usually sufficient to achieve a complete solution.

Let us analize the path generation process in more
detail. The problem is not trivial, since there axe
both local and global optimizations which
influence the choice at various extents, often in

opposite directions. For instance, we could
always choose the first task departing after the
given one (local optimization), but this could
generate a new line switch hard to manage in the
overall muting (global optimization).

select(Ac,Task_ab,NextTaskjVewLab) :-

propose(Ac,Task,l.,ab,NextTask),

check_rc(Task,NextTask).
update_iab(Ac,NextTask,Lab ,N ewLab).

propose(Ac,Task,Lab ,NextTask) :-

getmethods(Ac,Task,Methods),
member(M ethodAlethods),

offsprings(Task,Offs).

choose(Method,Ac.Offs,Task,NextTask).

getmethod(Ac,Task,Methods):-
rule(Condition,Methods),

apply(Condition,Ac,Task).

rule(open_switch, [close_switch_traight,closest,stop]).

rule(default. [straight,open_switch,closest,stop]).

28

Iw

mm

D

m

J
II

B1

II

|
I

ll
m

|
li
I

i

i
i
II

i
!

If

|

l

g

|

J

II

ml

J

- L--L

w

The basic step of the path generation process is
performed by the Prolog procedure select�5
shown above. Given an aircraft Ac, just assigned
to a flight or maintenance (Task), select�5 extends
the path of Ac to a new flight or maintenance
(NextTask). The procedure propose�4 returns
Nextask, then check rcl2 checks whether the
resource counter bec'_mes negative: in such a
case it fails, otherwise it succeedes and the

OMAR is an interactive system for the routing of
the Alitalia,fleet. Its kernel is presently composed
of 20,000 lines of Quintus Prolog source code,
and the system's response time is satisfactory.
Once the derived structures have been computed

from the primary database, the fleet routing is

returned nearly in constant time (approximatively
30 seconds for a fleet of 26 aircraft with 170

flights).

labeling is updated, aircraft Ac being assigned to
NextTask. The path of Ac is extended with
NexTask by propose�4 as follows: first, a list
Methods of methods compatible with Ac and

Task is selected by get_methods�3; then, one
Method is chosen nondeterministically from such
a list; after, the offsprings of Task in the
connection graph are returned by offspringsl2
and finally, one of them, NextTask, is returned
by choose�5, which basically applies Method to
the given Ac and Task.

Moreover, if the constraints are compatible with
complete schedules, there is a very high
probability that the system succeeds finding one
of them. Of course, we cannot expect that the

solution perfectly matches the user's
expectations. According to our experience,
however, an intervention by the user modifying,

on average, five assignments, is suffucuent to
reach such an accomplishment.

A method is a technique to choose the next task
that extends a given path. Methods are gathered
in lists and are associated to conditions. The
relation between conditions and lists of methods

is defined by rule/2. Two sample rules are shown
above for the open_switch (remember that an
aircraft opens a switch when its path is extended
on a different row) and the default conditions.
Given Ac and Task, if a condition is applicable to
Ac and Task, which is checked by apply�3, a list
of methods is returned by get_methods�3. Such
methods are tried in the same order as they
appear in the Methods list, the first one being the
most desirable. For any possible Ac and Task
there is at least one rule whose condition is

satisfied, thus a list of methods is always
selected, eventually by the default rule. In such a
case, the list of methods tries to extend the path
on the same line of the virtual plan with the
straight method, which is considered optimal,
otherwise a switch is opened by open_switch; if
it is not possible to open a switch, the closest
flight is selected by closest to minimize the
consumption of the resources; if even this
method is not applicable, the path is terminated
by stop.

5. Conclusions \

Aircraft routing is a problem for which no exact
solution is known. Consequently, all models are
heuristic and research is now concentrating on
the systematic interaction between human and

computer.

In the tests supplied by Alitalia so far, OMAR's
solutions can be compared with those of a senior
scheduler.

References

[Da] Davis E., Constraint Propagation
with Interval Labels, Artificial Intelligence, 32,
1987, 281-331.

[De&Pe] Dechter R. & Pearl J.,
Network-Based Heuristics for Constraint

Satisfaction Problems, Artificial Intelligence, 34,
1988, 1-38.

[Et & Ma] Etschmeier M.M. &
Mathaisei D.F.X., Aircraft Scheduling: the
State of the Art, XXIV AGIFORS Symposium,

Strassbourg, 1984,181-225.
[Ha&Ell Haralick R.M. & Elliot

G.L., Increasing Tree Search Efficiency for
Constraint Satisfaction Problems, Artificial
Intelligence, 14, 1980, 263-313.

[Na] Nadei B.A., Tree Search and Arc
Consistency in Constraint Satisfaction Problems,
in Kanal & Kumar (eds), Search in Artificial
Intelligence, Springer-Verlag, 1988.
- [Ri] Richter H., Optimal Aircraft
Rotations based on Opdrnal Flight Timing, VIII
A GIF ORS Symposium, 1968,34-69.

[Ste&Sha] Sterling L. & Shapiro E.,
The Art of Prolog Programming, MIT Press,
Cambridge, Massachussets, 1986.

-- [Wall Waltz D., Understanding Line
Drawings of Scenes with Shadows, in The
Psychology of Computer Vision, edited by P. H.
Winston, McGraw-Hill Company, 1975.

29

w

18657"

Adaptive Planning For Applications With Dynamic Objectives

Khosrow Hadavi

Wen-Ling Hsu
Siemens Corporate Research

f f _
p

i

J

I

g

m
U

Michael Pinedo

Columbia University

Abstract _
f

Planning is commonly viewed as a task to devise a course of action or a plan that conforms as

much as possible to a set of goals before acting. The plan will then be used to gtiide the activities.

Most classic planning systems assume a static environment for the planning agents. In a static

environment, states remain unchanged between actions, and the outcomes of actions are assumed

to be deterministic. In reality, however, most applications=are-dynami'_and stochastic _n nature.

External events, not caused by controlled actions, may occur; outcomes of actions may differ from

expectations; new constraints may be introduced; and a new set of goals may evolve in response

to the changes. Recently, we have proposed a multi-mod_ fra_mework for adaptive planning in a

dynamic environment with multiple objectives having the following characteristics:

• some of the objectives of the planning process may be c0n_cting

• some objectives may be ill-defined or difficult to measure quantitatively

• the objectives may change over time :-

The task domain of production planning and scheduling is a typical example of such an environ-

ment. The scheduling objectives typically include the following: meeting due dates; reducing lead

times; reducing Work:in-process and finished goods inventories; maximizing resource utilization and

the throughput of the system; and minimizing the sensitivity of the schedule to random events.

These objectives are sometimes in conflict with each other. In our previous Work, we developed a

real-time distributed scheduling system 1 that observes its environment from different perspectives.

These perspectives stem from the different objectives, and the system can react to events as they

occur while m6niton_ng the_0us 5bject_ves: This mUlt|:perspective mo_toring helps:our system

achieve better contr0I of_the environment. During our study, we discovered that although these

global objectives may not change over time, the relevance of each objective is actually a function

of time and the state of the system. For example, given a set of N objectives O1' O2, ... On, at

time tl, objective 02 may be significantly more important than 01, whereas at another instance

1For a detailed description of the system, please read the attached paper titled "An Architecture for Real Time

Distfib_uted Schedulings to appear in "Applications of AI in Manufacturing, _ published by AAAI Press, edited by
Dana S. Nau.

|

!

g

m

|
i
m

m

g

!
!
U

I

IP

i

i
g

!

!

g

m

I

g

30

m

u

I I_
:'

I IZi

|

of time t2, objective 01 may become most important. Furthermore, each heuristic implies a set of

-] reactive strategies that move the system toward some objectives but away from other objectives

(due to the conflicting nature of these objectives).

:t__-__ In our current research,_devise__ a qualitative control layer to be integrated into a real-time
multi-agent reactive plannerZ-The reactive planning system consists of distributed planning agents
attending to various perspectives of the task environment. Each perspeciive corresponds to an

objective. The set of objectives considered are sometimes in conflict with each other. Each agent

receives information about events as they occur, and a set of actions based on heuristics can be

taken by the agents. Within the qualitative control scheme, we use a set of qualitative feature

vectors to describe the effects of applying actions. A qualitative transition vector is Used to denote

the qualitative distance between the current state and the target state. Given a target state and

a set of heuristics, we have an algorithm to test:ihedachability of the iarget state. We wiN'then

apply on-line learning at the qualitative control level to achieve adaptive planning. Our goal is

to design a mechanism to refine the heuristics used by the reactive planner every time an action

is taken toward achieving the objectives, using feedback from the results of the actions. When

the outcome is compared with expectations, our prior objectives may be modified and a new set

of objectives (or a new assessment of the relative importance of the different objectives) can be

introduced. Because we are able to obtain better estimates of the time-varying objectives, the

reactive strategies can be improved and better prediction can be achieved.

.... t --_ ;r ,7

| w

4

31

Global planning of several plants

Sylvie Bescos

BIM sa/nv

Kwikstraat,4

B-3078 Everberg (Belgium)
e-mail: sb@sunbim.be

_" _ Abstract

This paper discusses an attempt to solve the
problem of planning several pharmaceutical
plants at a global level. The interest in
planning at this level is to increase the
global control over the production process, to
improve its overall efficiency and to reduce
the need for interaction between production

plants. In order to reduce the complexity of
this problem and to make it tractable, some
abstractions have been made. Based on these

abstractions, a prototype is being developed
within the framework of the EUREKA

project PROTOS, using Constraint Logic
Programming techniques.

Introduction

This paper describes the development of a proto-
type "global planning tool" within the framework
of the EUREKA project PROTOS [PROTOS90].
PROTOS aims at the application of Prolog-based
techniques to real-life planning and scheduling
problems. The problem addressed by this proto-
type was proposed by one of the PROTOS part-

ners, which is a large swiss pharmaceutical
company.

The whole production of this company is split

over several plants. The aim is to compute a global
production plan for all these plants. Up to now,
there is no such global plan, and all the coordination
and adjustments of the production process between
the different plants is achieved through phone calls
between plant managers; there is no global control.
This scheme works because of the experience and
know-how of the plant managers, but the result is
far from optimal.

If a good global plan could be provided, ensur-

ing that no major coordination problem should
occur, then each plant could make local optimisa-
tions as long as the constraints imposed by the glo-
bal plan are respected; also the resulting production

process would become much closer to optimality. As
a side effect, this global plan would also reduce the

need for the phone call based coordination, although
it is not expected to suppress it totally.

As it is far too complex to take into account all
details of the local data of each individual plant, the

considered global planning tool is based on an
approximation of the local reality. Thus, the output
of this tool is only a "rough" global plan, that will
then be further refined at each plant, by the local

scheduling tool (in this case a job-shop scheduling
tool).

The implementation tooi chosen was the

Prolog III system [Co190], in order to take advan-
tage of the recent advances in the Constraint Logic
Programming field [Cohg0, VI-I89].

1 Problem description

Scheduling problems are known to become quickly
intractable, because of combinatorial explosion.

This gets even worse when trying to compute a
global plan for several plants, as it is practically
impossible to consider all details of each plant.
This problem has to be simplified.somehow.

The work describedhere isbased on one approxi-

mation ofthe localreality,which isthe abstrac-
tionofindividualmachines inmachine groups.

In ordertodefinea machine group,some terms
have tobe introduced:

• the word "product"designatesboth intermedi-

ate and finishedproducts.

• several production steps are needed to go

from one orseveralintermediatestothe prod-

uct ofthe next upper level;allthesesteps are

grouped ina single"productionorder_.

A machine group isa set ofmachines located

physicallyclosetoeach other,and each ordercan be

completelyexecutedusingonlymachines withinone

machine group.
Also,atthe globalplanning level,the different

productionstepsofone orderare abstractedinonly

one productiontask.Thus, one order isconsidered

as beingone taskusing one resource.

m
u

i

m

g

m
J

u

11

m
mm

I

g

i

m

II

M

i

g

U

Ii

m

32

L

.-_-_ The global planning tool takes as input:

1. demands for finished products, a demand 1 be-
_ ing a pair (amount, due date),

-_ 2. the allocation of machine groups to products

(each product is considered as being always
- - produced on the same machine group),

w 3. the dispositlve bill of materials:

E.g. dispositive bill of materials with machine

-- group allocation to products:

disposition _ "

l vel0

i _-_ disp. _ /

_- level 2

___ mg3

=

B

l

w

m

to minimize stocks.

While itishoped that a conflict-freesolutioncan

be found in most cases,thismight not always be

the case because of the abstractions/approxima-

tionsmade. When no conflict-freesolutionexists,

the globalplanning toolhas to generate the best

imperfectsolution(i.e.featuringsome conflictson
resourceallocations).This best imperfectsolution

can then be used at the localscheduling level,

which stillhas some flexibilitythat does not ap-

pear at the globalplanning level,and which could

possiblysolveconflicts.

Legendi

• *circlesare products,

• an arrow from A to B means thatproduct

i A is an input to the production of B,

'_ * a number n near an arrow between A and
,F"

B means that n units of product A are
needed to produce 1 unit of product B,

•_.... * shapes round products representmachine

_oup allocation:e.g.,products PI,P2 and

P3 will be produced on machine group

rag1.

4.stockdata,

5.eventually,existing machine group alloca-
.__ tionstosome orders.

The complexity of the problem not only comes
from the number of demands to plan, but also
from the handling of stocks and residuals:

• stocks may be available at the beginning of
the planning period;

* additional stocks are likely to be generated
during the production process because of
some production constraints: it is not possible
to produce less than a minimum quantity of a
product at once (minimal lot size);

• residuals can be regenerated during the pro-
duction process: e.g. the production of Z3 re-
generates a certain amount of Z7, that could
be used as input for the next demand of Z3
(not shown on the dispositive bill of materials
drawn above).

This results in a "chicken and egg" problem:

. to find a sequence between the production
tasks, it is needed to know the amounts to be
produced, as the duration of a production task
depends on the amount to be produced;

. the amounts to be produced depend on stocks,
and the stocks evolve with time during the
planning period depending on the chosen se-

,_:__ quence of production.

The requirement is to generate time windows for
all finished and intermediate products appearing 2 Cutting the complexity
in the dispositive bill of materials, from the de-

mands of finished products. For this, a c0nvenlent - 2.1 Decomposition of the planning
sequence for the production of the required fin-

.... " {sl_ec_ and intermediate products has to be found.

The prototype has to perform backward schedut-
in-g where planning starts from the finished prod-
ucts and the allocations are made as late as

possible. Backward scheduling in this way tends

horizon into sub-periods

To solve this "chicken and egg" problem, a further
approximation was introduced in the planning
process model. This approximation divides the
planning horizon into several "sub-periods". This
means that stocks-are taken into account as if

they were available only at the frontiers between
I. in the following,_ordel_,_prodtlctlontas_J_,_"c_ema_"wi_ be= ".....these sub'periods.
usedindiscriminately.

33

In th:_ way, it is still possible that more is pro- ed to lower or higher levels of the dispositive !-

duced during a sub-period than is strictly necessary: • bill of materials), |
some stocks created during this sub-period (because for each machine group in turn:

of minimal lot size constraints) could have been * a sequence and particular dates for the
used to reduce some demands for the same products
occurring later in the same sub-period. However tasks are chosen;

these stocks are likely to be used during the next * these choices are committed;
sub-period, as a particular product is often produced

again several times in the year I. Thus stock levels * due dates and earliest beginning dates 2 |
over the whole planning horizon should remain rela- for tasks allocated to the remaining ma-

" fiveiystablel _ _ _ _ ___ _ chine groups are propagated. _,_.

It is not necessary to actually perform the plan-
ning of a sub-period in order to know how much 2.3 Cycles in the machine group
stocks will be available at the end: all the demands graph

in this sub-period will be produced, so it is not
needed to know the exact sequence to compute the There is a cycle in the machine group graph when,

global result in terms of stocks available at the end. between two production tasks that are allocated

It is then sufficient to: to the same machine group, there exists one or
several intermediate production tasks to be per-

• group the demands into sub-periods, accord- formed on other machine groups. According to the
ing to their due dates; experts of the pharmaceutical company, this is un-

• rearrange the demands, within each sub- usual, and it is acceptable in such cases if the re- i

period, taking into account stocks available at suit is not as good.
the end of the preceding sub-period, and E.g.:
compute the new stock levels at the end of the m 1

current sub-period, mg2

This process is repeated for each disposition
level in turn, starting with level 0 (i.e. finished prod-
ucts). The reason for starting with disposition •
level 0 is simply that initially, there are only
demands for finished products, from which demands i

for intermediate products have to be successively i
derived.

2.2 Decomposition of the problem
according to machine groups

The planning problem consists in making choices
about a sequence and precise dates for all the de-
mands to be produced. This search space is too
wide to expect reasonable computation times. It is

then needed to decompose the search space into
several sub-spaces that can be treated independ-
ently.

The machine groups serves as a basis for this
decomposition:

• the list of machine groups is ordered accord-
ing to dependency links, to obtain a so-called
machine group graph (this more or less re-
flects the fact that a machine group is allocat-

1. Regulations require a pharmaceutical company to have sev-
eral years of stocks, so external demands are not customer-
driven. For reset finished products, the yearly demand is spIit
into several ones with due dates distributed over the year.

In thisexample, there isa cyclebetween mg2

and rag3,b_cause ofthe linksbetween PI and Z2,

Z2 and Z6, and Z2 and Z7. Ifrag2 istreatedbefore

rag3,the demand on Z2 coming from thaton PI will

be planned as lateas possiblewith respectto the

precedenceconstraints,which willeventuallyresult

in no freedom being leftfor the demand of P1. If

rag3 is treated before mg2, then thedemands on Z2
and even Z3 will eventually be too constrained.

Such cycles must be cut. The minimum number
of links in the dispositive bill of materials that have
to be cut in order to eliminate the cycle are marked
(in the above example, the link Z2 "-_ P1 is cut
rather than the links Z6 --_ Z2 and Z7 "* Z2).

When there is a dependency between two produc-
tion tasks along one of these links, these tasks are

The earliest beginning date of a demand k the date when all
input products are available.

34 ms,

I

J

i

T.m=

further constrained so that the planning freedom is

equally shared out among these tasks.

3 The program

The program has been implemented using
Prolog III, a prolog interpreter with integrated
constraints over rationals, booleans, and lists.

The basic algorithm is:

• first the machine group graph is computed
from the dispositive bill of materials and the
machine group allocation to products;

• then the data structure, which is a network
of demands linked by constraints, is con-
structed;

• a schedule is computed;

• finally, the resulting plan is shown in a
graphical form.

The constructionofthe data structureand the

planningprocesswillnow be described:

Data structure

The data structure is a list of demands/orders rep-
resented each by a term:

[id, product, machine group, due date,
duration, end date, dependency into]

It is constructed starting from the highest level
of the dispositive bill of materials (i.e. finished prod-
ucts) going to the lower levels. At each level, for
each product:

1. demands are grouped into sub-periods accord-
ing to their due dates;

2. for each of these sub-periods in turn:

a. demands are rearranged according to
minimal lot sizes constraints, residuals

and stocks available at the beginning;

b.stocks that will be available at the end

are computed; : "

3. from all these rearranged demands (over the
whole planning horizon), demands for inter-
mediate products are derived, and data about
residuals is updated.

During the construction of this data structure,
several kinds of constraints are enforced:

• precedence constraints,

• stocks availability constraints:

• stocks of a product are considered to be
available only after the end of the last al-

location for this product during the pre-
ceding sub-period.

* a demand that will take some amount of

an input product from stocks is con-
strained to begin later than this date.

. residuals availability constraints: the use of
residuals is allowed only if the demand is al-
ready constrained to begin later than the end
date of the residuals production.

Planning, making choices

Even after decomposing the problem according to
machine groups, the search space still needs to be
reduced in order to make the program reasonably
efficient. As it seems sensible to treat together de-
mands that are close in time, sub-periods will be
introduced again here. Choices will be committed
after planning each sub-period.

However this decomposition into sub-periods
implies some additional constraints. In order to

express these constraints, it is needed to define the
"planning limit" for a machine group as the latest
end date of all allocations of this machine group for
the demands of the previous sub-period. The addi-
tional constraints are that no allocation for the cur-

rent sub-period can be made before this planning
limit (to reduce the complexity, otherwise it would
be needed to check disjunction with allocations of
preceding sub-periods).

For each machine group in turn (starting from
the machine groups allocated to the higher levels of
the dispositive bill of materials):

• the demands are grouped into sub-periods, ac-
cording to their due dates;

• for each sub-period:

* if it is possible to find a conflict-free se-
quence, a maximisation of the minimum
of all end dates is performed (so that the

whole set of production tasks is planned
the latest as possible);

* if no conflict-free solution exists, conflicts

are progressively allowed but minimised.
This minimisation has to be based on a

conflict evaluation. However, finding a
convenient cost function of conflicts is a

problem in itself, and one of the objectives

of this prototype is to experiment with
different ones. Up to now, the implement-
ed measure is simply a count of the
number of days in overlaps.

These optimisations are local to one machine
group during one sub-period because a global opti-

misation would be tooexpensivein computation
time.

Theresultingplan conta!nspr_cisedatesfor each
productiontask insteadofjust time windows,as

to experimentwith differentevaluationfunctions of
conflicts, and to investigate about the validation of
the resulting plan.

Acknowledgements
was requested at the beginning. In fact, this re-
sult can be viewed as a particular "fully instanti- _I wo_uld like to_thank all PROTOS partners for
ated" solution of the problem. In order to leave many fruitful discussions. I would also like to

some freedom to the local plants, a more general
solution could be retrieved, by deducing time win-
dows from these precise dates and from the de-

pendency information which was kept in the data
structure.

4 Computational results

Two versions of the program exist:

• a coarse one for getting a rough idea of the re-
sulting plan quality allowed by a given ma-

chine group allocation ,

• a finer (but slower) one for getting the best
possible plan for a given machine group allo-
cation.

There is currently a dearth of representative
examples (the extraction of the machine group infor-
mation from the detailed description of each plant is
still an open problem being tackled by people from
the pharmaceutical company), and so no figures are
yet available.

However, what has been learned from the devel-

opment of the current prototype is the adequacy of
the CLP approach for prototyping. The CLP
approach allowed a switch from one version of the
algorithm to alternative ones in a very short time,
because of the declarativity and expressiveness of
CLP languages.

Conclusion

The validation of the approach .described in this
paper can only come from the experimental use of
this prototype together with several instances of a

local plant scheduling tool, in order to check
whether feasible plans are obtained. Such experi-
ments have not yet been possible because of the

difficulty in extracting the machine group infor-
mation from the detailed data.

Up to now, the maiil interest in this work has

been the refinement of the approach during discus-
sions with experts from the pharmaceutical com-
pany. These discussions were based on hypothetical

examples and on the successive versions of the pro-
gram which have lead to the one presented here.

When representative examples become avail-
able, this research will go on by using this prototype

thank Pierre-Joseph Gailly and Paul Massey for
their helpful comments on earlier drafts of this

paper. Partial funding for this work was provided
by the ESPRIT II project 5246 PRINCE (PRolog
INtegrated with Constraints and Environment for

industrial and financial applications).

Bibliography

[PROTOS90] The EUREKA ProjectPROTOS. H.-J.

Appelrath, A. B. Cremers, and O. Herzog

Ed.,Zurich,Switzerland,April9, 1990.

[Coh90] Jacques Cohen. Constraint Logic Pro-

gramming Languages. Communications

of the ACM, Vol.33, No.7, July 1990.

[Co190] Alain Colmerauer. An Introduction to

Prolog II1. Communications of the ACM,

Vol.33, No.7, July 1990.

[VH89] P. Van Hentenryck. Constraint Satisfac-

tion in Logic Programming. Logic Pro-

gramming Series, The MIT Press,

Cambridge, MA, 1989.

36

I

m
M
m

g

m
m

g

m

m
I

I

m
R

E

m

[]
m

J

m
!
t

mm
[]

m

g

I
m

g

2-

U

ffi

U

w

z

L

tm_

The MICRO-BOSS Scheduling System:
Current Status and Future Efforts

NormanM. Sadeh _ 90_ ___

Center for Integrated Manufacturing Decision Systems
The Robotics Institute

School of Computer Science

- Carnegie Mellon University
=- __ Pittsburgh, PA 15213 - U.S.A.

sadeh@ri.cmu.edu

1. INTRODUCTION

lOver the past few years, several approaches

to scheduling have been proposed that attempt

to reduce tardiness and inventory costs by

opportunistically (i.e. dynamically) combining a

resource-centered perspective to schedule bot-

tleneck resources, and a job-centered perspec-

tive to schedule non-bottleneck operations on a

job by job basis. Rather than relying on their

initial bottleneck analysis, these schedulers

reexamine the problem each time a resource or

a job has been scheduled. This enables them to

detect the emergence of new bottlenecks during

the construction of the schedule. This ability

has been termed opportunistic scheduling [3].
Nevertheless, the opportunism in these systems

remained limited, as they required scheduling

large resource-subproblems or large job-

subproblems before allowing for a change in the

scheduling perspective (i.e. before permitting a

revision in the current scheduling strategy).

For this reason, we actually refer to these ap-

proaches as macro-opportunistic techniques.

In reality, bottlenecks do not necessarily span

over the entire scheduling horizon. Moreover

they tend to shift before being entirely

scheduled. A scheduler that can only schedule

large resource subproblems will not be able to

take advantage of these considerations. Often it
will overconstrain its set of alternatives before

having worked on the subproblems that will

most critically determine the quality of the en-
tire schedule. This in turn will often result in

poorer solutions. A more flexible approach

would allow to quit scheduling a resource as

soon as another resource is identified as being

more constraining 2. In fact, in the presence of

multiple bottlenecks, one can imagine a tech-

nique that constantly shifts attention from one

bottleneck to another rather than focusing on

the optimization of a single bottleneck at the

expense of others. Therefore, it seems desirable

to investigate a more flexible approach to

scheduling, or a micro-opportunistic approach,
in which the evolution of bottlenecks is con-

tinuously monitored during the construction of
the schedule, and the problem solving effort

constantly redirected towards the most serious

bottleneck. In its simplest form, this micro-

opportunistic approach results in an

operation-centered view of scheduling, in which

each operation is considered an independent

decision point and can be scheduled without re-

quiring that other operations using the same

resource or belonging to the same job be
scheduled at the same time.

Section 2 describes a micro-opportunistic fac-

tory scheduler called MICRO-BOSS

(Micro-Bottleneck Scheduling .System). Section

3 describes an empirical study that compares

IThisresearchwas supported,inpart,by theDefense
Advanced Research ProjectsAgency under contract
#F30602-88-C-0001,and in partby grantsfromMcDon-
nellAircraftCompany and DigitalEquipment Corpora-
tion.

2[1] describes an alternative approach in which
resources can be resequenced to adjust for resource
schedules built further down the road. This approach has
been very successful at minimizing makespan. Attempts
to generalize the procedure to account for due dates seem
to have been less successful so far [6].

_" 37

MICRO-BOSS against a macro-opportunistic

scheduler that dynamically combines both a

resource-centered perspective and a job-

centered perspective. A summary is provided in

Section 4, along with a brief discussion of cur-
rent research efforts.

2. A MICRO-OPPOR_STIC

APPROACH

In the micro-opportunistic approach im-

plemented in MICRO-BOSS, each operation is

considered an independent decisionpoint. Any

operation can be scheduled at any time, if

deemed appropriate by the scheduler. There is

no obligationto simultaneously schedule other

operations upstream or downstream within the

same job,nor isthere any obligationto schedule

other operations competing for the same

resource.

MICRO-BOSS proceeds by iterativelyselect-

ing an operation to be scheduled and a reser-

vation (i.e.start time) to be assigned to that

operation. Every time an operation is

scheduled, a new search stateis created,where

new constraints are added to account for the

reservation assigned to that operation. A so-

called Consistency enforcing procedure is ap-

plied to that state, that updates the set of

remaining possible reservations of each un-

scheduled operation, if an unscheduled opera-

tion is found to have no possible reservations

left, a deadend state has been reached: the sys-
tem needs to backtrack (i.e. it needs to undo

some earlier reservation assignments in order

to be able to complete the schedule). If the

search state does not appear to be a deadend,
the scheduler moves on and looks for a new

operation to schedule and a reservation to as-

sign to that operation.

In MICRO-BOSS, search efficiency is main-

tained at a high level by interleaving search

with the application of consistency enforcing

techniques and a set of look-ahead techniques

that help decide which operation to schedule

next (so-called operation ordering heuristic) and

which reservation to assign to that operation

(so-called reservation ordering heuristic).

1. Consistency Enforcing (or

38

,

Consistency Checking): Con-

sistency enforcing techniques

prune the search space by infer-

ring new constraints resulting

from earlier reservation assign-

ments [2,5].

Look-ahead Analysis: A two-

step look-ahead procedure is ap-

plied in each search state,which

firstoptimizes reservation assign-

ments within each job, and then,

for each resource, computes con-

tention between:job_s over time.

Resource/time intervalswhere job

contention is the'highest help

identify the criticaloperation to

be scheduled next (operation or-

dering heuristic),Reservations for

that operation are then ranked

according to their abilityto min-

imize the costs incurred by the

conflictingjobs (reservationorder-

ing heuristic). By constantly

redirecting =its effort towards the

most serious conflicts, the

scheduler is able to build

sched_es that are closer to the

global optimum. Simultaneously,

because the scheduling strategy is

aimed at reducing job contention

as fast as possible, chances of

backtracking tend to subside

pretty fast too.

The so-called opportunism in MICRO-BOSS

results from its ability to constantly revise its

search strategy and redirect its effort towards

the scheduling of the operation that appears to
be the most critical in the current search state.

This degree of opport_sm differs from that

displayed by other approaches where the

scheduling entity is an entire resource or an en-

tire job [3], i.e. where an entire resource or an

entire job needs to be scheduled before the
scheduler is allowed to revise its current

scheduling strategy.

g

g

m
m

g

i
m

l

z--
J

m

I

J

I

W

I

i

I

W

=

M

; __i--_

w

3. PERFORMANCE EVALUATION

MICRO-BOSS was compared against a

variety of scheduling techniques, including

popular combinations of prioritydispatch rules

and releasepoliciessuggested in the Operations

Management literature[5].

This section outlines a study comparing

MICRO-BOSS against a macro-opportunistic

scheduler that dynamically combined both a

resource'centered perspective and a job-

centered perspective, like in the OPIS schedul-

ing system [3]. However, while OPIS relies on a

set of repair heuristics to recover from inconsis-

tencies [4], the macro-opportunistic scheduler of

this study was built to use the same consistency

enforcing techniques and the same backtrack-

ing scheme as MICRO-BOSS 3. The macro-

opportunistic scheduler also used the same

demand profiles as MICRO-BOSS. When

average demand for the most critical
resource/time interval was above some

threshold level (a parameter of the system that

was empirically adjusted), the macro-

opportunistic scheduler focused on scheduling
the operations requiring that resource/time in-

terval, otherwise it used a job-centered perspec-

tive to identify a critical job and schedule some

or all the operations in that job. Each time a

resource/time interval or a portion of a job was

scheduled, new demand profiles were computed

to decide which scheduling perspective to use

next. Additional details on the implementation

of the macro-opportunistic scheduler can be

found in [5].

In order to compare the two schedulers, a set

of 80 scheduling problems was randomly

generated to cover a wide variety of scheduling

conditions: tight/loose: a;cerage due dates,

narrow/wide due date ranges, one or two bot-

tleneck machines. Each problem involved 20

jobs and 5 resources for a total of 100 opera-
tions (see [5] for further details).

3An alternative would have been to implement a varia-

tion of MICRO-BOSS using the same repair heuristics as

OPIS. Besides being quite time-consuming to implement,

such a comparisonwould have been affectedby the
qualityof the specificrepairheuristicscurrentlyim-
plementedin the OPIS scheduler.

l

40,

!"t| "
l t_-,,_ MACRO-OPPORTUNISTIC IMICRO-BOSS

/

,.. ,- "v' ,, .i T"
' A',,i /

JU$.

0

o "1 i "3 i i i '_ i
Problem Set

Figure 3-1: Tardiness performance of
MICRO-BOSS and the

macro-opportunistic scheduler

on eight different problem sets.

/J'_ / \\ /"
j_, / x\ / V

I I1_ MACRO-OPPORTUNISTIC10, MICRO-BOSS

O

Problem _t

Figure 3-2: Flowtime performance of
MICRO-BOSS and the

macro-opl_rtunistic scheduler
on eight different problem sets.

Figures 3-1, 3-2 and 3-3 summarize the

results of the comparison between MICRO-

BOSS and the macro-oppbrtm:_iStic Scheduler 4.

=_e maCro-oppor/unist[d-°scheduier was consis-

tently outperformed by MICRO-BOSS (under

: all eight scheduling- c0n-difions) both with

4The results presented in this section correspond to the

69 experiments (out of 80) that were each solved in less

than 1,000 search states by the macro-opportunistic

scheduler.

39

-- !

y@@.

i:
za.

q[

4@.

30.

2#.

10.

0
0

?,
/',,, /'ax x fax,/ \x //'*

I .=1,-_ .Ih MACRO.-OPPORTUNISTIC IMICRO-BOSS

Prob,'om Set

Figure 3-3: In-system time performance of
MICRO-BOSS and the

macro-opportunistic scheduler

on eight differentproblem sets.

respect to tardiness, flowtime (i.e.work-in-

process)and in-system time (i.e.totalinventory,

including finished-goods inventory). More

generally, these results indicate that highly con-

tended resource�time intervals can be very

dynamic, and that it is critical to constantly fol-

low their evolution in order to produce quality
schedules.

In most problems, MICRO-BOSS achieved a

search efficiency of 100% (computed as the ratio

of the number of operations to be scheduled

over the number of search states that were

visited), and required about 10 minutes of CPU

time to schedule each problem. The current sys-

tem is written in Knowledge Craft, a frame-

based representation language built on top of

Common Lisp, and runs on a DECstation 5000.

4. CONCLUSIONS

In this paper, a micro-opportunistic approach

to factory scheduling was described that closely

monitors the evolution of bottlenecks during the

construction of the schedule, and continuously

redirects search towards the bottleneck that ap-

pears to be most critical. This approach differs

from earlier opportunistic approaches, such as

the one described in [3], as it does not require

scheduling large resource subproblems or large

job subproblems before revising the current

40

scheduling strategy. This micro-opportunistic

approach has been implemented in the context

of the MICRO-BOSS factory scheduling system.

A study comparing MICRO-BOSS against a

macro-opportunistic scheduler suggests that the

additional flexibility of the micro-opportunistic

approach to scheduling generally yields impor-

tant reductions in beth tardiness and inventory.

Current research effortsinclude:

_A_daptation of MICRO-BOSS to

deal with sequence-dependent

setups _.:_

* Development of micro-

opportunistic reactive scheduling

techniques that willenable the sys-
tem to patch the schedule in the

presence of contingencies such as

machine breakdowns, raw

materials arrivinglate,job cancela-

tions,etc.

APPENDIX: PROBLEM SETS

Problem Sets

Number

ofBottlenecks

2

2

Avg.
Due Date

loose

loose

tight

tight

loose

loose

tight

tight

Due Date
Range

wide

narrow

wide

narrow

wide

narrow

wide

narrow

Problem
Set

2

3

4

• 8

REFERENCES

1. J.Adams, E. Balas,and D. Zawack. "The Shifting

BottleneckProcedure forJob Shop Scheduling".
Management Science34, 3 (1988),391-401.

2. A.K. Mackworth and E.C. Freuder. "The Complexity
of some Polynomial Network Consistency Algorithms for
Constraint Satisfaction Problems". Artificial Intelligence
25, 1 (1985), 65-74.

3. Peng SiOw and Stephen F.Smith. "Viewing Schedul-
ingas an OpportunisticProblem-SolvingProcess".
Annals ofOperationsResearch 12 (1988),85-108.

m

i

m

m

i

m

i

m

|

|

|

u

m

i

m

m

m

m

u

U

u
mm

=

4. P.S.Ow, S.F.Smith,and b_ Thiriez.ReactivePlan
Revision.Proceedingsofthe Seventh National Con-

ferenceon ArtificialIntelligence,1988,pp. 77-82.

5. Norman Sadeh. Look-ahead Techniques for Micro-

opportunistic Job Shop Scheduling. Ph.D. Th., School of
Computer Science, Carnegie Mellon University, Pitts-
burgh, PA 15213, March 1991.

6. P. Serafini, W. Ukovich, H. Kirchner, F. Giardina, and
F. Tiozzo. Job-shop scheduling: a case study. In
Operations Research Models in FMS, Springer, Vienna,
1988.

re#

L

,L

, : "! it_:[[]t[£

= =

41

Iterative Refinement Scheduling*

EricBiefeld
Jet Propulsion Laboratory

California Institute of Technology _ :

4800 Oak Grove Drive

Pasadena, CA 91109-8099

U.S.A.

m

!
i

m

I
i

g

i
U

|
Abstract

We present a heuristics.based approach to deep
space mission scheduling which is modeled on
the approach used by expert human schedulers
in producing schedules for planetary encoun-
ters. New chronological evaluation techniques
are used to focus the search by using infor-
mation gained during the scheduling process
to locate, classify, and resolve regions of con-
flict. Our approach is based on the assumption
that during the construction of a schedule there

exist several dlsjunct temporal regions where
the demand for one resource type or a single
temporal constraint dominates (bottleneck re-
gions). If the scheduler can identify these re-
gions and classify them based on their domi-
nant constraint, then the scheduler can select
the scheduling heuristic.

1 Introduction

Scheduling science experiments for such projects as
Viking, Voyager, and Spacelab consumes a large amount

of time and manpower. Whenever the Voyager space-
craft encounters a planet, the science experiments must
be preplanned and ready to execute. This is a difficult

scheduling problem due to the number and complexity
of the experiments and the extremely limited resources
of a spacecraft.

Since very few opportunities for space science exist,
the major goal of mission scheduling is to maximize the
number of science experiments that can be performed
using the limited resources of the spacecraft. The total
amount of requested experiments can be several times
the amount that the project can accomplish.

Not only are schedules oversubscribed, they are also

dynamic. Although the Voyager spacecraft was built and
launched years ago, the flight rules governing the use
of the spacecraft have changed. As the scientists learn
more about their objectives, the experiment requests are
updated. Thus, the mission schedule is a dynamic entity.

"This research was done at the Jet Propulsion Labora-
tory, California Institute of Technology, and was sponsored
through an agreement with the National Aeronautics and
Space Administration.

The Jet Propulsion Laboratory has performed mission
scheduling for many years with a variety of deep space
flight projects. The effort in scheduling an entire project
such as Voyager _ be measured in mancenturies. Be-
cause of this huge cost, JPL has been researching ad-

vanced software scheduling systems for several years (e.g.
Deviser, Plan-It, Switch, Ralph, OMP).

Our current research, the Operations Mission Plan-

ner (OMP), is centered on minimally disruptive (non-
nervous) replanning and the use of heuristics to limit
the scheduler's search space. This paper addresses some
of the problems pertinent to mlsslonschedullng. It then

defines iterstive refinement, one of the basic design goals
of our current research. This work has been greatly in-
fluenced by discussions with and the observations of the
expert mission schedulers for the Viking, Voyager, and
Spacelab projects.

2 Definitions

2.1 Resource/State

A resource/state (here after shorten to resource) tracks
how a variable describing a state of the system changes
through time and the steps which presently reserve this
resource. An example is a pooled resource which tracks
how many pieces of equipment out of a limited pool is
being used at any moment in time. Another example is
the direction of an antenna which is a continuous.state

resource.

There are five fundamental types of resources: ca.
pacity, consumable renewable, continuous.state, and

discrete-state [Starbird, 1987]. A capacity resource is ba-
sically a pooled resource but can have non-integer value
and may have a time varying initial capacity.. Steps allo-
cate a amount of the resource for their duration and then

free up the resource for other activities. A consumable

resource is one for which there is a limited supply, and
once it is used by a step, it is no longer available (e.g.
spacecraft fuel). A renewable is a generalization of a

consumable, where the resource can be replenished (e.g.
storage tape; it is used up during recording, and _replen-
ished" during playback). A state resource represents a
resource whose state (configuration, position, etc.) must
be a certain value in order to support an activity. A
continuous- state resource is one in which the state of

the resource can best be described by a continuous vari-

m
m

im

i

|

!

i

i

|

!

gg

Ha

|

J

i

d

mi

42 w

r_

able (e.g. the direction that an antenna is pointing).
A discrete-state resources, on the other hand, are repre-

.... sented bydiscrete values _e.g. on/off, low-gain/medium'

g_m/high-g_).
Most domain resources can either be directly mapped

_ __ into these resource types or be modeled by combining
these t-ype of fundamental resources to form a special
meta_resource. A ground based Deep Space Network An-
tenna could be modeled as a meta-resource which com-

_ bin_two continuous- states and a renewable resource. :_

scheduler heuristically selects one of the activities and
schedules the entire activity as a logical unit. Unlike
resources the scheduler does not violate the constraints

within an activity.

Since the activities interact only through the resource
timelines, in some sense the activities are independent.
it is possible to modify a previously schedule activity
without backtracking or updating any other scheduled
activity. Modifying a previously scheduled activity may
cause some resource conflicts, but at certain stages of the

= The two continous-states would model the azimuth and scheduling process that is acceptable. The scheduler has
declination while the renewable would model the num-

ber of times the antenna cables are wrapped around the
antenna pedestal

• _While the four fundamental types of resources can be
used to model most of the resources we have encoun-

tered there exist s domain specific resources which could
not be easily modeled. An example is the Voyager tape
recorder which is a four track tack wire tape recorder.
To schedule the tape recorder the schedulers build tape

_ _i._maps 0f W]_at data _s at what physical location on which
.... track. Thls in_ormatlon _is used to determine the order

in which data can be removed and how long it takes to
position the tape head to the beginning of a particular

" data track.
Associated with each type of resource is its definition

• of conflict. A conflict for a capacity resource occurs if
...... the system reserves more then the limit of the pool at

any moment in time. The resource is in conflict at the
temporal interval for which a oversubscription occurs. A
discrete-state is in conflict if either a step "reserves _ a

'_ state that is not compatible with the state of the resource
during the duration of the step or if the resource changes

states without having an appropriate state changing step
occurring.

2.2 Step/Actlvlty _

A step is a temporal interval which "reserve" resources
where the meaning of reserve depends on the type of
resource. While the resources model the state of the

system over time steps model changes or constraints on
the system. Along with resource reservations a step

::'can" cbnt_ Constraints that either directly limit the

range of choices possible in scheduling a step or links
a step to other steps. The most common type of link-
ing constraints are temporal predecessor and successor
relations.

An activity is a set of steps and a set of constraints
that link the steps together. The temporal constraints
are the "glue '_ that_bind the steps into a logical unit.
The most common type of temporal linkage is the pre-
decessor and successor relations. Along with the steps
and constraints between the steps, an activity includes

the ability to note the conflicts for resolution at latter
stages in the processing.

3 Focused Iteratlve Refinement

3.1 Expert Iterative Refinement

Iterative refinement is a technique used by expert space-
craft schedulers. The expert user first lays out the highly
constrained activities over which he has little or no con-

trol. This forms a background against which the rest
of the scheduling is done. The expert user then places
the activities which impact large portions of the sched-
ule. These may, for example, be a series of activities
that have to be performed at exactly one-hour intervals
over a large portion of the schedule. Any changes to
this type of activity would cause changes to mo6t of the
schedule. If the scheduler gets stuck trying to place such
an activity, he may elect to move it, but only as a last
resort. Next, the expert user positions the high-priority
activities, minimizing the number of conflicts. Finally,
to complete the initial loading process, the expert user
places the remaining activities on the schedule. If, at
this point, some of the lower-priority activities do not fit
easily, the expert user may simply ignore them.

-After the loading process is done, the schedule is
80sense that most activities are in their final position on

the schedule), although some resource contentions may
still exist. The expert user has only spent about 20user
will spend the remaining time trying to fit a few more
activities into the schedule and trying to resolve resource
contentions.

Up to this point in the scheduling process the sched-
uler has been task oriented [Smith and Ow, 1985]. Now

the scheduler becomes resource oriented. The expert
user focuses on the activities which are causing resource
contentions on a particular resource and in a particular

time region. After this area is fixed the expert user moves
to another. Using this type of planning, the expert user
iterates-over and over again on the schedule, each time
refining it a little more. After each pass through the
schedule, the scheduler is willing to do a deeper search
on any single activity because the total number of activ-

constraints that act on upon all the steps within an ac- ities needing to be searched will decrease.
tivity. This includes any global temporal windows and By focusing on just one area at a time the expert user
other global scheduling preferences like a priority for the may fix a portion of the schedule just to cause conflicts
request, when the next portion of the schedule is processed. Af-

The users views an activity as the "prirnitive" action ter several iterations, a small set of activities will cir-
that must be scheduled to satisfy a user scheduling re- culate through the problem areas of the schedule. In
quest. When a user issues a "request" the system finds this stage of scheduling, the expert user once again be-
the one or more activities that satisfy the request. The comes task oriented. The expert user focuses on this

43

small set of hard-to-place activities and performs the
deepest search. The expert user addresses any chain
reactions resulting from moving a specific activity. In
Voyager scheduling this reasoning recurses about three
levels down. In SpaceLab science scheduling the depth
cut off" is about four levels down. It is important to re-
alize, however, that at this point the expert user has a
small list of activities to try. The scheduler also restricts
the impacted activities to those that seem flexible.

In the final stage of processing, the expert user looks
for under-utilized areas of the schedule. The expert user

checks the list of unscheduled activities looking for an
activity that could use these resources. This unsched-
uled activity will, most likely, not fit directly into the
schedule without causing some conflicts. Otherwise, the
activity would have been scheduled earlier in the pro-
cess. The scheduler tries to adjust some of the activities
in the under-utilized areas in order to make room for the

unscheduled activity. This may involve a series of shifts,
but since both the activity and the under-utilized areas
have been identified, it is a tightly focused search.

The schedule is then evaluated by the mission scien-

tists for its total science return. The scientists negotiate
with one another and with the scheduling team about
which activities to include in the final sequence. The re-
suits of the negotiations must be reflected in the sched-
ule. Therefore, the evaluation process following the gen-
eration of the initial schedule often results in requests to
change the schedule, and hence the requirement for the
replanning capability discussed earlier.

3.1.1 Phases of Iterat|ve Refinement

Iterative planning consists a series of techniques. Each
technique is responsible for a different aspect of the over-
all planning process. The first of these techniques roughs
out the plan and identifies areas of high resource-conflict.
The later techniques use the knowledge of the resource
conflicts to refine the plan and solve many of the sched-
ule problems. The final techniques try to solve the last

of the conflicts and %ptimize _ the plan.

The OMP Load Phase is responsible for drafting an
initial schedule. During this phase, the scheduler focuses
on the requested activities, fitting them into the schedule
with minimal concern for conflicts and levels of oversub-

scription.

During the Resource Centered Phase, OMP becomes
resource oriented [Smith and Ow, 1985]. The scheduler
focuses upon a resource region which contains conflicts
and uses quick and simple techniques to fix these re-

gions before processing another resource. It is during
this phase that the bulk of the schedule is roughed out.

By focusing on just one resource region at a time the
scheduler may fix one portion of the schedule but cre-
ate additional conflicts in other regions. The scheduler
discovers the bottlenecks by tracking these interactions

between the separate regions. Once a bottleneck has
been identified, it is classified and OMP attempts to re-
solve that bottleneck using techniques specialized for the
type of bottleneck.

Once the conflict regions of the schedule have been

resolved (which, since this is an oversubscribed domain

will involve deleting some activities from the schedule),
OMP takes another look at the high priority activities
which have been deleted from the schedule and tries to

fit them in. At this point, OMP will perform its deep-

eat search in an effort to schedule just one more activity _.
(extremely important in a domain such as deep space _-
mission scheduling where opportunities to perform in- g

terplanetary experiments are rare). This phase is called
the Optimization, although it doesn't produce a truly []
optimal schedule as would be defined in an 0pe_rations re- J
search sense. Rather, it refers to fitting in additional ac-

tivities after a conflict-free schedule has been produced.
According to Spacelab scheduling experts, an optimal i
schedule is one where no one can suggest an improve-
ment [Japp, 1986].

By specializing the planning techniques, each tech-
nique be made more effluent. For example, the ican

firsttechniques willuse shallow searches over a broad
mm

spectrum of activities.Later techniqueswilluse deeper

searches but the search will only be applied to a limited
number of activities. They will use knowledge about I
the particular schedule (i.e. the current resource con-
flicts, which activities have changed most oRen in the
scheduling process) to constrainthe search space. The
techniqueswillemploy eithera shallowand broad search J

or a deep and narrow search.Ifa planner must perform

a broad and deep search,itwillnot be able compute the m
schedule in any reasonable time. |
3.1.2 Self-Reflectlve Iterative Refinement

The basic concept of self-reflective search is focusing
the search by using knowledge gained from monitoring I

the search process. The OMP architecture, operating
as outlinedin the previous section,provides the mecha-

nisms for supporting self-reflective search: the chronolo-
gies gather the raw information,the assessment heuris- m

ticsanalyze the information and feed the resultsto the

controlheuristicswhich focus the dispatch heuristics. ___

During the scheduling process, OMP keeps a chronol- j
ogy [Biefeld and Cooper, 1989] of the effort expended
to resolve resource conflicts. In OMP, the chronologies

are composed of a set of course grain resource timelines
which record the scheduling effort level associated with
a given region of the schedule, one measure of which is
the number of times the scheduler attempts to resolve

conflictsin that region, i
During the resourcecentered phases,OMP focuseson

a temporal intervalwithin a given resource that isin

conflict.Simple heuristics(which eitherchange the re-

source used by an activityor temporally shiftan activ-

ityout of the focus region [Biefeldand Cooper, 1991])

are used to reduce the levelconflictin the focus region.

The chronologies keep track of the effect of these actions
within the region and on otherregionswhich are changed

as a resultof the schedulingactions.

The system first attempts to find a set of resource as- _
signments which reduces the total amount of conflict in i
the entire schedule. If the system can not lower the total
conflict then it will increase the effort level for the focus

region. The system retries the search, again attempting
to reduce the conflict level in the region of focus, how- i

44 w

w

w

L

=

ever this time it can increase the conflict level in other

temporal regions for which the effort level is less than
the focus region's effort level.

The above process will eventually cause OMP to cycle

through the same regions. When the effort level for these
regions exceeds the preset threshold, OMP exits the re-
source centered phase and begins the bottleneck cen-

tered phase. The assessment heuristics search through
the chronologies and find the regions that have recently
been raised to a high effort level. These regions are then
collected into a bottleneck. The assessment heuristics

then classify the bottleneck depending on its temporal
size and its degree of oversubscription.

The current assessments heuristics in OMP distinguish

bottlenecks by: 1) the amount of subscription compared
to the bottleneck capacity; 2) the temporal extent of the
bottleneck regions; and 3) the number of resources the
bottleneck spans. Using these ratings the assessment
heuristics classify the bottlenecks as either: 1) largely
oversubscribed; 2) close to capacity but large in extent;
or 3) close to theoretical capacity and small in extent.

If a bottleneck is largely oversubscribed then OMP's
control heuristics will delete the low priority activities

from the bottleneck region until the demand is only

slightly larger then the capacity of the bottleneck. If
a bottleneck is close to capacity but large in extent the
control heuristics will split the bottleneck into several

smaller regions. The first step is to distribute the task-
ing uniformly across the bottleneck and to reduce the
demand slightly by shrinking the duration of the activi-
ties. The control heuristics will then focus on the smaller

regions and use dispatch heuristics that emphasize local
modifications over the global modifications used in the
Resource Centered Phase. During this processing the
assessment heuristics closely monitor the chronologies to
identify small bottleneck regions. OMP processes each
of the small bottlenecks as it locates them.

When processing a small bottleneck OMP uses it's
most complicated heuristics. They use localized modifi-
cations to position one more activity onto the schedule.
If the region in conflict is temporally small, the heuristics
will either try to clip some activity whose start or end
time is near the conflict, or the heuristics will split some
activity into two separate activities with a gap equal to
the conflict duration. If the conflict region is slightly

larger, the heuristics clip and form gaps in a series of
activities and align these gaps in such a manner as to
reduce the conflict over the focus region.

Some heuristics, such as those for antenna handoff,

are domain specific. A antenna handoff is when an ac-
tivity splits its requirement for an antenna between two
or more antenna resources. In the OMP demonstration

domain, an activity may use one antenna for the first
part and a second antenna for the second part but there
must be a period of overlap during which it is using both
antennas. In the OMP demonstration domain, if a bot-

tleneck either spans two antennas or the temporal re-

gions on the two antennas are near but do not completely
overlay, then a antenna handoff may be practical. The
dispatch heuristics attempt to split the activity into two
activities and assign the antennas and temporal overlap

to reduce resource contention.

This is an example of not only domain specific ways
of expanding an activity but also where domain specific
heuristics are needed to suggest when and how to try a

particular activity expansion. Since the durations of the
handoff overlap and the duration that an activity must
spend on any single antenna is relatively small compared
to the entire duration of an activity, the total number of

ways an activity can be sliced up using antenna hand-
ot_ is quite large and in most cases not very useful. By
identifying the bottleneck regions and then using domain
specific heuristics to find particular patterns in the bot-
tleneck regions the search process can be restricted, while
still finding most cases were there special configuration
tricks are useful.

4 Summary

This iteratlve planning approach to scheduling arose
from attempts to heuristically control the search space
of mission scheduling. The source of the heuristics were
the human schedulers of Voyager, Viking, and SpaceLab
who provided information on the stages of the schedul-

ing process. Earlier stages are concerned with "roughing
out" the schedule, placing most of the tasks, and identi-

fying the trouble areas. Later stages then use scheduling
heuristics to refine the existing schedule.

Most of these heuristics assume that the scheduler
knows which resources are the bottlenecks and which

tasks are causing the most difficulty for the scheduler.
The best way to identify these critical resources and
tasks is from the schedule produced by the earlier stages.
In order to know what to try next one must already know
what the schedule will be like.

Iterative planning assumes that the information

gained by earlier techniques can be used by the later
techniques to constrain the search space. Iterative plan-
ning also assumes that the schedule will not be changed
dramatically by the later techniques. These assumptions
seem to hold for the mission scheduling domain, which

is extremely under- constrained. There exist many pos-
sible schedules for a single set of requested tasks. Two
different human schedulers will produce two very differ-

ent but equally acceptable schedules, given the same set
of requested tasks. If, however, one human scheduler
must modify another person's schedule, the basic struc-
ture of the schedule will not be modified. Therefore,

expert schedulers normally perform non-nervous replan-

ning.

References

[Biefeld and Cooper, 1989] Eric Biefeld and Lynne
Cooper. Comparison of Mission and Job Shop
Scheduling. Proceedings of She Third International
Conference on Ezpert Systems and the Leading Edge
in Production Planning and Control, pages 483-494,
Hilton Head Island, South Carolina, May 1989.

[Biefeld and Cooper, 1989] Eric Biefeld and Lynne
Cooper. Scheduling with Chronology-Directed Search.
Proceedings of the AIAA Computers in Aerospace VII

45

Conference,pages 1078-1087, Monterey, California,
October 1989.

[Biefeld and Cooper, 1991] Eric Biefeld and Lynne

Cooper. Bottleneck Identification Using Process
Chronologies. Proceedings of the Twelfth International

Joint Conference On Artificial Intelligence, pages
218-224, Sydney, Australia, August 1991.

[Dean, 1986] Thomas Dean,. Intractability and Time
Dependent Planning. Proceedings of Workshop on
Planning and Reasoning A bout Action, pages 143-164,
June 1986.

[Dean and McDermontt, 1987] Thomas Dean and Drew

McDermott. Temporal Data Base Management. Ar-
tificial Intelligence Journal, 32(1):1-55, 1987.

[Dean et al., 1987] Thomas Dean, tL James Firby, and

David Miller. Hierarchical Planning involving Dead-
lines, Travel Time, and Resources. Computational In-
telligence, 4(4), November 1988.

[Eskeyand gweben, 1990] Megen Eskey and Monte
gweben. Learning Search Control for Constraint-

Based Scheduling. Proceedings of the Eighth National
Conference on Artificial intelligence, page 908-915,
Boston, Massachusette, July 1990.

[Fox and Smith, 1984] Mark Fox and Stephen Smith.
ISIS: A Knowiedge-Based System for Factory Schedul-
ing. Ezpert Systems, 1(1):25-49, July 1984.

[Japp, 1986] John Japp. Mission Timeline Analysis
Demonstration. NASA/Marshall Space Flight Center,
June 3, 1986.

[Johnson and Roadifer, 1986] Craig Johnson and James

l_adifer. A Look-Ahead Strategy for Heuristic Ac-
tivity Scheduling. Joint Conference of the Operations
Research Society of America and the Institute of Man-
agement Sciences, October 1986.

[Le Pape and Smith, 1987] Claude Le Pape and

Stephen Smith. Management of Temporal Constraints
for Factory Scheduling. Proceedings of the Working
Conference on Temporal Aspects in Information Sys-
tems, May 1987.

[McLaughlin and Wolff, 1989] W. I. McLaughlin and
D. M. Wolff. Automating the Uplink Process for Plan-
etary Missions. AIAA P,Tth Aerospace Science Meet-
ing, t_no, Nevada, January 1989.

[Miller, 1988] David Miller. A Task and Resource

Scheduling System for Automated Planning. An-
nab of Operations Research, 12(1-4):69-198, Febru-
ary 1988.

[Minifie and Davis, 1986] J. Roberta Minifie and Robert
Davis. Survey of MRP Nervousness Issues. Production

and Inventory Management, 27(3):111-121,1986.

[Muscettola and Smith, 1987] Nicola Muscettola and
Stephen Smith. A Probabilistic Framework for

Resource-Constralned Multi- Agent Planning. Pro-
ceedings of _he Tenth International Joint Conference
On Artificial Intelligence, page 1063-1066, Milan, Au-
gust 1987.

[Ow and Smith, 1988] Peng Si Ow and Stephen Smith.
Viewing Scheduling as an Opportunistic Problem-
Solving Process. Annals of Operations Researct_,12(1-
4):85-108, February 1988.

[Smith et al., 1986] Stephen Smith, Mark Fox, and ,_

Peng Si Ow. Constructing and Maintaining Detailed j
Production Plans: Investigations into the Develop-
ment of Knowledge-Based Factory Scheduling Sys-
tems. AI Magazine, 7(4):45-61, 1986. i

elm

[Smith and Ow, 1985] Stephen Smith and Peng Si Ow. I
The Use of Multiple Problem Decompositions in Time
Constrained Planning Tasks. Proceedings of the Ninth m
International Joint Conference On Artificial lntelli- |
gence, pages 10130-1015, Los Angeles, California, Au-
gust 1985.

[Starbird, 1987] Tom Starbird. Space Flight Operations j

Center Sequence Subsystem (SEQ) Functional t_ II

quirements Document for Planning. JPL Internal
Document D-4697; NASA, Jet Propulsion Labora- i
tory, California Institute of Technology, Pasadena Cal- l
ifornia, August 1987.

[Vere, 1983] Steven Vere. Planning in Time: Windows lira

and Durations for Activities and Goals' iEEE Trans- []

actions on Machine Intelligence PAMI-5, No. 3, pages
246-267, May 1983.

[Zweben et aL, 1990] Monte Zweben, Micheal Deal, and

Robert Gargan. Anytime Rescheduling. Proceedings
of the DARPA Workshop on Innovative Approaches
to Planning, Scheduling and Control, pages 251-259,
San Diego, California, November i990.

m
am

[]

n

II!

il

aim

I

B
U

m

J

J

m
i

Ii

M

46 m
lira

t

ft.,-.

U

Lm_

\) -

w

@

E

z

W

h

rt Z "_lr _

\

CABINS : Case'Based Interactive Scheduler

Kazuo Miyashita Katia Sycara

miyashita@cs.cmu.edu _ _tia@cs.cmu.edu

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

,N9 o

1. Introduction

Although there has been a lot of progress in knowledge-
based scheduling [5, 4], there is still a need for schedule
improvement and repair through interaction with a human
scheduler. There are several reasons for this. First, a user's

preferences on the schedule are context dependent (e.g.,
may depend on the state of the scheduling environment at a
particular time). Also, interactions among preferences and
effective tradeoff very often depend on the particular
schedule produced. This means that generally a user of the
scheduling system can't fully specify his/her preferences a
priori before getting the scheduling results from the system.
By looking over the obtained schedule results, the user of-

ten thinks of additional preferences. Consider, for example
a situation where a human scheduler does not like to use
MACHINE-A which is substitutable for MACI-IINE-B but

is of lower quality than MACHINE-B for processing
ORDER-X. The reason high quality results are desired is

that ORDER-X belongs to a quite important client. Sup-
pose, however, that the schedule indicates that ORDER-X

is tardy by an amount above an acceptable tardiness
threshold due to demands on MACHINE-B (by orders more
important than ORDER-X). Then, the human scheduler

season, weather or humidity? And isn't it necessary for the
model to represent time of the day, strength of wind or
health of a machine operator and so on? [2]. Nevertheless
these factors, that an experienced human scheduler learns to
take into consideration, could have a big influence on
schedule quality but it is very difficult to represent in a
principled manner so they can be used by an automated
scheduling system.

The third reason interactive schedule repair is desirable is
that factories are dynamic environments. Unexpected
events, such as operator absence, power failure and
machine breakdowns frequently happen. Therefore, it is
necessary for the scheduling system to adapt to the events
in the factory environment as soon as possible by reactively
repairing the existing schedule. Although initial progress
has been made in automatic schedule repair [3], human in-
tervention may be necessary as a result of the reasons given
(context dependent user preferences, and difficulty of
representing all relevant constraints).

Another consequence of the above is that local repair
rather than re-scheduling is more desirable, since re-
scheduling will suffer from the same ills as the initial
scheduling. In addition, it is in general desirable [3] to min-

may decide to use the less _efcrabl e machine, MACHINE- imize disruption to the shop floor. If re-scheduling from the
A for the less important order, ORDER-X. Ifthe tardiness point of failure is attempted, the new schedule may be dras-
was below the threshold, he/she may prefer W_ow a tardy tically different from the original schedule, thus necessitat-
order. It is very difficult to elicit this type of preference and ing disruption of the work flow in the shop, and new work

preference threshold s from the h_um___h_ui_independ- ==anoeation. The new schedule, moreover may solve the cur-
ent of the presence of a particular contexL rent problem but introduce new problems that have to be

The second reason interactive schedule repair is desirable solved.
is that it is impossible for any given knowledge based One extremely beneficial side effect of interactive
scheduling model to_include all the constraints that naa-ybe-.... schedule repair is the insight that the user obtains into
relevant. Current advanced scheduling systems can exploit his/her scheduling preferences and their context of ap-
very complicated models to represent the factory, orders plicabiiity. The process of interactive repair requires the
and user's pre_'erences. But no matter how riclil_, them_el human scheduler to analyze the current problem, repair it
is constructed, there are always additional factors which by clarifying or modifying his/her preferences and finally
may influence the schedule but had not been represented in evaluate the result. This gives the human scheduler good
the model. For example, for a certain fo0ndry itmay- be opportunities to understand his/her criteria in diverse situa-
good to decrease usage of a sand casting maciiinedTu'ing nons. So later when he/she encounters a problem that is
the summer, because the combination of heat and humidity similar to a previous one, he/she can be reminded of the
of the weather may make it slower than usual. But how applicable previous repair and re-use it in the current situa-
should the model of the scheduling system represent'the tion.

/47

J

1.1. Why case-based repair? 2.1. System Architecture

Case-based Reasoning (CBR) is a recent AI problem After the initial schedule is made, it is examined by the
solving paradigm [!]. A CBR system tries to solve a user and the defect detector (a rule-based system) to find
problem by (1) retrieving the most similar case with the undesirable parts in the existing schedule. If some defects
current problem from its _ _2C2)modifying_i to ' ar_det_ct_,-th-e-|n_0rmatlon about _e defects arepassed to
adapt to the current situation and (3) applying it to the cur-
rent problem. At the end of problem solving, the new
solved problem is stored as a new case in _ _ memory.
As a computational model the first feature of CBR is its
method of knowledge acquisition. In CBR the unit of

the repairer. If local repairing is determined to be feasible
by the repairer, resource reservations in the current
schedule are directly modified _ canceled by the repairer
and the scheduler is asked to re-schedule the conflicting
operations whose reservations were canceled. When local

knowledge is the case, which is an exper_ __cou_red repair turns out to be impossible, the _ modifies the
during problem solving. This makes it easier to arficu_te, scheduling model and re-scheduling is attempted based on
examine and evaluate the knowledge. The second feature is
its learning capability. A CBR system can remember its
performance _d modify its be_vl_r_-a_,oid-°_g
prior mistakes. The third feature is its adaptive power. By

reasoning from analogy with the past experi_ces, a CBR
system should be abie-_i6-_i_ns_ct solutions to novel

problems. These features make CBR very am'active for in-
teractive schedule repair.

Because a case describes a particular specific experience,
the factors that were deemed relevant to this experience can
be recorded in the case. This description fully captures the
dependencies among features and their context. So if a
similar situation is encountered, the system can re-use the
repairing method which is stored in the retrieved case. In
addition, a case serves as a knowledge structuring
mechanism so that all relevant factors are local to a case

rather than distributed through the system (as happens with
rule based systems). Even when the result of applying the
repairing method of the retrieved case turns out to be
fail_, if the u_ can e_laln--tlie_en _th_sy_stem
can create a new case based upon this failure experience
and store it as a new case along with the associated ex-
planation. Thus(as the case base islenriched w]thsuccessful
and failed experiences, the system becomes more robust for

various type of schedule defects that would have been dif-
ficult to predict in advance. This enables the replacement of
expert users with novices that rely On the system's ex-
periences.

2. Case-based Interactive Scheduler (CABINS)

Based upon the above discussion, we are developing the

the modified model. The overall goal of CABINS is to
make repairs as cheap as possible trying at _rne time to
minimize interfering Sideeffects of_e r_paii_ on the cur-

rent schedule. Figure 2-1 depicts the architecture of
CABINS.

ll_t-modd
,------r-.-.a

Ite-_kedule _ partial r¢-sclm4vle

modify I can_l

i Schedule

_ Defe¢4 detecta¢ I

+ +

.... Figure 2'i: Architectm of CABInS

2.2. Schedule Repairing Process

The pmcessifig of CABINShas four stages:

• defect detection
• defect selection

• selection of repair strategy
• selection Ofrepai/tactics =

Currently defect detection and defect selection are per-
formed by the user who finds the most important defect and
id_tifi_ _d fea_ a_ssociated with _e defecL %ese fea-

tur_ are used as indices into the case memory to find
Case-based Interactive Scheduler (CABINS)whose goal is similar past defects. Out of the retrieved similar past
to support interactive schedule repair. A CABINS user is def&is,_th_ _a_ critical is sei_tedfT6 d&f/m_te-detect
envisioned to be a person who is responsible for making criticality, the system uses the cost of repairing the defect as
schedules in advance of production. In making an initial
schedule, the user may be assisted by an automated
scheduling system. If the user identifies undesirable fea-
tures of the current schedule, he/she uses CABINS for

schedule repair, so as to improve the current schedule.
CABINS finds defects in scheduling results and repairs

them by patching locally or modifying part of its model
(resources, orders, shifts and user's preferences).

a measure: the lower the repair cost, the less critical the
defect. Low repair c0-_t is Usually assisted with-local

+_pat6hihg +,_vher_' h]_hcost means that m_re changes are

made to the overall schedule. So, beginning with the lowest

cost repair is a good heuristic since the defect can be poten-
tially fix6d-clieaply,

CABINS uses two level of repairs: repair strategies and

repair tactics. A repair strategy is associate d with a par-
ticular high level de_pti0n 0f classes of defects. Each
repair strategy has a variety of repair tactics associated with

48

l

D

|

mm

E

m
m

i

|

II

m

i

i
I

|
z

m
B

u

J

=

w

%=.

it. The repair tactics are appropriate for particular reducing the factory load (strategy-5) (e.g., by subcontract-

specializations of the defect classes. We have identified two ing orders) and re-scheduling is in general more expensive

general types of repair strategies: local patching and model than relaxing due dates of interfering orders because one
modification, must determine the orders to be subcontracted out, price of

To select a strategy for repairing important defects, subcontracting, possible delays etc. An additional concern
CABINS looks for the most similar ease to the current is that thcresulting schedule might not be entirely saris-

situation in the ease base and selects the same strategy

which succeeded in the past case. The system has several

alternative strategies for each defect and one of them is
selected based on the feature similarity of the current situa-

tion and the past experience. Some of the features that we

are currently using for ease retrieval are various defect

types, such as order tardiness and various schedule charac-
teristics, such as schedule tightness, inter-order slack, and

machine idle time. For example, if the type of defect is

"tardy order", there are seven repair strategies:

1. Reduce the slack between operations in the tardy
order

2. Reduce the idle-time of resources needed by opera-
tions in the tardy order

3. Relax due-date constraint of orders (the tardy order
or interfering orders)

4. Relax release-date constraint of orders (the tardy or-

der or interfering orders)
5. Reduce the shop load
6. Increase shifts

7. Increase resource capacity.

The first two strategies belong to the general category
"local patching" and the rest to the category "model
modification'.

In general, we have presented the repair strategies in or-

der of expensiveness (from the cheaper --strategy 1 to most

expensive --strategy 7). For tardiness repair, the dis-

criminating feature between selecting cases with repair

strategies in classes 1 to 2 and selecting cases with repair

strategies 3 to 7 is the tightness of the current schedule. If

the current schedule is not very tight (i.e., there are a lot of

idle intervals on resources needed by operations of the tardy

order), CABINS will select cases where tardiness was

repaired by local patching. Whether cases with repair-

strategy-1 or repair-strategy-2 will be selected depends on

whether, beside enough idle interval, there is also slack be-

tween adjacent operations of the tardy order. If there are,

then cases where strategy-1 was used will be selected. Tac-

tics associated with strategy-2 could be to move every

operation of the tardy order upstream (left shifting) on the

time line if enough idle interval is available for the opera-
tion.

If the current schedule is tight, then eases that prescribe

factory and may need to be repaired anew. Similarly,

strategies 6 and 7 are increasingly expensive, since ad-

ditional investments in paying overtime or buying new
machines are needled.

Although strategy-3 is the cheapest of the repair

strategies of type "model modification", it may not always
be desirable. To determine applicability of strategy-3,

CABINS retrieves eases where application of strategy-3 has
failed. If other features of the current situation match fea-

tures of the past failures of strategy-3 (e.g., the tardy order

has a stiff penalty for tardiness), then CABINS is warned

that strategy-3 is not applicable. Similarly, if there are no

discriminating features to distinguish among the application

of strategies 4 to 7, retrieval of previous eases where the

strategy under consideration has failed gives the system ad-

ditional discriminating information. Thus, CABINS uses

the default ordering of repair strategies as well as successful

case application as necessary conditions of the applicability

of particular repairs; it uses past failures as sufficiency con-
ditions. As more cases are encountered, both the necessary

and sufficiency conditions are refined. Therefore, it is

hoped that CABINS can improve its performance over
time.

For each repair strategy, there could be a variety of repair

tactics that are applicable. For repairing order tardiness,
there is a variety of appropriate tactics for local patching.

Below, we present some of these tactics.

1. left-shift on same resource: move the operation as

much to the left as possible, While maintaining the
amount of disruptions as small as possible.

2. left-shift on substitutable resource: if the operation
that is desired to be moved has a substitutable

resource, then move the operation as much to the
left as possible, while maintaining the amount of
disruptions as small as possible.

3. swap on same resource: find another operation
which is to the left of the operation to be moved on
the same resource and whose duration is ap-

proximately equal to the duration of the current
operation and swap the two operations.

4. swap on substitutable resource: if the operation that
is desired to be moved has a substitutable resource,
then find another operation which is to the left of the

operation to be moved on the substitutable resourcc
model modification rather than local patching will be and whose duration is approximately equal to the
retrieved. If there are no discriminating features to deter- duration of the current operation and swap the two

mine the applicability of strategies 3 to 7, CABINS uses the operations.

default ordering: use strategies in ascending cost. The The last two tactics may result in tardiness of other or-

cheapest model modification is relaxing due-date con- tiers but this may be allowable.

straints of the tardy order or interfering orders (strategy-3). For model modification, possibly applicable tactics along
This is cheap since it is easily accomplished and has no side with the associated repair strategy are:
effects on the shop floor environment. On the other hand,

-w 49

1. relax-due-date-of-tardy-order (strategy-3)
2. t'md-most-interfering-order with the current tardy

order and make it tardy (strategy-3)
3. relax-release-date-of-tardy-order (strategy-4)
4. find-most-interfering-order with the current tardy

order and make it start earlier (strategy-4)
5. subcontract-least-profitable-order to create more

slack (strategy-5)
6. subcontract-most-interfering-order to create more

slack (strategy-S)
7. overtime-work on weekday (2 hours) (su-ategy-6)
8. overtime-work on weekend (8 hours) (su'ategy-6)
9. increase-capacity-of-most-critical-resource

(strategy-'/)
10. capacity-of-substitutable-resource-of-most-critical-

resource (strategy-'/)

Each retrieved case has been repaired by possibly using a
combination of repair strategies and tactics. Upon recog-
nition of similarities in schedule defects and defect context,

the appropriate repair plan could be applied. If the applica-
tion of a repair step leads to failure, the user is asked to
supply a possible explanation of the failure. The failure is

then stored in memory so it can be retrieved and help the
user avoid similar failures in the future.

3. Example

In this chapter we explain how CABINS works by using
a simple example. In the example we make a schedule of 4
orders on 5 resources. Each order has a client, fixed release-

date and fixed due-date. Every order is composed of 5
operations (ope-1 to ope-5), which should be ordered in that

order. Each operation has fixed duration and requires one
resource which may or may not have a substitutable

resource. The detail specifications of the-e_ample problem
are depicted in figure 3-1. In Figure 3-2 we show the result
of the original scheduling. Each rectangle represents the
reservation of each operation over the time-interval on the
machine. The small number inside each rectangle shows the

order to which the operation belongs. In scheduling the 4
orders, the scheduler failed to meet the due-date of order-3

by 130. (The due-date of order-3 is 790, while order-3 is
scheduled to finish on 920.) Suppose that the client of
order-3 has had the late shipment of his orders several
times, s/he is sure to cancel her/his contract as a result of

our more tardy shipment. Therefore, finding and fixing this
situation is critical. A human scheduler at the factory tries
to fix this problem by consulting with CABINS.

First, CABINS considers the current problem as a case

by compiling the current scheduling results with respect to
the tardiness of order-3. A human scheduler gives ad-
ditional contextual information to it ff s/he finds it's neces-

sary or helpful for finding the solution of the current
problem. The vocabulary of this information is maintained
by CABINS and a human scheduler can update it by
adding/deleting terms. Figure 3-3 shows the contents of
this example problem case.

Then, CABINS tries to retrieve the case most similar

-am-d_ Tam

---- IM

"-" ..-, I
m lgO IlO

1110 _

. -.r. I_

.2.. M r

Figure 3.1: Problem Specifications

F_re 3-2: initial Schedule

Figure 3-3: Current Problem case

cases to the current problem case from its case-base library.
The retrieved case includes not only the problem situation

description but also repairs and repair outcomes. For repair
strategy selection, every solution includes the information

of the selected strategy, the result of applying the strategy
and the explanation of why it succeeded or failed. The ex-

planation of the solution outcome is added to the case by a
human scheduler only when s/he thinks it is necessary for
credit or blame assignment of the selected strategy. Figure
3-4 depicts the retrieved case to solve this example
problem.

After display of the retrieved cases, a human scheduler
examines whether s/he can apply the same solution method

iD

i

|
R

i

!
mm

il

|
M

i

m
m

li

i

ID

i

i

mi

m

50 w

r

w

Ikmw TMN : Tanfum

Omle_ : c_k:_ l_onml Cil ladm_ln Ikw, n

• rewly4_ier: _ Twdlnus: 100

Cllel TeNly Reoe_ : • Ovondl T_diMN : _0

ll_lnierlednoOWlm': _ taul_Order: eudw4

Ilbgl0gO:, 11.4 E_amdodkl4$_go: 17.3

I_k RNIo : 0.0

Ikmmod(_ : _1 _dx;0_tel_ IkNm_s :

Figure 3-4: Retrieved Case

to the current problem. Even when the result of the solution

in the remeved case was failure, the solution may be worth

trying if the explanation of failure given in the previous
case does not hold in the current situation. On the other

hand, a human scheduler should also check the validity of

the explanation of a successful previous solution before s/he
applies it to the current problem. In this example, even

though the fast solution failed when it was applied in the

precedent case, a human scheduler can try to apply it, be-

cause the explanation of the failure given ("Every good sub-

contractor is busy") is apparently related to the description

of the context of the problem ("Industry in Boom"). There-

fore the explanation is not necessarily true in the current
situation which doesn't share the same context. Note that

those judgments are done by a human scheduler. However,

by retrieving and displaying previous similar cases,

CABINS gives her/him useful information to help making

her/his decision. Moreover, the greater the number of new

cases that are added into the ca_-base fibrary, the more

likely CABINS is to retrieve the case which is close enough

to the current problem. Therefore, it becomes progressively

easier through CBR to decide whether the solution of the

retrieved case is applicable or not.

After determining the solution method, a human
scheduler can execute it by interacting with the scheduling

system. Figure 3-5 depicts the result of rescheduling

order-3 after subcontracting the least profitable order

(order-l) in this example. It shows that order-3 meets its

due-date, i.e. the repair was successful.

Figure 3-5: Repaired Schedule

:,_ \ _

4. Concluding Remarks

In this paper we discuss the need for interactive factory

schedule repair and improvement, and identify case-based

reasoning (CBR) as an appropriate methodology. Case
based reasoning is the problem solving paradigm that relies

on a memory for past problem solving experiences (cases)

to guide current problem solving. Cases similar to the cur-
rent case are retrieved from the case memory, and

similarities and differences of the current case with past
cases are identified. Then a best case is selected and its

_repair plan is adapted to fit the current problem description.

If a repair solution fails, an explanation for the failure is

stored along with the-case in memory, so that the user can

! 8void repeating similar failures in the future.
So far we have identified a number of repair strategies

and tactics for factory scheduling and have implemented a

- part of our approach in a prototype system, called CABINS.
As a future work, we are going to scale up CABINS to

evaluate its usefulness in a real manufacturing environment.

" References

[1] Kolodner, J., Simpson, R. and Sycara, K.
A Process of Case-Based Reasoning in Problem

Solving.
In Proceeding of the Ninth International Joint Con-

ference on Aritificial Intelligence, pages
284-290. LICAI, Los Angeles, CA, 1985.

[2] K.Mckay, J.Buzacott, F.Safayeni.
The Scheduler's Knowledge of Uncertainty: The

Missing Link.
In Proceedings of lFIP Worla'ng Conference on

Knowledge Based Production Management
Systems. Galway, Ireland, 1988.

[3] P.S. Ow, S.F.Smith, A.Thiriez.
Reactive Plan Revision.

In Proceedings of the Seventh National Conference

on Artificial Intelligence, pages 77-82. AAAI,
St-Paul, Minnesota, 1988.

[4] Norman Sadeh.
LOOK-AHEAD TECHNIQUES FOR MICRO-

OPPORTUNISTIC JOB SHOP SCHEDULING.

PhD thesis, School of Computer Science, Carnegie
Mellon University, 1991.

[5] Stephen F.Smith, Peng Si Ow, Nicola Muscettola,
Jean-Yves Potvin Dirk C.Matthys.
AN INTEGRATED FRAMEWORK FOR

GENERATING AND REVISING FACTORY

SCHEDULES.

Journal of the Operational Research Society, 1990.

51

8671

Scheduling Lessons Learned from the
// Autonomous Power System

Mark J. Ringer
Sverdrup Technology Inc.

NASA Lewis Research Center Group
Cleveland, Ohio 44135

Ringer@mars.lerc.nasa.gov

/

Abstract

The Autonomous Power System (APS) project at
the NASA Lewis Research Center is designed to
demonstrate the applications of integrated intelligent
diagnosis, control and scheduling techniques to space
power distribution systems. The project consists of three
elements: the Autonomous Power Export System (APEX)
for Fault Diagnosis, IsoL_t/oa, and Recovery (FDIR); the
Autonomous Intelligent Power Scheduler (AlPS) to
efficiently as_gn acfi_tes start times and resources; and
power hardware (Brassboard) to emulate a space-based
power system.

The AIPS scheduler has been tested within the

APS system. This scheduler is able to efficiently assign
available power to the requesting activities and share this
information with other software agents within the APS

system in order to implement the generated schedule. The
AIPS scheduler is also able to cooperatively recover from
fault situations by rescheduling the affected loads on the
Brassboard in conjunction with the APEX FDIR system.

KIPS served as a learning tool and an initial
scheduling testbed for the integration of FDIR and

automated scheduling systems. Many lessons were
learned from the AlPS scheduler and are now being
integrated into a new scheduler called SCRAP (Scheduler
for Continuous Resource Allocation and Planning). This
paper will serve three purposes: an overview of the AlPS
implementation, lessons learned from the AIPS scheduler,
and a brief section on how these lessons arc being applied
to the new SCRAP scheduler.

Space Station Freedom, a Lunar base, or Martian base
represents a critical portion of such a system. The APS
project explores intelligent hardware and software
architectures for efficient system operation and scheduling
of an electrical power system [Ringer I99i].

i

1. Introduction and Motivation

Future NASA spacecraft and planetary surface
installations will require larger and more sophisticated
infrastructure systems and living environments. Such
systems will consist of dozens of resources and hundreds

of attached loads. The electrical power system on the

|

i

J

i

J

i

T_

i
1.1 The Need For (Automated) Scheduling

Onboard a complex space_ _y activities

must be performed, each competing for a multitude of
temporal positions and limited resources. A scheduler

mu_t assign st_t _times to_each _vity With_t-_olating i
any resource or temporal constraints.- The resources
onboard such a spacecraft will be vastly oversubscribed,
having many times more resource requests _ available i
resources. This makes it a _ount objective to I
efficiently utilize the available resources in order to

complete as many activities as possible.
Current NASA =space-_ systems =rely on II

ground-based human-intensive scheduling methods.
Humans provide the main scheduling intelligence for
constructing schedules. These schedules are then I
transmitted to the spacecraft to be executed. If the

scheduling expertise and computers are ground-based,
every anomaly that occurs Onb0ard_e space_ that
incurs a schedule modification would cause significant II

time delays and efficiency losses. With the advent of
more complex space-based systems such as the Space -_
Station Freedom and beyond, a more efficient automated i
scheduling paradigm is necessary [Britt 1988].

1.2 The APS Project Scheduling G0als

The goal of the APS project is automated

scheduling for space systems with proof-of-concept _ :
demonstrations on a power system testbed. In this process
only the high level goals of the system are stated by the
human operators, that is, which activities should be
performed. This information is taken and the scheduler i -

attains the goal of activities executed. The scheduler must

52

u_J

= =
--=

. +

m

_mD

L
w

b

L

L

not only know how to generate the schedule, but must also
know how to implement the schedule, and how to recover

fix_msystem or load induced deviations in the schedule.

2. AIPS Implementation

Since scheduling cannot take place in a vacuum,
the scheduler must be able to interact with other agents as
well as cope with many operational concerns. The
scheduler must be able to generate an initial schedule, it
must have domain specific knowledge of how to
implement the schedule, it must be able to reactively
modify the schedule in the case that the assumed
information of the state of the system changes, and it must
be able to do this within metric time constraints.

2,1 What is being scheduled

.... The APS Brassboard is a power system testbed
that contains a set of power supplies, switchgear, and -
loads that emulate a space-based power system. This
hardware is con_olled by a set of embedded con_ollers
capable of configuring the state of the Brassboard. These
controllers are then used to configure the Brassboard to
supply power to the loads designated by the scheduler.
Figure 1 shows the current configuration of the APS
Brassboard. RBI's and RPC's are remote controlled

switches and an L represents a load attached to the system.
The loads attached to the Brasshoard are resistive

load banks. In order to more closely emulate a space-

based power system each load is given a set of attributes
resembling those of a space-based system. Each activity
Goad) has a time varying profile ofpower demand, earliest

start time and latest completion time constraints, priority,
and temporal placement preference.

Sow_e | Sou_m 2

.--[++:m]--

Figure 1 Brassboard Power System Configuration

2.2 Cooperation Between AIPS and APEX

A1PS is responsible for assigning the power

requesting activities attached to the Brassboard temporal
positions and resources without overallocating the
available power. APEX is responsible for the
implementation of the schedule generated by AIPS. In
order to adequately model the interaction between APEX
and AIPS, a set of protocols was developed to
communicate different scheduling and rescheduling

procedures. Protocols were developed to generate an
initial schedule and modify executing schedules. Figure
2 shows a graphical representation of a schedule generated
by AIPS. A chart showing the interaction between the
three portions of the APS project is given in Figure 3.

= 2.3 _ Scheduling Methods Used

.......... Two modes of schedule generation are needed for

any integrated scheduling system. The ability to generate
an initial schedule and the ability to modify (reschedule)
an already executing schedule in the case of an anomaly.
In the former case, a metric amount of time is allocated to
the scheduler after which a solution must be returned. In

the latter case, the rescheduling results are usually needed
as soon as possible.

INPUTIS_I_,'[.bptimize[mUNle,BOUTlm+_o"'l_m:_l +'xx'r

©:_ _.:_ 2:_ _:_¢_ sa_ _

et 11_3_F2 tu

Figure 2 Representative Schedule Generated by AIPS

The AIPS scheduler has two modes of schedule

generation used for scheduling and rescheduling. The
scheduling engine is an incremental scheduler that uses a
set of activity selection and placement heuristics [Sadeh
1989]. These heuristics are used to construct a schedule
by taking each activity one by one, and determining where
to place the activity on the timeline. These heuristics also
form the basis of the rescheduling engine.

When the scheduler is given more time, it will
use the same basic heuristics along with a Monte-Carlo

type optimization method to generate multiple schedules

-- 53

basedon theheuristics.Sincetheheuristicsuselocal
goodnessinformation,they do riot produce globally good

schedules. Small Perturbations to these heuristic decisions
will often improve the efficiency of the generated
schedule. Each schedule is rated based on a goodness
rating and when time to generate a schedule has run out,
the best schedule (that has been saved in memory) is
returned. With a relatively huge state space of solutions
this method works quite well probing many portions of the
state space that look promising based on the heuristics.

,_pExgjScbsd_i_Airs _St_ri_|
S_ed.lie s l_owledg_ vl_.mR"a*'
Schedule Ge=eratica [.....
.... I Aztivitv and Itmpemenlacton time=
uNr m tel'[a_,e "-

J Resoume Data lElrssgbo=d Stats

Switch [_Swi_h

Conla'ol I [S_es=d
Mel_ge_| |Power

Pow_- Se_w

Figure 3 APS Component Functionality

Rescheduling must also be accomplished "non-
nervously% that is, with as little deviation to the original
schedule as possible [Biefeld 1990, Zweben 1990]. In
systems with human interaction the original schedule
should be followed as closely as possible in order to not

disturb the humans interacting with the system. To
accomplish non-nervous rescheduling, AIPS uses a set of
heuristics that judge the amount of perturbation caused by
a schedule modification versus the change of goodness of
the new schedule.

3. Lessons Learned

Lessons were learned from the design of the
scheduler, implementing a scheduler in a real system, and
integrating scheduling with an FDIR system. Some of the
lessons learned represented shortfalls in the original AIPS
scheduler while others represented ideas for the

improvement of the overall efficiency of the scheduling
system.

3.1 Retrospective

Many of the concepts implemented in the AIPS

scheduler worked quite well. Time was broken down into
smaller scheduling horizons in order to make the problem
solution feasible. Priorities were used to delineate

between the relative value of activities.= Time was i
partitioned at a granularity of five minutes. This was a
reasonable simplification since the time for APEX and the

Brassboard to be configured was on the order of one _
minute. The ability to schedule within metric time i
constraintswas incorporated. A graphical interface was
available for both schedule display and human-scheduler _
interaction.

gl
The largest assumption made about the

environment was that all temporal durations and resource
requests are exact. In a real-life situation, if an activity --_
requests 100 watts for one hour the probability of the •
activity using a constant 100 watts or lasting exactly one
hour is quite small. The problems incurred may include _

undervoltage/overcurrent conditions caus&i by higher than
expected demands as well as propagation of temporal
constraints among activities caused by an extension of an
activity's duration. The need for some type of temporal or

resource padding is necessary. This padding decreases
m

schedule efficiency although it may improve overall
implemented Schedule efficiency since the schedule will
not have to be modified as often with the padding added.

3.2 Perspective -

Much was learned about scheduling, but even
more was learned about implementing a schedulein an

automateddomain. The whole 6bject of schedul_g is to I
produce the best overall system efficiency. In order to
increase the efficiency of the implemented schedule, most
new ideaspoint to the need for the ability for real-time "="
reaction in the scheduler[Johnston1989]. Here are three
examples.

Conventional schedulers use temporal padding to --:

increase the probability of executing a schedule.
Temporal uncertainties cause the forward propagation of
predecessor/successor conswaints and resource availability.
If activities are padded, and this padding is not used, it is =
wasted. It may be possible, however, to assign this m
temporal position/resource to another activity. "Ildswould
entail moving another activity forward in lime to fill the -
temporal position/resource left unused by the previous i
activity. This demonstrates a need for reaction in the
scheduler

Suppose a 500 watt cooling fa_ operates only i
when the experiment temperature rises above a certain !

threshold. This may only operate 10% ofthe time 00% --
duty cycle). How can the resources be allocated to =-
prevent oversubscriptions? If 500 watts are continuously • !

allocated 90% of this energy will be _ (of course, a
conflict free schedule is guaranteed). Energy balancing _-
between multiple duty cycle activities can be used, but
problems arise if all these activities turn on at the same

time. Reaction is needed to delay some of these events if

they desire to consume power when it is not immediately ..
available. In addition, there is the possibility of

IR54

!

T -

J

performing energy balancing in the power system domain.
With energy balancing however, it is necessary to use a
storage type resource such as a battery.

When using reaction, think about the

_moveability _ of an activity. In a Space Station domain,
a dishwashing activity is much more moveable than a
medical experiment using two crew members and various
ground-based experts. The dishwashing activity has very
few attached dependencies while the medical experiment
would require the movement of many human interactors.
The dishwashing activity is easier to move and a small
temporal position change will not affect it as long as the
dishes are washed before the next meal. This information
can be used to make reactive modifications to the schedule

....... without_imp_a_.-tingthe humans who will have to interact

with the system.
The ideas of temporal padding usage, duty cycle

resource level that provides an allowance for deviations
from that level. This would point to the use of a
combination of reaction and prediction. All schedulers

that operate in a real domain actually combine the two,
but the idea of SCRAP is to provide a framework that
allows these ideas to be implemented efficiently.

4.2 How to Combine Prediction and Reaction

Even though building an initial schedule is
computationally intense, the need to continuously modify
the schedule during execution is even more difficult
because of the tighter time constraints in the rescheduling
domain. When rescheduling, all temporal and resource

constraints propagate forward causing even more conflicts
in the schedule, also known as the ripple effect.

Propagating temporal and resource constraints during a
balancing, and activity moveability will allow for more reschedule clobbers previously computed future portions

. _ efficient _ _fl_ted resources. Of course, a scheduler of the schedule. If rescheduling occurs often, the entire
_ _ (and testbed architecture) that allows these ideas to be precomputed schedule may be recomputed by the

implemented remains to be built and tested. The next
section will briefly describe this new scheduler.

4. Implementing the Lessons Learned

The SCRAP scheduler is currently under

development. General improvements in the representation
of the SCRAP scheduler include multiple resources,
multiple resource types (capacity, consumable, and
storage), one second time granularity, activities broken
into tasks, and multiple levels of schedule abstraction.
Since the previous section showed a need for reaction, a
scheduling paradigm that makes reaction easier would be
beneficial.

4.1 Prediction vs. Reaction

Two general categories can be delineated in
scheduling: predictive and reactive systems. Predictive
scheduling allows the efficient allocation of available
resources to activities by generating schedules based on
predicted knowledge of the activity and resource states.
This type of scheduling works well in static domains but
is often hard to implement and less efficient in complex,
uncertain, and dynamic domains. Reaction provides easier
implementation in dynamic domains, but sacrifices
resource usage efficiency caused by the lack of knowledge
used to generate schedules.

In most real world problems a combination of
static and dynamic domains exist. For example, a
completely reactive scheduler might have no information
on predicted resource demands of an activity, while a .
completely predictive scheduler would assume exact

temporal durations and resource requests. Usually, a
combination of these methods are used with a predicted

rescheduling engine. This is an extreme case but proves
the point that it may not be necessary to construct the
initial schedule with a great level of detail. Therefore it

may be wise to schedule far term activities with less effort
or detail than near term activities. In the SCRAP

scheduler this is accomplished by using multiple levels of
abstraction when scheduling activities. Further into the
future the schedule is constructed abstractly, while nearer
to the execution time more precision is used. Also, more

in-depth scheduling methods are used for times nearer to
the execution time than for times further Into the future.

Figure 4 The SCRAP View of Scheduling

Multiple abstractions based on temporal distance
from the execution time will allow for more efficient

forward temporal propagation of constraints in the
schedule since less Information is used for the future

portions of the schedule. The future portions of the
abstractly generated schedule serve as a partially computed
schedule when it comes time to actually schedule at a
more precise level. The scheduling timeline can be looked
at as a rolling horizon, with the future coming closer to

55

I

the present as _ne ticks during execution.
Figure 4 graphically shows the general idea of

SCRAP. The timefine moves in conjunction with the
movement of "real" time. Time "now" is the Current

execution time of the schedule. Time "infuii_" i._ some
time very far in the future. The gantt chart shows I-beams
at different levels of scheduling abstraction. Tl_e solid
lines are precisely scheduled, the dashed lines are
scheduled at a medium abstraction, while the dotted lines

are abstractly scheduled. Resource oversubscriptions are
allowed in the future since the schedule in those areas has

not been computed more abstractly. Nearer to the time of
execution, more scheduling effort and precision is used
and these resource conflicts will be eliminated.

Many of the reactive situations stated in the
lessons learned section can be more easily implemented
using the SCRAP paradigm. In an automated domain the

- scheduler-has much more c0ntrol_over the executing
schedule. This control along with the ability to efficiently
modify the schedule during execution will allow for an
overall implemented schedule efficiency increase.

5. Conclusion

The Autonomous Power System project at the
NASA Lewis Research Center is an ongoing effort to
demo_ the use of knowledge-based diagnosis and
scheduling software in advanced space-based electrical
power systems. The APS project has completed one
development iteration. A scheduling system was
developed for the APS project and integrated with an
FDIR system and hardware. The original AIPS scheduler

was successful as a learning tool and a new improved
scheduler is being developed. Many new ideas for
increasing the implemented schedule efficiency will be
realized using the SCRAP paradigm. The SCRAP
scheduling paradigm will allow for more efficient use of
the available resources.

Acknowledgements

This works was performed under NASA contract
NAS3'25266 with Jim Kish as Technical Coordinator.

Intersociety Energy Conversion Engineering Conference,
1988. N

[Johnston |989] Johnston, M., "Knowledge-Based _.
Telescope S_fi_d_mg ",In Knowledge:B_d Systems in I
Astronomy, Springer-Verlag, 1989.

[Ringer 1991a] Ringer, MJ., Quinn, T.M., and Merolla,
T., "Autonomous Power System" Intelligent Diagnosis and
Control", Proceedings of the NASA Goddard Conference .-

on Space Applications of Artificial Intelligence, 1991. _i
,Jm

[Ringer 1991b] Ringer, MJ., "Autonomous Power

System: Integrated Scheduling", Proceedings Space ----_
Operations, Applications, and Research Symposium, J
NASA Johnson Space Flight Center, Houston, Texas, July
1991.

[Sadeh 1989] Sadeh, N., and Fox, M.S., _Focus of

Attention in an Activity-Based Scheduler", In Proc. NASA
Conference on Space Telerobotics, Pasadena, California,
1989.

II

[Zweben 1990] Zweben, M., Deale, M., and Eskey M.,

"Anytime Rescheduling _, NASA Ames Artificial
Intelligence Branch Technical Report, February 1990.

m

l!l

m
am
U

[]

il

am

References

[Biefeld 1990] Biefeld, E., Cooper, L., "Operations
Mission Planner:. Final Report", JPL Publication 90-16,
March, 1990.

[Britt 1988] Britt, D.L., Gohring, J.R.,
Geoffrey, A.L., "The Impact of the Utility Power System
Concept on Space,raft Activity schedUling_-_oc_ 23rd

m

m

i

56 "ffi

=

E

w

m

w

w
u

c

D

m

m,

m
w

L

w

m.

Planning for the Semiconductor Manufacturer of the
Future

_- Hugh E. Fargher &: Richard A. Smith
Semiconductor Process Development Center

Texas Instruments, Inc.
: P.O. Box 655012, MS 3635

_-': Dallas, TX 75265

/_3723W

Introduction

Texas Instruments (TI) is currently contracted by the
Air Force Wright Laboratory and the Defense Ad-
vanced Research Projects Agency (DARPA) to develop
the next generation flexible semiconductor wafer fab-
rication system called Microelectronics Manufacturing
Science & Technology (MMST). Several revolutionary
concepts are being pioneered on MMST including new
single.wafer rapid thermal processes, in-situ sensors,
cluster equipment, and advanced Computer Integrated
Manufacturing (C!M) software. The objective of the
project is to develop a manufacturing system capa-
ble of achieving an order of magnitude improvement
in almost all aspects of wafer fabrication [1]. TI was
awarded the contract in October, 1988, and will com-
plete development with a fabrication facility demon-
stration in April, 1993.

An important part of MMST is development of the
CIM environment responsible for coordinating all parts
of the system. The CIM architecture being developed
is based on a distributed object oriented framework
made of several cooperating subsystems. The soft-
ware subsystems include: Process Control for dynamic
control of factory processes; Modular Processing Sys-
tem for controlling the processing equipment; Generic
Equipment Model which provides an interface between
processing equipment and the rest of the factory; Spec-
ification System which maintains factory documents
and product specifications; Simulator for modelling the
factory for analysis purposes; Scheduler for scheduling
work on the factory floor; and tile Planner for planning
and monitoring of orders within the factory.

This paper first outlines the division of responsibil-
ity between the Planner, Scheduler, and Simulator sub-
systems. It then describes the approach to incremental
planning and the way in which uncertainty is modelled
within the plan representation. Finally, current status

and initial results are described. _ _. _

Planner/Scheduler Division of
Responsibility

One role of the Planner is to plan and predict work
completion dates, given a required confidence level, set

of plan goals and the current state of the factory. This
requires that the plan representation model factory re-
source utilization over time, and that the plan be con-
tinually/apdated to reflect unexpected events such as
machine failure. This role is not provided by the Sched-
uler, which performs more locally based decision mak-
ing.

As part of this role, the Planner is able to warn the
user of the impact of unexpected events. For example,
the Planner can determine whether work completion
dates are slipping, well in advance of their quoted de-
livery dates. The user can also be warned of any work
which has been automatically replanued due to unex-
pected events, so that they may request changes to the
plan if required. Automatic rep]anning of work will re-
main an option to be invoked if desired by the user.

The ablity to request plan changes is another key
Planner role which is not provided by the Scheduler.
'What-if' plan changes refer to requests such as putting
a machine on hold or introduction of new work.

Finally the Planner constrains work release into the
factory, based on the current plan being executed. This
is important since early release of work carries the
penalty of increased WIP and early completion of work
is undesirable. The high level plan representation does
not allow the Planner to determine the precise too-
ment for work release, which may be based on low
level factory data such as machine queue sizes. This
is an important role for the Scheduler, since work re-
leased early will only increase WIP by placing work on
a queue. Work release is accomplished by the Sched-
uler requesting more work from the Planner, with the
Planner satisfying the request as best as possible given
the work planned for release over the next chosen time
interval

Another role of the Scheduler is to make sequencing
decisions for work on the factory floor, based on de-
tails such as queue sizes, machine setups, and so forth.
Although such decisions may be based on currently
planned ship dates, this service cannot he provided by
the Planner (which does not distinguish between iden-
tical resources in the plan representation). Finally, the
Scheduler is responsible for tracking work in process.

w

57

The Planner influences the schedule being executed
by constraining work release and predicting work com-
pletion dates, which may be used in Scheduler dispatch
decisions. However, work released into the factory can-

not be directly influenced by the Planner. The Sched-
uler provides important feedback to the Planner by

tracking work in process. This can be used to update
cycle time estimates used by the Planner, and to warn
of tardy work which may cause replanning.

Planner/Simulator Division of
Responsibility

Both the Planner and Simulator systems provide tile
user with the ability to determine the consequences of
'what-if' requests. However, the allowed requests differ

fundamentally between the Planner and Simulator.
Planner 'what-if' requests may be made on a single

plan only, and result in incrementally updating the ex-
isting plan to satisfy the request. Typically, the exist-
ing plan reflects the current state of the factory, l_pid
feedback is required, since the requests may refer to the

effect of putting a machine down in the near future for
maintenance, or the effect of introducing a new hot lot
onto the factory floor. These requests must be rapidly
evaluated if a manager is to fully benefit, since they
may require immediate attention. The ability to have

multiple 'what-if' plans open simultaneously will also
be important if possible plan options are to be com-
pared.

In contrast to this, Simulator 'what-if' requests are

typically performed by running a suite of simulations,
using factory conditions possibly selected at random
from a set of work release or machine failure distribu-

tions. Feedback is not required immediately since sire-

ulation results typically refer to changes which are not
immediately put into practice. Example requests may
include the effect of introducing new machines into the
factory, or re-training several of the operators.

The Planner system may interact with the Simulator
in two distinct modes. First, by providing a static work
release plan, generated using some initial factory sta-
tus, which provides the Simulator with a work release

time table. This is particularly important for verifying
the plan model and algorithms, since simulated work
completion should match plan predictions if the Plan-
ner is correctly predicting processing capacity. Second,
by providing a dynamic release plan, which is updated

in response to simulated events (such as machine fail-
ure) during simulation execution. This is important for
verifying Planner response times, which must remain
small if the Planner is to be truly 'reactive'.

Approach to Incremental Planning

A plan representation has been chosen which models

the manufacturing environment in enough detail to
achieve the planning functions, while allowing incre-
mental updates due to replanning. The following sac-

tion outlines the representation, along with the search
algorithm used to generate and update plans.

Modelling the Plan

Tile plan representation is based on the processing ca-

pacity of resource groups within the factory, divided

into contiguous time intervals. Each resource group
has an associated set of processing capabilities which

every member of the group is able to perform. Since a
single semiconductor manufacturing machine may per-
form several different processes, a machine may be a
member of several different resource groups. Each re-
source group is represented over contiguous time inter-
vale, where the planned processing commitment and

remaining capacity is recorded.
The plan representation does not distinguish which

resource, within a resource group, is planned to pro-
cess a particular piece of work represented within a

plan. The representation simply commits processing
time for the whole resource group to s particular piece
of work. Furthermore, the plan representation does
not sequence processing within each time interval, only
between time intervals. In this way, the level of detail
modelled by the plan is a function of both resource

groups and time interval sizes. If resource groups con-
tained only one resource, and all time intervals were

shorter than the shortest processing step, the plan rep-
resentation would reduce to a Gantt chart describing
the processing schedule for each resource. If, on the
other hand, the entire plan were covered within a sin-
gle time interval, the representation would reduce to

the model frequently used for planning within semi-
conductor manufacturing [2]. The 'time-phased' rep-
resentation outlined above lies somewhere between the
two extremes.

The plan representation must accurately reflect fac-
tory capacity, projected forward from the current clock

time. To ensure this, all planned processing for the ear-
liest time interval is removed from the plan represents-
tion when the clock time exceeds the time interval up-
per bound. Planned processing is then compared with
the current state of the factory (via the WIP tracking
system) and the system user is warned of any work

which appears tardy on the factory floor. Finally, the
processing capacity of resource groups within the first
plan time interval reduce linearly with time, to reflect
the constantly increasing clock time.

The Planning Algorithm

The planning algorithm is divided into two parts, that
of determining the sequence of work to be planned
(given its due-date, customer priority, etc), and incor-
porating the required processing into the plan repre-
sentation (given the current resource group commit-
manta, type of planning requested, and constraints

imposed on which time intervals processing may be
planned for). Planning may use the existing plan rep-
resentation as a starting point, or some user defined

58

m

R
II

g

km

li

lj

m
T_

II

II

I

II

U

mB

l

U

J

m

um

variation if multiple 'what-if' plans are to be explored.

Deciding the sequence of work to be planned ul-
timately determines the overall product mix, and is
determined by an ordered list of goals in which the

; _ first misai,_sfied plan goal is used to sequence work for
"_ planning. Tile ordered goal list may be thought of as

defining the Planner 'strategy'. Each goal sequences
_ work using its associated heuristic, which is designed
_ to guide plan generation in favor of satisfying the goal.

All goals have numerical values, which must be met by
the plan if the goal is to be satisfied. Once a goal is

? :

_ satisfied,processing moves to the next unsatisfied goal.
.- By 'interleaving' similar goals in tile ordered list, the

Planner strategy can be used to satisfy several differ-
._ ent goals, while ensuring that the plan never deviates

= much from satisfying any one goal [3].
Once Work has been sequenced for planning, it must

be incorporated into the time-phased plan representa-
'_ tion. Tiie resources required for each processing step

nmst be committed over some time interval so that no
resource group is overutilized and all constraints on

-_ processing are satisfied. Plan independent constraints,
I_1 such as processing times and required resource groups,
_-- are determined by querying the Specification system.

Within these constraints, the planning search algo-
rithm determines precisely in which time interval to

_ commit resource groups for each processing step.

The planning search algorithm uses a work repre-
sentation in which wafer processing is divided into dis-
crete segments, Where each segment represents process-

_- ing on resources which may be completed within one
time interval of the plan representation. Division of
wafer processing into segments is performed by calcu-
lating which segment each processing step would lie

1,,, in if processing were distributed evenly over the en-
tire wafer cycle time. Since the wafer cycle time is

_ greater than the minimum theoretical processing time,
such a representation accounts for the expected queue
time during wafer processing. Each search operation
either inserts or removes segments from the plan repre-
sentation, terminating when all required segments for
processing work have been inserted, or when no further
processing capacity remains.

The search algorithm uses a modified beam search
with chronological back-tracking. Maximum beam
width is determined by the ratio of measured wafer

_ cycle time to minimum theoretical cycle time, since
the greater the ratio, the greater the choice of time

_- intervals for planning each processing segment. The
search space is further reduced by constraining the

_ beam width to increase linearly wit!l search depth.
One advantage of this is that solutions which appear
unpromising at an early stage in the search are quickly
discarded, whereas those which appear more promis-
ing are more thoroughly searched. Anothe r advantage

:_ is that 'disjoint' plan representations, in which no re-
sources may be available for an extended period of time

_ due to factory shut-down, do not prevent new work

59

from being planned, as long as sufficient processing ca-
pacity exists while the factory is operational.

Replanning due to unexpected resource failure re-
quires reasoning at both the goal list and the search
algorithm level. To ensure that resource groups are not
overutilized in the plan representation when s resource
goes down, currently planned work must be sequenced
for replanning. This is performed by removing work
until resource utilization levels are not exceeded, and
then replanning this work to be released at a later date.

Results

Table 1 illustrates performance when using this algo-
rithm to plan new work into an existing plan. The
table shows the fraction of successful search nodes (for
which a processing segment was successfully inserted
into the plan representation), failed nodes (for which
there was not enough processing capacity in the at-
tempted time interval), and backtracked nodes. The
results illustrate that even for a highly utilized factory
the search required to plan new work, for which there is
processing capacity available, is not prohibitive. Fur-
thermore the percentage of backtracked nodes does not
continue to increase with committed utilization. In a

semiconductor fabrication facility an average of 80%
utilization across all machines is considered very high.
The results in this case assume that human operators
are not a bottleneck resource.

Tablel:

Committed
Utilization

Percent
10%
20%
30%
40%
50%
60%
70%
S0%

Successful
Node

Percent
100%
100%
47%
44%
36%
35%
32%
30%

Failed
Node

Percent
0%
0%

40%
44%
50%
52%
56%
58%

Backtracked
Node

Percent
0%
0%
13%
12%
14%
13%
12%
12%

Approach to Modelling Uncertainty

The plan representation must be able to model the un-
certainty inherent in work cycle-times, since such cycle-
times often form the best available data for planning.
The following section outlines the approach taken to
representing uncertainty in the planning process.

Domain Uncertainty

Two areas of uncertainty are tackled by the Planner,
both corresponding to data which is represented by a
probability distribution. The first is wafer yield, which
is recorded as the probability of manufacturing n good
chips given the starting number. The second is cycle
time, which is recorded as the probability of completing
all manufacturing steps on a wafer in a given time.

Thissectionoutlineshowcycletimedistributionsare
usedwithin the Planner.

The objective of the Planner is to predict work com-
pletion dates to within some given confidence, which
may be used to negotiate with customers. For example,
an order may be represented within the plan so that it
completes processing on Friday to within a 50% confi-
dence level, but on the following Monday to within an
80% confidence level.

]V[odelli,g Uncertai,ty

Uncertainty is modelled within the Planner by reinter-
preting the plan representation in terms of fussy sets
[4]. Resource group utilisation for a given piece of work
has a'degree of membersliip within each t|me interval,
which reflects the expected utilisation of resources for
this work during the time interval. For example, the
total cycle "time distribution for wafer processing may
be interpreted as the probability distribution for com-
pleting the final processing step at a given time. This
can be modelled within the plan representation by as-
signing degrees of membership between time intervals
to match the given probability distribution for tile fi-
nal processing step. The advantage gained by this in-
terpretation is two-fold. First, computation on fussy
sets is much less expensive than on probability dis-
tributions. Second, cycle time uncertainty within the
time-phased representation means that resources com-
mitted to processing a given set of wafer steps within
one time interval will very likely process some of those
steps within other time intervals. This closely matches
the concept of membership degree within fuzzy set the-
ory.

To enable the Planner to reason at this level of de-

tail, knowledge of the total processing cycle time dis-
tribution is required, as well as some estimate of the
distributions required to complete each time interval's
worth of processing. Intermediate processing steps for
which data is recorded in semiconductor manufactur-
ing are traditionally referred to as 'log-points'. If Iog-
point data were available for processing steps within
each Planner time interval, this data could be used to
model the distributions for required processing over all
time intervals. However, this log-point data may not
be available for all processing steps, only the final cycle
time. For this reason, the Planner uses an algorithm
to estimate log-point cycle times, given the final cycle-
time which is available as a distribution.

The algorithm attempts to decompose the final cy-
cle time probability distribution into cycle time distri-
butious for each successive time interval throughout a
wafer's processing. This is done so that:

• Interval cycle time distribution variance increases
with successive intervals, to reflect increasing future
uncertainty.

• Interval cycle time variance is bounded by the final
cycle time variance.

• The fins] computed interval cycle time distribution
matches the input cycle time distribution.

The algorithm represents distributions using fussy
numbers and performs All calculations using ful_sy
arithmetic. -T_|s approach is b_ on the job shop
scheduling system FSS [5] which also uses fuzzy arith-
tactic to model increasing uncertainty in generating fu-
ture schedules. A key advantage with this approach is
that calculations on distributions can be performed ex-
tremely rapidly. The algorithm has been tested against
simulated results, as described in the next section.

0nee t_me_terva| cycle time _str_bu-tions |lave been
calculated for a given wafer processing route, they are
usecl to 'funify' the resources committed to processing
steps during each time interval of t-he plan represents-
tion. This is achieved by using the funification opera,-
tot (defined for fussy set theory) and results in resource
utilisation being 'smeared out' within the plan repr_
sentation. This reflects the uncertainty in the time at
which planned processing will actually take place in
the factory.

Once work has been planned for a wafer with a given
processing route, the final cycle time distribution is
used to quote the completion date to within a given
confidence level. For example, if 50% of the final time
interval processing has been planned to comp|ete by
Friday, the wafer may be quoted to complete on Friday
with a 50% confidence level. In fact, the confidence
level associated with any delivery date may be quoted.

Finally, measured cycle time distributions provide
one important method for feedback to the Planner
from the outside world. Cycle time distributions may
be updated incrementally as wafers complete process-
ing for each type of manufactured technology. Further-
more, since cycle times are closely related to WIP and
product mix, distributions used for planning should be
chosen to reflect current conditions. However, plan-
ning work in semiconductor manufacturing has shown
the difficulty in predicting cycle times up-front, which
are highly sensitive to conditions such as resource sis,-
tus and WIP levels.

Results

Table 2 illustrates the cycle time mean and variance,
for part of s processing sequence completing during
s given time interval, calculated using simulation end
the proposed fussy arithmetic algorithm. The simu-
fated @T mean and variance were calculated by per-
forming s series of simulations, forward in time, b_.c[
on known time interval cycle time distributions. The
resulting final cycle time distribution (at time inter-
val number 5) was then plugged into the algorithm to
generate the set of estimated intermediate time inter-
val cycle time distributions. The algorithm estimated
time interval distributions were then compared with
the simulated distributions by measuring their mean
and variance. Time units are measured in numbers
of time intervals. Agreement between simulated and

m
m

g

|
m

m

J

|

i

W

i

_m

I

z

w

I

m

I

z

15_

i

|

i

m

6O

m

! t=$

J m_ffi

q_

D

w

l m

| i

_ h

fussy means remains close, while agreement between
simulated and fussy variance improves over several
time intervals. Agreement improves as CT variance
increases due to the greater number of members in the
fuzzy number used to represent the distribution. We

intend to explore several possible variations on the al-
gorithm in an attempt to improve agreement.

Table2:

Time Simulated

Interval Mean

I 1.11

2 2.21

3 3.30

4 4.40
5 5.48

Fuzzy Simulated
Mean Variance

1.00 0.10
2.04 0.20
3.10 0.28
4.07 0.37

5.48 0.45

Fuzzy
Variance

0.00

0.04

0.16
0.37

0.45

Current Status

A prototype CIM system was built as one of the first
tasks of the CIM program. This helped with the overall

system design, as well as provide a platform in which
to plug prototype subsystems and get feedback from
potential users. However, only small parts of each sub-
system had been designed at this stage.

All CIM subsystems have now been designed and
documented, and are currently being implemented in
Smalltalk. The MMST Planner is currently about 25%
of the way through the development phase. Interfaces
between subsystems have not yet been completed, so
many of the results shown above have relied on 'stub-
bing' subsystem functionality external to the Planner.

Functionality has been stubbed to match the expected
external system performance as closely as possible, and

is based on a detailed scenario analysis for MMST [6].
In particular, wafer processing requirements and re-

sources have been chosen to reflect those described in
the analysis.

The Planner mechanism that requires the most de-
velopment is the 'what-if' capability. Several design
approaches have been documented, although determin-
ing the best approach (for example, in terms of speed
of response) will require experimental measurements
which may only be obtained by implementation.

Finally, full CIM installation and integration within
a TI fabrication facility remains as the fined stage in
the MMST program.

Conclusion

A reactive planning system for semiconductor wafer

fabrication has been designed and partially imple-
mented, as part of the MMST program, jointly funded
by TI, Air Force Wright Laboratory and DARPA. The
planning system has been designed to maintain a plan

which isconstantly up to date with the factoryenvi-

ronment, and which can reason with uncertain data

such as processingcycle time distributions.The plan-

ning algorithm generatesplans using a variationon the

traditional beam search, and models uncertainty using
a fussy set approach. Initial results indicate that the
system is able to incorporate new work into an exist-

ing plan without incurring a large amount of compu-
tationaily expensive backtracking. However, further
work will be required to verify plan results in an ex-

isting wafer fabrication environment, and to integrate
the Planner with the rest of MMST.

Acknowledgements

This work was sponsored in part by the Air Force

Wright Laboratory and DARPA Defense Science Of-
riceunder contract F33615-88-C-5448.

References

[I]J.McGehee, D.Johnson & 3.Mahaffey: 'Semiconduc-

tor manufacturing: a Vision of the Future',Texas

InstrumefitsTechnical Journal, vol.8,no.4, pp.14-

26, 1991

[2] PMDS Technical Report CSC-TR89-004, Texas In-

struments internalreport,1989

[3] PMDS Memo 91-DR-01, Texas Instruments internal

report,1991

[4]A.Kaufmann & M.Gupta: 'Introduction to Fuzzy

Arithmetic',Van Nostrand Reinhold Company, New

York, 1985

[5] R.Kerr & R.Waiker: 'A Job Shop Scheduling Sys-

tem based on Fuzzy Arithmetic',Proc. of 3rd Int.

Con. on Expert Systems & Leading Edge in Prod.
k Operations Man. pp.433-450, 1989

[6]J.McGehee: 'ScenarioAnalysis',Texas Instruments

internalreport,1001

- q VJ o
18673-

Uncertainty Management by Relax tjo n of
ConfliCting oC0nstraintS in Production Process Scheduling

Jfirgen Dorn - Wolfgang Slany - Christian Stary

Chrlstian Doppler Laboratory for Expert Systems

E184/2, TU Wien, A-1040 Vienna, Austria, Europe

Phone: +43-1-58801/{61271612316124}

Fax: +43' i"5055304

E-Mail: {dornlwsilstary} @vexpert.dbai.tuwien.ac.at

Abstract

Mathematical-analytical methods as used in
Operations Research approaches are often in-

sufficient for scheduling problems. This is due
to three reasons: The combinatorial complex-
ity of the search space, conflicting objectives
for production optimization, and the uncer-
tainty in the production process. Knowledge-
based techniques, especially approximate rea-
soning and constraint relaxation, are promising
ways to overcome these problems.

A case study from an industrial CIM environ-
ment, namely high-grade steel production, is
presented to demonstrate how knowledge-based
scheduling with the desired capabilities could
work. By using fuzzy set theory, the applied
knowledge representation technique covers the
uncertainty inherent in the problem domain.
Based on this knowledge representation, a clas-
sification of jobs according to their importance

is defined which is then used for the straight-
forward generation of a schedule.

A control strategy which comprises organiza-
tional, spatial, temporal, and chemical con-
stralnts is introduced. The strategy sup-
ports the dynamic relaxation of conflicting con-
straints in order to improve tentative schedules.

1 Introduction

The task of scheduling jobs and resources in a factory is
difficult for mainly three reasons. First, one has to deal
with the combinatorial complexity due to multiple ways

of job accomplishment [6]. Second, conflicting objectives
may hinder the definition of an undisputed optimality
measure [11]. Finally, there is uncertainty in the exe-
cution of jobs due to the lack of knowledge about the
exact physical facts underlying the production process.
Thus, it becomes senseless to compute exact scheduling
solutions. Often reactive scheduling is proposed as a so-

lution to these problems [10]. To illustrate the situation,
an existing scheduling task is described in the following.

In a joint project between the Alcatel-Elin Research
Center Vienna and the CD-Laboratory for Expert Sys-

tems, an expert system was developed. It supports the

62

J

m

m

|

g

schedule must contain a factor representing the impor-

tance of jobs. Hence, an evaluation function is defined to
assign an importance value to a schedule by addiug up
the importance values for each job in the schedule. These

technical staff of the BShler steeimaking plant in gen- re
erating weekly schedules for steel heats [2]. Side condi-
tions are the same as for the approach proposed in this

paper, with the difference that no attempt to handle un-
certainty was made in this first expert system. BShier is
one of the most important European producers of high-
grade steel. The plant produces tool steel, high-speed
steel, and stainless steel. There are hundreds of different
kinds ofsteel, W_th 42 chemical elements varying in their ill
specification. The requirements concerning steel quality

are very strong. == : ._

One problem in scheduling is that residuals of one heat Ill
in the electric arc furnace may pollute the next heat. As
a general rule of thumb, it can be said that 3% of a
chemical element in a heat remain on the electric arc _-
furnace's wall, and 3% of the difference of this elemen!
in the first heat and the Second heat will be assimilated

by the second heat. Two heats that have similar shares
of the element in question pose no problem. Howev_:r.
if the second heat has a much smaller percentage than IB
the preceding one, the pollution by the residual from the
first becomes too large to be compensated by decreasing

the amount added to the second heat. This either means m
that the quality of the second heat will be badly influ-
enced, or if the polluting element is expensive, that it
will be wasted, and money is lost. In the following these
two constraints are called compatibility rule. The com-
patibility rule is effective for all 42-chemical elements.
but usually only 8 main elements are considered, since

the others generally are not expensive, do not vary sig- _i
nificantly, or have no great impact on the steel quality.
Uncertainty arises because exact values for the chctnical
elements can very often not be mesured. Further con-
straints for the scheduling process are temporal, distri- -_IIw
bution control, spatial, and resource restrictions on and
among the aggregates.

2 Uncertainty Management U

One objective of the presented strategy is to schedule as

many jobs as possible. In order to get the most impor- _
taut jobs scheduled, the evaluation function for an entire

No. Name Time Type Ni Cr Co Mn Fe V W Mo

• . 51 2o oo51o.o5 I
h lgOl.OOSI.OOSl .25 I

I I 9oI .oosI .oosI .251
h._.L..7 K]16

Table 1: Characteristics of given heats in the example

w

latter values are Calculated by considering the resource - 2.1 Qualitative Representation and Evaluation
requirements, due dates, and various other attributes of
individual jobs.

A first schedule is generated straightforward by con-
sidering most important jobs first. The first schedule
may not contain all jobs and still violate some con-
straints. In these cases, jobs in the schedule will be ex-
changed to find a proper schedule. A hill climbing search
method is used to control this exchange. To compare so-
lutions, an evaluation function based on the given con-
straints is needed. Fuzzy logic is a sound AI-technique
to manage uncertainty as present in this problem [8, 12].
Since [9], and as recently as in [1], fuzzy logic has been
successfully applied to knowledge-based scheduling. Our
approach generalizes these former ones to include, beside

temporal constraints, other kinds like chemical or orga-
nizational constraints.

In section 2.1, we propose a method how the given
constraints may be represented by fuzzy sets and how
an evaluation for a complete schedule is computed, sec-

tion 2.2 explains the generation of a preliminary schedule
and the search for a better schedule. Such a schedule can

only be found if constraints are relaxed, because many
constraints are antagonistic. This relaxation will again
be based on fuzzy sets.

A small example of the application is described to il-
lustrate the used techniques. The example is restricted
to one furnace and the planning horizon is only several
hours. _Xd_l_tionally, only a subset of the given con-
straints is considered in order to reduce the complexity
of the example. The existance of a schedule until 5am
is assumed. The input is a list of jobs that should be
scheduled. The first heat h0 in the list is the latest job
scheduled from the last scheduling process. The main
ingredients of each order are given in table i.

Three heats of table 1 have special characteristics that
imply their classification as very important jobs. Heat

ha is processed on the continuous caster (CC) and has
a delivery date. The delivery date is 4pm, the overall

treatment takes about five hours, and therefore the pro-
cessing should start at 11am. Heats hs and he shall
be cast into big ingots with a special BESTl-treatment.
This implies that they cannot be produced immediately
one after the other. Instead, there should be a time in-
terval of at least ten hours between them.

1BEST stands for BShler Electro Slag Topping.

of Constraints with Fuzzy Logic

The constraints of the given application can be divided
into three categories: Constraints on a particular job,
temporal constraints, and constraints on the compati-
bility of jobs.

Constraints on a particular job are constraints based
on required resources or aggregates. They are used to de-
scribe the importance of jobs. This importance of jobs
is used later to control the generation of a preliminary
schedule by scheduling the most important job first. Ill
our sense, this importance is a combination of the diffi-
culty to schedule a job in general and its urgency, that. i._
to schedule it for the actual planning horizon. A job that
requires a bottle-neck resource like the continuous caster
is usually difficult to schedule. A job with a certain de-
livery date is important, because it must be scheduled
in the planning horizon in which the delivery date falls
Jobs that are not important may be shifted to the next

planning horizon. To schedule a shifted job eventually,
it is necessary that the importance of the job increases
over time. The range of fuzzy linguistic variables to rep-
resent importance is: urgent, reD, important, importam,

medium, and not important. ...-

The classification of jobs in the list is dependent on the
situation in the actual planning horizon. For instance,
if for the actual planning horizon many jobs with a high
chromium-nickel-alloy exist, then a high percentage of
nickel (Ni) is no problem. On the other hand, when there

are only few jobs with high nickel percentages, these jobs
can be difficult to schedule.

Temporal fuzzy values can be used to describe that
jobs are too early or too late. The fuzzy value describes a
degree of uncertainty in both direction. One can identify
the following linguistic variables: very early, early, in
time, late, very late. For the evaluation of a schedule
it makes no difference whether jobs are too early or too

late. Therefore, the five variables are mapped onto three:
in time, nearly in time, and not in tirne_ Representation
of temporal constraints with fuzzy sets is discussed in

detail in [1, 3, 4, 9].
The compatibility of two jobs integrates several fac-

tors: Different chemical elements, and the work load of
workers. The compatibility between two jobs is calcu-
lated by first evaluating the compatibility for each fac-
tor separately, in order to get restricted compatibility
measures. Accordingly, we define six fuzzy sets for the
global as well as for each restricted compatibility: very

U

-, 63

, oo.o,T,o..E .iPFo. IoNJ I O° CLuS'° ICOMPA IB,LITY
1-- Iliighqttly .ame *lightmolY more mmu_Ch _thte _oewry low medium high _e_

N.......... ;
g_ 50% 100% 240% ,577% 138"/% 3333%- rain 1

g rad_ I l°garithmic ' l t._ center of gravny[gTltduation compatibility rule (3%) J

fuszy number rmage [0,1]. hslNil = 1200%hrlNi] -_ Example: The nickel-compatibility for h5 preced- [ling h?, both u specified in table 1. According to
region of physic _1 incompatibility. I this result, the nickel-compatibility for h_ preced-

e) H0[E] (percentage of dement g in H0), in % of H1 [El [ing hr ii more low than mediurn IH0 iJ the heat (job) preceding the heat HI.

Table 2: Fuzzy inferenceto compute chemical compatibilitybetween two heats

high, high, medium, low, very low, and no compatibility.
The latter is a special case, since a sequence being clas-
sifted incompatible can never be scheduled in this order
because of hard chemical constraints to be observed.

The compatibility calculation for nickel is shown in

table 2. The condition parts of the fuzzy inference rules
used for this calculation contain statements about the

percentage of some chemical element in the first heat
compared to the following heat. In the example taken
from table 1, the heat hs must contain hs[Ni] = 1.2%
of the chemical element nickel, whereas heat hr should

contain only hr[N*q = 0.1%. The relative percentage of
hs[Nsq is therefore 1200% of hT[Nq. The question is,
considering only nickel, whether the sequence hs preced-
ing hr is allowed or not, and if yes, how good this se-
quence is. To decide this with the given fuzzy inference
rules, the linguistic variables and numeric values must be

matched. This is done with a fuzzy membership func-
tion as defined in table 2, both for the condition and for

the conclusion part. In the example, the numeric input
of 1200% relates more or less with the linguistic vari-
ables more and much more. Following the dotted lines
to the conclusion membership functions for such rules
as "IF the percentage of chemical element E in heat H0

is more than in heat HI, THEN the E-compatibility of
H0 preceding Hi is mediurrf or "IF the percentage of
chemical element E in heat Ho is much more than in

heat HI, THEN the E-compatibility of H0 preceding

Hs is 1o_', membership functions lowijvq(hs,hr) and

mediumilv,](hs, hr) appear as a result of the calculation.
Their combination is a new membership function defin-
ing the nickel-compatibility of hs preceding hr. In order
to compare the result with other compatibilities, it must
be defuzzified. This can be done by calculating the cen-

ter of gravity of the surface and then taking the value
of its x-coordinate as the result, a standard method in

fuzzy calculation [8].

The conditions of the fuzzy inference rules consider

only relative values for the percentage of elements like
nickel in the two compared heats. Absolute values are of

m

b

K

m

m
minor interest for the compatibility problem, but cotJhl

easily be modeled by introducing more complex three-
dimensional membership functions. We chose a half-
logarithmic graduation to be able to handle those rel-
ative values. Since the compatibility rule is asymmetric
and only restricts the second heat to a minimal value

for a certain chemical element, which must at least be
present in this heat, the graduation is asymmetric, too,
and only logarithmic on the right half. Beside simplify-
ing the visualization, this logarithmic scale has an ad-

ditional positive effect, since positions on the right side i
of the 100% mark that are still near the center, are pre-
ferred and get more attention per unit than positions
more close to the physical limit on the far right This
reenforces the natural meaning of the fuzzy linguistic

variables positively.
The fuzzy inference rules like those used in table 2 --

give several fuzzy judgements howcornpat_[e _he heats W i
are. These judgements in form of membership functions
can be simplified to the linguistic variable to which the
judgement mainly pertains. The resulting fuzzy-values
can all be combined by computing a Weighted mean of i
the defuzzified values to get one overall value for the two

heats:= _

comp(H,,gj) = __, .q(E)cornPtE](H,,H_) _
EE{WI,Ni,Cr,. }

In this formula, g(E) is the normalized weight, of a rule __
and g is a member of the set of all factors influencing the
compatibility, namely work load (WI) and the 42 che,ni- J

cad elements like nickel or chromium. This computation
is done for every pair of jobs that may be scheduled. The

result is a matrix of fuzzy values where the fuzzy values i
describe how compatible the sequence of the job of a
column after the job in a row is according to all rules.
After defuzzifying the matrix, numeric values that can
be rernatehed with the original fuzzy i;ngu_tic variables _
can be written in the matrix.

Table 3 shows the matrix for the example. It will

be used for the construction of the preliminary sched- i i
ule and during the improvement process. To evaluat_

64 i :

H

=

| I

w

w

=." m

Note: H0

ho
hi
_2

hz
hi
hs
h6
h7

hi h_
low medium

- very low
very low

medium high
high very low

medium high

medium high
medium medium

h3

high
very low
very 10w

very low
high
_fgh
low]

h4

|ow

very high
|ow

medium

medium

medium
medium

as

high
low

verylow

high
medium

very high
medium

h6

high
low

very low
high

medium
very high

medium

h7

medium
very low
very low

high
medium
medium
medium

,recedes HI, e.g., the compatibility of heat ha preceding h_ is high, whereas h_ preceding ha ts very low.

Table 3: Compatibility matrix for heat sequences

©ompatibilitll: high medium low high very low low

I hol h., 1 h, I hzJ h_[ha I h6l
time: 5am 7am Sam llam lpm 3pm 5ptn

Table 4: Preliminary schedule for example heats

schedules during improvement steps, it is necessary to

compute an evaluation function for the compatibility of
the entire schedule. This can be achieved with a fuzzy

and-operator.

2.2 Generating a Schedule

To generate a preliminary schedule, the jobs are classi- :

fled regarding their importance. Then they are sched-
uled in the sequence of their importances. Scheduling
a job means assigning a temporal interval to it. These
intervals are spread over the entire planning horizon be-
cause of temporal and resource constraints. During the
scheduling process, empty intervals are created between
scheduled jobs. The compatibilities with the jobs before
and behind this empty interval are not considered. If
empty intervals with a duration of approximately one
job are created, they are filled with compatible jobs as
long as there are some available.

Usually, some jobs can not be scheduled, because no
interval exists where they would not violate some com-

heat hal An empty interval remains between h2 and hs.

There exists no heat in the given list that fits between hu
and he. To fill the interval, hi is scheduled between h_

and he. Heat h4 remains for the next planning horizon.
This preliminary schedule is illustrated in table 4.

To improve a schedule, a measure for schedules that
evaluates which schedule of two is the better one is

needed. Unfortunately, the violation of constraints can
have far-reaching consequences. The violation of a tem-
poral constraint can cause the need for more resources
such as additional energy, or rescheduling in subsequent
plants. The violation of chemical compatibility can re-
sult in the loss of a heat which would be a heavy fi-

nancial damage. On one hand, one must consider hard
constraints that may not be relaxed, and on the other
hand constraints must be relaxed to a certain degree in

order to get a feasible schedule with as many jobs as
possible. In order to evaluate all these antagonistic con-
strain,s, an evaluation function based on the introduced
fuzzy values is needed.

patibiiity constraints, in addition, some empty intervals The actual schedule is called the "currently best sched-
remain in the schedule, and the Compatibility betw&fi _ ule'. To improve a given schedule, a potential constraint

the jobs adjacent to this interval is usually bad. In order violation that could be improved is searrchcd. In I.hc cx-
to cope with the given complexity, instead of backtrack-

ing to the last scheduling decisions, such a preliminary
schedule is repaired or improved by exchanging jobs.

In the list of jobs given in table 1, job ha has a deliv-
ery date. It will be scheduled first. Thereafter, jobs hs
and h6 will be scheduled, because they are very difficult
jobs. They include a special treatment and therefore
need a long time span between each other.Fortunately,
one of them fitswell afterh0. hs ischoosen to be the

successorofh0. The other isscheduled at the end ofthe

planning horizon. The job hv isscheduled between hs
and h3 to closethe empty intervalbetween them. Heat

h2 isanother difficultjob for the actualplanning hori-

zon, because most heats have high percentagesofnickel

(Ni) and chromium (Cr),and h_ has only small amounts
of both. Moreover, h2 has large amounts of vanadium

(V) and tungsten (W). The best place for h2 is behind

ample, such a violation is found between heat h., and hi.
Therefore one of them is taken out of the schedule. If

hi is taken, no other heat is found in the whole list that
would fit better. Therefore h2 is taken out of the sched-
ule and another heat that fits better is searched, h_ can

be replaced by h4 and one gets the schedule shown in ta-
ble 5 which is the "current best schedule", because the
evaluation function based on fuzzy sets assigns a better
value to this schedule than to the old one.

In the next step, the compatibility of h7 preceding h3
is found low. Therefore a job that would be a better

predecessor of ha is searched. Heat hs is the best fit.
There are two possibilities: a heat that can be processed
between h0 and hs can be searched, or b3 can be simply

shifted in time. Regarding only the compatibility con-
straints, the best solution would be to exchange h5 and
hz. Unfortunately, another constraint is violated in this

65

compatibility:

I. ho
time" 5am

high medium low medium high low

7am San 11 mrn I pm 3pm 5pro

Table 5: Intermediate schedule for example heats

compatibility:

I ho
time: Sam

high high high medium high low

I I ha I I h, I hi I h6
7am 9am llm'n lpm apm 5pro

Table 6: Final schedule for example heats

II

case: The interval between the heats h5 and he should
be at least 10 hours. Therefore heat hs will be shifted.
Since delivery dates may be shifted up to two hours, heat
hs can start at 9am and heat h7 started after h3. The
result is the schedule shown in table 6.

Every exchange of jobs in the schedule can be inter-
preted as one operator in a search process. The search
for better schedules can be guided by heuristics based on
our evaluation function. This heuristic search is a kind

of hill climbing method. Unfortunately, the disadvan-
tage of a hill climbing method is that it can be caught
in local maxima. In [7] a technique called TABU search
is described that can be used to overcome this problem.

The search will end if no more constraint violations

can be detected, or no further improvement can be
achieved. It is not that easy to say that no further
improvement can be achieved. Here it makes sense to

define a distance function between an optimal schedule
where all compatibilities would be very high, and all the
other constraints would be observed too. If there is such

a distance function, the search effort can be restricted
by a ratio between distance and search effort. It would

be fruitless to invest much more search effort if only a
small distance exists. On the other hand, if the distance
is large, one should search longer for a better schedule.

3 Conclusion

Due to highly unreliable knowledge and conflicting
objectives in scheduling applications, mathematical-
analytical methods as used in Operation Research ap-

proaches are insufficient in many cases. We have illus-
trated this very problem for a steelmaking plant. In
order to overcome this deficiency we have developed a
solution which combines two sound Al-techniques for
problem solving:Approximate reasoning and constraint
relaxation.

We believethat, using the described techniques,the

development cycleforschedulingexpert system becomes

shorter,the knowledge representationeasier,and bet-

terschedules can be generated compared to earlierused

techniques.

References

[1] G. Bel, E. Bensana, D. Dubois, J. Erschler and P.
Esquirol: "A Knowledge-Based Approach to Indus-

trial 3ob-Shop Scheduling" In: Knowledge-Based

g

I m

m

Systems in Manufacturing, Andrew Kusiak (ed.),
Taylor & Francis,pp 207-246, 1989. ___

IB
[2]JiirgenDorn and Reza Shams: "An Expert System

for Scheduling ina Steelmaking Plant" In: Proceed-

ings of the World Congress on Erperl Systems, Or- W
lando Fla., Pergamon Press, 1991. W

[3] Didier Dubois: "Fuzzy Knowledge in an Artificial
Intelligence System for Job-Shop Scheduling" In: :

Applications of Fuzzy Set Methodologies in Indus.
trial Engineering, Gerald W. Evans et al. (eds.),
Elsevier, pp 73-89, 1989.

[4] Didier Dubois and Henri Prade: "Processing Fuzzy
Temporal Knowledge" In: IEEE Transactions on i

S_/stems, Man, and C_/bernetics, Vol. 19, No.._,

pp 729-744, July/August 1989.

[5] Mark S. Fox: Constraint-Directed Search." A Case i
Study of Job-Shop Scheduling. Pitman, London,
1987.

[6] Mark S. Fox and Norman Sadeh: "Why Is Schedul-
ing Difficult? A CSP Perspective" In: Proceed-
ings of the European Conference on Artificial In-

telligence, pp 754-767, 1990. - _- --

[7] Fred Glover: "Tabu Search'Part I" In: ORSA Jour-
Ill

hal on Computing, Vol. 1, No. 3, pp 190-206, 1989.

[8] Constantin V. Negoi_.: Ezpert S_/tems and Fuzzy --
S_lstems. Benjamin/Cummings 1985. m

[9] Henri Prade: "Using Fuzzy Set Theory in a Schedul-
ing Problem: A Case Study" In: Fuzzy Sets and _
Systems, Vol. 2, No. _, pp 153-165, April 1979.

[10] Patrick Prosser: "A Reactive Scheduling Agent"
In: Proceedings of the Eleventh International Joint --

Conference on Artificial Intelligence, pp 1004-1009,
1989.

[11] Stephen F. Smith, Mark S. Fox and Peng Si Ow:
"Constructing and Maintaining Detailed Construe- i
tion Plans: Investigations into the Development of Ill

Knowledge-Based Factory Scheduling Systems" In:
AI Magazine 7(4) Fall, pp 45-61, 1986

[12] Lotfi A. Zadeh: "Knowledge Representation in l
Fuzzy Logic" In: IEEE Transactions on Knowledge
and Data Engineering, Vol. 1, No. I, pp 89--100,
March 1989.

i

66

l :

=-

(ram,

i

.m

Ei --

mi

m

-Experiments with a Decision, Theoretic Scheduler*

Othar Hansson 1,2and Gerhard HoltI and Andrew Mayer z'2

ZHeuristicrats Research Inc. 2Computer Science Division

1678 Shattuck Avenue, Suite 310 University of California

Berkeley, CA 94709:1631 Berkeley, CA 94720

/

/
/

Abstract :

This paper describes DTS, a decision-

theoreticschedulerdesigned to employ state-

of-the-artprobabilisticinferencetechnology

to speed the search for efficientsolutions
to constraint-satisfactionproblems, Our ap-

proach involvesassessingthe performance of

heuristiccontrolstrategiesthat are normally

hard-coded intoschedulingsystems, and us-

ing probabilistic inference to aggregate this
information in light of features of a given
problem.

BPS, the Bayesian Problem-Solver [2], intro-
duced a similar approach to solving singie-
agent and adversarial graph search prob-
lems, yielding orders-of-magnitude improve-
ment over traditional techniques. Initial
efforts suggest that similar improvements
will be realizable when applied to typical
constraint-satisfaction scheduling problems.

1 Background

Scheduling problems arisein schools,in factories,in

militaryoperations and in scientificlaboratories.Al-

though many algorithmshave been proposed, schedul-

ing remains among the most difficultof optimization

problems. Because ofthe problem's ubiquityand com-

plexity,small improvements to the state-of-the-artin

schedulingare greetedwith enormous interestby prac-
titionersand theo_reticiansalike.

A large classof scheduling problems can be repre-

sented as constraint-satisfactionproblems (CSPs), by

representingattributesof tasks and resourcesas vari-
ables. Task attributesincludethe scheduled time for

the task (startand end time) and itsresourcerequire:

ments. A schedule isconstructed by assigningtimes

and resourcesto tasks,while obeying the constraints

"This research was supported by the National Aeronau-
tics and Space Administration under contract NAS2-13340.

of the problem. Constraints capture logical require-

ments (a typical resource can be used by only one task
at a time) and problem requirements (task T= requires
N units of time, must be completed before task T_,
and must be completed before a specified date).

One common approach to finding an assignment
for the variables employs a preprocessing stage which

tightens the constraints (e.g., by composing two con-
straints to form a third), followed by a backtrack search
to find a satisfying assignment. Figure 1 illustrates the

operation of such a search algorithm: searching depth-
first until a dead-end is reached, and then backtracking
to the nearest choice point to continue the search.

Choice of
task to assign first //1_

Choice of _ '_" _ "-" "_'
time for task /_./1_

(valus=ordsri_¢;_

. Choice of
/J_\ task to assign next

(__vadable-ordedng)

no legal values
(dead-end)

Figure 1: Basic CSP Algorithm

Heuristic functions guide the ordering of variables
and values. For example, one heuristic for variable or-
dering counts the number of possible values for each
variable, and chooses the variable with the smallest
number of values as the next to instantiate. Typi-

m

67

cally, the variable ordering in backtracking algorithms
is static, determined prior to search by use of a heuris-
tic function. As heuristics for variable and value or-

dering form the basis for the algorithm's performance,
tremendous effort has been invested in developing good
general-purpose heuristics. However, practitioners of-
ten bypass the general-purpose heuristics in favor of
hand-crafted domain-specific heuristics (e.g., Sadeh's
work [8]).

2 DTS Rationale

CSP heuristics are imperfect and exhibit highly
domain-specific performance. Although they often pro-
vide useful search control advice, the possibility of er-
ror introduces uncertainty into the search algorithms
which rely on them. Consequently, current techniques
are forced to pay a large computational price in cases
where the heuristic function makes incorrect classifica-

tions. Furthermore, the algorithms will repeat these
costly mistakes, as there are no robust learning mech-

anisms designed to improve a CSP heuristics perfor-
mance over time.

Existing heuristic functions encode many different
domain attributes. Some estimate the quality of partial
schedules while others estimate the difficulty of finding
a feasible solution. Unfortunately, there is no sound
methodology for combining the information provided
by an arbitrary number of heuristics for use in control-
ling a single search. This forces human schedulers to
make an unpleasant choice:

• decide a priori on a particular heuristic, and thus
concentrate on a single domain attribute. This
can skew the system's performance at the expense
of other domain attributes.

• hand-craft a composite heuristic which captures
multiple domain attributes in a single function.

For this reason, the selection of heuristics and probhm-
solving techniques for any given CSP domain remains
an art despite yeats of comparative study.

DTS, which is derived from previous work on BPS

(the Bayesian Problem-Solver), is designed to address
these problems. The first area of innovation is the
heuristic error model: a probabilistic semantics for
heuristic information, based on the concept of con-
ditional probability in statistical decision-theory [3].
Heuristics ate interpreted by correlating their estimates

with the actual payoffs of problem-solving instances.
When a problem is solved, the heuristic error model

is updated, adapting it to the problem's specific char-
acteristics. Multiple heuristics are combined by corre-
lating payoffs with a set of heuristic estimates. This
alleviates the human scheduler's dilemma by provid-
ing a dominating alternative, a sound framework for
combining an arbitrary number of heuristic functions.

The second area of innovation is the use of multi-

attribute utility theory, a formalized method for quan-

tifying preference relationships among a set of uncer-
tain outcomes. An important target application for
DTS is experiment scheduling for the Hubble Space
Telescope. Figure 2 depicts a partial set of utility at-
tributes, whose non-lineat tradeoffs can be encoded
by a muitiattribute utility function. In contrast to

Schedule Utility

/• / \
O,,e II ,oJ

v.,o I V.,oeI Co, ,

"rime for
t_. Mission

Areas Tardiness
Addressed Penalties L"sPaY_t_cnd_

-- Necessity of Computational
Experiment Resource Cost

Figure 2: Utility Attributes for Experiment Scheduling

traditional CSP scheduling algorithms, which employ
special-purpose control rules, DTS's control rule is the

decision-theoretic rationality criterion of maximizing
expected utility.

In DTS, domain information is encoded in heuris-
tic functions and user preferences are encoded in util-
ity functions. By combining domain-independent and
domain-specific heuristics, and then using the user's
utility function to make search control decisions, DTS
provides a more efficient and flexible alternative to tra-
ditional scheduling techniques.

3 DTS: First Results

This section describes empirical results illustrating the
performance advantages of these two DTS innovations.

3.1 Combining Heuristics

The primary strength of the DTS prototype is the
method for combining information from separate
heuristic evaluation functions to improve constraint-
satisfaction search control. Experiments with the pro-
totype on the Eight Queens and Bridge-Construction
Scheduling [9] problems confirm that the combination
of heuristic functions provides more information than
any of the heuristics taken individually. This translates
into significant reductions in overall search time.

Traditionally, CSP algorithms make use of a vari-
able ordering heuristic and a value ordering heuristic.
Figure 3 shows the performance of a standard CSP
algorithm using all possible pairs (A1, A2, B1, B2)

1
!

1

E

1

1

D

t

mm
I

68

W

| _a
_" qlWm

v

w

16
15
14
13
i2
11

4
3
2

Figure 3: Eight Queens:
Heuristics in Isolation

A2

A1
DTS Joint

.... i | , , , | I I

0 500 1000 1.500 2000 2500

ProblemInstxnce

Combining Heuristics vs.

drawn from two well-known variable ordering heuris-
tics (Most Constraining Variable (A), Minimum Do-
main Variable (B)) and two well-known value order-
ing heuristics (Least Constraining Value (1), Dechter's
Value Heuristic (2)[1]). Also shown is the DTS pro-
totype (DTS-Joint), which dominated the competition
by using all four heuristics in combination. The hor-
izontal axis plots the number of problem instances
solved and the vertical axis plots the running average
of search time over the entire experiment. The plot,
but not the average, beging with the tenth problem
instance.

Figure 4 shows a corresponding graph for the Bridge-
Construction Scheduling problem. The variable order-
ing heuristic used was Minimum Domain Variabh and
the value ordering heuristics were Least Constraining
Value (curve A1) and ASAP, "as soon as possible"
(curve A2). Also shown are the corresponding indi-
vidual DTS performance curves (DTS A1, DTS A2)
as well as the combined heuristic performance curve
(DTS-J0int).

To summarize both graphs, the improvement is seen
to be nearly 50% on average for Bridge Construc-
tion Scheduling, and over 95% for the Eight-Queens
problem. Note that the sharp downward slope of
the DTS-Joint running average in Figure 4 demon-
strates the performance improvement accrued by learn-
ing, unattainable using traditional techniques.

3.2 Learning Heuristic Error Models

Figure 5 displays an example heuristic error model
learned over the course of 2500 Eight-Queens problem

J
g.

<

1000

900 _ A1

mo \-,,................. VVSA1
E_ ,,,......,.,,............................

6ooT°°_..,,._.__..

----.22
_ Jmt

51111

" ' ' I l I l I I l,i.,l,|l.l.,.,

0 $0 100 150 200 250 300 _0 400 450 500

Problem Immmce

Figure 4: Bridge-Construction Scheduling: Combining
Heuristics vs. Heuristics in Isolation

instances (for the Minimum Domain heuristic). The
horizontal axis plots the heuristic function estimate
and the vertical axis plots the preference for that esti-
mate. In DTS, preference is based upon the expected
utility associated with a heuristic estimate (dashed
line). In traditional algorithms, the heuristic is as-
sumed to rank-order alternatives perfectly, and there-
fore, preference is a monotonic function of the heuristic
estimate.

Most
Preferred

Least
Preferred

C

I I I l I / x

2 3 4 5 6 7

HeuristicValue

Figure 5: Sample Heuristic Error Model

The discrepancy between the heuristic estimates and
the actual utilities explains the poor performance of

69

traditionalapproaches,whichassumeperfectheuristic and C(v) indicatesthe costofsearchingthe subtree
estimates.Further,itexplainswhy DTS outperforms (whetheror not a solutionisfound).P(v) and C(v)
thesetechniques,asitdoesnotmake thisassumption, areattributesofthepayoffmentionedabove.Experi-
and insteadlearnsto correctforthe discrepancy, ments confirmedthatonceP(v) and C(v) arelearned,

thisruleoutperformstraditionalbacktrackingsearch

algorithmswhich interpretheuristicestimatesatface
l°°F ^ lyrsBI value. This resultindicatesthat decision-theoretic

90)- _t / "_x,r_,_¢-._%.,.,/_,_. search-controlimprovesoverallsystemperformance.A

80_- _,.,,_i x,_ _x. similaranalysiscan alsobe performedforiteratlveim-

"A":' ": ";'., provement [4].

.._ _ C(B!

Figure 6: Generalizing Data to Larger Domains _'e_ ÷ C{A)

An additionalbenefitoftheheuristicerrormodel is _looso_ _t_ qP,{B)+ C-dA)
theabilityto generalizelearneddataacrossdomains.
For example,Figure6 depictstheperformanceofDTS
on the Thirty-two-Queensproblem with I) no prior
heuristicerrormodel,and 2) a heuristicerrormodel
generalized(or"bootstrapped")from the2500 Eight-
QueensexamplessolvedinFigure3.Generalizingdata
from the simplerdomain hasreducedsearchcomplex-
ity.Thisisparticularlyimportantasthetimerequired
to calibrate heuristic error models increases with prob-
lem complexity.

3.3 Decision-Theoretic Backtracking

The DTS prototype employed a simplified decision-
theoretic control mechanism which was adapted to a
conventional backtracking search algorithm: this al-
lowed for controlled experiments on DTS vs. tradi-
tional algorithms. The application of decision theory
to backtracking elucidates many important ideas.

The only search control decisions made in traditional
backtracking systems are the selections of which sub-
trees of the search graph to explore next. Once a sub-
tree is selected (by selecting the next variable or value),
it is explored exhaustively unless a solution is found.
Such an ordering problem can be viewed as a decision-
tree. Figure 7 depicts the choice of ordering two sub-
trees A and B. We have proven a theorem [4] which
shows thatthesystem'sexpectedutility(searchtime
to firstsolution)ismaximizedifvariables(orvalues)
areorderedby thequantityP(v)/C(v),whereP(v)in-
dicatesprobabilityoffindinga solutioninthesubtree,

Figure 7: Decision Tree for Value-Ordering Problem
(Values A and B)

As is evident from this discussion, DTS must con-
vert raw heuristic estimates at a node into estimates
of (1) probability of finding a solution in the subtree
under that node, and (2) the cost of search in that
subtree. We note here that while heuristics are usually
very good at rank-ordering nodes based on (1) and (2)
individually, the rank-ordering for the combination is
typically incorrect. DTS' heuristic error model corrects
for this,

3.4 Implementation Synopsis

The prototype performs a backtracking search, using
the standard optimizations of forward-checking and dy-
namic search rearrangement. The search is ordered by
the expected utility selection criteria (P(v)/C(v)) dis-
cussed above. The estimates of P(v) and C(v) are de-
rived from the heuristic error model, using traditional
CSP heuristics. The heuristic error model is updated
during and between trials using a bucketed histogram,
and interpreted by a Laplacian estimation.

m

I

mm

i

L

U

L

R;

m--

m

J

a
m

I

mmm

m

m

70 m

i "-J

, .. ?

. rl

1

m
w

L

m

r

4 Future Directions

Our initial study of CSP and scheduling domains
demonstrates that applying even the simplest modeling
techniques of statistical decision theory can yield sig-
nificant payoffs. There are many other aspects of CSP
algorithms which would benefit from a similar decision-
theoretic approach. We conclude with two such exam-
pies.

4.1 Preprocessing and Caching of
Learned Constraints

Our declsion-theoretic approach could be applied
equally well to the control of scheduling subprob-
lems. For example, Minton [5] has considered a simple
Utility-based model of the selective caching of learned
problem-solving rules.

Minton demonstrated that the caching of too many
rules acquired from problem-solving instances leads
to a substitution of knowledge-search (searching the
rule cache for an applicable rule) for problem-solving
search. Similarly, in a CSP problem, any number of
!mplicit constraints can be generated by preprocessing
or constraint-recording and cached in the constraint
graph. But additional constraints, while reducing
problem-solving search, increase the number of consis-
tency checks per search tree node (knowledge search).
Choosing to generate and record a constraint is, again,
a decision made under uncertainty, and it would be in-
teresting to consider a decision-theoretic approach to
the problem. We feel that decision-theoretic modeling
and the simple structure of CSPs can provide a firmer
theoretical foundation for this area of research.

4.2 Selective Value Generation

A common problem among search algorithms is selec-
tive expansion of successors. The textbook description
of most search algorithms calls for a full expansion of all
successors of a given node. For constraint-satisfaction
problems, this is clearly inadequate, as many variables
such as task start and end times have an infinite num-
ber of infinitesimally-spaced values.

One possible approach employs heuristics for value
generation. While we have applied decision theory to
search by designing an algorithm which evaluates all
successors and then selects among them, it is equally
possible to apply these tools to selective expansion of
successors. If several heuristics (dispatch rules) can be
used to Suggest plausible values, our approach can be
applied to the heuristics trivially. If no such heuris-
tics exist, one possibility is to employ a tree of values,
and perform an auxiliary search of this tree to select a
particular value. This brings on a new learning task:
clustering values of similar merit into a hierarchy of
ValUes.

5 Conclusion

The use of Bayesian probability theory in DTS un-
derscores that scheduling involves decision-making un-
der uncertainty, and illustrates how imperfect infor-
mation can be modeled and exploited. The use of
multiattribute utility theory in DTS underscores that
scheduling involves complex tradeoffs among user pref-
erences. By addressing these issues, DTS has demon-
strated promising performance in preliminary empiri-
cal testing.

References

[1] R. Dechter and J. Pearl. Network-Based Heuris-
tics for Constraint-Satisfaction Problems. In
Search in Artificial Intelligence, L. Kanal and V.
Kumar, eds., Springer-Verlag, New York, 1988.

[2] O. Hansson and A. Mayer. Heuristic Search as
Evidential Reasoning. In Proceedings of the the
Fifth Workshop on Uncertaint_ in Artificial lntel-
ligence, Windsor, Ontario, August 1989.

[3] O. Hansson and A. Mayer. Probabilistic Heuristic
Estimates. Annals of Mathematics and Artificial
Intelligence, 2:209-220, 1990.

[4] O. Hansson and A. Mayer. Decision-Theoretic
Control of Artificial Intelligence Scheduling Sys-
tems. HRI Technical Report No. 90-1/06.04/5810,
September 1991.

[5] S. Minton. Learning Effective Search Con-
trol Knowledge: An Explanation-Based Approach.
Kluwer Academic, Dordrecht, 1989.

[6] U. Montanari. Networks of Constraints: Fun-
dsmental Properties and Applications to Picture
Processing. Information Processing Letters, vol.
7, 1974.

[7] N. Sadeh. Lookahead Techniques for Activity-
Based Job-Shop Scheduling. Technical Report TR
CMU-RI-TR-89-2, CMU, the Robotics Institute,
1989.

[8] N. Sadeh. Lookahead Techniques for Micro-
Opportunistic Job-Shop Scheduling. PhD Thesis,
CMU, the Robotics Institute, 1991.

[9] P. van Hentenryek. Constraint-Satisfaction in
Logic Programming. MIT Press, Cambridge, MA,
1989.

[10] M. Zweben, M. Deale and R. Gargan. Anytime
Rescheduling. in Proceedings of the DARPA Plan-
ning Workshop, Morgan Kaufmann, San Mateo,
CA, 1990.

71

Generating Effective Project Scheduling Heuristics by Abstraction and Reconstitution

Bhaskar Janakiraman and Armand Prieditis

• • Department of Computer Science
University of California :

Davis, CA 95616

' Abstract

A project scheduling problem consists of a finite set of jobs,
each with fixed integer duration, requiring one or more resources
such as personnel or equipment, and each subject to a set of
precedence relations, which specify allowable job orderings, and
a set of mutual exclusion relations, which specify jobs that cannot
overlap. No job can be interrupted once started. The objective
istominimizeprojectduration.This objectivearisesinnearly

every large construction project--from software to hardware to
buildings. Because such project scheduling problems are NP-
hard, they are typically solved by branch-and-bound algorithms.
In these algorithms lower-bound duration estimates (admissible
heuristics) are used to improve efficiency. One way to obtain
an admissible heuristic is to remove (abstract) all resource and
mutual exclusion constraints and then obtain the minimal project
duration for the abstracted problem; this minimal duration is
the admissible heuristic. Although such abstracted problems can
be solved efficiently, they yield inaccurate admissible heuristics
precisely because those constraints that &e central to solving the
original problem are abstracted. This paper describes a method
to recon_lilute the abstracted constraints back into the solution

to the abstracted problem while maintaining efficiency, thereby
generating better admissible heuristics. Our results suggest that
reconstitution can make good admissible heuristics even better.

1 Introduction

One way to solve a difficult problem is to simplify it by

removing certain details, solve the simplified problem, and

then use its solution as a guide for solving the original

problem. For example, in solving a difficult physics prob-
lem, details such as friction might be ignored. Although

the simplified problem might be easy to solve, it might ig-

nore precisely those details that are central to solving the

original problem. This paper describes a method called re-

constitution that adds back such ignored details to the sim-

plified problem's solution, thereby providing a better guide

for solving the original problem. The ultimate goal of this

research is to develop an automatic mconstitution system,

thereby shifting some of the simplification and problem-

solving from humans to machines.

As a vehicle for exploring reconstitution, we are currently

focusing on project scheduling problems because they am

of practical importance and arc diffictdt to solve. A project

scheduling problem consists of a finite set of jobs, each

with fixed integer duration, requiring one or more msotgees

such as personnel or equipment, and each subject to a

set of precedence relations, which specify allowable job

orderings, and a set of mutual exclusion constraints, which

specify jobs that cannot overlap. No job can be interrupted

once started. The objective is to minimize project duration.

Sincethisobjectivearisesinnearly every largeconstruction

project--frpm software to hardware to buildings--efficient

algorithms that obtain that objective are desirable.

Integer linear programming methods have been used to
solve project scheduling problems for years [1, 2, 13, 7].

However, these methods are computationally expensive, un-

reliable, and applicable only to problems of small size. The

underlying-reason for the computational expense and lim-

ited problem size is that such project scheduling problems

are NP-hard (see the Appendix). AS a result, such prob-

lems ate typically solved by branch-and-bound algorithms
with lower-bound duration estimates (admissible heuristics)

to improve efficiency [21, 4]. In addition to improving ef-
ficiency, admissible heuristics have other several other de-

sirable properties in various branch-and-bound algorithms

such as guaranteeing minimal project duration [16] or guar-

anteeing a project duration no longer than a certain factor
of the minimal one [18].

Several researchers have shown how admissible heuris-

tics can be derived by simplifying the original problem

via abstraction (ignoring certain details) and then using the

length of a shortest path solution in the abstracted prob-
lem as the admissible heuristic [8, 6, 17, 11, 15, 19, 20].

For example, the Manhattan Distance heuristic for sliding

block puzzles is derivable by ignoring the blank. For such
heuristics to be effective, the abstracted problem that gener-

ates them should be efficiently solvable and yet close to the

original problem [22, 15, 22]. Typically, the more details

that are removed, the easier the problem is to solve and the

less accurate the resulting heuristics. This tension between

accuracy and ease of solvability makes discovering those

abstracted problems that are easy to solve and close to the

original problem a difficult task [19].

The only published attempt at discovering admissible
heuristics with this approach in a scheduling domain yielded

poor heuristics [14, 20]. Moreover, the particular schedul-

ing problem (uniprocessor scheduling) to which it was ap-

plied did not allow concurrency, which is the essence of

scheduling. One of the contributions of this paper is to

apply abstraction-based heuristic derivation techniques to

a scheduling problem where concurrency is allowed (i.e.

project scheduling).

The other contribution of this paper is an automatic

method to reconstitute an abstract solution, thereby boosting
the effectiveness of an admissible heuristic. The idea that

abstraction-' derived heuristics can sometimes be made more

effective by taking into account certain details ignored by

the abstracted problem was first expressed by Hansson,

Mayer, and Yung [9]. In particular, they hand-derived

a new effective admissible sliding block puzzle heuristic

72

J

m

m

i

|

im

m

m

w

!

w

i¢

g

B

l
roll

m

II °

iii

m

g

=

i :

v

w

m

m

m

(theLC heuristic)by takingintoaccountthoselineartile
conflicts(samerow orcolumn)ignoredby theManhattan

Distanceheuristic.We haveextendedthisideatoaproblem

involvingtimeratherthansolutionpathlength:scheduling.

2 Definitionof Key Terms

As shown inFigureI,a schedulingproblemcan berepre-
....sentedasgraph withjobsasvertices,precedencesassingle'

arrowcdedges,and mutualexclusionsas double-an'owed

edges.For example,thefigureshows thatjob I must be

completedbeforejob J can startand thatjobsJ and K

cannotoverlap.The singlenumber aboveeachjob repre-
sentsthejob'sduration.Forexample,jobJ takesI0units

oftimetocomplete.The lettertotheleftofeachjobrep-

resentstheresourcethatthejobrequires;onejob'suseofa

resourcecannotoverlapwithanotherjob'suseofthatsame

resource.For example,jobsI and E, whichbothrequire

takeslinca_"timeofthenumber ofjobs.Therefore,ifall
otherconstraintssuchasmutualexclusionconstraintsand

reso_ constraintscanberecastasprecedenceconstraints,

theproblemiseasilysolvable.Forexample,themutualex-

clusionconstraintbetweenjobsJ and K can be recastin

two ways: eitherJ iscompletedbeforeK orviceversa.

Similarly,forresourceconstraintseachpairof jobsshar-

ingthesame resourcecan be recastasa mutualexclusion

constraintbetweenthetwo jobs.Each mutualexclusion
constraintcanthenberecastasone oftwo precedencecon-

straintsaspreviouslydescribed.

3 Branch and Bound Project Scheduling

The idea of recasting mutual exclusion and resource con-
straints as precedence constraints suggests the following
simple combinatorial algorithm. Explore all recastings, one
at a time, that do not create a cycle and find early sched-

resource s, cannot overlap with each other.

A precedence graph is a directed acyclic graph consisting
only of the precedence relations and no resource constraints.

An early schedule graph is derived from the pr.e_r_edence
graph, where each job is scheduled as early as possible.
The numbers within the square brackets near each job in
the figure represent the earliest start time and the earliest
completion time of each job. The critical path is the longest

path in the early schedule graph; it shows the earliest time
by which all jobs can be completed.

ules f0r al! of these recastings; .the e,_'l)_schedule with the
minimum critical path length is the optimal one. Unfortu-

nately, this brute-force algorithm is combinatorially explo-
sive: n mutual exclusion constraints results in 2" possible

.... ree_tlngs, .which is clearly too large a space to explore
exhaustively for large n. One way to reduce this combina-
torial explosion is to use a branch-and-bound algorithm with
lower-bound estimates to prune certain recastifigs earlier. If
the current duration + the lower-bound estimate exceeds a

given upper-bound, then that schedule can be pruned.

= No job on the Critical path can be delayed, although other =_ = _ _t]cul p_cSlima_ Of _ _iy_sC_uie, which is
jobs On the same early schedule can be delayed as long as _ efficiently c_0mpu_ie, is_:cl*eariy_a i0wer:Dound:s|nce any

they do not increase the critical path length. For example,
if job J, which is on the critical path, starts later than 33
units of time, the entire project will be delayed. These jobs
may have to be delayed in order to satisfy mutual exclusion
constraints. The total completion time of an early schedule

early schedule that satisfies part of the constraints is a lower
bound on the completion time forar_y Optima] schedule sat-
isfying all:Constraints. Moreover, "'ahyadd]iio_ constraint
will not result in a decrease in the critical path length. No-
tice that the critical path (CP) heuristic results from an ab-

is therefore equal to the critical path length, which in our strac_bn or the 0Hginal problemfalYmutual exclusion and
case is 43. An optimal schedule is an early schedule which
takes the least total time among all possible schedules. Note
that jobs within an optimal schedule may not be scheduled
optimally, according to this definition.

Given only precedence constraints, finding an early
schedule reduces to a topological sort of the precedence
graph, which can be done in linear time of the number of
jobs [10]. Finding the critical path in an early schedule also

. 7

/@

$

r J It2,,_l

IoJI "NL__,,_ _ Ilt._t]

resource constraints are ignored.

..... Although the CP heuristic is admissible and easily corn-
= putable and has proved to be valuable in evaluating overall

project performance and identifying bottlenecks, it can be
far from the actual project duration. In the worst case, it
can underestamate the actual project 'duration by a factor
of n, where n is the total number of jobs to be scheduled.
This case arises when the only possible schedule is a se-

©

- = ; = _ L== " = =

Figure 1 A Project Scheduling Problem

_ . prKedu_e
rtli{lo8

. ul'm_ml al_t¢_llou0

colttll_lnl

,lO

#(I _ ,sJob i with duration
lOusinll rssoarc.
g _u.lb_t start time
Is 12 sad mrlle_

eamp;eUon time Is 22

,,Job
crlUcal peth

73

iiii iii!i!i!i!ii! !i !i i i ! !i!i!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!i!iiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiii!iiiii!iiiiiiii iiiiiiiii !!!i !!ii i iii iii iiii iiiii iiiiii iiiiiiiiiiiiiiiiii iii!iiiiiiiiiiii!iiiiiiii!ii ii!i iiiiiii iiiii iiiiiiiiiiiiii[

::iii::ii!ii!?__!!i _ii ...nL.ii:._?._i?_ ii_f:i_!::i!__::i_::iii::i::iiiii::iii::ii::ii:::ii::iiii:ii::iif:iii::iiiii::i!::i!:::?::?:ii::ii::iii::!i_::i::ii_ii_ii_::ii!_i_iiiiiiii::ii::i?:!ii::ii ::iiii::ii::_i__i_::i::!_::_!i::::_!_::i!::!!i!::!i::I:Z:III::I::!!::I:Z/Z:i i::ii:/:i!ii:?:i_::i_i_i_::iiii:ii!:i!iii :!

 iil!ili !!iiii!: i:i::i

::i_i_i_i_ii_:i_i_ii_ii:i_ti_i:_h_!_i_!_::_i_i_Pi:i_i_!i_:_:_::_:i_::_ii_iii::i::_iiii_i_::_::iiiii::_::_i_::_ii::_iiiii_i_::_ii::i::iiii_i::ii_::_::_i_i_i::i_i::_iii_ii::_i_i!_!i!iii::_!i!ii_::ii_::_::_i_i_i_::_i_::_i_::_ii::i_i::!ii_i_!::_ii_::i!_ii::_iii!::_:_ii::_i:i_i:i!:_i_!_!_:_

Figure 2 An Algorithm

rial schedule. For example, if a scheduling problem has no
precedence constraints and has mutual exclusion constraints
between every pair-of jobs, then the only possible schedule
will be a serial one. For this case, the CP heuristic will
return length of the longest job, which underestimates the
optimal duration by a factor of n. Also, since the critical
path estimate i_ores the resource constraints, certain se-
quencing decisions may be required in the actual schedule
that increase the project duration well beyond the critical
path estimate.

4 Reconstltution.based Heuristics

What we would like is an admissible heuristic that is as

easily computable as the critical path estimate, but that takes
into account the resource and mutual exclusion constraints,
which the critical path estimate ignores. We would like to
reconstitute these ignored constraints back into the critical
path somehow. The RCP (Reconstituted Critical Path)
heuristic described below does exactly that.

The basic idea behind the RCP heuristic is to extend the

critical path by analyzing all unsatisfied mutual exclusion

constraints between jobs in critical path and jobs not in
critical path. When possible, all jobs with such unsatis-
fied constraints are rescheduled at a later time while still

preserving critical path length. If that is not possible, then
the critical path length is increased by a time overlap un-
derestimate between the jobs of each type. For example,
consider the project scheduling problem in Figure 1, which
has a critical path of J, F, C, B, A. First, we examine job
J and check for any mutual exclusion constraints involving
it. The only such constraint is the one with job K. Next,
we check if J overlaps with K, which in fact it does. The
object now is to try to delay job K beyond the completion

time of job J, which is at 43 time units. Delaying job K
will necessarily increase the length of the critical path by
1 time unit. If the rest of the jobs were ignored, the RCP
heuristic would retm'n 44, which is the length of critical
path (43) plus the overlap of the earliest start time of job J
and the earliest completion time of K (34 - 33 = 1). The

general algorithm is shown in Figure 2. (We assume that
resource constraints have been recast as mutual exclusion

constraints.)

to Compute the RCP Heuristic

To see that the RCP heuristic is admissible, consider a

job j_ on the critical path which has a mutual exclusion
constraint with job jm. In the final schedule, either jt will
be scheduled before j,, or vice versa. Note that neither of
the two jobs can be scheduled any earlier since the schedule
is already an early schedule. If job jrn cannot be scheduled
after j_ without increasing the critical path length in the
current schedule by pushing jobs ahead which depend on
j,n, then neither can it be scheduled after Jt in the final
schedule. The reason is that precedence constraints are
always added and never removed at each iteration of the
search algorithm and adding more precedence constraints
cannot invert an existing scheduling order. If jr is scheduled
after jm, then the critical path length will be increased by at
least the minimum of the overlap between the earliest start
time of jt and the earliest completion time of j,, or the
earliest start time of j,n and the earliest completion time
of j_.

Although the RCP heuristic takes slightly longer to com-
pute than the CP heuristic, it prunes more of the space than
the CP heuristic. As we will see in the next section, the
extra time taken in computing the heuristic is more than

compensated by the time saved from pruning the search
space. If the current critical path length is optimal, then

computation of the RCP heuristic takes longer than that of
the CP heuristic, since the algorithm has to examine all jobs
on the critical path. The worst case complexity of comput-
ing the RCP heuristic is O(n 2) for n jobs, since at most
O(n) jobs will be on the critical path and O(n) work will
be required to process a mutual exclusion constraint involv-

ing a job on the critical path. An analysis of the average
computational complexity is, however, difficult since the
heuristic depends on specific mutual exclusion conslraints.
The degree of complexity can be controlled by reconstitut-
ing less mutual exclusion constraints, if desired.

The complexity of the RCP heuristic can be further re-
duced by computing it incrementally. Since new prece-
dence constraints are added and never removed at each it-

eration of the search algorithm, the critical path up to the
point in the graph where the new precedence constraint is

added remains the same and the critical path need only be

74

II

m

m

m

i

w

Ill

Z

Ill

l

II

U

rim
E

ill

Ill

ill

Ig

i
r

lip

: = =

e

J

ig

.i

i []

Ib.*¢

= 7

Jobs Precedences

30 112

40 128

Mutual
Exdusions

0

10

15

2O

25

I0

2O

30

40

0

14

19

6237

6242

12

24

1084

1096

CP Heuristic

CPU Second:

.25

5.43

5.98

1644.17

1651.53

5.15

9.73

718.20

727.83

Byte#

30820

41024

43212

45796

47188

52928

56988

71024

65104

RCP Heuristic

States

Expanded

14

19

49

54

12

24

431

521

Table 1 Comparative Performance Analysis of the CP and RCP Heuristics

-recomputed from that point on.

= 5 Empirical Results

To get some idea_of the cffective_ness of_e RCP and

CP hd_tics.-we implementeddie IDA* algorithm[12],
......which is a standardbranch-and-boundalgorid!m in which

, to evaluate admissible heuristics, in Quintus Prolog on a
Sun Sparstation1+ and ran it on a set of randomsolvable
(i.e. no cycles) problem instanceswith various numbers
of jobs, mutual eXCiusion constraints,andprecedenceCon-
8traints.The algorithm worksas follows. All partialsched-
uleswhose durationexceeds a certain thresholdarc pruned.
Initially. the thresholdis set to the value of the admissible

CPU Seconds Byte:

.25 30808

8.52 58108

9.18 70256

30.58 109584

30.67 116068

5.63 72228

18.52 101936

494.33 194220

521.80 224112

with IDA"

numberofmutualexclusionconstraintssinceproblemcom-

plexitygrowsasthenumberofmutualexclusionconstraints

increases:onewith30jobswith112precedenceconstraints
and theotherwith40jobswith128precedenceconstraints.

For thefirstset,we variedthe numberofmutualexclusion

constraintsbetween0 and 25;forthesecond,between10

and 40. We chosetheseproblemsbecausetheywerethe

largestoneswe couldgeneratethatstillcouldbe solvedin
a reasonableamountof timeon our machine.

Table1summarizesthe_sultsofrunningIDA* on thesc

two problemsets.For eachproblemset,thetablelists
thenumberofmutualexclusionconstraints,thenumberof

statesexpanded,theCPU time,and theamount of run-
heurisfic:bntheini_ s_ Ifno solutionisfoundwithin timememory used. As the tableshows,forproblems
thatthreshold,thenthealgorithmrepeatswithanew thresh-

oldsettotheminimum ofdurationplusheuristicestimate

overallthepreviouslygeneratedpartialscheduleswhose

durationexceedsthethreshold.One importantpropertyof

IDA* isthatitguarantee_minimaldurationsolutionswith
admissible heuristics.

A state consists of three items:

1. A precedence graph which includes original prece-
dence constraints and a set of precedence constraints
originating from mutual exclusion constraints which
have so far been recast as one of two precedence con-
straints.

2. Ah'early scbedule satisfying the precedenc_ cdnst_ints.

3. A set of unsatisfied mutual exclusion consWaints.

The goal state is characterized by an empty mutual ex-
Clusion cons tr'#intset. A state transition is a reciting of a
mutual exclusion constraint into one of two precedence con-
stralnts followed by the generation of a new early schedule.

Search proceeds from an initial schedule satisfying only
the original prew.edence conswaints. (Our implementation
assumes that resource constraints have been recast as a set

of mutual exclusion constraints.)

We ran two sets of experiments, each with a fixed the

number of jobs and precedence constraints and a variable

withfewmutualexclusionconstraints,thenumberofstates

expandedinbothcasesremainthesameandCP consistently

takeslesstimethanRCP, sinceRCP doesmorework each

time.However,forallproblemswhere RCP resultedina

savingintermsofstatesexpanded,RCP alwaystakesless
CPU time.RCP alsousesslightlymore run-timememory

in allexamples,but alwayswithina factorof 4 when

comparedtoCP. In summary,RCP worksbetterthanCP

inallcaseswhere thecriticalpathlengthisnotoptimal,

which istypicallythecasein real-world(non-artificial)

problems,whereitishighlyprobablythatconstraintsother

thanprecedenceconstraintsplaya majorroleindictating

the total project duration. Therefore, RCP will result in
better performance in most real-world cases.

6 Conclusions and Future Work

This paper has describedan instance Of a generalthree

stepproblem-solvingparadigm:abstract,solve,reconsti-

tute.Certaindetailsof theoriginalproblemarcremoved

by abstraction.Next,theabstractedproblemisefficiently

solved.Finally,theabstracteddetailsarcreconstitutedback
intothissolution.Thisreconstitutedsolutionisthenused

as a guideforsolvingtheoriginalproblem.We applied

thisparadigmtoprojectschedulingproblemsand obtained

75

a novel effective heuristic (the RCP heuristic). The general
idea of reconstitution is to boost the informedness of an

admissible heuristic by adding back previously abstracted
details and maintaining efficiency.

This approach as applied to project scheduling has several

shortcomings, First, complex project scheduling problems
often involve resource constraints with fixed limits fox each

job, typically specifying the number of fixed resource units
that cannot be exceeded, rather than the absolute resource

constraints as in our model; it is not clear to us how to recast

such resource constraints as mutual exclusion constraints.
Howev_, Davis and Heidorn [3] show a branch-and-bound

solution to the problem. They describe a preprocessor

algorithm that expands a job with duration k into a sequence

of k unit duratiofi jobs each suecessively]_ed with a

"must immediately precede" precedence relation. After this

expansion, a standard branch-and-bound project scheduling

algorithm can be run. Unfortunately, such expansion can

result in enormous project networks in projects with long
duration jobs.

A second shortcoming is that not all scheduling con-
straints can he recast as precedence constraints. For exam-

ple, a constraint that a particular job must start only after
a certain time cannot be recast as a precedence constrainL

Effective admissible heuristics that reflect such general con-

straints would be an important contribution to scheduling.

Finally, although this paper has described a method fox

generating better admissible heuristics from existing ones,
the process of discovering heuristics such as the RCP

[9] O. Hammn. A. Mayer. and M. Y_mg. Criticizing mlutions to
relaxed models yields powerful admissibleheuristics, 1992. To appear in I
Infommtion Sciences.

[I0] E. Horowitz and S. Sdmi. Fundalmentals of Data Struct_ra.
C.cmpmerScience Press,Inc, Rcw.k_ille,Maryland, 1978.

[11] D. IGbles, Natural generation of heuristics by transforming the D
problem representation.Technical Report TR-85-20, ComputerScience
Depamnent. UC-Irvine. 1985.

[12] 17,.Karl Depth-tim iterative-deepening:An optimal admissible tree ==
search.Art_cial lntclli&ence. 27(2):97-109. 1985. it
[13] C. L Moodie and D. E. Mandeville.Project resourceI:_mcing by
asu_nbly linebalancingtechniques.JournalofIndustrialgn&in_erin&,

July 1966. i[14] J. Mo_w, T. El]man, and A. Prieditia A tmifiedtransformational
model for diw.overing heuristics by idealizing intractableproblems. In
AAAIgO Workshop on Automatic Generation of Approximations and
Abstractions, pages 290-301, July 1990.

[15"]J. Mostow arid A. Prieditis. Discovering admissible heuristics by i
ab_trx_-fingand optimizing. In Proceedin&slJCAl.ll, Detroit, M], August
1989. InternationalJoint Confenmceson Artificial Intelligence.
[16] N.J. Nilss_PrinciplesofArtifu:iallntelligence. MorganKaufmann,
Pale Aim, CA, 1980. I__

II
[17] J. PearL Hewiatica: Intelligent Search Strategies for Computer
Problem-Solving. Addison-Wesley, Reading, MA, 1984.

[18] I. Pohl. The avoidance of (relative) catastrophe,heuristic compe-
tence, genuine dynamic weighting end oomputationd issues in heuristic
problem solving. In Proceedings IJCAI.3, pages 20-23, Stanford, CA, ID
August 1973. International Joint ConferencesonArtificial Intelligence.
[19] A. Prieditis. Diacoveri_ Effectlw Admiasibl¢ He_istica by Abstrac- =--
tion and Speedup: A Transformational Approach. FaD thesis, Rutgen =r
Univenity, 1990.

[20] A. Prieditis.Machine discoveryof effective a&niss_le heuristics.In
ProceedingslJCAI.12, Sydney, Amtralia,August 1991. IntematiomdJoint
ConferencesceArtificial Intelligence.
[21] F. J. l_dermacher. Scheduling of project networks. Journal of Ig

heuristic is far from automatic.

ing this method to job-shop scheduling problems of the son

described in [5]. In a job-shop problem, n jobs are to be

scheduled on m machines with varying durations per job

per machine. We hope to develop a set of general princi-

ples that practitioners in the scheduling field can follow to

derive effective heuristics and eventually to automate the
discovery process.

References

Operations R_earch, 4(1)!227-252, 1985.We are currently extend-
[22] M. Valtorta. A result on the computational complexity of heuristic
estimates for tim A* algorithm. Information .gcirnces. 34:47-59, 1984.

[1] M. L BalinskL Integer programming:Methods, rues, computati_ax
Manasemznt Science, Nove_her 1965.

[2] J.D.Brand.W. L. Meyer, andL R. Schaffe_.Theresourcescheduling
problem in _m_on. TechnicalRepotz 5, Dept. of Ciivfl Engineering,
University of minois, Urbana, 1964.

[3] £ W. Davis and G. E. Heidom. An algorithm for optimal project
schedulingtrades multiple _ conslrain_. Monageme_ $c/e_e,
17(12), August 1971.

[4] M. Dincbu, H. Simonis, and P. V. Hentenryck.Solving huge combi-
nat_al problems In logic programming.Journal of Logic Pro&rammi_.
8(1 and 2):75-93. 1990.

[5] M. S. Fox. Constraint-Directed ,f_arch: A Case Study of Job-Shop
Scheduling. Piernan, 1984.

[6]J.Gasdmig.A problem-similadtyapproachtodevisingheuristics.In
Proceedln#sIJCAI-6,pages301-307,Tokyo,Japan,1979.International
JointCon_renueson Artificial Intelligmce_
[7] D. Graham and H. Nuule. A comparimn of heuristics for • schod
bus scheduling problem. Transportalion, 20(2):175-182, 1986.
[8] G. Guida and M. Scmalvioo. A method for computing heufi_cs in
problem solving. Informatioa Science, 19:251-259, 1979.

Mutual Exclusions are NP-Hard

m

im

Finding a minimum duration schedule for a project graph
with only mutual exclusion constraints and unit length job w

duration is equivalent to solving a graph coloring problem.

In the project scheduling problem, the object is to partition -

jobs into a minimum number of sets such that each job is

in exactly one set and no two jobs in a set have a mutual

exclusion edge between them. Since all jobs in each set

can be scheduled in parallel, the final schedule's duration is i
simply the "number of sets_ In the graph coloring problem,

the object is to color the nodes of a graph such that no two

nodes connected by an edge have the same color and the
minimum number of colors are used. Since there is a 1-1 Jig !

correspondence between the two problems and the graph

coloring problem is NP-Hard, so is the project scheduling

problem with mutual exclusion constraints. Furthermore, i
since resource consWaints can be recast as mutual exclusion

constraints, the problem of scheduling with resource con-

straints isalsoNP-I-Iardand adding non-unitlength job du-
rationsonly makes the problem harder.Notice thatadding

precedenceconstraintswillnot affectthisresult.We thank

Charles Martel for suggesting the basic idea behind this W i
! :

proof, m

76 w

Lz_,

W _ JJ

Real-time Scheduling Using Minimin Search ff

Prasad Tadepalli and Varad Joshi

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331-3202

Abstract

_' In this paper we consider a simple model of
real-time scheduling. We present a re,al-time

.... scheduling system called RTS which is based
._ on Korf's Minimin algorithm. Experimental
-_ results show that the schedule quality initially

improves with the amount of look-ahead search
. and taper s off quickly_ So it appears that rea-

sonably good schedules can be produced with
v a relativelyshallowsearch.

1 Introduction

..

l

i

m

W

z

!

m

i
m
m

m

Job shop scheduling is one of the most computation-
ally intensive parts of flexible manufacturing systems.
Scheduling in the real world is complicated by several
factors including the resource contention, unpredictabil-
ity of events, multiple agents with mutually conflicting
goals, and the sheer combinatorial explosiveness of the
task. In this paper, we simplify the real world scheduling
problem to a great extent and focus exclusively on one
aspect of the problem, namely its real-time character.

This paper looks at detailed job shop scheduling at the
level of individual machine operations. The scheduling
problem is treated as assigning the job-steps to individ-
ual machines and ordering them so that (a) the prece-
dence and resource constraints are satisfied, and (b) the
schedule is "good" in some measurable objective sense.

Most approaches to scheduling are static in that the
scheduling is done all at once and not during the pro-
duction process. Static scheduling has several obvious
drawbacks: First, optimal static scheduling is computa-
tionally prohibitive in any realistic manufacturing sys-
tem, which involves hundreds of jobs and machine oper-
ations. Second, Since the static scheduhr has to make
decisions based on predicted information, it has no way
of recovering from incorrect predictions even after they
were proved wrong. Thus, it is unable to readjust to
or recover from changes in the production environment,
including machine failures, new jobs, or machine delays.

Real-time scheduling prevents the above two pitfalls Of
static scheduling by requiring that after every constant
time, some real world action is taken. This not only
prevents the system from losing itself in a combinatori'
ally explosive search space, but also makes it possible to

__continually readjust to the changing environment.
In this paper we present a system called RTS (Real-

time Scheduler) which uses the Minimin algorithm of
Korf [Korf, 1990] to do real-time scheduling. Minimin
is similar to the Minimax algorithm extensively used
in games. We view scheduling as a state space search
where states represent partial schedules. Minimin per-
forms a fixed depth look-ahead search from the initial
state, and applies a heuristic evaluation function to the
partial schedules at the leaves of the search tree to esti-
mate the cost of the schedule. This value is backed up
to the root of the tree and the system takes the most
promising sgheduling action, i.e., it assigns a job-step
to a machine which leads to a schedule with the best
estimated cost.

Since RTS relies on heuristic estimates, the schedules
the system produces are not guaranteed to be optimal.
However, our experimental results show that the sched-
ule quality initially improves with the amount of look-
ahead search and tapers off quickly. So it appears that
reasonably good schedules can be produced with a rela-
tively shallow search. We conclude that our approach to
real-time scheduling based on Minimin is promising and
can be extended in several directions, including learn-
ing better evaluation functions, and doing variable depth
search.

2 Previous Work

One approach to scheduling is based on expert systems
[Fox and Smith, 1984]. However, expert systems ap-
proach to scheduling seems inadequate because of the
dynamic nature of the scheduling problem, which is due
to changes to job loads, availability of machines and la-
bor, introduction of new machines and manufacturing
processes,changesintheinventoryspace,etc.For this
reason,thereareno expertsinthisdomain,and even if
therewere,theywould be quicklyoutdated[Kempf et
al., 1991].

Many AI-approaches to scheduling are constraint-
based [Fox, 1987, Sadeh, 1991, Smith et al., 1986,
gweben and Eskey, 1989]. Here scheduling is viewed
as finding a schedule (assignment of machines to various
job-steps) which satisfies a set of constraints, including
precedence relationships between job-steps and global re-
source constraints. However, most of these approaches

_4w 77

assume a static scheduling problem, and are not easily
adaptable to real-time scheduling.

Traditionally, the "dynamics" of the manufacturing
process is handled by local greedy dispatch rules [Voll-
mann et al., 1988]. One dispatch rule, for example, rec-
ommends to schedule the job with Least Processing Time
(LPT) first, while another rule uses Earliest Due Date

(EDD) to prioritize jobs. While computationally cheap,
such local dispatch rules are too short-sighted, and do
not guarantee efficient schedules except in very special
cases [Kempf et al., 1991].

In summary, static optimal scheduling is computa-
tionally prohibitive and is not sufficiently responsive to
change. On the other hand, local dispatch rules are too
short-sighted to be generally effective. The expert sys-
tems approach is plagued by the dynamics of the schedul-
ing problem and paucity of experts. In this paper, we
propose an approach based on real-time search which
attempts to address each of the above problems.

3 Problem Description

The problem we address can be characterized as schedul-
ing the job-steps in a set of jobs on various machines in
real time. We make the following assumptions.

1. Each job consists of a sequence of job-steps that
must be performed serially.

2. There may be several machines of each machine
type.

3. Each job-step requires a machine of a particular
type to perform it.

4. Each machine can only process one operation at a
time.

5. Each job may require the same machine (or machine
type) more than once. In other words, we have a
"job shop" situation rather than a "flow shop" sit-
uation [Vollmann et al., 1988].

6. The machine type required for each job-step and the
time for each job-step is known in advance.

7. The real-time constraint means that the time for

deciding which job-step to schedule next is "small,"
and should not depend on the number of jobs and
job-steps.

For example, each job in Figure 1 consists of a se-
quence of job-steps. The task of the scheduler is to in-
crementally add new job-steps to the current machine
queues. As the machine queues are filled from the back

by the scheduler, they are emptied from the front by the
machines executing the job-steps. In addition, the job-
step must wait until its predecessor job-step in its job
is executed. For example, in Figure 1, job-steps S-11,
S-22, and S-42 are in the queue for machine M1 in that
order. In addition, S-11, S-12, S-13, and S-14 must also
be processed sequentially, because they are all part of a
single job.

Since scheduling is done while the jobs are getting ex-
ecuted, the scheduler has only a limited time to decide
what job-step to schedule next, and on what machine.

M1

M2

M3

M4

n

SchedulerMachine Queues

Figure 1: Scheduler assigns job-steps to machine queues.

4 Scheduling as State Space Search

We formulate the scheduling problem as a state space
search problem. States in the scheduling task correspond
to partial schedules represented as queues of job-steps for
the machines. The search problem is characterized by an
initial state, where there are no jobs scheduled, and a fi-
nal state, where all the jobs are scheduled. In any state,
there are several alternative assignments of the job-steps
to machine queues. A job-step is "ready" when all its
precedent job-steps have completed. Scheduling opera-
tors or "moves" assign job-steps to one of the machines
of the required machine type. In other words, they can
be placed on any one of the possible queues of the ap-
propriate machine type. Each such placement creates
a new state. The scheduling problem is to find a best

assignment of job-steps to machine queues according to
some measure of goodness (objective function). For ex-
ample, we may use the total time for the schedule or the
sum of the inventory and shortage costs as an objective
function.

The static scheduling problem corresponds to finding
the best path in the state space from the initial state
to a final state. However, static scheduling suffers from
the combinatorial explosion due to deep searches and is
not sufficiently responsive to the dynamics of the man-
ufacturing domain. In the following, we describe our
approach to scheduling that addresses these problems.

4.1 Minimin search

Our approach to scheduling consists of a real time search
method called "Minimin search" [Korf, 1990]. Minimin

is similar to minimax search in two-person games, ex-
cept that instead of alternating Min and Max nodes, the
search tree only contains Min nodes.

Minimin works by a fixed depth look-ahead search fol-
lowed by a real-time action. The search terminates after
a small depth called usearch horizon," after-which the
leaves of the tree are evaluated using a heuristic evalu-
ation function. The evaluation function applied at the

leaves estimates the minimum total cost of any solution
that begins with a partial path ending with thgt leaf.
It is backed up to the root using the Min function. In
other words, the value of any node is the minimum of all
the values Of its ch_idren, and_he =move ihaCresults in

m

N

W

iil

i
n

m

W

m

I

m

m

a

u

B

U

m

m

mm

U

N

78 U

J m

m

m

m

w
l

m

l
E

m

m
m

!

that value is the %est move." After searching for a fixed
look-ahead depth, Minimin chooses the first best move,
executes it, updates the state and once again starts look-
ahead search from that point.

The "knowledge" of the Minimin algorithm lies in its
heuristic evaluation function/. The more closely it fol-

lows the real cost of the solution, the more optimal the
algorithm's current decision is going to be. An evalua-
tion function is "admissible" if it never overestimates the
real cost of a solution. An evaluation function is mono-

tonic, if its value is monotonically non-decreasing along
any single path of the search tree.

When the evaluation function of the Minimin search

is monotonic, it is amenable to an effective branch and
bound technique called a-pruning, a-pruning works by
pruning the branches whose estimated cost is more than
the current best estimated cost. Like a-/9 pruning, a-
pruning is guaranteed to preserve the outcome of the
look-ahead search.

Minimin(CurrentState, depth, a)
If depth = SearchHorizon return (f(CurrentState));

%Alpha Pruning
If f(CurrentState) >_ a return (a + 1)
S := job-steps which are "ready";

M := {m [38 6 S that needs a machine of m's type };
Pick m 6 M s.t. its current queue finishes earliest.
For each job-step s 6 S which matches m's type, Do

Begin
NewState := Assign(s,m);
Val := Minimin(NewState, depth + 1, a);
If Vai < a

Begin
a := Val;
BestNeztState := NewState;
End;

End;
Return(a, BestNeztState);

End Minimin;

Table 1: Minimin Applied to Scheduling

Each time the Minimin algorithm is called it returns
the best next state and its estimated evaluation. The

maan program then takes the corresponding action in
the "real world" and updates its current state to this new
state. After this, the program repeats its cycle again by
calling the Minimin algorithm.

4.2 _ Real-t{me Scheduling

We noted that in Scheduling the states correspond to
partial schedules and operators correspond to scheduling
actions. In order to complete the mapping of the real-

the following recurrence relations.

ES(s) _ Maz,¢pmz(,i(EF(r))
fF(s)-= ZS(s) + ET(s)

Let 7_ be the time by which machine Mi finishes the last
job-step in its current queue. The goal of the Minimin

time scheduling problem to Minimin search, we need to search is to find the best next job-step to add to the cur-

specify how a schedule is evaluated. _ rent queues by doing a look-ahead search of fixed depth
Several optimality criteria might be used to evaluate

the schedules. One of the criteria is the sum of the short-
age and the inventory costs. Another criterion is the to-

tal length of the schedule from the beginning to the end,
also called Umake-span." In our system, we currently
use the make-span criterion to evaluate schedules. The
smaller the make-span, the better the schedule. In Min-
imin search, the cost of the schedule must be estimated

after only a small number of steps are scheduled, i.e.,
much before the full schedule is known. To do this effec-

tively, we should necessarily rely on heuristic estimates
of the schedule cost. A good heuristic evaluation func-
tion must approximate the optimality criterion as closely
as possible.

As discussed earlier, there is an implicit precedence
relationship between the job-steps in the same machine
queue, and between the job-steps that belong to the same
job. For any job-step s, let PRE(s) be the set of job-
steps which are immediate predecessors ors, in that they
need to be performed before s is done. In Figure 1,
PRE(S-12) = {S-11, S-21}.

Our estimate of the make-span is done as follows: first,
we compute the time Ti by which each machine Mi fin-
ishes its current queue. Assuming that the expected time
ET(s) for each job-step s is known in advance, this can
be calculated exactly. Let the expected start time and
the expected finish time of a job-step s be denoted by

ES(s) and EF(s) respectively. The expected start and
finish times of any job-step can then be calculated using

in the space of partial schedules (machine queues).
A job-step is considered "ready" if all its predecessors

are either already executed or present in one or the other
of the machine queues. At any given state, RTS first
filters its machines by discarding those machines which
do not have any ready job-steps waiting for their machine
type. It then chooses the machine Mi which is expected
to finish its queue the earliest, i.e., with a minimum T/,
and considers scheduling various job-steps on it. Each
"ready" job-step s whose type matches that of machine
Mi is a possible choice. For each such possible choice,
Minimin creates a new state by assigning s to Mi, and
updates the expected finish time of Mi's current queue
using the above recurrence relations. RTS proceeds in
dept_n first search in this manner until it reaches the
search horizon.

At the leaves of the look-ahead search tree, the total

- time req_red to complete the remaining schedule must
be estimated. Since none of the job-steps in the remain-
ing schedule is assigned to a machine yet, their expected
finish time cannot be exactly estimated. It is here that
we rely on a heuristic lower bound.

Let TK be the maximum of Ti of all machines Mi

of type K. Let WK be the total work remaining on
machines of type K, i.e., the total expected time of all
job-steps that need a machine of type K. Assume also

that there are ArK machines of type K. Ignoring all the
precedence constraints between the job-steps, the work
remaining on machines of type K can be distributed as

- 79

follows. First fill eaz_h maz_hine of type K until they
reach the level TIC. This does not increase the make-
span because it anyway takes that long to wait for the

current queue to finish. This reduces the remaining work
on machine of type K to W/c - E_{TK - T/}, which may
be distributed evenly among all the machines of type
K in the best possible case. Hence, we observe that the

time for completing the schedule must at least be as high
as the following two bounds.

W_:- _{TK-T_ }
1. MaZlfCMac_ine-2_pes (TK + JVx J

2. Mazjejob,(E,_jET(s) + Min(Ti))

The second lower bound above is obtained by noting
that the job-steps in a single job should be executed
sequentially. To the total time needed to execute any job,
the minimum expected finish time of all machine queues
is added. The finish time of the schedule is estimated to
be the maximum of the above two bounds.

The above evaluation function is both admissible

(never overestimates the true cost) and monotonic
(monotonically non-decreasing along any path). This
follows because, adding job-steps to the machine queues
can only increase but never decrease the delays, by intro-
ducing more constraints. Since each step in the search
adds a new job-step to the queues, the expected comple-
tion time is monotonically non-decreasing. The mono-
tonicity is exploited by RTS by maintaining the current
estimate a of the best schedule and evaluating f at inter-
nal nodes even before the search horizon is reached. Be-

cause f is monotonically non-decreasing, any path whose
current estimate of the schedule cost exceeds the current

value of a is guaranteed to yield only a worse solution
and hence need not be pursued further. In other words,
a-pruning would not sacrifice solution quality.

The estimated time for completion is backed up to the
internal nodes from the leaves and finally to the root of
the look-ahead search tree. The path that promises the
lowest make-span is considered the best. An assignment
of the first job-step in this path is made as suggested by
this path. After this assignment, which corresponds to
an action in the "real world," RTS takes a fresh look at

its environment and starts a new cycle all over again.

4.3 Experimental Results

The problem specification is a 5-tuple. It consists of the
number of jobs, the number of machines, the number of
types of machines (this has to be less than the number

of machines) and two numbers which specify the upper
bounds on the number of steps for any job and the pro-

cessing time for any step. Number of steps for each job
is generated randomly, bound by the upper bound given
in the problem specification. Each job-step is randomly

assigned a machine type. Each job-step is also assigned

some .processing time randomly, bound from above as
given m the problem specification.

We tested RTS on a sample of 39 randomly generated
problems. Each problem had about 4-6 machines divided
into 3-4 types, and 4-6 jobs each of which had about 5

steps, each step taking up to 6 units of time. We then
ran the system with different look-ahead depths, and
measured the total time to execute the whole schedule

4S

44

43

Make. 42

span 41

40

39

38

37

1 2 3 4 5 6 7 8 9 I0 II 12 13 14 15

Search Horizon

Figure 2: Solution quality improves with search horizon.

(make-span). We plotted the search horizon on the X-
axis and the average make-span on the Y-axis.

The results show that the solution quality generally
improves with search horizon, as expected. This trsdeoff
of search for solution quality was very favorable in the
beginning, and tapered off toward the end. Although
deeper searches resulted in better solutions on the whole,
they also required exponentially larger number of nodes,
taking exponentially longer time. In our context, the
results indicate that a search horizen of 7 to 10 would

achieve reasonably good schedules without extravagant
search.

In general, it appears that a shallow look-ahead search
would suffice to improve solution quality in this domain,
which means that deep expensive searches may not be
needed.

5 Future Work

The work reported here is preliminary and a lot remains

to be done to make the ideas more practical and appli-
cable in a real-world setting. A few of the promising
directions to pursue are listed below.

Reactivity: One of the major reasons for building
"real-time" systems is that they are more responsive
to changes in their environment. This is especially
crucial in the manufacturing domain, where unex-
pected events such as machine break-downs and
tool failures are common. We believe that our sys-

tem would respond better to such changes than a
static scheduler. Indeed, it is possible to completely
change the machine and job configuration before ev-
ery cycle of the Minimin algorithm. The system
should still be able to make locally optimal decisions
with respect to its changed configuration. However,
we expect that the system's behavior degrades grad-
ually as the dynamics in the system configuration
increases. It might also be expected that the use-
fulness of the look-ahead search decreases with in-

creased dynamism. These hypotheses need to be
experimentally verified.

Variable Depth Search: We assumed that the search
horizon is fixed. However, this need not be the

I
w

_r

qp

n

g

m

W

m
m

mlp

In

II

III

r__

I;

8O
w

tses_

B

N
a_m
m

L_

! m

I m

] E

E

m

J

case, and it is possible to change the search horizon
across problems and even within the same problem.
For example, a method calhd "Singular Extensions"
proved very effective in game domains by focusing
the search along narrow paths which appear signif-
icantly more promising than their nearest competi-
tors [Anantharaman et ai., 1990]. It seems possi-
ble to adapt this technique to real-time scheduling
and search deeper at places in the search tree which
appear promising. We can also add the iterative-
deepening capability to Minimin, so that more time
can be spent searching for a better schedule if time
is available [Koff, 1985]. This also makes it an any-
time algorithm in the sense of [Dean and Boddy,
1988], in that it can be interrupted at any time dur-
ing its computation and asked to schedule the next
job-step. The utility of the system's decisions is ex-
pected to increase with the time available to make
the decision.

Learning: The performance of the system at a given
search horizon depends mostly on the goodness of
the evaluation function used to estimate the opti-
mality of the schedule. Although our current eval-
uation function performed fairly well on the prob-
lems that we tested it on, it does not take into ac-
count factors such as bottleneck resources, which are
crucial for a good scheduler. However, it is time-
consuming and laborious to encode sophisticated
evaluation functions. Besides, good evaluation func-
tions are sensitive to the scheduler's environment,
and hence may not be generally effective. Hence
we plan to apply machine learning to learn effee-
five evaluation functions [Lee and Mahajan, 1988].
There have already l_een some machine learning
methods applied to scheduling domains [Kim, 1990,
Shaw et ed., 1990]. We think that significant im-
provements beyond current scheduling techniques
can be achieved using machine learning.

6 Summary

In this paper we described a real-time scheduling sys-
tem based on the Minimin algorithm and showed that
it is effective and capable of producing good schedules
with reasonably small effort. In particular, we showed
that the schedule quality improves with increased look-
ahead, confirming some of the results of Korf on Real-
time Search in the scheduling domain. The future work
includes evaluation function learning, variable depth
searches, and demonstration of the reactivity of the sys-
tem. Although much remains to be done, the prelimi-
nary results reported in this paper appear promising.

Acknowledgments

We thank Logen Logendran, Toshi Minoura, and Vijay
Srinivasan for many fruitful discussions, and the depart-
ment of computer science for financial support.

81

References

[Anantharaman et al., 1990]
T.Anantharaman, M. Campbell, F. Hsu. Singular Ex-
tensions: Adding Selectivity to Brute Force Searching.
Artificial Intelligence, 43(1), 1990.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An
Analysis of Time-dependent Planning. AAAI-88 Pro-
ceedings, Morgan Kaufmann Publishers, San Mateo,
CA, 1988.

[Fox and Smith, 1984] M.S. Fox and S.F. Smith. ISIS: A
Knowledge-based System for Factory Scheduling. Int.
J. Erpert Systems, 1(1), 1984.

[Fox, 1987] M.S. Fox. Constraint-Directed Search: A
Case Study of Job-Shop Scheduling. Morgan Kauf-
mann, Los Altos, CA, 1987.

[Kempfet ai., 1991] K. Kempf, C.L. Pape, S.F. Smith,
and B.R. Fox. Issues in the Design of AI-Based Sched-
ulers: A Workshop_port. AI Magazine, 11(5), 1991.

[Kim, 1990] S. Kim. Schedule-Based Material Require-
ments Planning: An Artificial Intelligence Approach
M.S. Thesis, Department of Industrial and Manufac-
turing Engineering, Oregon State University, Corval-
lis, OR, 1990.

[Korf, 1985] R. Korf. Depth-first Iterative-deepening:
An Optimal Admissible Tree Search. Artificial Intel-
ligence, 27, 1985.

[Korf, 1990] R. Korf. Real Time Heuristic Search. Arti-
ficial Intelligence, March, 1990.

[Lee and Mahajan, 1988] K.F. Lee and S. Mahajan. A
Pattern Classification Approach to Evaluation Func-
tion Learning. Artificial Intelligence, 36, 1988.

[Sadeh, 1991] N. Sadeh. Look-ahead Techniques for
Micro-opportunistic Job Shop Scheduling. Ph.D. The-
sis, School of Computer Science, Carnegie Mellon Uni-
versity, available as CMU-CS-91-102, 1991.

[Shaw et al., 1990] M.J. Shaw, S.C. Park, and N. Ra-
man. Intelligent Scheduling with Machine Learn-
ing Capabilities: The Induction of Scheduling Knowl-

= edge. Technical Report, i Beckman Institute for Ad-
vanced Science and Technology, University of Illinois
at Urbana-Champaign, Urbana, IL, 1990.

[Smith et al., 1986] S. Smith, M.S. Fox and P.S. Ow.
Constructing and Maintaining Detailed Production
Plans: Investigations into the Development of
Knowledge-based Factory Scheduling Systems. AI
Magazine, Vol. 7, No, 4, 1986.

[Vollmann et al., 1988] T.E. Vollmann, W.L. Berry, and
D.C. Whybark. Manufacturing Planning and Control
Systems. Irwin, Homewood, IL, 1988.

[Zweben and Eskey, 1989] M. Zweben and M. Eskey.
Constraint Satisfaction with Delayed Evaluation.
IJCAI-89 Proceedings, AAAI Press, Menlo Park,
1989.

// Planning, Scheduling, and Control for Automatic Telescopes

Mark Drummond Keith Swanson John Bresina Andy Phil_ps Rich Levinson

Sterling Software NASA Sterling Software Sterling Software Recom Software

.. -- - g

NASA Ames Research Center

Mail Stop: 269-2

Moffett Field, CA 94035

1 Introduction " "

Making observations through telescopes is an activity of
central importance to NASA. Whether a telescope is lo-
cated on the Earth, is in orbit around the Earth as a
satellite, is located on the moon, or is even on another

planet, it presents an exciting and sometimes unique op-
portunity for gathering data about various astronomical
phenomena. Telescopes have always been a scare re-
source, and astronomers have had to make do with ex-
tremely limited access. Further, an astronomer has been
expected to be physically present at a telescope in order
to gather data. Restricted access and local operation
have limited the amount of data that can be gathered,
and thus have directly contributed to fewer scientific re- =
suits than might otherwise be expected.

Recent work by the Fairborn Observatory and Auto-
Scope Corporation has freed astronomers from the need
to be physically present at the telescope site. These orga-
nizations, working with astronomers, have designed and
built control systems and associated hardware for the

management and control of photoelectric telescopes; for
a review of these Automatic Photoelectric Telescopes, or

APTS, see Genet and Hayes (1989). While existing au-
tomation deals primarily with photoelectric telescopes,

other sorts of telescope and other sorts of science _re cur-
rently under investigation. The key point is that there
is a perceived need, within _he s.stronomy commu_fl_,
that the automation of local telescope control is desir-
able. Existing automation does not address all needs of
all astronomers, but it does provide an excellent start-
ing point. The eventual goal is what we call a "simplified
management structure". The term refers to an approach
to the management and control of telescopes that mini-
raises the number of people that must come between an

astronomer's scientific goals and the telescopes required
to realise those goals. A simplified management_struc-
ture requires significantly more sophisticated telescope
automation than is currently possible.

The Entropy Reduction Engine (BI_) project, carried
out at the Ames Research Center, is focusing on the
construction of integrated planning and scheduling sys-
tems. Specifically, the project is studying the problem
of integrating planning and scheduling in the context of
closed-loop plan use. The results of this research are
particularly relevant when there is some element of dy-

namism in the environment, and thus some chance that :
a previously formed plan will fall. After a preliminary lU

study of the APT management and control problem, we
feel that it presents an excellent opportunity to demon-

strate some of the ER_. project's technical results. Of
course, the alignment between technology and problem is
not perfect, so planning and scheduling for APTs presents
_me new and difficult challenges as well.

This paper presents an argument for the appropriate-
ness of zR_ technology to the planning, scheduling, and
control components of b P_ management. The paper is
organized as follows. In the next section, we give a brief
summary of the planning and scheduling requirements
for APTs. FoUowing thisj in section 3, we give an BR_.
project precis, couched primarily in terms of project oh- --

jectives. Section 4 give_ a sketch of the match-up be-
tween problem and technology, and section 5 outlines qP
where we want to go with this work.

2 APT problem sUinmai, y" : '-_ i , .:- " M

An Automatic PhotoelectricTelescopeisa telescopecon- --

trolled by a dedicated computer for the purpose of gath-
ering photometric data about various objects in the sky. 8
While there are many sorts of photometric techniques,

we focus on the technique known as aperture photom-

etry. An excellent overview of aperture photometry is i
given by Hall and Genet (1988). In aperture photometry,
and for current purposes, a group is the primitive unit
to be scheduled, A group isa sequence of telescopeand --

photometer commands defined by an astronomer. Any
given astronomer has certain scientific goals, and he or
she uses the group as the primary unit of instruction to
an APT in order to achieve those goals. The language __
used todefinegroups iscalledATIS (for Automatic Tele-
scope InstructionSet);ATIS isan Ascii-based language

for communicating with AP'][_ (the de facto standard). .-.

The communication process between astronomer and
APT proceeds roughly as follows. First, an astronomer
who wishestouse an APT forms a setofgroups consistent _

with his or her scientific goals. These groups are written
specifically in terms of a given telescope: since each tele-
scope can vary slightly (instruments, optical characteris-

tics, mechanical characteristics, location on the Earth), _--
groups must be formulated in a telescope-specific man-
net. For any given APT there is a single person who u

82
w

=

F_

m

u

P

m

m

m

m

L_w

acts as a central clearing-house for usage requests; such
a person is known in the vernacular as the APT's P_n-
cipal Astronomer, or PA. Thus, once an astronomer has
assembled his or her set of ATIS groups, they package
the groups off to the appropriate PA. The PA collects to-
gether such sets from a variety of astronomers, attempts
to ensure that the telescope is not overloaded, and then
sends the complete set of groups oR"to the correct tele-
scope. Actual communication between PA and APT i8

......... car_r_ed Out by using personal computers, moderns, and
phone lines, but the particular technology isn't critical
for the current discussion. The important aspect of the
communication is that the PA can be located anywhere
on the planet (in principle), and need only have access
to an appropriate communication link.

The PA sends a set of groups to an APT, with the in-
tention that these groups should be run fore'me timei
eventually, the PA requests from the telescope the re-
sults that have been obtained under the execution of

the given groups. The elapsed time varies, and depends
on the telescope, the groups, the PA, and a variety of
other factors. Of course the goal is to worry the as-
tronomers (and the PA) as little as possible about the
picayune details of day-to-day telescope management.
Thus, the telescope is Often left alone for significant peri-
ods of time (weeks, perhaps months). However long the
telescope operates unattended, it is eventually asked for
data, and this is returned to the PA as a "results file".

The results file is also in the ATIS language, and it con-
tains the groups that were executed, relevant observing
parameters to help with data reduction, and the actual
data obtained from the observations. The PA breaks this

results file into the pieces that are relevant for the as-
tronomers and sends each astronomer the results of his

or her: requeste_:0bservat_ons/Thus the cycle_of group
submission, compilation, execution, and data return can
begin again when the astronomers discover that the data
they've been given doesn't really tell them what they

wanted to know (such are the joys of real science).

Of course, the interesting part of this process is the
part that we've completely ignored so far; that is, the
process by which the groups are accepted and executed
by the local telescope controller. This is the interest-
ing part, and it is with respect to this process that our
planning and scheduling work can make a real differ-
ence. Currently, a program called ATIScope manages the
execution of a file of groups. ATIScope runs locally at
the given telescope, using observatory and telescope sen-

group execution,but we can safelyignorethesefornow. I

Roughly, the core of ATIScope isa sense-check-execute

loop. In sensing,allrelevantenvironmental parameters

aredetermined (date,time,moon status).ATIScope next
checkstosee which ofthe variouspossiblegroups are en-

abled accordingto the match between the currentsensor

valuesand the astronomer-provided preconditions.Let's

callthe setofgroups that pass thismatching testthe en-

abledgroups. The set ofenabled groups iswinnowed by
the appllcat_on of gro_ip selection rules. These rules ex-
press heuristic knowledge relating to the wisdom of exe-
cuting any particular group before any other. In schedul-
ing parlance, this scheme is sometimes called heuristic
dispatch, since at any point in time, some task (here, a
group) is "dispatched" for execution, and the selection
of a task is determined, purely locally, by the applica-

tion of some domain-specific heuristics. The information
content of the heuristics used by ATIScope isn't critical
for the current discussion (however, see Genet _5 Hayes,

1989, pp. 207-210). In the current context, heuristic
dispatch is used to transform the set of enabled groups
into a (hopefully) single group that is executed. If the
heuristic group selection rules fail to winnow the set of
enabled groups down to a single candidate, then the first
group in the given list is selected (this, however, almost
never happens, as the group selection rules normally pro-
duce a single preferred group). Following selection, the
lucky group is executed, at which point telescope con-
trol is largely surrendered to the astronomer who wrote
the group. Of course, there are safety checks to ensure

that the astronomer's commands don't damage equip-
ment, but if the commands are well-behaved (and if the
weather cooperates), group execution finishes normally,
and ATIScope is free to perform another iteration through
its sense-check-execute loop.

How well does ATIScope do, in terms of schedule qual-
ity, by using this heuristic dispatch technique? One way
of answering this question is to recall the old adage about
an incredible dancing dog: the question of the quality of
the dog's dancing needn't really be raised; one should in-
stead be happy that the clog dances at all. ATIScope does,
of course, provide an acceptable level of performance for
Some as(r_n0mers. There is no question, however, that
the level of telescope performance can be dramatically
improved by better group scheduling. With the heuris-
tic dispatch technique, all decisions are local in the sense
that no temporal look-ahead is performed to evaluate
the ramifications of executing a given group. The sys-
tem also has no memory of what it has done on previ-

sors to determine when to execute the provided groups. _ous_mg'_tS, so groups cannot]_ese_[ectedwith respectto

ATIScope has a varietyof responsibilities,bUt we focus some desiredfrequency of execution. Other scheduling

specifically on only one of these; namely, group selec_io_

i_ At the core of ArIScope is a test that attempts to find
a "currently" executable group. Roughly, a group is ex-
ecutable if the logical preconditions established by its
astronomer-creator are met. Typically, these precondi-
tions relate to the current date and time and to whether

the moon is up or down. Additionally, an astronomer
can specify a group priority, used by ATIScope to sort
the groups in order of importance. There are other
pseudo-preconditions that have to do with frequency of

techniques, such as those based on temporal projection
(Drummond & Bresina, 1990), consider the impact of a
given action by looking ahead in time to see how the
current local choice impacts global objectives. Look-
ahead is only sensible when astronomer objectives can
be clearly and precisely formulated. Assuming that this
can be done, it seems clear that a look-ahead scheduler

1The main factors that influence frequency of execution
are a group's probability and number of observations; see
Genet & Hayes (1989), p. 208.

83

canoutperformthecurrentATIScope heuristic dispatch
method. ATIScope, however, provides us with an ex-
isting level of performance against which all would-be
contenders can be gauged.

3 ERE goals

The design of systems that can synthesize plans has been
a long standing research topic in the field of Artificial In-

telligence (AI). Such systems, called planners, are given
a description of the problem at hand, and can synthe-
size a plan to solve that problem. Of course, a plan
is merely a specification of a solution, and so must be
executed to actually solve the given problem. Various
sorts of "execution system" are possible; for instance,
a plan might be executed by a manufacturing system,
by a group of people, or by a robotic device; all that
is required is a system that is capable of instantiating
the plan's actions and thus producing the desired re-
sult. The design of these automatic planners has been
addressed in AI since its earliest days, and a large num-
ber of techniques have been introduced in progressively
more ambitious systems over many years. In the AI re-
search branch at NASA Ames, the Entropy Reduction

Engine (zR_.) project is our focus for extending these
classical techniques in a variety of ways. In this sec-
tion we present the ERR project's overall goals; for more
detail on the architecture itself, see Bresina & Drum-

mond (1990), Drummond & Bresina (1990a, 1990b), and
Drummond, Bresina, and Kedar (1991).

The Entropy Reduction Engine project is a focus for
research on planning and scheduling in the context of
closed-loop plan execution. The eventual goal of the Zl_Z
project is a set of software tools for designing and deploy-
ing integrated planning and scheduling systems that are
able to effectively control their environments. To pro-
duce such software tools, we are working towards a better
theoretical understanding of planning and scheduling in
terms of closed-loop plan execution. Our overall project
has two important sub-goals: first, we are working to
integrate planning and scheduling;, second, we are study-
ing plan execution as a problem of discrete event control.
Let's consider these complementary goals in a bit more
detail.

Integrate planning and scheduling. Traditional AI
planning deals with the selection of actions that are rel-

evant to achieving given goals. Various disciplines, prin-
cipally Operations Research, and more recently AI, have
been concerned with the scheduling of actions; that is,
with sequencing actions in terms of metric time and met-
ric resource constraints. Unfortunately, most of the work
in scheduling remains theoretically and practically dis-
connected from planning. Consider: a scheduling system
is given a set of actions and returns, if possible, a sched-
ule composed of those actions in some specific order. If
the scheduler cannot find a satisfactory schedule, then it
simply fails. The business of planning is to selecl actions
that can solve a given problem, so what we need is an
integrated planning and scheduling system to overcome
the problems of scheduling alone. An integrated plan-
ning and scheduling system would be able to consider
alternative sets of actions, unlike the stand-alone ached-

uler, which is unable to deviate from its given action set.
We are working towards such an integrated _system by
incrementally constructing a unified theory of planning
and scheduling that can be computationally expressed
as practical software tools.

Study plan ezecution _s a control theo_ problem, i
Most planning and scheduling work assumes that the job
of the automatic system is done when a plan or schedule
has been generated. Of course, one of the first things
that you learn about plans is that they axe rarely ever J
perfectly predictive of what will happen. As Dwight D.
Eisenhower observed, "Plans are nothing, planning is ev-
erything". We agree with this view, since it tells us that
the importance of planning does not lie in the existence W

of a single plan, but rather in a system's ability to re-plan
and predictively manage plan execution failures in light
of feedback from the environment. In the _.R_. project,
we view plan execution as a problem in discrete event
control; specifically, we formalize a plan as a simple type
of feedback controller, and this gives us a new view on
plan execution. Traditionally, plans have been executed
by executing each component action in sequence. Our

plans are functions that map from current sensor values
and a desired goal into a set of acceptable control ac- _
tions. The interpretation of the function is that any of

the actions, if executed in the current situation, consti-

tute an acceptable prefix to a sequence of actions that
eventually satisfies the goal. G

4 The match, in the abstract

The previous two sections have, in rough terms, ex-
plained the APT problem and overall ERr project goals.
In this section, we consider how _.Rp. technology promises
to address key APT planning and scheduling issues. This
section is optimistic and is, by necessity, _promissory", N
in the sense that some of what we suggest has yet to be
rigorously demonstrated. This section reflects what we
currently perceive as opportunities for using ZRE tech-
nology on the APT planning, scheduling, and control U

problem.
First, the obvious: BltZ is an architecture for produc-

ing systems that look ahead into the future, and by

so doing, choose actions to perform. We feel that the
1 archit_ture is well-suited to the APT planning and
scheduling problem in this regard.._Tlscope currently
does no look-ahead, so assuming that our system does,
it should be able to produce better schedules. In fact,
one of our research interests is the relationship between
the cost of looking ahead and the increased "quality" of :_
the system's actual behavior. In the AP'r domain, the
quality of system behavior is determined by the amount
and quality of the data returned by a given set of obser-
vations, and by the fairness of telescope allocation to the
various astronomers' groups. Now ATIScope currently
achieves a particular level of quality, and we expect to be
able to increase this through some amount of look-ahead.
But at what cost? When does look-ahead actually give
rise to better system performance? +.TXscope, while per-

haps not producing the highest quality behavior, does so
with great alacrity. A scheduling system that does any
amount of look-ahead consumes more computational re-

m

t

L

m

m

84
g

m

= =

M

i
w
n
N

m
i

mm
wm

!

mmm

l
mw
!

E
iE

B

i

B

i
m
i

sources than ATIScope, so the behaviors it produces had
better be worth the increased cost. Of interest here is
the impact of environmental factors on the underlying
requirement for look-ahead: if the environment is com-
pletely predictable, and if a great deal of time is available
in advance, then a scheduler that looks ahead extremely
far into the future is apparently what's required. How-
ever, if the environment can change quickly, and change
in unpredictable ways, then much of the work done by a
look-ahead scheduler is wasted. The correct balance be-

tween look-ahead and heuristic dispatch is truly a func-
tion of the domain. There has been little empirical study
of this issue in general, and we feel that APT planning
and scheduling provides an excellent test case.

We have an algorithm for incremental, "anytime",
planning (Drummond & Bresina, 1990) that we think
will be useful in the APT context. While our algorithm
has only been tested on relatively simple planning prob-
lems, we think that many of the underlying ideas transfer
to scheduling as well. The essential idea is as follows: if
a system has a limited amount of time to plan, and, hav-
ing planned, is allowed to plan no further, then it makes
sense for the system to make the best use of the available

time by incrementally improving its current plan until
time runs out. Our algorithm, called trarerse and robus-
tiff, does this. It uses information about possible execu-
tion outcomes to predictively patch errors, before they
actually occur. By doing this the algorithm attempts
to maximize the probability that the plan it finds will
satisfy the user's objectives. This algorithm promises to
be useful in a scheduling context, and AP'rS provide an
appropriate test-domain. If we think of the scheduler as

running during the day (remote from the telescope, in
the PX's place of work), and imagine that the finished

schedule will be shipped to the telescope for overnight
execution, then one would like the schedule produced to
be of the highest possible robustness given the available
time, so our algorithm seems appropriate.

5 Objectives

First and foremost, we must define an appropriate ob-
jective function for APT observation schedules. How well
can this objective function be formalized? How will we

notate it? That is, what will be our language for writing
down the objective function? For the problems we have
studied to date, our language of beI_ariora[constraints
has been adequate. The current behavioral constraint
language allows a user to give arbitrary conjunctions and
disjunctions of predicates that must be maintained true

(or prevented from being true) throughout an interval
of time (see Drummond & Bresina, 1990, for more de-
tail). Is this language adequate for expressing the sorts
of goals that astronomers have? Will we need to drop
into the language of arbitrary mathematics? Of course,
this/s what most of decision analysis does, so should we
expect to do any better? We hope to devise a new sort
of behavioral constraint language, specifically designed
to allow astronomers to define APT observation schedule

preferences. Even with such a specially-designed lan-
guage, there's a remaining second-order problem: the PA
(or other user) must be able to define what constitutes

85

a fair and equitable tradeoff of telescope and instrument
allocation between different astronomers. Of course, we
don't want a person (the PA or other user) to have to
specify the specific tradeoff for each given scheduling in-
stance, but the general form of the tradeoff function used
must be defined by a user. These and other interesting
issues lurk in the vicinity of schedule objective functions.

We are fortunate to have access to several APT experts.
One expert isan originalAPT architectwho has founded

a firm tocommercially produce APTS. The otherexperts
are experienced photometric astronomers, one of whom

isan active APT user and has acted as a principalas-

tronomer in the past. It isour hope that by working
directlywith thisdiverseand experienced group ofAPT

developers and users,we willbe able to produce plan-

ning and scheduling tools of use to a large number of
photometric scientists.

In the short term (6 months), we plan to produce an

interactiveschedulingtoolforuse by ourselves,with our

APT user acting as a local domain expert. The tool

willhelp a user analyze a given set of groups by in-

teractivelydetermining the best sequence in which the

groups shouldbe run,providinghelp with theselectionof
the best sequence,but leavingthe user freeto intervene

should he or she so desire.The system willautomati-

callycompile out a set ofgroup selectionrulesthat will

produce the desired set of group execution sequences.

Essentially,our system willbe used to compile a set of
schedulingdispatch rules that are designed specifically

forthe targetsetof groups,to be run on the targettele-

scope,for a particularnight of observations. We have
studied the problem in some detailand are confident

that our existingtechniquesforcompiling such ruleswill

work on the APT problem (seeDrummond, 1989).

We have accessto an APT simulator and willuse this

to evaluateour system's evolvingcapabilities.Of course,
the eventual goal of thisresearch isto remove humans

from the controlloop,so thisfirstshort term objective
_ght not appear to be a tremendous step forward. It

is,in fact,best construed as a step "sidewayss,prefa-
tory to a giant leapforward. We willuse our interactive

schedulingtooltogain experiencewith the APT planning
and schedulingproblem; our eventual goal isto entirely

automate the decisionsstillmade by a human user.This

firstsideways step towards a decisionsupport system is

thus not an end in itself,but only a means to a bigger,
more important end.

In the medium term (1 year), we plan to produce
a better, incremental scheduler designed to replace
the ATISeope system. Our new scheduler would be
based on experience gained with building our look-ahead
scheduling decision-support system. Our scheduler, like
ATIScope, would accept a set of groups from the PA (or
various astronomers, thus freeing the PA entirely from
any scheduling responsibilities), and would schedule and
execute these in a flexible manner. This first prototype
automatic scheduler would not provide a very sophisti-
cated language of scientific objectives; instead, it would
allowa useror usersto specifya setofgroups,and would

attempt to better the current levelof performance ob-

tained by ATIScope by doing temporal projection(look-

ahead) and history recording (remember-behind).
Our long term plan (2 years) is to extend the language

of objectives to allow users to specify interesting scien-
tific objective functions. The first test case would be a
facility for filling out a desired light curve. Other test
cases will be established in conjunction with our APT

experts. The extra functionality offered at this stage of
development will be that of planning, as opposed to pure
scheduling. It is at this point that our system really be-
gins to offer increased scientific power over that of the
traditional ATIScope-style system. Until now, we have

only sought to increase the "quality _ of the group exe-
cution sequences. Here, we seek to increase the expres-
siveness of the language that is used by an astronomer
to specify scientific objectives.

Once individual APTS are routinely being used by re-
motely located astronomers, with nearly all scheduling
conflicts being resolved automatically, many new oppor-
tunities arise. For instance, at this point it becomes
practical to consider a network of relatively inexpensive
telescopes, located around the world, which are able to
provide continuous observation of astronomical objects.

While possible now for exceptional events (supernova),
the logistical overhead precludes wider practice.

We axe purchasing and intend to operate a 16-inch
APT. This telescope will be located in northern Califor-
nia, and will be made available to members of the sci-

entific community, with the focus being on educational
institutions. We will make our system available over the
InterNet, such that remotely located astronomers can
simply Email request files to our system. Our system will
accept a number of requests from various users, sched-
ule them, and download the set of groups and group
selection rules to the telescope. Users will receive their
requested data via return Email or will be given access to
an FTP site where their data may be recovered. This sys-
tem will provide the first example of a totally automated

telescope planning, scheduling, and control system. We
plan to have the system operating totally autonomously
as soon as possible.

We hope that our demonstration of fully automatic
telescope operations will serve as groundwork for new
applications of simplified telescope operations. Of par-
ticular interest is the possibility of placing a number of
small telescopes on the moon (Genet et aI, 1992). Such a
telescope facility would be an excellent test of our _sim-
plified management structure". We feel that _.P._ can
provide a solid base for the development of integrated

telescope planning, scheduling, and control systems that
help to make this simplified management structure a re-
ality.

Acknowledgements

Comments from Russ Genet, David Genet, Butler Hine,

and Bill Borucki have been extremely useful; to each of
them, our thanks.

References

m

J

m

[1] Bresina, J., Drummond, M., and Kedar, S. Forth.

coming. Reactive, Integrated Systems Pose New :::
Problems for Machine Learning. To appear in the u
volume on Learning in AI Planning and Scheduling
Systems; Langley, P., and Minton, S. (eds).

[2] Bresina, J., and Drummond, M. 1990. Integrating
Planning and Reaction: A Preliminary Report. Pro-

ceedings of the AAAI Spring Symposium Series (ses-
Sion on Planning in Uncertaln, Unpredictable, or _-
Changing Environments). n

[3] Drummond, M. 1989. Situated Control Rules. Pro-

ceedings of Conference on Principles of Knowledge

Representation _ Reasoning. Toronto, Canada, i
[4] Drummond, M., and Bresina, J. 1990a. Anytime

Synthetic Projection: Maximizing the Probability
of Goal Satisfaction. In proc. of AAAI.gO.

[5] Drummond, M., and Bresina.J. 1990b. Planning
for Control. In proc. of Fifth IEEE International
Symposium on Intelligent Control, published by the
IEEE Computer Society Press, Philadelphia, PA.
pp 657-662.

[6] Drummond, M., Bresina, J., and Kedar, S. 1991.
The Entropy Reduction Engine: Integrating Plan-
ning, Scheduling, and Control. Proceedings of the
AAAI Spring Symposium Series (session on Inte-
grated Intelligent Architectures).

[7] Hall, D.S., and Genet, R.M. 1988. Photoelectric
Photometry of Variable Stars. Wilmann'Bell, PO B
Box 35025, Richmond, VA (2nd edition).

[8] Genet, R.M, Genet, D.R., Talent, D.L., Drummond,
M., Hine, B., Boyd, L._., and Trueblood, M. 1992. --_
Multi-Use Lunar Telescopes. A chapter in "Robotic I[W
Observatories in the 1990's ". Edited by Alexei V.

Filippenko, published by the Astronomical Society __
of the Pacific Conference Series.

[9] Genet, R.M., and Genet, D.R. 1991. Dynamic
Scheduling of Astronomical Observations By Intel-
ligent Telescopes (A n informal Discussion of the __
Problem). Draft Paper, AutoScope Corporation, W
Mesa, AZ.

[10] Genet, R.M., and Hayes, D.S. 1989. Robotic Obser-
vatories: A Handbook of Rem0te'Access Personal-

Computer Astronomy. Published by the AutoScope

Corporation, Mesa, AZ.

J

i
i
n

J

86
J

= .

u

W

m

E

l
i

m
!

m

m

g

O-Plan2: The Open Planning Architecture

Brian Drabble, Richard Kirby and Austin Tate

Artificial Intelligence Applications Institute

University of Edinburgh

80 South Bridge

Edinburgh EH1 1HN

United Kingdom

-The O'Plan2 Project at the Artificial Intelligence Applications Institute of the University of

Edinburgh is exploring a practical computer based environment to provide for specification,

generation, interaction with, and execution of activity plans. O-Plan2 is intended to be a

domain-independent general planning and Control framework with the ability to embed detailed

knowledge of the domain. _-, _ _ _ : _ _= i _ _., _s_:,_: _ :;f_ ,,_ _ _,--_

• A hierarchical....... planning system which can produce plans as partial orders on actions. ! _ /_

• An agenda-based control architecture in which each control cycle can post pending tasks

during plan generation. These pending tasks are then picked up from the agenda and

processed by appropriate handlers (Knowledge Sources).

• The notion of a "plan state" which is the data structure containing the emerging plan,

the "flaws" remaining in it, and the information used in building the plan.

• Constraint posting and least commitment on object variables.

.... : _ _

• Temporal and resource constraint handling. The algorithms for this are incremental

versions of Operational Research methods.

• O-Plan2 is derived from the earlier Nonlin planner from which extended the ideas of Goal

Structure, Question Answering and typed conditions.

• We have extended Nonlin's style of task description language Task Formalism (It).

O-Plan2 could be applied to the following types of problems:

• planning and control of space probes such as VOYAGER, etc.

• project management in large scale construction projects.

• planning and control of supply logistics.

87

The Scenario

• A user specifies a task that is to be performed through some suitable interface. We call
this process job assignment.

• A planner plans and (if requested) arranges to execute the plan to perform the task
specified.

• The execution system seeks to carry out the detailed tasks specified by the planner while
working with a more detailed model of the execution environment.

J

g

W

c.p._i_<,[ID°_ [Capability[Model [

,.,,,,, .,o,>_o<, ,t.. '>,-'-) oo__u_c...oE,<.<:_>,,,,.,,,..,__wo,,,_

I ,>,,,,,s<:toI ,',:nS,a<o1

Figure 1: Communication between Central Planner and Ex. Agent',

We have deliberately simplified our consideration to three agents with these different roles and

with possible differences of requirements for user availability, processing capacity and real-time

reaction to clarify the research objectives in our work.

A common representation is sought to include knowledge about the capabilities of the planner

and execution agent, the requirements of the plan and the plan itself either with or without
flaws (see Figure 1)

g

mm

m l

B

!

___=-

U

z

w

i i

I

m

88
g

m

m

U

u

i

u
i
u

B
m

m_

i

i
l

I
IB'

m

m

m
w=L

@ONTROLLER _

/

PLAN NETWORK

• TOME

• GOST

RESOURCE

• USAGE

TIME

• WINDOWS

AGENDAS (Flaw,)

INPUT
o

EVENTS

i

• " [BIND A VARIABLE

I

I ADD A LINK

I SATISFY A CONDITION

EXPAND AN ACTIVITY

KNOWLEDGE

SOURCES

I o = •

/
SUPPORT TOOLS

• TOME/GOST MANAGER

• QUESTION ANSWERING

• TIME POINT NETWORK MANAGER

• PLAN STATE VARIABLES MANAGE]

• RESOURCE MANAGER

INSTRUMENTATION AND

• SUPPORT TOOLS

• EVENT MANGER

Figure 2:O-Plan2 Architecture

....89

DOMAIN
INFO RMATIO N

OPERATOR

• SCHEMAS

PROCESS

eSCHEMAS

RESOURCE

• DEFINITION

TASK

• DEFINITION

• CONSTRAINTS

(STATIC)

OUTPUT
EVENTS

Developer Interface

O-Plan2 is implemented in Common Lisp on Unix Workstations with an X-Windows interface.

It is designed to be able to exploit multi-processors in future and thus has a clear separation

of the various components (as shown in Figure 2). Each of these may be run on a separate

processor and multiple platforms may be provided to allow for parallelism in knowledge source

processing. A sample screen image as seen by the O-Plan2 developer or an interested technical

user is shown in Figure 3.

Figure 3: Example Developer Interface for the O:Plan2 Planning Agent

D

W

m

I

I

w

U

m

U

m

g

U

m

g

n

g

!
u

i

U

90

User Interface

E

I

i

fpl

m

j

m

m

L

AI planning systems are now being used in realistic applications by users who need to have

a high level of graphical support to the planning operations they are being aided with. An

interface to AutoCAD has been built to show the type of User Interface we envisage (see Figure

4). The lower window draws the plan as a graph, and the upper right window can be useed for

simulations of the state of the world at points in the plan.

[] _c_ arq_= _m. - _rq_t_mw._m

Ll_tr 0 _W

SAVE:

t
L_.er 0 Sa&p 4120.00.1_0.00 DL: lg

IILOCKS
PI_:
OIS_L_
oe,m
[_IT

LA'C_R:
S['_'I_S
PLGT
UCS:
UTILITY

3O
4S_DE

mined r_drm

:emm.d: redrm
mm_d

Figure 4: Example Output of the AutoCAD-based User Interface

= 91

R93- f_

/
£

!

Abstract

Rescheduling with Iterative Repair

Monte Zweben

Eugene Davis*
Brian Daunt

Michael Dealet

NASA Ames Research Center

M.S. 269-2

Moffett Field, California 94035

This paper presents a new approach to rescheduling
called constraint-based i_eratire repair. This approach
gives our system the ability to satisfy domain con-
straints, address optimization concerns, minimize per-
turbation to the original schedule, and produce modi-
fied schedules quickly. The system begins with an ini-
tial, flawed schedule and then iteratively repairs con-
straint violations until a conflict-free schedule is pro-
dueed. In an empirical demonstration, we vary the im-
portance of minimizing perturbation and report how
fast the system is able to resolve conflicts in a given
time bound. These experiments were performed within
the domain of Space Shuttle ground processing.

Introduction

Space Shuttle ground processing encompasses the in-
spection, repair, and refurbishment of space shut-
ties in preparation for launch. During processing the
Kennedy Space Center (KSC) flow management team
frequently modifies the schedule in order to accommo-

date unanticipated events, such as lack of personnel
availability, unexpected delays, and the need to re-
pair newly discovered problems. If the Space Shut-
tle ground processing turnaround time could be short-
ened, even by a small percentage, millions of dollars

would be saved. This paper presents GERRY, a gen-
eral scheduling system being applied to the Space Shut-
tle ground processing problem.

As originally put forth in [Smi85], rescheduling sys-
tems should satisfy domain constraints, address opti-
misation concerns, minimize perturbation to the orig-
inal schedule, and produce modified schedules quickly.
GERRY [Zweg0] is a novel approach to rescheduling
that addresses these concerns and gives the user the
ability to individually modify each criteria's relative
importance. In an empirical demonstration of the sys-
tem, we vary the importance of minimizing perturba-

tion and report how fast the system is able to converge

*Recom Technologies
tLockheed Artificial Intelligence Center
ILockheed Space Operations Company

toa conflict:freeSchedule (ora near-conflict-freesched-
ule) in a given tirne-l_oun-d.- - i i _ i

Problem Class: Fixed Preemptive

Scheduling

Scheduling is the process of assigning times and re-

sources to the tasks of a plan. Scheduling assign-
ments must satisfya setofdomain constraints.Gener-
ally,theseincludetemporal constraints,milestonecon-

straints,and resource requirements. The Space Shut-

tle domain also requires the modeling of state vari-

ables. State variablesare conditionsthat can change

over time; examples includethe positionsofswitches,
the configurationof mechanical parts,and the status

of systems. Tasks might be constrained by the state

conditions (a state requirement) and they might cause
a change in state condition (a state effect).

Preemption is an additional complicating factor in-

troduced by the Space Shuttle problem. In preemptive
scheduling, each task is associated with a calendar of
legal work periods that determine when the task must
be performed.

Preemption effectively splits a task into a set of sub-
tasks. Resource and state constraints are annotated
as to whether they should be enforced for each indi-

vidual subtask (and not during the suspended peri-
ods between subtasks) or during the entire time span-
ning from the first subtask until the last (including
suspended periods). Preemptive scheduling requires
additional computational overhead since for each task

the preemption times must be computed and appropri-
ate constraint manipulation for each time assignment
must be performed.

Reschedullng

tteschedullng is necessitated by changes that occur in
the environment. Systems can respond in three ways:
schedule again from scratch, remove some tasks from
the schedule and restart from an intermediate state, or
repair the schedule where the changes occurred.

Scheduling from scratch reconsiders the scheduling
problem in light of exogenous events. In [Ham86],
[Sim88] and [Kamg0], the authors argue that it is

W

lID

g

II

il

im

tl

W

!

i

I

w

U

r

W

m

I

m

92

u

z:_

E,_

n
N

m

=_

moreeflic.i_ent tomodify flawedplans than to plan from
scratch. Moreover, sincescheduling from scratchwill

generatea new schedulewithout consideringany values

from the previous solution,a high amount of pertur-
bation islikelyto occur.

To schedule from an intermediatestate,alltasksaf-

fectedby the exogenous events are firstremoved from

the schedule;scheduling then isresumed considering
the exogenous events_=For example, suppose TI, T2, T3,
and T4 are tasksina schedule that are constrainedto

be sequentialinthe order shown. IfTs isdelayed,then
only T3 and T4 would be removed from the schedulebe-

forerestarting,because the other tasksare Unaffected

by the delay.This approach iscomplex, because a de-

pendency analysisisrequired to determine whether a

schedule modificationcould affectany particulartask.

Further, even though a task isunaffected by an ex-

ogenous event,itmay be possibleto provide a better
schedule by reconsideringitsassignments.

GERRY adopts the thirdapproach, which isto re-
pair the_constraintsthat are violated_n the schedule.

Constraint-Based Iterative Repair

C0nstraint'based iterativerepairbegins with a com-

pleteschedule of unacceptable qualityand iteratively

modifies ituntil_tsqualityisfound satisfactory.The
qualityof a schedule ismeasured by the costfunction:

Cost(s) = Ec,.con.,..,",0Penaltyc,(s) • Weight°,.
which isa weighted sum of constraintviolations.The

penaltyfunction of a constraintreturnsan integerre-

flectingitsdegree of violation.The t0e/ghtfunctionof
a constraintreturnsan integerrepresentingthe impor-
tance or utilityofa constraint.

In GERRY, repairsare associatedwith constraints.

Local repairheuristicsthat are likelyto satisfythe vi-
olated constraintcan then be encoded without con-

cern for how these repairswould interactwith other

constraints. Of course localrepairsdo occasionally

yield globallyundesirable states,but these states,if

accepted (seebelow),are generallyimproved upon af-
termultiple iterations.

Repairing any violationtypicallyinvolvesmoving a

setoftasksto differenttimes: atleastone task partici-

patingin the constraintviolationismoved, along with
any other tasks whose temporal constraintswould be

violated by the move. In other words, alltemporal

constraintsare preserved afterthe repair.We use the
Waltz constraintpropagation algorithm over time in-

tervals[Wa175, Day87] tocarrythisout (thusenforcing
a form of arc-consistency[Mac77, Fre82]). The algo-

rithm recursivelyenforces temporal constraintsuntil

there are no outstanding temporal violatlons,t This
scheme can be computationally expensive,sincemov-

ing tasksinvolveschecking resourceconstraints,calcu-

latingpreemption intervals,etc.

INote that alltemporal constraintsaxe alsopreserved
(usingthe same Waltz algorithm)whenever the userman-
uallymoves tasks.

At the end ofeach iteration,the system re-evaluates
the costfunction_todetermine whether the new sched-

ule resultingfrom the repairsisbetterthan the current
solution.Ifthe new scheduleisan improvement, itbe-

comes the currentschedule for the next iteration;ifit

isalsobetterthan any previoussolution,itisstoredas

the best solutionso far. Ifitisnot an improvement,

with some probabilityitiseitheraccepted anyway, or

itisrejectedand the changes are not kept. When the
changes are not kept, itishoped that repairsin the
next iterationwillselecta differentsetoftaskstomove

and the cost function willimprove.

The system sometimes accepts a new solutionthat
is worse than the current solution in order to es-

cape localminima and cycles. This stochastictech-

nique is referredto as simulated annealing [Kir83].
The escape function for accepting inferiorsolutions

is: Escape(s, st,T) = e-lCo, t(,)-Co°t(°')l/T where T is
a "temperature_ parameter that isgradually reduced

during the searchprocess.When a random number be-

tween 0 and I exceeds the valueofthe escape function,

the system accepts the worse solution. Note that es-

cape becomes lessprobable as the temperature islow-
ered.

In GERRY the types of constraintsthat can con-

tributetothe costfunctionincludethe resource,state,

and perturbationconstraints.

Resource Constraints The penalty of a resource

capacityconstraintis1 ifthe resourceisoverailocated.

IfK simultaneous tasksoverailocatethe resource,then
allK tasksare consideredviolated.One ofthese tasks

willbe selectedinan attempt to repairas many ofthe
K violationsas possible.The heuristicused to select

thistask considersthe followinginformation:

Fitness: Move the task whose resource requirement

most closelymatches the amount of overallocation.

A task using a significantlysmaller amount isnot

likelyto have a largeenough impact on the current

violationbeing repaired.A task using a far greater
amount ismore likelyto be in violationwherever it
ismoved.

Temporal Dependents: Move the task with the

fewestnumber oftemporal dependents. A task with
many dependents, ifmoved, islikelyto cause tem-

poral constraintviolationsand resultin many task
moves.

Distance of Move: Move the task that does not

need tobe shiftedsignificantlyfrom itscurrenttime.

A task that ismoved a greaterdistanceismore likely

to cause other tasks tomove as well,increasingper-
turbation and potentiallycausing more constraint
violations.

For each of the taskscontributingto the violation,
the system considers moving the task to its nezt ear-
lier and nezt later times such that the resource is avail-

able, rather than exploring many or all possible times.

B 93

This reduces the computational complexity of the re-
pair and, likethe "distanceto move" criterionabove,

tends to minimize perturbation.

Each candidate move isscored using a linearcombi-

nationof the fitness, LemporsI dependent8, and distance
to move heuristic values. The repair then chooses the
move stochastically with respect to the scores calcu-
lated. After the repair is performed, the Waltz algo-
rithm moves other tasks in order to preserve temporal
constraints.

State Constraints The penalty of a state constraint
is 1 if the required state is not set. To repair a state
constraint, the task with the violated state requirement
is reassigned to a different time when the state variable
takes on the desired value. Similar to the resource ca-

pacity constraints, the system considers only the next
earlier and next later acceptable times and selects be-

tween these randomly. We are currently investigating
improvements to this repair and expect to extract more

useful heuristics from our experts. One effort under-
way is the development of a repair that can introduce
new tasks into the schedule, thus yielding a behavior
generally associated with AI planning systems.

Perturbation Constraint The penalty function of
the perturbation constraint returns the number of

tasks that differ from their original temporal assign-
ments. Since the weighted penalty of this constraint
contributes to the cost of a solution, schedules with
significant perturbation tend to be rejected at the close
of an iteration. We are in the process of experimenting
with repairs for this constraint that augment the in-
formation provided by its penalty and weight. Below
we show how varying the weight of this constraint can
affect convergence speed and solution quality.

Experiments

The problem domain for the experiments consisted
of the tasks, resources, temporal constraints,and

resource constraintsfrom the STS-43 Space Shuttle

ground processingflow. A reschedulingproblem was
generated by taking the originalconflict-freeschedule

and randomly moving ten tasks. Five such problems

were generated forthe resultsreported below. The first

and lasttasks of the originalschedule were anchored

in time so repairscould not extend the duration of the
entireflow.

In the experiments,we maintained the resourcecon-

straintweight at ten,and variedthe perturbationcon-

straintweight from zero (perturbationwas of no con-
cern) to 50 (perturbation was extremely important).

The system terminated itssearch when all resource
constraintswere satisfiedorwhen itsrun time exceeded

ten minutes. Upon termination,the system returned

the best solutionfound. Each reschedulingrun was
performed with the same settings20 times in order to
minimize stochasticvariance.

Figure I presents the resultsof our experiments on

the five problems from three different perspectives.
The first graph plots the number of perturbations for

the returned solution against the weight of the pertur-
bation constraint. As expected, with a higher pertur-
bation weight, the best solution has fewer perturba-
tions.

The second plot shows the quality of a returned so-
lution (measured as the number of violated resource
constraints), asia function of the perturbation weight.
As the graph shows, GERRY has more difficulty sat-
isfying resource constraints as perturbation becomes
more important,

Finally,the third plot shows the convergence time
(in cpu seconds) as a function of the perturbation

weight. Average time to solutiongenerallyincreased
as the perturbati0nweight increased.

Itisinterestingto note that for smaller weights on

the perturbationconstraint(< 20), the increasein re-

source violationsissmall while the drop in number

of perturbations is fairlylarge. As the perturbation
weight increasesbeyond 20, resource violationsrise

quickly,and the drop in perturbations slows.

In summary, our algorithm is interruptible,
restartable,and outputs a solution when terminated.

As demonstrated in Figure 2, the solutionqualityin-

creasesas a step-functionof time. These runs are rep-
resentativeof the system's generalperformance.

Related Work

Our work was heavily influenced by previous

constraint-based scheduling [Fox87, Fox84, Sad89] and
rescheduling efforts [Ow,88].

ISIS [FoxS?] and GERRY both have metrics of con-
straint Violation (the penalty function in GEI_Y)

and constraint importance (the weight function in
GERRY). In contrast with our repay-based method,

ISIS uses an incremental,beam searchthrough a space

of partialschedules and reschedulesby restartingthe
beam search from an intermediatestate.

OPIS [Fox84,Ow,88], which isthe successorofISIS,

opportunisticallyselectsa rescheduling method. It
chooses between the ISIS beam search, a resource-

based dispatchmethod, or a repair-basedapproach.
The dispatchmethod concentrateson a bottleneckre-

source and assigns tasks to it accord|ng to the dis-

patch rule.The repairmethod shiftstasks untilthey

are conflict-free.These "greedy_ assignments could

yieldgloballypoor schedules ifused incorrectly.Con-

sequently,OPIS only uses the dispatch rulewhen there

isstrongevidence ofa bottleneckand only uses the re-
pair method ifthe duration of the conflictisshort.In

contrast,GERRY uses the simulated annealing search

to perform multiple iterationsof repairs,possibly re-
tracting "greedy_ repairswhen they yieldprohibitive
costs.

Our use of simulated annealing was influenced by

the experiments performed in [JohgOa, 3oh90b]. In
contrast with our constraint-based repair, their re-

INP

|

_.===

i

J

im

g

I

[]

g

L-
m

i

im
i

i
i

W

I

m

g

=
m

J

94 i

= =

E_

l==J

m

===

Perturb-
ations

Average Penurbltions to_ Best Solution

140

120

100

80

60

40

20

0

0 5 101520253035404550

Perturbation Constraint Weight

80

70

60

50

Resource 40
Vlolatlons

30

20

_! o,

600

500

400

cPU
Time(see) 300

2O0

t00

0

Average Number of Resoume Violations for Best
Solution

5 101520253035404550

Perturbation Constraint Weight

" Average Time to Solution

5 101520253035404550

Perturbation Constraint Welghl

-I- Problem 1

O Problem 2

÷ Problem 3

-o- Problem 4

-a- Problem 5

Figure 1: Experimental P_esults: number of pertur-
bations versus perturbation constraint weight; num-
ber of resource violations versus perturbation con-

straint weight; average run time versus perturbation
constraint weight

-- Ik,'lelNl I

=egoT ""-'
3000 _,, -- _.ek.,,.

- l_.+ll_ S
2500 T,t, ---

Best Solutlon's 2000 _,'_',._

Cost+ 10001500_!i_Pt'"_" _500 '_,': _--.._;
" 0 I _'_ ,_''-tr------- _'_ " -

0 60 120180240300360420480540600

CPU "rlme (see)

Figure 2: Best Cost versus Run Time

pairs were generally uninformed. In [Zwe92b] we show
that constraint repair knowledge improves convergence
speed.

The repalr-based scheduling methods considered
here are related to the repair-based methods that have
been previously used in AI planning systems such as

+the _es" nsefi in Hacker [Sus73] and, more recently,
the repair strategies used in the GORDIUS[Sim88]
generate-test-debug system, and the CHEF cased-
basedplanner [Ham86].

_in_Viin90], it is shown that the min.conflic_ heuris-
tic is an extremely powerful repair-based method. For
any violated constraint, the ,tin-conflicts heuristic
chooses the repair that minimizes the number of re-
maining conflicts resulting from a one-step lookahead.
However, in certain circumstances this lookaheacl could
be computationally prohibitive. In [Zwe91], the au-
thors investigate the tradeoff between the informed-
hess of a repair and its computationally complexity.
There it is shown that the resource repair described
above outperformed a lookahead heuristic on the STS-
43 Space Shuttle problem. However, on smaller prob-
lems the lookahead heuristic was superior,

Our technique is also closely related to the 3et

Propulsion Laboratory's OMP scheduling system
[Biegl]. OMP uses procedurally encoded patches in
an iterative improvement framework. It stores small

snapshots of the scheduling process (called ct, ronolo-
gies) which allow it to escape cycles and local minima.

[MilS8], [Be185], and [Dru90] describe other ef[orts
that deal with resource and deadline constraints.

Conclusions and Future Work

Our experiments suggest that our constraint frame-
work and the knowledge encoded in this framework is
an effective search tool that allows one to adjust the

importance of schedule perturbation and other objec-
tive criteria. The framework is modular and extensible

L_

95

in that one can declare new constraints as long as their
weight, penalty, and repair functions are provided.

In future experiments, we hope to better character-
ize the components of repair informedness and compu-
tational complexity. We are currently evaluating can-
didate metrics of problem difficulty that could be used

to guide the selection of repa_ heuristics. Additionally,
we are developing machine learning techniques that al-
low systems to learn when to dynamically switch be-
tween heuristics [Zwe92a].

With respect to the Space Shuttle application, the

system is expected to be in daily use sometime this
year. Our most significant barrier is gathering accurate
models of tasks in an electronic form. We also plan to
develop constraints that minimize weekend labor.

References

[Be1851 Bell, C.,Currie, K., and Tare, A. Time Win-
dow and Resource Usage in O-Plan. Tech-
nical report, AIAI, Edinburgh University,
1985.

[Biegl] Biefeld, E. and Cooper, L. Bottleneck Iden-
tification Using Process Chronologies. In
Proceedings o� IJCAI-91, Sydney, Austrailia,
1991.

[Dav87] Davis, E. Constraint Propagation with In-
terval Labels. Artificial Intelligence, 32(3),
1987.

Drummond, M. and Bresina J. Anytime
Synthetic Projection: Maximizing the Prob-
ability of Goal Satisfaction . In Proceedings
of AAAL#O, 1990.

[Fox84] Fox, M. and Smith, S. A Knowledge Based
System for Factory Scheduling. Ezpert Sys-
tern, 1(1), 1984.

[Fox87] Fox, M. Constraint-Directed Search: A Case
Stud_] of Job Shop Scheduling. Morgan Kauf-
mann Publishers, Inc., Los Altos, CA, 1987.

Freuder, E. C. A Sufficient Condition for
Backtrack-Free Search. J. ACM, 29(1), 1982.

Hammond, K. J. CHEF: A Model of Case-

Based Planning. In Proceedings of AAAI-8#,
1986.

Johnson, D.S., Aragon, C.P_, McGeoch,
L.A., Schevon, C. Optimization By Sim-

ulated Annealing:An Experimental Evalua-
tion, Part I (Graph Partioning). Operations
Research, 1990.

Johnson, D.S., Aragon, C.IL, McGeoch,
L.A., Schevon, C. Optimization By Sim-
ulated Annealing:An Experimental Evalua-
tion, Part II (Graph Coloring and Number
Partioning). Opera_ions l_esearch, 1990.

Karnbhampati, S. A Theory of Plan Modifi-
cation. In Proceedings of AAAI-O0, 1990.

[Dru90]

[Fre82]

[Ham86]

[Joh90a]

[Johg0b]

[Kewn90]

[Kit83]

[Mac77]

[MilS8]

[Min90]

[Ow,88]

[s so]

[sim8s]

[s ss]

[Sus73]

[Wa175]

[Zweg0]

[Zwe91]

[Zwe92a]

[Zwe92b]

Kirkpatrick, S., Gelatt, C.D., Vecehi, M.P.
Optimization by Simulated Annealing. Sci-

ence, 220(4598), 1983.

Mackworth, A.K. Consistency in Networks

of Relations. Artificial Intelligence, 8(1),
1977.

Miller, D., Firby, R. J., Dean, T. Deadlines,
Travel Time, and Robot Problem Solving.
In Proceedings of AAAI-88, St. Paul, Min-
nesota, 1988.

Minton, S., Phillips, A., Johnston, M.,
Laird., P. Solving Large Scale CSP and
Scheduling Problems with a Heuristic Repair
Method. In Proceedings of AAAI-90, 1990.

Ow, P., Smith S., Thiriez, A. Reactive Plan
Revision. In Proceedings AAAI-88, 1988.

Sadeh, N. and Fox, M. S. Preference Prop-
agation in Temporal/Capacity Constraint

Graphs. Technical report, The Robotics In-
stitute, Carnegie Mellon University, 1989.

Simmons, R.G. Combining Associational
and Causal Reasoning to Solve Interpreta-
tion and Planning Problems. Technical re-
port, MIT Artificial Intelligence Laboratory,
1988.

Smith, S. and Ow, P. The Use of Multi-
pie Problem Decompositions in Time Con-
strained Planning Tasks. In IJCAI-85 Pro-
ceedings, 1985.

Sussman, G.J. A Computational Model o/
Skill Acquisition. PhD thesis, AI Labora-
tory, MIT, 1973.

Waltz, D. Understanding Line Drawings of
Scenes with Shadows. In P. Winston, ed-
itor, The Psycholog_l of Computer Vision.
McGraw-Hill, 1975.

Zweben, M., Deale, M., Gargan, R. Any-
time Rescheduling. In Proceedings of
the DARPA Workshop on Innovative Ap-
proaches to Planning and Scheduling, I990.

Zweben, M.,Minton, S. Repair-Based
Scheduling: Informedness versus Computa-
tional Cost. In The Firs_ International Con-

/erence on AI Planning Systems, volume
Submitted, 1991.

zweben, M., Davis, E., Daun, B., Drascher,

E., Deale, M., Eskey, M. Learning To Im-
prove Constraint-Based Scheduling. Artifi-
cial Intelligence, To Appear, 1992.

Zweben, M., Davis, E., Deale, M. Itera-
tire Repair for Scheduling and Reschedul-
ing. IEBE Systems, Man, and Cybernetics,
To Appear, 1992.

r
r

D

|

i

B

mR

III

i

r

J

I

===
m

m

J

m

m

J

m

ur

ii

i

96

Realization of High Quality Production Schedules"

Structuring Quality Factors via

Iteration of User Specification Processes

N 9 3

.5

22 Abstract _

This paper describesan architecturefor realizing
the high qualityproduction schedules.

Although qualityisone of the most important as-

pectsof production scheduling,itisdifficulteven for

a user tospecifyprecisely.However itisalsotruethat

the decisionwhether a scheduleisgood or bad can be
taken only by a user.

=

_.This paper propc_es_f_ '__ :_'_""

i _ ._-_..T_ "l_he quality of a scheclule can be represented in
the form of quality factors, i.e. constraints and

:= objectives of the domain, and their structurey

_ =g = _,Qfuality factors and their structure can be used

for decision making at local decision points during
i -_ the scheduling process: _-- _ _

_: _- __ :__ • They can be defined via iteration of user specifi-
cation processes.

w

m

I

L

1 Introduction

Ta"kashi Hamazaki

Department of Artificial Intelligence, University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN, United Kingdom

E-mail:T.Hamazaki@edinburgh.ac.uk

Production scheduling is a hard problem in general

because of the large search space, large number of fac-

tors lead to combinatorial explosion, and also its ill-

structured (or ill-defined) nature. Th e primary con-
cern of this paper is realizing high quality schedules,

which is one of the major difficulties of production

scheduling.

Since the schedule should be evaluated by several

often coaflicting aspects, it is a common approach to
expect the user to specify a single evaluation func-

tion, i.e. satisfaction leve ! of eac h aspect and priority

among them.[6, 7, 13] However, it is difficult even for
a user to define an evaluation criterion for a scheduh

preciselY.Ill The methods that a system can use to de-

cide an evaluation criterion, and to produce a schedule

which optimizes that. criterion, are important issues in
this domain.

Although it is difficult for users to define an evalu-
ation criterion, at the same time, it is also true that

the decision whether a schedule is good or bad can be

taken only by a user. (Please compare other aspects,
e.g. the performance of a system can be evaluated by

an absolute measure - i.e. time.) It follows that the

schedule should be evaluated on domain specific infor-
mation relating to a definition of qualhy given by the

user. Furthermore, the quality information should be

used for search guidance during scheduling, since the

primary goal of search is affected by the decision of
what a good/bad schedule is.

Quality is determined by the combination of the

extent to which constraints are satisfied and how well
objectives are achieved. Since constraints and objec-

tives can be regarded as atomic factors of the quality
of a schedule, I call them qaality/actors in this paper.

This paper describes an architecture which can ac-

quire quality information from the user and reflect the

information on the resulting schedule via iteration of

user specification processes. This work is currently in
progress.

2 Analysis of quality factors

2.1 Structure of quality factors

Before attempting classification, this section will con-

centrate on the relationships among quality factors.

Since quality factors are defined by a user, they are
often interrelated of each other. Some include other

quality factors, and some cause another factor. For

instance, a prohibition against changeover at the same

time (due to a limitation on operators) can be divided
into two levels below.

97

1. changeover itself- namely, s condition of

changeover (defines this quality factor as QFI)

2. simultaneous occurrence of QFI (QF2)

QF2 can be thoughtof.u a meta-level quality factor.

This information relating to the relationships

among quality factors is quite useful for scheduling,

and they are defined as a sir_cture of quality factors
in this paper.

2.2 Classification of quality factors

Quality factors can be classified from several points of

views; for examples the function in a real plant[12, 14],
the influence on scheduling.J3] In this section I at-

tempt to cl_-_sify quality factors based on the re]at.ion-

ship with the scheduling algorithm. This classification
is more detailed than others in order to use it. for ac-

quiring additions] information about quality factors
from the user.

hard - soft The first dimension of classification is

based on the strictness of satisfaction/violation :

hard .factor : one which must be satisfied, i.e.
cannot be relaxed any more.

soft [actor : one which is preferable to satis_,. As

all quality factors are preferable to satisfy, sop
/actor can be defined as the complement of hard

factor more strictly.

Job and Resource The next dimension of classifi-

cation is based on parameters which a factor contains.

The parameters of a factor are either/both of Job and
Resource.

They can be broken down further according to the

necessity for the reference to other objects during an

evaluation of the quality factor as follows:

Job -

inter-lot need to refer to operations in other lots,

intra-lot need to refer to other operations in the
same lot and

no.interaction(no-lnt) no need to refer to other op-
erations, and

Resowree -

inter-machine need to refer to other machine,

intra-machine no need to refer to other machines.

For instance, the parameters of a changeover(QF3)

are Job and Resource and detailed class of Job part
is inter-lot and that of Resource is intra-machine.

Therefore, this quality factor, "a changeover'(QF3),

can be classified as (inter-lot Job , intra-machine Re-
source) type.

Global and local The last dimension is based on

the applicability at a local decision point. Intuitively,
global factors are those which can be usec] to evalu-

ate a full schedule, while local factors are those which
can be used to evaluate s partial schedule. However,

many quality factors can be applied to the evalua-

tion of candidates at a local decision point (even if

it looks like global one) by using an estimation of re-
sulting value. For instance, although QF2 in previous

examples cannot necessarily always be applied at lo-
cal decision points as it is, it might be possible if the

probability of changeover for each product type could
be estimated.

It follows that the revised version of the definition

is

A global factor is one for which a user cannot define
an estimation function at, all.

A local factor is the complement of global factor,

i.e. those which a user can define so that they

can be applied at local decision points.

3 Scheduling via quality
factors

3.1 Iterative user specification pro-
cesses

In the previous section, the concept of quality factors

was introduced. This concept makes it possible to
characterize the user's evaluation of a schedule, men-

tioned earlier, as follows.

Suppose as an example two schedules are compared.

1. apply hard quality factors to every item - pre-
sumably operations - of each schedule.

IF violation has occurred in either of two sched-

ules ---- unacceptable schedule

ELSE ---- next. step

2. apply most important soft quality factors to

- every item of the schedule - if the quality factor
is local

- the whole schedule - if the quality factor is

global

W

III

m

m

J

g

J

U

m

II

i

II

g

il

m
98

m

w

I

m

\

IF a sufficient difference between them is identi-

fied in any.of the quality factors ----- decide

ELSE _ next step

3. apply next levelofsoft-qualityfactors
... same as above.

Ifthe importance of every QF could be categorized

and exact valuesfor a sufficientdifferencecould be

definedbeforehand, thisprocesscould be done auto-

maticallyand itmight be possible(apartfrom realis-

ticprocessingspeed)tooptimizea schedule.However,

specification- especiallythe criterionforsufficiency-

isdifficult(or closeto impossible)to defineprecisely

in advance. Consequently,itwillbe indispensableto

adopt some sortoftrialand errorprocessfordeciding

a good schedule. From thisview, tilefollowingpro-

cedure should be an acceptablemethod foracquiring
tileinformationfrom a user.

I. user specifies each quality factor

user specifies priority among quality factors in as
much detail as possible.

2. system produces a schedule based on quality in-
formation acquired so far.

. user analyzes the resulting schedule produced in
tile previous step.

user judges whether the schedule is satisfactory
or not.

IF satisfactory----end.

ELSE--- specify which QF sl_ouidbe im-

proved.

4. system re-structures quality information

goto 2.

3.2 Search guidance by quality factors

local optimization(LO) how good will tile quality

of a partial schedule be

-- measures candidates by E(Pn) : where Pn is

a partial schedule after adopting candidate-N

predicted global optlmization(PGO) how good
is the quality of the final schedule likely to be, in

other words from the opposite perspective, how
dif[icult will expected problems be. 1

measures candidates by E'(Pn) : where E' is

a probabilistic function which expre._ses the value
likely to be achieved.

As described in section 3.1 , E is realized by a series of

applications of quality factors and filtering out in each

quality factor application. E' is similar in general,
since a predicted final schedule should be evaluated

in the same manner. However a probability among
quality factors should be also taken into account as

well as the priority among them. For instance, if it. is

is known that QF1 frequently' identifies a bad value,
it might be better to apply QF1 prior to other QFs,

even though the priority of QF1 is not highest.

The application of quality factors is stopped whe*l
a sufficient difference among candidates is ide*ltified.

This difference is described as a threshold in this pa-

per.

3.3 Feedback from the result

In this section, we describe how the system re-
structures quality factors in reaction to the schedule

produced,i.e, step 4 in the procedure defined in Sec-

tion 3.1. This process can be accomplished both au-
tomatically and manually.

3.3.1 Manual feedback

As describedearlier,the user should judge whether

the resultingscheduleissatisfactoryor not. Generally

speaking, a user can communicate with the system

Schedule production,i.e, step 2 in the procedure de- via quality factors and structures among them. That
fined in the previous section, is accomplished by a _ is_ if the schedule is not satisfactory for a user, the

repetition of target selection , i.e. operation, and a reason_ why its schedule is not satisfactory is expressed
reservation for it, i.e. resource and start time. In the

each repetition cycle, it is desired to rate candidates

appropriately which results in a good overall schedule.

T!*e next section focuses on this rating step.

3.2.1 Rating by quality factors

When a schedule can be evaluated by a function -
defines it as E - two dimensions can be viewed as

rating methods.

by indicating which quality factors' values should be
improved. This feedback from the user will infll,ence

strl,ctures of quality factors.

In order to support a user in detecting problems,
the system provides information, as follows:

verification of assnmptlon It is unrealistic to ex-
pect that a user can specify the structure of

l There are two heuristics for realizing this method; i.e. vari-
able ordering and value ordering.[.5]

• 99

quality factors precisely from the early stages of
scheduling generation. Consequently, a system
should assume some information about structure.

The information assumed by a system should be

verified at the end of scheduling generation pro-
cess by the user. The user is informed of assumed

structures at the feedback stage.

evaluation by global factors Resulting schedules

can often be evaluated at a gross level by global
factors, like overall utilization, although all qual-
ity factors should be involved for a precise evalu-

ation. Furthermore, since global factors are con-

sidered only via causal factors during the schedul-
ing generation process, verification is indispens-

able. Statistical information based on global fac-
tors is provided by the system automatically.

evaluation by specific factors It is quite usual

that a user knows which quality factor is criti-

cal in the specific application/domain. Statisti-
cal information is also provided in response to the
user.

3.3.2 Automatic feedback

When scheduling has not been completed, i.e. there

remain unassigned operations, the system analyzes its
reasons and restructures quality information based on
some heuristics, which include

If there are quality factors in which unassigned
operation got the best value

----, decrease threshold of those quality factors

If there are quality factors in which unassigned
operation was the next candidate

---. increase threshold of those quality factors

4 System structure

The system consists of mainly four parts, namely;

Scheduler, Generator, Analyzer and Data-Base man-

ager and

six system files, namely; Quality Data Base(QDB),

Evaluation Procedures File(EPF), Scheduling results
File(SF), Decision history file(DHF), Order file(OF)

and Knowledge-Base(KB). :

The general flow of this system is as follows (this

can be thought of as a detailed version of the iterative

procedure described in Section 3.1.);

1. user specifies initial information

• order data (presumably from other system)
OF

• domain information, e.g. factory, machine
KB

• quality factor s ---. KB

• attribute of quality factors, e.g. global/local

, hard/soft ---. QDB

• structure of quality factors (in as much de-

tail as possible) --- QDB

2. Generator generates evaluation

procedures, which can be used in the rating of
candidates during scheduling process, based on
QDB information and output --- EPF

3. Scheduler generates a schedule based on OF, KB

and EPF and output

• resulting schedule(including unassigned op-
erations) --- SF

• history of rating by qualit.v factors at every

local decision points -- DItF

4. Analyzer analyzes SF and DtlF and queries the
user if necessary and restructures QDB.

goto 2 if not satisfactory

5 Future work

This system uses a traditional algorithm as its

scheduling mechanism, since the scheduling algorithm
itself is not the major concern, However, it is obvious

from the analysis in Section 3.2 that quality infor-

mation which is acquired from a user and scheduling
algorithm have tight connection. It follows that the

ideas proposed here are restricted by this algorithm.
It is required to analyze validity on other algorithms,

e.g. distributed scheduling system[4/ , as well and ex-
tend these ideas.

This system is now being implemented and will be
evaluated using real problems, although it is bmsed
on my experiences in developing practical production

scheduling systems.J9, 8]

6 Conclusion

Although quality is one of the most important parts

of production scheduling, it is difficult even for users
to define precisely. T-he first step in realizing a high

quality production schedule is to clari_" what "high

quality" means.

2_e System _ui_ a user to specify function which rep-
resents the goodness of the selected candidate for every qual-
it)' factor. At the same time, the current system also requires
a probabilistic function for each qualiLv factor, although this
should be eventually supported by the system.

100

I

i

I

I

I

U

I

I

|

I

I

I

[]

B

I

U

i

I

I

m

I

|

k.._'

.

L
$._..

= .

w

i N

L

. =-.=

I

=

=

This paper proposed;
• The quality of. production schedules can ulti-

mately be evaluated/measured only by a user,
and his intention can be represenied in tl_e form

of quality factors and their structures defined by

him/her. (global evaluation)

• Quality factors and their structures can be used

for decision making at local decision points during

the scheduling process. (local evaluation)

• They can be refined via iteration of the user spec'

ification process. (iterative process)

7 Acknowledgement

This research lias been supported by ltitaclii _Lim-

ited(Japan). The author of this paper wishes to ac-

knowledge the support of the following people: Tim
.Duncan and Howard Beck of AIM and Peter Ross of
DAI.

[9]

the 1990 DARPA Workshop on Innovative Ap-

proaches to Planning, Scheduling and Control,

pages 412-421, 1990.
=o

[7] M.S. Fox and S.F. Smith. ISIS:A Knowledge-
Based System for Factory Scheduling. Expert

Systems, 1(1):25-49, July 1984.

[8] T. Hamazaki, T. Kameda, S. Okuide, M. Ko-
roku, and K Kozuka. Approach to Planning and

Scheduling Expert Systems. The Hitachi Hy-

ouron, 72(11):41-46, November 1990. Japanese.

N. Irisawa, T. Hamazaki, and T. Yamanaka.

Production Scheduling by using Expert Systems.
Communication of the operations research society

of Japan, 30(3):141-145, 1991. Japanese.

[10] Richard E. Korf. Search:A Survey of Recent Re-

suit• In Howard E. Shrobe, editor, Exploring Ar-
tificial Intelligence, pages 197-237. Morgan Kaut'-
man, California, 1988.

[11] P. A. Newman. Scheduling in CIM systems.
In Andrew Kusiak, editor, Artificial Intelli-
gence:Implication for CIM. Bedford IFS, 1988.

[12] BC Niew, BS Lira, and NC Ho. h:nowledge Based
Master Production Scheduler. In First Interna.

tional Conference on Expert Planning Systems,

pages 88-93, London, 1990. lEE.

F. Stephen Smith, Peng Si Ow, Nicola Muscet-
tola, Jean-Yves Potvin, and Dirk C. Matthys.

OPIS:An Integrated Framework for Generating
and Revising Factory Schedules. In Proceedings'

of the 1990 DARPA Workshop on Innovative Ap-

proaches to Planning, Scheduling ay_d Control,
pages 497-507, 1990.

[14] S. Smith, M. Fox, and P.S. Ow. Constructing

and Maintaining detailed Production Plans: In-

vestigations into the Development of h:nowledge-
based Factory Scheduling Systems. AI Magazine,

7(4), 1986.

_::[15] S. F. Smith and P. S. Pw. The use of multiple

........ problem decomposition in time constrained plan-

ning tasks. In Proceedings of IJCAI 85, pages
1013-1015, 1985.

References

[1] Mostafa El Agizy. Design of systems for replen-

ishing stocks of materials. In Haluk Bekiroglu,
editor, Computer Models for Production and ln-

venlory Control, pages 61-. The Society for Com-

puter Simulation, California, 1988.

[2] H. Atabakhsh. A suryey of constraint based
scliedullng systems using an artificial intelligence
approach. Artificial Intelligence in Engineering,
6(2):58-73, April 1991.

[3] Pauline M. Berry. A Predictive Model for Saris.
tying Conflicting Objectives in Scheduling Prob-

lems. PhD thesis, University of Strathclyde,
1991.

[13]

[4] lain Buchanan, Peter Burke, John Costello, and
Patrick Prosser. A Distributed Asysnchronus Hi-

erarchical Problem-Solving Architectureapplied

to Plant Scheduling. In G. Rzevski, editor, Pro-
ceedings of the fort]i International Conference on

the Applications 'of Artificial lnteil_g_ce_:_ _En-

gineering, pages 107-114, Cambridge, UK, July
1989.

[5] Rina Dechter and Judea Pearl. Net_:o'rk-Based

Heuristic for Constraint Satisfaction i Problems.

Artificial Intelligence, 34(1):1-30, 1988.

[6] Mark S. Fox and Katia P. Sycara. The

CORTES Project:A Unified Framework for Plan-

ning Scheduling and Control. In Proceedings of

I01

 e r sGsi

7

/
J

Scheduling Revisited Workstations in

Integrated-Circuit Fabricat |on

Paul 3. Kline

Semiconductor Process and Design Center

Texas Instruments Incorporated

P.O. Box 655012, M/S 3635

Dallas, TX 75265
kline@csc.ti.com

Abstract

The coot of building new semiconductor wafer fabrics-
tion factories has grown rapidly, and a state-of-the.art
fab may cost $250 million or more. Obtaining an ac-
ceptable return on this investment requires high pro-
ductivity from the fabrication facilities.

This paper describes the Photo Dispatcher system
which has been developed to make machine-loading
recommendations at a set of key fat> machines. Dis-
patching policies that generally perform well in job
shops (e.g., Shortest Remaining Processing Time) per-
form poorly for workstations such as photolithography
which are visited multiple times by the same lot of
silicon wafers.

The Photo Dispatcher evaluates the history of work-
loads throughout the lab and identifies bottleneck ar-
eas. The scheduler then assigns priorities to lots de-
pending on where they are headed after photolithog-
raphy. These priorities ate designed to avoid starving
bottleneck workstations and to give preference to lots
that are headed to areas where they can be processed
with minimal waiting. Other factors considered by the
scheduler to establish priorities are the nearness of a
lot to the end of its process flow and the time that the
lot has already been waiting in queue,

Simulations that model the equipment and prod-
ucts in one of Texas Instruments's wafer fabs show the
Photo Dispatcher can produce a 10% improvement in
the time required to fabricate integrated circuits.

Introduction

Texas Instruments has a number of integrated-circuit
(IC) wafer labs which produce many different chip
types. Depending on the type of chip on a wafer, fabri-
cating that wafer will place very different demands on
the processing equipment. Planning systems are used
to produce weekly wafer statt-plans that are within the
capacity of the lab equipment. These planning systems
do not develop a schedule for when each wafer will visit

each machine group; instead they try to ensure that no
more than a week's worth of work is started for all ma-

chine groups.

While good start plans have helped avoid some of the
problems of machine overloading and late orders, these
problems have not totally disappeared in the wafer
fabe. Machine breakdowns, rework, etc., make it in-
evitable that production rarely proceeds as smoothly
as desired. The manufacturing staff reacts to these
disruptions by reprioritising lots of wafers to expedite
lots that are behind schedule or to cure workload im-

balances on equipment_ We developed the Photo DIS-
patcher to investigate the possibility of automating the
scheduling of a set of key machines in the photolithog-
raphy area,_ : _ _ _ _T=

The photolithography area was chosen because lots

continually revisit this area during their processing,
so improved scheduling in th;_ area shOUld _ave wide-
reaching_nnpact on _h_al_r _b. _F-I-_ 1 shows a
typical process flow forpr0du_ing s bipolar device with
seve_pattern steps. As shown in the figure, all of
the pattern steps are performed on the same set of
projection printers, Printers Grp. A scheduler for the
Printers Grp Would impact this device seven times as
opposed to s scheduler for Depoe Grp 6 which would
would impact this device only once.

Previous Research

One approach to scheduling the Printers Grp would
be to generate s Gantt chart each shift that shows
which lots should be processed on which projection
printers at which times. We decided not to take this
approach because we felt that these schedules would

quickly become obsolete because of projection printer
breakdowns, unpredictable lot arrivals, and the unpre-
dictable need to rework lots whose first patterning was
unsatisfactory. This approach might _ be difficult to
scale up to schedule all the machine groups in the wafer

lab because of the large number of machines (400÷)
and lots in proce_ (400+).

An alternative is to walt until it is time to load a free
machine and then decide which lot to load based on

what is in queue and current fab conditions. Dispatch
policies, which have been studied extensively in Op-

erations Research (e.g., Panwalker & Iskander, 1977),
are one way to make this decision. First-in-First-Out

m

l

J

is

I

W

IM

mR

g

U

z-

J

om

J

B

D

g

102 g

i ;:j

i! t_

?

Process Step Step Type

Fir.s_t 0_id__at__ion Layer
D_at_s_ _: Pattern

DUF Diffusion Dope
Epitaxial Deposition Layer

::i' _S_c°.nd_ 0x_da_i°n Laysr
Isolation Pattern
Isolation Diffusion
Base Part orn
Base Diffusion
gaitt sr Pattern
F_itt er Diffusion
Contact Pattern

lluainul Evaporation
Met a._ Pattern

Deposit Ovsrcoat
Bonding Pad Pattern
Electrical Test

Pattern

Dope
Pattern

Dope
Pattern

Dope
Pattern

Layer

Equipuent

Furnace Grp 10
printers Grp
Furnace Grp 20
Epi Reactors
Furnace Orp 10
Printers Grp
Furnace Grp 32
Printers Grp
Furnace Grp 53
Printers Grp
Furnace Grp 60
Printers Grp
llua Evap Grp

Pattern Printers Grp
Layer Dspos GrID 6
Pattern Printers Grp
Test Tester Grp

Figure I: All of the pattern steps are performed in the
photolithography area of the fab on the same equip-
ment, Printers Grp. Wafers fabricated using the pro-
cess flow illustrated make seven visits to Printers Grp.

(FIFO) is an example of a simple dispatch policy.

However, for the current application, dispatch poll-
ties have the following drawbacks:

1. Many dispatch policies do not work well on revisited
machine groups like Printers Grp.

2. The typical dispatch policy is myopic in the sense
that it considers only the]oral situation and does not

consider the needs of downstream machine groups.

A dispatch policy such as Shortest Remaining Pro-
cess Time (SRPT) will lead to problems when applied
to a revisited workstation like the Printers Grp. If the
queue for Printers Grp is made up of a number of lots
with the process flow shown in Figure I, then SRPT
will prefer lots that are at their last pattern step, Bond-
ins Pad Pattern. It will only select lots at the first
pattern step, DUF Pattern, if there are no other lots

in the queue. This leads to long wA;ting times at DUF
Pattern and alternating starve/glut feeding patterns
for DUF Diffusion.

We have investigated other dispatch policies such as
Shortest Processing Time and Slack to Due-Date, but
our experience has been that they also share the defect
of SRPT of being biased in favor of one or another of
the pattern steps and neglecting others. The problem
seems to be that these policies are "whiner take all"

policies as opposed to "winner take a bigger share"
policies. There is nothing wrong with adding priority
to lots near the end of their flows or lots in trouble with

their due dates. What causes problems is that "winner
take all"schemes based on these factors run the risk

that low priority lots may wait forever if higher priority
lots arrive fast enough. To get around this problem,
the Photo Dispatcher uses a variation of a round-robin
scheme which provides a "winner take a bigger share"
selection.

The FIFO dispatch policy is not biased in favor of
particular pattern steps, but it is myopic in the sense
that it will select lots that will just have to sit at their
next process step because a key machine is down. AI-
ternatively, it may pass over lots that would help keep a
downstream bottleneck machine group from starving.
Goldratt's OPT system (1984, 1988) emphasised the
importance of bottleneck resources in scheduling. AI
scheduling systems that emphasise the importance of

bottleneck resources include Smith, Fox, & Ow (1986)
and Esksy & Zweben (1990). The Photo Dispatcher
avoids myopic decision making by monltor_g current
and historical workloads throughout the wafer lab and
reacting to these workloads to avoid starving bottle-
neck workstations and avoid sending lots to worksts-
tions where they will just sit in queue.

Approach

The Photo Dispatcher makes recommendations about
which lot of wafers in the queue should be processed
next by Printers Grp. The Photo Dispatcher develops
these recommendations in three stages:

I. Establish priorities for processing lots at the differ-
ent pattern steps.

2. Use the priorities to choose a pattern step to work on
next. That is, decide whether to work on a lot that
is waiting for DUF Pattern, or Isolation Pattern, etc.

3. Choose a specific lot waiting for that pattern step.
There are typically severs] lots waiting for DUF Pat-
tern and this third stage determines which of these
lots should be recommended. While a number of

dL_erent criteria have been investigated for making
this lot selection, none of them have outperformed
FIFO, so currently this selection is just based on
time of arrival of the lots waiting for DUF Pattern.

Pattern-Step Priorities

Figure 2gives an example of the calculation of priori-
ties for four pattern steps. Three numbers are summed

to determine priorities. The percentage of lots waiting
for a particular pattern step (e.g., 20 percent for DUF
Pattern) is added to a number that is based on the

nearness of that pattern step to the end of the pro.
ceasing flow (e.g., 01, the first two digits of the step id
number). Finally, a positive number (e.g., 30) is added
if more work is needed at downstream work areas or
a negative number is added if there is too much work.

The higher the priority number for a pattern step the

more lots at this step w;]l be recommended for pro-

103

0100DUFPATTEItB
Lots Queued 20

Flow Position O1
Feedback 30

t--me

Priority 51

(Send More;
Short Wait at

Furnace Grp 20)

0600 ISOIATIOH PATTEItI

Lots Queued 04
Flow Position 06
Feedback -30 (Send Less;

.... Long Wait at
Priority -20 Furnace 0rp 32)

2300 BASE PATTF.J_
Lots Queued 12

Floe Position 23
Feedback O0

Priority 35

(|o £djustaent;
£verage Wait at
Furnace Grp 53)

6000 COITKCT PATTERN

Lots Queued
Floe Position
Feedback

Priority

05
60

60 (Send Much More;
.... Starving Bottleneck
12S aluaEvap Grp)

Figure 2: Three factors determine the priority of a par-
ticular pattern step: the fraction of lots waiting for this
pattern step, the nearness of this pattern step to the
end of the process flow, and feedback from downstream
work areas.

cessin s. The rationale for each of the three factors
illustrated in Figure 2 will be discussed in turn.

Lots Queued If the process flow in Figure I was
used by all devices, there would be roughly equal num-
bers of lots waiting for the indivlduai pattern steps, i
However, since there are roughly 300 different process
flows, the pattern steps do not occur with equal fre-
quency. Including a factor for the percentage of lots _
waiting for a particular pattern step ensures that the i[i

round-robin scheme does not penalise lots that are
waiting for frequently used pattern steps.

Flow Position The second factor, nearness of a t
pattern step to the end of the process flow, has the
effect of reducing work-in-process (WIP). Lou and
Kager (1989) recommend that when scheduling re-
visited workstations in IC fabrication, higher priority M

should be given to process steps that are later in the
process flow. Our experiments confirm the benefits of

this practice, l

Feedback From Downstream Workstations

The feedback to Contact Pattern in Figure 2 shows
a bottleneck, Alum Evap Grp, requesting additional
work because it is starving. Figure 3 illustrates the g
computations performed to determine this machine
group is a starving bottleneck. A software object called

a Work Monito1" is associated with machine groups in U
the lab. WORK-FOR-ALUM-EVAP knows how to use

the current position of a lot provided by the WIP track-
ing system to determine whether that lot is at a process -_

step that uses the Aluminum Evaporators. In the case
illustrated in Figure 3, there is one lot consisting of
48 wafers arrived at a processing step using the Alu-

minum Evaporators. WORK-FOR-ALUM-EVAP also _-
can tell if a lot has left photolithography and is=on the i
way to a process step using the Aluminum Evapora-
tors but has not arrived yet. Identifying lots that have
been sent to the Alum Evap Grp provides an estimate =-
of upcoming workloads.

WORK-FOR-ALUM-EVAP knows how to translate

the number of wafers arrived into the tim_ it should
take the AlumEvnp Grp to complete processing those
wafers. In Figure 3 the 48 wafers arrived are estimated
to keep the Aluminum Evaporators busy for the next
.58 hrs. The following factors are considered to deter- -
mine how many hours it will take to complete process- i
ing _ particular set of wafers:

I. number of machines in Alum Evap Grp and their
capacities :_

2. process time for each wafer; different devices may
have dilTerent processing times

3. setup times

Work Monitors categorise workloads along four
different dimensions (TYPICAL-LOAD, COMPARE-
NOW-TO-HISTORY, etc.) and these dimensions are
referenced by rules that determine the appropriate

m

m

104 _

u

u

w

E

u

f
m

WORK-FOR-ALUM-EV/LV
Lots sent to Alua gvap Grp: O lots, 0 eaters

Lots arrived at 11un Evap Grp:
1 lot, 48 gafers

Est work in queue _or Alun Evap Grp:
14 _ga_ars, 0.26 hrs
Eli gork in process for £1ma Evap Grp:
34 eafers, 0.32 hrs
Estimated work available • .58 h.rs

The avg amount of work, 10.43 hre, that
arrives in this area is HIGH relative tO the
:Long-run avg (4.44 hr8, siva=3.19)
for all areas.

Vork currently arrived in this area° .58 hre,
is LOg relative to the long-run avg
(10.43 hrs, si_aa=6.28) for this area.

Vork currently arrived in this area, .58 hre,
is LOV relative to the avg currently arrived
(3.61 hrs, sigma=3.66) for all areas.

gork currently sent to this area, 0.00 hrs,
is LOW relative to the long-run av K
(2.70 hrs. silpna=0.64) for this area.

The classification is:
TYPICAL-LOAD HIGH
CORPAgE-IOV-T0-HIST01tY L01/
COMPAItE-T0-0TBER-MACHS L0tl

CORPAgE-SEHT-TO-HISTORY LOV,
so MUCH MORE work is needed,

Figure 3: An example of a starving bottleneck. The
Aluminum Evaporators typically have 10.43 hrs of
work; however, at the time this workload evaluation
was performed there was only .58 hrs of work and none
on the way. A request for much more work is fed back
to Contact Pattern.

feedback (e.g., send MUCH MORE). By changing the
feedback rules, a wide variety of workloacl regulation
schemes can be implemented. Simulation experiments

_were run to e valuatethree different wor_k]oad regula-
tion schemes: Bottleneck Starvation Avoidance, Srr_-

eat Next Queue, and Workload Smoothing. Each of
these three workload regulation schemes performed
well at some WIP levels, but none of the three was su-
perior at all WIP levels. A hybrid of these approaches
was devised which performed well at all WIP levels
investigated.

Some approaches to scheduling using bottleneck
starvation avoidance require that the there is only one
bottleneck and its identity is known in advance and

provided as input to the scheduler (e.g., Glassey/z Re-
sende 1988). This assumption makes it difficult to han-
dle shifting bottlenecks which can arise in wafer labs
because of a change in product mix or the breakdown
of key equipment. The work-monitoring mechanism of
the Photo Dispatcher determines which workstations
are bottlenecks by gathering workload histories. As
the bottlenecks change over time the shift in workload
histories is tracked by the Work Monitors and the pri-
ority of lots is changed accordingly.

Using Priorities to Select a Pattern Step

Priorities are recomputed periodically based on the
current workloads at downstream machine groups and
the number of lots queued for each pattern step.
The priorities influence subsequent selection of pattern
steps by controlling a round-robln scheme.

Each time a machine in Printers Grp is ready to be
loaded, the round-robin advances to the next pattern
step in the cycle. The priority assigned to this pat-
tern step deterndnes whether a lot is chosen from this

pattern step or whether the round-robin inLmediately
advances to the next pattern step. Priority numbers
are rescaled to range from 5 to 100 and pattern steps
with priority 5 have a lot selected one out of every 20
times the round-robin stops there (5%), pattern steps
with priority S0 have a lot selected every other time
the round-robin stops there, etc.
_ _Vhen the priorities are as shown in Figure 2, a
sequence of selections produced by this round-robin

might be Contact Pattern, DUF Pattern, Base Pat-
tern, Contact Pattern, Contact Pattern, DUF Pattern,
Contact Pattern, By interleaving pattern steps in
this fashion there is linfit on how many times a low
priority pattern step can be passed over before it is
selected.

Results

The Photo Dispatcher was tested using a simulation
of one of Texas Instruments' wafer labs. The feb in

question manufactures a wide variety of Bipolar and
BiMOS devices. The simulation modeled all of the 103

machine groups (410 machines) in the feb and all of the
p_ocess steps needed to fabricate any of the roughly

105

INITIAL FIFO Photo Dispatcher
V_'IP CT output CT Output
290 339 140 328 140
400 482 132 427 136
675 680 138 604 141

1000 1068 132 975 136

Table 1: In simulation experiments, the Photo Dis-
patcher produces an improvement over a FIFO policy
in the average number of hours needed to complete
processing a lot of wafers (i.e., cycle time or CUr). The
same lot starts were used in a_ simulations, so WIP
]eveis were manipulated by varying the number of ini-
tial WIP lots in the tab at the start of simulation.

300 different ICs produced. There are roughly 50 pro-
cess steps in the recipe for a typical IC in this tab and
these process steps are broken down in the simulation

to 165 separate operations each of which requires the
use of another machine. The simulation included ran-

dom machine breakdowns, but this was the only ran-
dom component as processing times were assumed de-
terministic, lot transport time was not modelled, and
there were no operator limitations.

Table 1 shows the Photo Dispatcher has better aver-
age cycle-time performance in simulations than a FIFO
policy. FIFO does not separate the decision of which

lot to process next on Printers Grp into a pattern step
selection followed by a lot selection. Instead it merely
finds the lot that has been waiting longest for the print-
ers and starts that lot. This is the default behavior of

the simulator and it is also used when exercising the
Photo Dispatcher for machine groups other than the
Printers Grp.

The sise of the cycle-time improvement depends on
the amount of WIP in the simulated tab. At W'IP levels

above 400 lots, the Photo Dispatcher reduced cycle-
times by roughly 10% with greater output in terms
of finished lots per week. Since the tab being simu-
L&ted currently operates at WIP levels in excess of 400

lots, a 10% cycle-time improvement was projected from
the use of this scheduler. Results to date suggest that
flow position is the most import_mt factor in producing
cycle-time improvements of the three factors combined
in Figure 2.

Summary

The Photo Dispatcher provides an effective schedul-

ing approach for revisited workstations such as pho-
tolithography in IC fabrication. It takes advantage of
the unique opportunity that these revisited worksta-
tions provide to shift worklea_ from one downstream

area to another and to reduce WIP by speeding up
processing on lots near the end of their process flows.

While the Photo Disptacher was developed with the
intention of installing it in Texas Instruments' wafer
tabs, to date it has not been used for real-time schedul-

ing of tab operations. However, its Work Monitor ca.
pability has been used to a limited degree to analyse J
production problems in tabs.

References
i

Eskey, M. and Zweben, M. Learning search control for
constraint-based scheduling. Proceedings Bighth Na-
tional Conference on Artificiallntelligence(AAAI-90), _

1990, pp. 908-915. i
Glassey, C.R. and Resende, M.G. Closed-loop job

release control for VLSI circuit manufacturing. IEEE
2_.anJactionaon Semiconductor Manttfacturing,VoL
1, 1988, i

Ooldratt, E. and Cox, J. The Goal. North River
Press, 1984.

Goldratt, E.M. Computerised shop floor scheduling
InternationalJournal ofProduction Research. Vol. 26, i
1988, pp. 443-455.

Lou, S.X.C. and Kager, P.W. A robust production
control policy for VLSI wafer fabrication. IEEB 7_ana. i
actions on Semiconductor Manufacturing, Vol. 2, No.
4, 1989.

Panwalker, S.S. and Iskander, W. A survey of
scheduling rules. Operations Reaea_h, Vol. 25, 1977, i
pp. 45-61.

Smith, S.F., Fox, M.S., and Ow, P.S. Constructing
and maintaining detailed production plans: Investiga-
tions into the development of knowledge-based factory
scheduling systems. AI Magazine, Fall 1986, pp. 45-
61.

m

m
i

i

m

u

II

m

i

=

sa

106 ,m

L •

N

W

w

H

V

Abstract

This article describes a planning method
applicable to agents with great perception and
decision-making capabilities and the ability to
communicate with other agents. Each agent has
a task to fulfil allowing for the actions of other
agents m its vicinity. Certain simultaneous
actions may cause conflicts because they
require the same resource. The agent plans each
of its actions and simuhaneousl},, transmits
these to its neighbours. In a simdar way, it
receives plans from the other agents and must
take account of these plans. The planning
method allows us to build a distributed
scheduling system.

Here, these agents are robot vehicles on a
highway communicating by radio. In this
en _vironment, conflicts between agents concern
the allocation of space in time and are
connected with the inertia of the vehicles. Each
vehicle make a temporal, spatial and situated
reasoning in order to drive without collision.

The flexibility and reactivity of the method
presented here allows the agent to generate its
plan based on assumptions concerning the
other agents and then check these assumption
progressively as plans are received from the
other agents. A Multi-agent execution
monitoring of these plans can be done, using
data generated during planning and the multi-
agent decision-making algorithm described
here. A selective backtrack allows us to

perform incremental rescheduling.

Keywords
Anytime Planning and Scheduling Algorithms,
Execution Monitoring and lncremental
Rescheduling, Managing limited computation
time, Dependency Analysis and Plan Reuse,
Autonomous Agents.

1 Multi-agent worlds
Monitoring a little structured multi-agent
environment, such as a highway traffic, is an
extension to the problem of monitoring robots
in a factory. The agents are assumed to be
"high-level" since they must have a great ability
to perception and they must communicate with

p,N 9

:: =_ Multi-Agent anning and Scheduling, _/_f" S
Execution Monitoring and Incremental Rescheduling:

Application to Motorway Traffic

Pascal Mourou and Bernard Fade

IRIT, Institut de Recherche en Informatique de Toulouse
Universit8 Paul Sabatier

118 route de Narbonne, 31062 Toulouse Cedex, France
Tel: +33 61 55 66 11 extension 72 63 or 63 30

Fax: +33 61 55 62 39
E-mail: mourou@irit.fr or fadc@irit.fr

107

each other to cooperate, coordinate their actions
and resolve any conflicts. The resolution of
conflicts is the main point of interest. Logic
schemata,attemptingto model human thinking,
have been developed torepresentthe wishes
and beliefs[Bessiere,84][Wilks and Ballim,

87] which are the mutual basic knowledge
needed to resolve conflicts.Persuasion

[Rosenschein, 82][Sycara, 89] is the aim of
exchanging arguments. Most studies are
simplified by assuming that agents cooperate
(see [Cammarata et al., 83]). Rosenschein and
Genesereth [Rosenschein-and Genesereth, 85],
on the contrary, attempt to allow for agents
which are not necessary "benevolent".

2 The motorway
Unlike Wood [Wood, 83], we do not generate
routes but consider the driving of the vehicle
(acceleration, lane changes, etc.). We shall use
a different approach to Fraichard and Demazeau
[Fralchard and Demazeau, 89], who describe a
centralized system to generate vehicle
trajectories at cross-roads. We use a distributed
system in which the number of central units
increases as the number of agents increases.
The multi-agent world was modelled on this
basis (see [Mourou and Fade, 91a] and
[Monroe,90]).

Each vehiclehas aco-pilotcomputer which

may either be in an automatic mode, driving the
vehicle, or in a supervision mode when it
warms the driver or, if necessary, takes over
conm)l when an accident is imminent.

..When _ vehicles are in the "automatic
driving" mode, it is simple: the vehicles are
considered as autonomous robots which

communicate with each other. The supervision
mode requires a veritable "execution

monitoring" which must be highl}, flexible and
supervise drivers' acts by companng them with
the "ideal" plan generated in the automatic
mode.

Co-pilots exchange data via a short-range
communication network. The agents must
cooperate to guarantee "efficient and safe traffic

movement" and must respect the highway
code, used as veritable "cooperative strategy"

[Cammarata et al., 83]. A number of objectives
are also fixed for each agent, such as "to travel
at the mean speed required by the driver".
Unlike certain systems analyzed by Davis and
Smith [Davis and Smith, 83], no tasks need be
shared in the procedure since each agent knows
what he must do. The negotiation therefore
covers solely how its tasks can be
accomplished.

The co-pilot in each vehicle is concerned
solely by the N relations which affect the
vehicle. The task of the co-pilot will therefore
involve selecting the behaviour, which is
satisfactory to the N influences to which it is
exposed at each time. In considering highway
traffic, the "common resource" is the space
available on the road. The main task of each
agent is to check that the space it needs will be
free and, if not, to take appropriate action to
reach a free space (acceleration, lane changes,
etc.). Conventional problem resolution
techniques are not capable of simultaneously
managmg the N conflicts possible at each
instant in the future. Moreover, a "distributed
scheduling" technique will be unsuitable since,
although automatic control can be considered as
a resource allocation problem, the inertia of the
various vehicles will make it extremely difficult

pose this kind of question : "Is there an agent
preventing me doing this ?". Each question
determine whether there is a conflict which

prevents one action (method M1).
An example of situation (Example 1) :

dv

can be given by the possible conflicts A will
detect:

(Cb) : B is in front of A (Us), which is
travelling faster and wants to accelerate
even further.

(Cc) :C is on the left of A and prevents A
overtaking.

Questions which A could ask before
deeding to "slow down" are:

• Can I accelerate ? (agent B imposes the
reply "no")

• Can I move out to overtake B ? (agent C
imposes the reply "no").

At a Rrst view, it could be difficult to write
directly an algorithm capable of taking a
decision adapted to A's wishes when exposed
to complex influences (see Figure 1).

to break the road down into a series of "areas",
each considered as a resomr.e. Nc:c_-al_ r

The method we describe is more "expert"-
oriented, allowing the "rules" in the highway
code to be expressed and used as they ernst and
high-level data exchanges to be used. For
example "rm going to move out and acceleram
up to 110 kin/h" is a kind of action generated

by the planner and broadcasted through the Figure 1. Method M1
network.

3 Time, influence of other plans and
delay
The behaviour of each agent is represented by a
linear, non-hierarchical plan. We make the
assumption that the agents are synchronised by
a common clock broadcast by radio for
example. B's "time influence" on A covers all
the B's actions and s/tuations around Ti used to

p.l_ A's action at Ti. When s_n_ of diem are
missing, A must make assumptions on the
actions planned by B and consequently
progressively check these assumptions as the
actual actions are received. If A's assumption is
found to be concct, we shall have saved time.
Otherwise, A must rcplan this action after B
has transmitted its decision and no time will
have been lost.

4 The "Is there an agent.., ?" method
Knowing, or assuming, the actions of other
agents, agent A must generate an action (the
behaviour for a given step). It can repeatedly

S The dual method: "Is there an
action... _" .-
5.1 Definition

We could use tests of the type "Is there an
action prevented by this agent ?". The agents
would then be reviewed, one after the other, to
collectallconflictstowhich A is exposed intoa
"Results"ssrucunc(seeFigure2).

108

Figure 2. Method M2

m

tim

u
m

i

!

m

m
I

1

i

I

|

1

I

m
m

1

_m

i

i

1

M

m

m

I

MI

m
i

mm

z
m

1

L]

m a

w

• "Is there an a_don prevented by B 7" :
"B prevents me not(slowing down or
moving out)". = Cb

• "Is there an action prevented by C ?" :
"C prevents me moving out" = Cc

A second phase allows the action to be
determined :

• Cb and Cc --> "prevented from not
slowing down" = "decelerate"

This second phase, used to find the best
possible response in view of all the behaviours
that are prevented and the requirements of A,
occurs after determining all behaviours that are
not possible (method M2). It allows K conflicts
to be grouped and assessed simultaneously (K
< P: maximum number of conflicts). It could
be considered as simplified multi-agent
planning which chooses an action in function
of the prevented ones. The knowledge required
for this reasoning is referred to as "N-agent
knowledge".

On the other hand, each question allows
assessment of a relationship between two
agents. The term "bi-agem" refers to the
process and knowledge used for each
comparison. The result of a two-agent
comparison is known as a "Partial Result".

A "mono-agent" phase may influence the
Total Results in function of A's wishes before
the series of bi-agent comparison.

5.2 Application to motorway traffic
The Total Results for the Example 1 would be:

Prevent-movin[-out I t IMove-out [t | Move-out-list I 03) [
Slow-down [0 | Slow-down-list I 0]

The decision-making rules for the bi-agent
and then N-agent phases would be, for
example:

• ff A is in the fight-hand lane and _ is in frou
of A in the right-hand lane and at low¢
speed and ff safety distance has been
_._cbed
then Move-out(X) .-_ t

Move-out-list(X) := (13)
• ff Move-out and Prevent-moving-out

then decelerate, choosing vehicles in Move-
out-list

ff Move-out then move out

• if Prevent-moving-out then do nothing
• if true then accelerate

$.3 Selective backtrack

The use of Results and the separation of
conflict recognition from their overall
processing makes a selective backtrack

109

possible. Consequently, new information from
agent B concerning an instant T i, already
planned, can be allowed for _olely by
comparison with B (see Figure 3).

Figure 3. Selective backtrack for agent B

If the new Partial Results for P at instant T i,
designated "new-Partial-B-T(' equal Partial-B-
Tj (i.e. the response to the ne'w influence is the
same as that to the previous influence - see
Example 2.1) or if "new-Partial-B-Tj" is
already part of "Total-Ti" (i.e. the response to
the new influence had already been requested
by at least one of the agents - see Example
2.2), a total backtrack is pointless since the N-
agent phase would produce the same
conclusion. This selective backtrack is then
sufficient for instant Ti. The same must then be

repeated for each instant Tk between Tj and the
current planned instant Ti.

Since case 2 covers case 1, there seems to
be no point in memorizing the Partial Results
but only the Total Results (method named
M3*).

If, for any instant Tk between Tj and Ti, the
results are not already included it can only be
because a new response has been requested.
The N-agent phase must, therefore, be
triggered using a new Total Results which can
be calculated in two ways:

new-Total-Tk := (U Partial-X-Tk ; X. B)

new-Partial-B-Tk

new-Total-Tk := Total-Tk @ Partial-B-Tk
new-Partial-B-Tk

In either case, it would be useful to know
certain Partial Results.

The conflict recognition phase is, therefore,
avoided for any agent other than B and the
backtrack is still not total. If the resultant action
is the same as that which would have been

enerated without the new information (see
xample 2.3), we only need to continue

selective backtracking on actions for instants
afterTk.

[III m

1.A's plan :overtakeC ;B's plan :decelerate:the cOnstraintsB imposes on A are -'
unchanged.

2.A's plan_:slow down ;B's plan :overtakeA :thenew consn'aintB imposes on A,
i.e. forbidden to move-out, was already imposed by D.

3. A's plan : do nothing ; B's plan : overtake A : the new constraint B imposes on A
does not affect the action planned by A.

4. A's plan : overtake C ; B's plan : overtake A : the new constraint B imposes on A
generates a new action, i.e. slow down. A must replan the following instants.

Example 2. Variousselective backtracklevels

However, if the actiongeneratedisnew(see
Example 2.4), a total backtrack from Tk+l
onwards is necessary since the new action
could change the result of all the previous
comparisons.

$.4 Execution monitoring
The execution monitoring of the plans
generated can be done using the memorized
Total Results and the selective backtracking

pc_ssibilities to check that no agents, cause any
infractions.

The real behaviour of human drivers could
be monitored as follows.-

• If man behaves approximately as the system
then there will be no problem

• Otherwise:

• If the man in question is driving our car,
check whether the behaviour of the man

is included in the prohibited behaviours
memorized in the Total Results :

If there is infraction of one of these

prohibitions, the driver could be
warned (for a low-risk situation or a
detected intention) or the system could
take controlto avoid an accident (for a

dangerous situation).
Otherwise, complete replanning is

required to adapt to this new
behaviour (once the driveds intentions
have beenrecognized...).

the man is driving another vehicle,

which possibly does not have the
system, _t is necessary to run a selective
backtrackfor each instant Tk between Tj
and the current planned instant Ti to
adapt our plan.

<::

_'rheoret]_l e_ciency of < the methods
The theoretical costs of each of various

methods (among 12 alternatives) were
estimated making certain average assumptions
about the multi-agent application and the way in
which the databases or algorithms are designed
(see [Mourou and Fade, 91b] and [Mourou,
92]). Th-e_-e_osfs-a/e6/c_i-e_ag: a mean
number of influence tests in function of the

number of other agents N, the maximum
number of conflicts P and the mean number of

influence tests Q used in a M I Conflict test. One
result is : -

M1 Q x N/2 xP

M3* Q xN

M3* requires all possible _mparisons tobe
done while M1 only requires comparisons on
request. However, it is more efficient sincethe
influence _ts are grouPed-il

7 Main experimental results
We simulated a highway wi__ two lanes and
carrying three vehicles fi_wi_a_piiot and
10 other preprogrammed vehicles. The three
equipped vehicles are associated with three
different processes linked through pipcs_ 24
rules (10 bi-agent and 14 N-agent rules) are
required with M3* to obtain an ideal response
in "automatic mode" which respects safety
distances and allows for the inertia of vehic]e_

The _owlcdge bases made it possible to write
that for M1.

In this application, Q = 3 (relative position,
relative speed, lane) and P = 3 (number Of

11o

W

g

J

l

l

l

m

|

U

E

m

m

M

m

m

J

L2

i u

=

booleans in the Results _). N does not
affect thereladve performance.

M1 and M3* gave results which matched
those from the above formulas : M3* is 30%
faster than M1.

In the best case, but which is also the most
frequent, when the Partial Results calculated
are included in the Total Results, M3*
performed its selective baclm'_ks in only 20%
of the _ required by M1 to complelely replan
(with N = 10).

Conclusion

The multi-agent planning/scheduling methods
described in this article make its possible
achieve a more flexible, fast and reactive
system. The copilot can anticipate the near
future by using the available time and without
be obliged to wait for its neighbours because it
can easily check and integrate a new
information.

In execution monitoring, a _gerous
situation can be quickly detected. A backtrack
of an agent and the selective backtrack of other
agents allow to perform incremental
_uling of the whole system.

References
[Bessiere, 84] Pierre Bessi_re, "Un

Fcnmalisme Simple Pour R_nter La
Connaissance Dans un Contexte de
Planificafion Multi-Agents", RFIA 84,
Acres de 4i_3e Congres de Reconnaissance
des Formes et Intelligence Artificielle, 2527
Janvicr 1984, Paris, tome 2, pp. 345-354.

[Cammarata et al., 83] St_hanie Cammarat&
David McArthur and Randall Steeb,
"Strategies of Cooperation in Distributed
Problem Solving", DCAI 83, pp. 768-770.

[Davis and Smith, 83] Randall Davis and Reid
G. Smith, "Negotiation as a Metaphor for
Distributed Problem Solving". Artificial
Intelligence 20, pp. 63-109,1983.

[F,raichard and Demazean, 89] TIL Fralchard
and Y. Demazean, "Motion Planning in a
Multi-Agent World", Workshop on
Modeling Autonomous Agents in a Multi
Agent World (MAAMAW 89), Cambridge.
England, August 1989. _

[Monmu, 90] Pascal Monron,"__tation
et Simulation d'un A_ent clans an Monde
Multi-Agent: un V_hicule en Circulation
Autorouti_", Rapport Interne N°IRIT_) -
10, F-,hn'i_ 1990, 41 p.

[Moumu and Fade. 91a] Pascal Mouton and
Bernard Fade, "Vehicles controlling:
Representation of knowledge and
Algorithms of a Multi-Agent Decision",
Sixth International Conference on

Applications of Artificial Intelligence in

Engmnenring (AIENG 91), 2-4 July 1991,
Universityo_ Oxford, UK, pp. 683-697.

[Mom'ou and Fade, 91b] Pascal Mourou and
Bernard Fade, "Co-Pilot for the Driver
Monitoring", PROMETHEUS PRO-ART
Workshop on Intelligent Co-Pilot,
December 12-13, 1991, Grenoble, France,

pp 183-193.
[Mourou, 92] Pascal Mourou, "Evaluation

comparative de techniques de d_cision
multi-agent", Rapport Interne IRIT,
p_.

[Rosenschein, 82] Jeffrey S. Rosenschein,
"Synchronization of Multi-Agent Plans",
AAAI 82, pp. 115-119.

[R0senschein and Genesereth, 85] Jeffrey S.
Rosenschein and Michael R. Genesereth,

"Deals Among Rational Agents", DCAI 85,
vol l, pp. 91-99.

[Sycara, 89] Kafia P. Sycara, "Argumentation:
Planning Other Agents' Plans", IJCAI 89,
vol 1, pp. 517-523.

[Wilk_ and Banim, 87] Yorick Wilks and Afzal
Ballim, "Multiple Agents and the Heuristic
Ascription of Belief", IJCAI 87, vol 1, pp.
118-124.

[Wood, 83] Sharon Wood, "Dynamic Worm
Simulation for Planning With Multiple
Agents", IJCAI 83, vol 1, pp. 69-71.

lI1

s s s sREAL-TIME CONTINGENCY HANDLING IN MAESTRO

f

Daniel L. Britt and Amy L. Geoffroy
Martin Marietta Astronautics Group

p.o. Box 179, ms XL4370

Denver, CO 80201

Abstract

A scheduling and resource management
system named MAESTRO has been
interfaced with a Space Station Module
Power Management and Distribution

(SSMPMAD) breadboard at Marshall Space
Flight Center (MSFC). The combined

system serves to illustrate the integration
of planning, scheduling and control in a

realistic, complex domain. This paper
briefly describes the functional elements

of the combined system, including normal
and contingency operational scenarios,
then focusses on the method used by the
scheduler to handle real-time
contingencies.

I. Introduction

For the past six years a team at Martin

Marietta has been developing an
integrated approach to scheduling,
resulting in the implementation of a

robust prototype scheduling system called
MAESTRO [Geoffroy, Gohring & Britt, 1991].
During the same time frame another
group at Martin Marietta has been
building a hardware/software testbed to
study various concepts in the automation

of electrical power management, the
Space Station Module Power Management
and Distribution (SSMPMAD) system. In
1988 an initial version of the SSMPMAD

system integrated with MAESTRO was
delivered to Marshall Space Flight Center.
Since then both the SSMPMAD system and
the scheduler have gone through several
revisions, and a major delivery of new
software occurred in June of 1991. This

paper describes that combined system,
highlighting those aspects of it that
illustrate concepts in integrated planning,
scheduling and control. We focus on the
replanning and rescheduling processes
used in MAESTRO to respond to real-time
contingencies, unexpected changes in the
state of the power system that cause a

schedule currently being executed to
become invalid.

Section II defines some terms used in the

rest of the paper. Section III describes the
functional architecture of the system. In
section IV are presented two operational
scenarios, one for normal operations and
one which describes a possible
contingency. Section V provides a
description of the processes carried out by
the scheduler to effect real-time

replanning and rescheduling, including
timing issues. In section VI we conclude
with indications of possible future
directions for this research.

II. Definitions

For the purposes of this discussion we will
make use of the following restricted
definitions. Planning is defined to be the
process of specifying goals to be achieved
onboard a spacecraft, and further, of
specifying the activities which will
achieve those goals. This involves
determining these activities' structure as
well as constraints on the execution of
them. Activities, in turn, are defined to be

sequences of subtasks which accomplish
the desired goal. Scheduling is defined to
be the process of selecting some subset of
these activities and specifying exact
start/end times and resource assignments
for their component subtasks. A valid
schedule is a specification of start/end
times and resource assignments for a set
of activities such that the activities may be

executed as scheduled. A contingency
arises when a previously valid schedule
becomes invalid as a result of a change in

the assumptions upon which that schedule
was bued. _e term-reai-tim_is used here

to mean "during execution of the activities
on a schedule'. This does not have the

connotation from control theory that a
real-time event must be responded to
within microseconds, but rather is used to
differentiate between actions that are

occurring at the moment as opposed to
those that will occur at some point in the
future. A load is the use of electrical

power by a piece of equipment.

The authors would like to acknowledge John Gohri_ of Mmin Marietta Western Internal Systems end Joel Riedesel of Martin
Marietta Asmmautics Group fortheir significant conm'bufiomto thisreportandto the work described herein.

112

= =

i

IB

IB

i

tB

i

i

l
t

lib

III :

IB

II

i

IB

i

i

m

=

= ..

r_

r

:+

III. Functional Architecture

Figure 1 depicts the functional elements of
the combined SSMPMAD/MAESTRO system

and relationships among these elements.
Briefly, the Activity Editor is used to create
definitions for activities which

accomplish goals desired by the user.
MAESTRO is used to select and schedule a

subset of these activities, and to save the
resultant schedule(s) out to files. The
Transaction Manager (TM) serves as a
communications port, facilitating specific
types of communications between

schedules among Load Centers (LCs), into
which are incorporated Lowest Level
Processors (LLPs). These LLPs actually
control hardware switches on the power

system breadboard, as well as monitoring
the states of various sensors distributed

throughout the system. The Fault
Recovery And Management Expert System
(FRAMES) performs fault isolation,
diagnosis and recovery for the power
system, and communicates with the
scheduler during real-time contingencies.
The Load Priority List Management System

MAESTRO and the rest of the system during (LPLMS) maintains a list of active loads in

breadboard operation. The Front End Load a prioritized order such that if there is a
Enable Scheduler (FELES) creates need to quickly reduce power
schedules of power system events (such as consumption in a portion of the
closing switches) from saved schedule breadboard, loads can be shed (turned off)
files. The Communications and in an order that minimizes the impact of
Algorithmic Controller (CAC) distributes this load shedding.

MAESTRO

Scheduling
System

TransactionManager

Schedule Library

_I Fault Recovery andManagement Expert System]

]
Front
End
Load
Enable

Scheduler

, _ ,] [Load Priodt_

[md,,o,,jl I I

Communications and

Algorithmic Control

Power System Hardware

Figure 1. Functional architecture of the MAESTRO/SSMPMAD combined system.

A portion of the actual power circuits on
the breadboard is depicted in figure 2.
Note that several 1-kilowatt Remote Power
Controllers (RPCs) can be attached to a

single 3-kilowatt RPC. Thus it is possible to
overload an intermediate RPC without

overloading any of the lower-level RPCs
connected to it. For this reason it is

necessary to represent the entire power
path for each power-using resource to the
scheduling system, rather than just
representing total power consumed by
each activity.

+ w

_-" 113

Power Star BusA

PDCU A

.¢

LLP

/VD

SIC

I_ to other load centers

from Bus B PDCU

PDCU: power distribution
controlunit
LLP: lowest levelprocessor

_ A/D: Analog-to-digital
5 converter

SIC: switchgearinterface
controller

Remote Power
!
"1" Controller(RPC)

Load Center Load Center I or3 kW

Figure 2. Representative schematic of a portion of the SSMPMAD breadboard.

IV. Operational Scenarios
Normally, a user will interact with the
activity editor to create a set of activities to
be scheduled, saving these activities'
definitions in an activity library. In that
or another session, the user will run the
scheduler to create one or more initial
schedules of these activities. These

schedules will be saved into a schedule

library. When a user wishes to operate
the power system breadboard, s/he uses
the SSMPMAD interface to select a saved

schedule, initialize the system and execute
that schedule. The FELES first obtains a

saved schedule and translates a portion of
it (roughly one-half hour of activity) into
a series of power system events,
specifying at what times and power levels
each RPC is to be turned on. The LPLMS

takes this schedule of power system events
and creates a list of loads to shed in an

emergency power reduction. The event
schedule and priority list are transmitted
to the CAC, which distributes them among
the LLPs as appropriate. The CAC also

maintains a system clock, coordinating
timing for the various elements.

Execution of the distributed schedule

proceeds with the LLPs directing the RPCs
to close and open switches at the times
specified by their respective event
schedules. The RPCs monitor voltage,
current, temperature and other
parameters of their operations.

Prior to the expiration of the timeline
increment being executed, the FELES will
acquire another increment from the saved
schedule, translate it into power system
events, and transfer it to the CAC, which

distributes it to the LLPs. At a specified
time, the LLPs stop executing the old
increment event list and begin executing
the new one.

When an anomalous condition (such as

over-current or under-voltage at a
switch) is detected by one of the RPCs, it
automatically takes a sating action, if
possible. The LLP controling it reports
this event to FRAMES, which gathers
together all available information about
the fault, isolates it, and compiles a list of
system configuration status changes
resulting from the fault. These changes
can include a load being switched to a

114

g

J

I

g

g

W

l

i

J

D

i

W

J

i

,=.,.,

= =

r_

w

E--

W

redundant power source (redundancy
switching), an RPC going out of service,
the deliberate shutdown of a load to reduce

power consumption (load shedding), or a
reduction in power available at an RPC
and the expected duration of that
reduction. This list of changes is then
communicated to the scheduler, which

revises the activity schedule to reflect the
changes and makes the new schedule
available to the FELES. It creates a new

event list, which is distributed to the LLPs

along with a time tag indicating when to
begin executing the new schedule.

V. The Real-Time Rescheduling Process
When a power system anomaly occurs,
MAESTRO will get a set of information
from FRAMES throught the TM. This
information will include the current time

in addition to redundancy switch, load
shed, power availability change, and RPC
out-of-service messages. These messages
will include the time the event occurred,

and if applicable the duration of the
change. MAESTRO follows a three-step
process to handle these messages and
revise the schedule. It I) modifies the
schedule to reflect changes made to it by
the power system and to remove resource
and temporal constraint violations for
activities not yet begun, 2) tries to find
ways to create and schedule continuations
for interrupted activities, and 3) tries to
schedule any activities that can take
advantage Of the resources released by the

interruption of others. The first step
results in a valid but possibly not very
efficient schedule. It is carried Out as
quickly as possible to ensure that a
workable schedule can be in place soon,
reducing the likelihood that adherence by
the power system to the old (invalid)
schedule will result in a cascade of faults

registered by that system. The secon d and
third steps will only be attempted if there
is sufficient time to get something useful
done. Management of its own computation
time is a difficult issue for_a _ rea!-time

rescheduler: _ It must project a time when
it will have a valid schedule available,

including the time it takes to transmit that
schedule to the entities responsible_for

carrying it out, then not make changes to
the schedule (other than those already
made by the power system) that would
need to be acted upon before they are

115

received by the power system. For
example, if at I0:00 a contingency occurs,
and the scheduler determines that an

interrupted activity can be continued at
10:05, but this information cannot be

transmitted to the power system until
10:08, then the schedule is invalid the

moment the system begins to execute it.
In this example the scheduler could
specify that the activity be continued at
10:08, but not before.

The actual structure used to control the

three-step process mentioned above is a
prioritizcd list of command queues. As
information comes in from FRAMES, it is
routed to one of several command queues,
for action as soon as MAESTRO has nothing

more important to take care of. Resource
availability changes appear in one queue,
while redundancy switches are in another
and load sheds in a third, for example.
MAESTRO will be in a wait state until

something appears on one of its command
queues, at which time it will process a
command from the highest priority queue
that has an item, then check all the

queues again for new items, returning to
the wait state when no items remain.

MAESTRO will add items to its command

queues as a result of its own processing.
Handling a resource availability change,
for example, will cause MAESTRO to add a
command to check for resource constraint
violations. If a violation is found and an

activity interrupted, MAESTRO will add a
command to try to plan and schedule a
continuation of that activity.

Activity continuation is the single
automated planning function within
MAESTRO. When initially creating
activities, the user specifies ways and
conditions under which each subtask may
be continued if it is temporarily
interrupted. Three continuations are
currently represented for each subtask.

,.These =are effectively operators that can be
selectively applied to achieve the goal of a
completed activity performance. First, the
unexecuted portion of an interrupted

'_sUbtask may be skipped, with a parameter

stating how much time the subtask must
execute prior to the interruption. A data
collection subtask could be terminated

early and data analysis begun, for

example, Second, a subtask may be
continued after a sufficiently brief
interruption. Finally, the interrupted
subtask may be started over again, making
use of states set by previous subtasksbut
not using the progress gained in the
interrupted subtask.

The scheduler will create a new activity
model appropriate for a particular type of
continuation using information from the
interrupted activity and possible
continuations specified by the user for
that activity. Each of the above
continuations has different implications
for the rescheduling of the subtasks
following the interrupted one, so MAESTRO
must try various options in order to find a

viable placement for the new activity.
MAESTRO can represent temporal
constraints between activities, sometimes
necessitating the consideration of more
than one continuation model at once. This
complexity combines with the time
limitations on rescheduling to prohibit
MAESTRO from finding the "best" way to
continue an activity it simply accepts the
first viable continuation found. Attempts
are heuristically ordered such that
higher-value continuations are tried

earlier, however. Note that in many cases
no continuation will be possible, in which
case the work done to represent the
current state of the system is all that can
be accomplished for a particular activity.
Note also that sating actions are not
scheduled but rather are carried out

immediately and automatically by the
subsystems involved.

As each continuation attempt is made, the
system consults the system clock,
abandoning further attempts at the point
where they would cause changes made to
the schedule to be unimplementable.
When all continuation attempts have been
tried (and there may be none tried), if
there is still time, the scheduler will

attempt to add new performances of
activities to the schedule. System time is
checked after each schedule addition, and
this process ends when time runs out or
no more activities can be added to the

schedule. At that point the schedule is
made available to the FELES, and schedule

execution proceeds as previously
described.

VI. Future Directions and Related Work

Work is continuing on MAESTRO, as it is on
SSMPMAD. The scheduler needs to be

enhanced to manage the timing and
consistency issues that arise when a user

wishes to alter a schedule that is currently
executing. We also intend to enhance the
representational as well as computational
power of the system. The current methods
for finding a way to continue an
interrupted activity are cumbersome and

depend too much on initial user input into
the representation of the subtasks. A
more appropriate method would be to have

an intelligent system monitoring each
experiment or other major activity, with
the capability to plan continuations based
on an accurate assessment of the state of

the activity.

We have begun a task similar to the
MAESTRO/SSMPMAD integration for
Kennedy Space Center under the

Advanced Launch Processing (ALP)
contract. In that effort we will build a

system executive capable of coordinating
the actions of multiple Knowledge-Based
Autonomous Test Engineer (KATE) systems
[Parrish & Brown, 1991]. These systems
are used to monitor and control individual

launch vehicle subsystems during testing
and launch, but are independent of one
another. The system .,executive will
interface with the Kate systems as well as
with higher-level launch flow

management functions, enhancing
integrated vehicle systems tests and
reducing launch costs.

VII. References

Geoffroy, A.L. Gohring, J.R. & Britt, D.L.
(1991) Sharing intelligence: Decision-making
interactions between users and software in
MAESTRO. Telernatics and Inforrnatics. 8
(3/4).

Parrish, C.L. & Brown, B.L. (1991)
Knowledge-Based Autonomous Test

Engineer (KATE). Technology 2001
Conference. NASA. December, 1991, San
Jose, CA.

D

IB

I

IB

z

I

OF

l

i

z
qii

BB

I

!
E

II

E

II

m

U

m
aim

116

4--.

u

I

r--

w

m

r ,

w

N 868{{
Learning to Integrate Reactivity and Deliberahon

in Uncertain Planning and Scheduling Problems

Steve A. Chien

3et Propulsion Lab, M/S 525-3660

California Institute of Technology

P,-,adena, CA 91109-8099

chienO_.jpl.n-Ja.gov
._ = Abstract

:==

This paper descries an approach

_edullng in uncertain domains. In this approach, s
system divides a task on s goal by goal basis into re.
a_ti-_;e _ndde|ibera-t_ve-components. Initially, a task is
handled entirely reactively. When failures occur, the

system changes the reactive/deliberative goal division
by moving goals into the deliberative component. Be.
cause our approach attempts to minimise the number
of deliberative goals, we call our approach Minimal De.
liberation (MD). Because MD allows goals to be treated
reactively, it gains some of the advantages of reactive
systems: computational efficiency, the ability to deal
with noise and non-deterministic effects, and the ability
to take advantage of unforseen opportunities. However,
because MD can fall back upon deliberation, it can also
provide some of the guarantees of classical planning,
such as the ability to deal with complex goal interac-
tions. This paper describes the Minimal Deliberation
approach to integrating reactivity and deliberation and
describes an ongoing application of the approach to an
uncertain planning and scheduling domain.

INTRODUCTION

The AI problem of automatically achieving goals has
been redefined in the last few years. The classical plan-
ning problem can be broadly characterised as finding
a set of operators together with sufficient constraints
such that when applied to some initial state the result-
ingStste provably satisfies some goal relation. However,
this is a narrow view of what is now seen as a more gen-
eral problem. Recently. there has been a great deal of
interest in reactivity as a model of action [SuchmangT].
While the clmic_d view of planning has been shown
to have computational problems [Chapman871; from a
different perspective one might instead blame our fail-
ure to conceive of alternative frameworks for modeling

world changes and formalisms for action selection.
Reactivity takes a different, more efficient view of ac-

tion selection. Pure reactivity fundamentally gives up
the idca of projecting the results of actions. Instead an

agent reacts to the current state of affairs in the world
as directly perceived by sensors. In a sense, reactivity

is a hill-climbing actlon-selection model. The evidence

Mellnda T. Gervasio

Beckman Institute

University of]]llnolJ

Urban-, I1, 61801
/

/ gerva_oOc..uiuc.edu

Gerald F. DeJong

Beckman Institute

University of Illinois

405 North Mathews Avenue

Urbana,]I, 61S01

gervuioOcl._uc.edu
z

taken into account in the selection of an action is neces-

to plann|ng _d: _r_)" lOCal (i.e., the Current readings of sensors). Based
on this purely local information an action is taken that
may have resounding global ramifications, fooling the

agent into climbing to the top of a locally steep foothill
from which state the goal is unachievable.

This phenomenon often occurs in the form of inter-
acting sub-goals both in planning and scheduling. In a
planning context, as you exit the parking lot on your
way home from work you may prefer a right turn (it
more directly leads toward your house, it is lea ex-
pensive than a left turn across traffic, etc.). However,
in the context of a second goal of picking up a loaf of
bre_d, it may be better to turn left, taking you past a
supermarket on the way. In a scheduling context, inter-
actions occur through resource contention. A job may
finish earlier if allowed to execute one of its subtasks

at a certain time, but the overall schedule may suf-
fer. Approaches that address managing such problems
of purely reactive systems include: developing a the-
ory of benign environments in Which a reactive agent
may be more certain that its reactive inclination will
meet with success [Agreg8, Hammond90]; the integra-
tion of classical planning with reactivity [Drummond90,
Kaelbling86, Turney89]; and application of machine
learning to this end [Gervasio90, Mitchell90, Laird90].
These approaches begin with what is essentially s c]as-
sical planner and, guided by experience, result in the
formulation of reactive components as we]].

This research approaches planning and scheduling
from s different point of View, Instead of learning to in-
corporate reactivity into a classical deliberative frame-
work, we propose incorporating minima] classical de.
liberation into an initially purely reactive system. As
failures are encountered, the system utilises its world
model to explain why the desired state of affairs wu
not brought about by the executed actions.

In the case of a failure of a reactive goal, the fail
ure could be due to a faulty set of reactions or due to
uncertainty in the effects of actions or schedules. In
the case of failure of a deliberative goals, the failure
must be due to interference from a reactive goal. In
the case of uncertain effects causing the failure of a re-
active goal, deliberation can be used to attempt to im-
prove the plan. In the case of reactive interference in a

117

reactive or deliberative goal, the offending reactions are
inhibited by moving the associated goal into the delib-
erative component, where the negative goal interaction
will be considered and avoided.

In th_ way the purely reactive system aclopts just
enough deliberation to avoid goal interaction pitfalls.
Since deliberation occurs only in reaction to observed
failures, (i.e. the resultant plan remains uncommitted
on those goals not appearing in the failure trace) this
approach will generally retain some level of flexibility
by avoiding a rigid classical plan or schedule for all
of the goals. ThJd flexibility allows the MD approach
will retain some of the benefits of reactivity: toler-
ance of noise, uncertainty, and incomplete knowledge
as well as computational ei_ciency. Yet the MD ap-
proach also benefits from its ability to fail ba_ up6n
traditional deliberative planning. It gains the abil-
ity to solve problems which require simultaneous con-
sideration of multiple interacting goals. Additionally,
through explanation-based |earning(EBL), it gains the
ability to cache and generalize decisions made in the
plan construction process. As with traditional EBL,
the learned deliberation molecules allow a system to
find plans more quickly. But more importantly, these
deliberation molecules allow a system to avoid repeat-
ing the failures resulting from the short-sighted decision
of the reactive component.

These benefits of coordinating reactivity and delib-
eration are relevant to both planning and scheduling
issues described in this paper. Reactivity can take ad,

vantage of unforseen opportunities. In, planning this is
the ability to take advantage of fortuitous conditions in
the world state. In scheduling, this is the ability to take
advantage of unforseen resource aval]abUity. Another
strength of reactivity is the capability to deal with un-
certainty and noise. In planning this means the ability

to deal with uncertain action effects and/or world state.
In scheduling this means the ability to deal with uncer-
tain resource consumptions and availabilities. A third

strength of reactivity is its computational ei_ciency due
to avoidance of explicit projection. In planning, this
means not having to explicitly determine future world

states. In scheduling, this means not having to explic-
itly determine future resource utilisation. The principal
strength of deliberation is the ability to deal with ar-

bitrary goal interactions by searching the space of pos-
sible plans and/or schedules. In planning this means
being able to deal with complex precondition and effect

interactions between goals. In scheduling, this means
being able to deal with dii_cult resource interactions.

There are a number of assumptions underlying the
MD approach, First, we assume that the cost of fail-

ures is sui_ciently low so that the cost of failures in-
curred while acting reactively is outweighed by the over-
all gains in flexibility and ei_ciency from reactivity. A
corollary to this assumpt|on is that the reactive compo-

nent is sul_ciently competent to solve the majority of
the goak. Without this constraint, the MD approach
would incur the cost oi_numerous failures only to end

up doing primarily deliberative planning. Second, we
ss

assume the presence of domain models to allow the sys-
tem to fall back upon classical planning as well as per-
mitting use of EBL. Third, the system must be allowed =..

mult|ple attempts to solve a problem, i

THE MD ARCHITECTURE

The system architecture advocated by the MD ap-
proach is that of an interacting set of components: a de-
liberative element, a re_tive element, and a learning el-
ement. The deliberative element is a conventions] plan- i
ner which constructs classical plan/schedule molecules
for goal conjuncts requiring deliberation. By ana-
lysing the precondition and schedule interactions and =_
perforrn_g extensive _arr.h deJiberation can resolve J
the goal interactions. The learning element uses EBL
[De3ong86, Mitchell86] to learn general plan/schedule _-
molecules which]ndicate how to achieve a set Of S_ Z
by designating a reactive/dellberative goal allocation J
and a set of actions for the deliberative goals.

The reactive element proposes actions using a shal-
low decision model of reaction rules. Each reactive rule []

specifies a set of state conditions and resource require-

ments which specify an action as appropriate to exe- _:
cute. Multiple actions may be executed during a single
timestep if resources allow. In most cases, failures in m
the reactive component will be due to goal interactions.

Reaction rules consist of interrupt rules, which_ ca_ R
act|ons to be executed regard]-ess of the other actions saD
the agent is taking (i.e. actions determined by the de-
liberative component), and suggestion rules, which are
executed when the system has no current pending ac- --=
ti0ns. Thus, |nterrLtpt ru_/es_represent actions to take •
advantage of immediate opportunities or avoid dan-
gerous situations regardless of the current deliberative
plan, while suggestion rules direct activity when the
system is confronted by.a set of goals, and does not • !
have a current plan.

Every reaction rule is defined with respect to a goal;
and can only apply when its goal matches a reactlve • !
goal of the system. Thus, a reaction can be overridden

by the deliberative component by removing the trigger-
ing goal from the set of reactive goals and planning for _ :
the goal delt_oeratively. Thus, in our architecture, t_here •
are three levels of priority: interrupt rules, the action

advocated by the current plan, and suggestion rules; _-

Within a_ven p_or_ty level, if more than one actioa_ _ !
applicable, the system chooses one arbitrarily but de-
terministically (e.g. the same set of goals and state will

produce the same action). For example, in a delivery Z=
domain, interrupt rules m|ght trigger w]_en the truck is •
at the location of one of its deliveries. This can occur in

the midst of executing a decision molecule constructed
by the deliberative component_ and it results in _ti0ns

other than those in the decision molecule. An example •
suggestion rule would be one which causes the truck
to move towards the closest delivery site if it does not

have a decislo-n molecule to guide it otherwise. _ _ _

118 []

=__

t-

L_J

iiW

u

u

i ,

2_ _z

m

w

THE MD APPROACH

In the MD approach, a system originally acts based
upon a shallow, simple decision model. Through expe-
rience, the system gradually acquires a set of decision
molecules which allow it to plan past local maxima
encountered by the shallow decision model Because
of this progression, we describe the MD approach as

%ecoming decreasingly reactive", as the proportion of
goals the system solves by deliberation increases (where
we also consider as deliberative the compiled decision

molecules created by the deliberative element). Even-
tually, for a fixed distribution of problems, the system
will learn a set of decision molecules sufficient to allow

it to solve the problems occurring in the distribution.
Furthermore, because the MD approach uses EBL, the
system also]earns to avoid a general class of failures
relevant to a particular plan, thus reducing the number
of failures required to learn a satisfactory set of plans.

A problem consists of a conjunction of goals, and the
task of a system in the MD approach is to divide the
goals into a deliberative set and a reactive set such that
the goals ere all achieved with the minimum amount of
deliberation and maximum amount of flexibility pos-
sible. A plan to solve a conjunction of goals is thus
a composite plan/schedule which consists of a decision
molecule, constructed by the deliberative component to
solve the set of deliberative goals, and a set of reactive

O_alto be achieved by the reactive component. The
gorithm is shown below:

Given • problem consisting o_:

G - • set o_ problen goals
z - the initial stats

loop
PLAN : - Classical_Planner (DELl"B,I)
Exscut o (PIAI, RFAC)
if all goals achieved rotumn SUCCESS
else if RF.AC- {} return FAIL
else

for each 8o•1 in RF.AC
if <Kom_ not achieved> OR

<reactive action in pursuit o:t Seal
interfered with another goal G'>

then

P.FAC := lt_C - goal
DELIB :- DELIB ÷ seal

go loop

i_ SUCCESS then Esneralize successful plan

The key to the MD approach is the blame assignment
process. In general, failures are due to interactions be-
tween subgoals, as the reactive methods ere intended

to be su_clent to achieve goals without interference.
Interference can occur at the planning level (due to an

action in service of one goal clobbering a protection in

service of another goal) and at the scheduling level (re-
source expenditures due to one goal causing a resource
failure for another goal).

.

Blame assignment consists of determining which
goals ere involved and then using this information to

reduce future failures due to goal interactions. In goal
identification process, there ere planning failures and

scheduling failures. Each of these failure types (plan-
ning, scheduling) can cause a gnal to be identified as
relevant to a goal analysis. In the first way, a goal G
fails, likely due to actions in service of another goal.
This goal is called a conflictee and is considered in the
analysis described below. This set of circumstances can
be detected by checking if goals &re achieved at the end

of execution (infinite looping is detected by an execu-
tion limit). The second relevant goal type is a conflicter
goal. A goal G is deemed a confiicter if an action A in

service of G caused a failure of another goal H. In the
context of planning, this occurs if the confiictee H is
a deliberative goal and A clobbers a protection in the

plan to achieve H. In a scheduling context a goal G is
deemed a conflicter if an action A in service of G was

the largest consumer/user of a resource R which caused
a scheduling failure for a deliberative goal H.

We now describe how this determination of goal inter-
ference is used to modify the allocation of reactive and
deliberative goals. If a reactive goal G1 fails without
interference, it is moved to the deliberative component
and thusly will be achieved by the classical planner and
scheduler. A deliberative goal G1 cannot fail without
interference as the planner performs full projection. In
the case of a goal failing due to interference from a sec-
ond goal G2, there ere four cases, G1 and G2 reactive,
G1 reactive and G2 deliberative, G1 deliberative and
G2 reactive, and G1 and G2 both deliberative. How
each of these cases is treated is described below.

1. Because the deliberative element performs full pro-
jection, two deliberative goals cannot interfere, thus
the failure case of both G1 and G2 dellberative can-
n6t occur.

2. If G1 is a reactive goal, and G2 deliberative, the MD
approach will move G1 to the deliberative goal set
and the classical planner will ensure that the negative
goal interaction between G1 and G2 will be avoided.

3. If GI is deliberative and G2 reactive, then due to
the blame assignment scheme G2 will be moved into

the deliberative component. In the next cycle both
G1 and G2 will be delegated to the deliberative com-
ponent and the interaction will be considered and
avoided.

If G1 is a reactive goal and it has been thwarted
by another reactive goal G2, the blame assignment
scheme will move G1 to the deliberative component.
If in the next cycle G2 still interferes, it is an example
of case 3 above and will be treated accordingly.

Thus the process of moving more goals to the deliber-
ative component continues until the system converges
upon a set of deliberative goals for which the planner
and scheduler constructs a plan and schedule which in
combination with the reactive element achieves all of
the problem goals.

This classical plan is then generalised using EBL,

h_

l- 119

with the reactive goals being generalised to a de-
fault level. This resultant plan structure (and reac-
tive/deliberative division) can then be used to solve
future problems as follows. When problems are ini-
tla]]y posed to MD, it l_egins by attempting to match

the goals and initial conditions to an existing decision
molecule. If a matching decision molecule exists, it is
used in an attempt to solve the plan. If all such match-
ing molecules fail, the system attacks the problem en-
tirely reactively and the entire MD approach is called
from scratch.

EVALUATION

The MD approach has been implemented for a simple

delivery planning domain [Chiengl]. We have extended
the failure analysis algorithm and are currently imp]e-
menting this newer version of MD for a more complex
mathematical planning and scheduling domain. This
ongoing implementation is the one described in this pa-
per. In this mathematical domain, each goal can be
achieved by the execution of a number of actions. Ea_
action has a randomised number of resource require-
ments, and possibly state requirement preconditions for
each of the resources (e.g., a value for a predicate on
the resource). Planning goal conflicts occur through in-

compatible resource state requirements. Scheduling re-
source contention occurs through goals competing for
resources. Uncertainty exists through a random e]e-
ment in duration of primitives (and thus resource us-
age).

We plan to test our architecture by generating do-
main theories which vary a number of parameters which
will affect the overall scheduling and planning goal in-
teraction rate. The domain parameters are: I) the
of resource types (affects resource and conflict rate); 2)
average number of resources _ action uses (aiTects

resource conflict rate); 3) frequency and types of re-
source conditions (affects planning conflict rate); and
4) # of preconditions per primitive (affects planning
conflict rate). Finally, we plan to vary the amount of
action duration uncertainty, which affects the amount
of benefit gained by deferring declslon-maklng.

In order to compare with the MD approach, we are
currently implementing a fully deliberative planner and

scheduler. This comparison classical system simply del-
egates all of the goals to the deliberative component.

The metrics which we plan to use t-o evaluate the
plans produced by the two systems are: I) total CPU
time required for decision-maklng; 2) robustness of the
schedule (% of goals achieved by deadlines); 3) average
time to completion of individual goals; and 4) average
time to completion of all goals. These metrics will be
evaluated for different combinations of the domain pa-
rameters described above.

DISCUSSION

This research is preliminary, and there are a number

of outstanding research issues. One dii_cult issue is
determining the correct level of generali_ation for the

re_tive portion of any plan/schedule. Because reac-

tive actions are undetermined, analysing generality, of
the goal achievement methods is difficult. While com-
mitting the ply__ner to the same general set of actio_
used by the reactive component in the current problem
would allow EBL on the action trace, it commits the
planner to the same general set of actions - losing the
flexibility allowed by reactivity and forcing a possibly
expensive causal analysis of the example. Yet another

approach would be to generalise the reactive portion ag-
gressively and allow later learning to either reduce the
level of generality or learn more specific plans which
would shadow the over-general plan in cases where it
was inappropriate.

One view of the MD approa_ is that of using delib-
eration to learn patches to a set of reactive rules. In

this view our techniques allow for encoding of a quick
and dirty set ofreactive rules which solve the majority
of problems. Through learning, a set of patchei can
then be constructed to allow these imperfect rules {6
solve a given distribution of problems.

Another interesting issue for examination is the
tradeoff between reactivity and deliberation in th_

purely reactive component. Currently, the reactive
component does no projection before interrupting the
current plan and the deliberative element performs full
projection. While _ciealiy both approaches components
would be less extreme, the same general mechanisms

for integrating deliberation and reactivity would apply.
Another possible approach to integrating c]ell]_er_-

tlon and reactivity is to use the same failure-drlven
method for splitting goals between the reactive and
deliberative component to]earn control rules specify-
ing allocation of goals to the deliberative and rea_
tlve components. While we feel that the current MD
macro-based approach better preserves the notion of a
plan/schedule context in that the deliberative actions
selected may impac_ the success of the reactive com-

ponent, this is a larger issue involving the operational-

ity/generality tradeoff.
Another issue is that of controlling moving interact-

ing goals into the deliberative component. Managing

the tradeoff between more expensive (and likely more
accurate) failure analyses and more heuristic (and likely
less accurate) goal analyses is an issue for future work.

RELATED WORK

Drummond and Kaelbling [Drummond90, Kaelbling86]

describe anytime approaches wherein planning is used
to constrain the reactions, which are always available
for deciding on actions. [Turney89] interleaves plan-
nlng and execution by allocat|ng some pre_eterml_n_ed

amount of time to each phase in turn, while [Hanksg0]
uses the constraints of urgency and insui_cient informs-
tion to determine when to pass control to the reactlve _:

component. In these approaches, any goal may thus
be addressed reactively or deliberatively. In contrast,
a system in the MD approach initially addresses all its
goals reactively but incrementally]earns which goals

m

m

m

I

m

l

u

m

W

V

B
ss

g

i

l

J

U

mm

|
m

120

,j
l

r

T

k_

%=

W

B

require deliberation to avoid negative interactions and

which goals can be addressed reactively without pre-

venting the achievement of other goals. Thus, the MD

approach can guaran{ee the achievement of its goals,

which the others in genera] cannot.

Guaranteed goal achievement is similar to ideas pre-

sented in [Gervasio90, Martln90]. In [Gervasio90], the a

priori (deliberative) planner must construct an achiev-

ability proof for each deferred goal, while in [Martin90],
the strategic (deliberative) planner assigns the reac-

tive planner those goals which the reactive planner has

proven itself capable of handling. In contrast, in the

MD approach, each goal is considered achievable during
execution until experience shows otherwise. The MD

need _not prove achiev_bility but instead incurs failures

to determine which goals must be deliberated upon.

In [Mitchell90, Lalrd90] systems become increas-
ingly reactive by compiling deliberative decisions into

stimulus-response rules/chunks. As the decision

molecules learned by MD are compiled schemata, MD
becomes increasingly reactive in the same sense. How-

ever, it becomes decreasingly reactive in the sense that

it initially addresses all goals reactively, but gradually

learns to address particular goals deliberatively. In

contrast, since Theo-Agent and SOAR derive all their

rules/chunks from deliberative plans, they always ad-

dress their goals purely defiberatively.
TRUCKER [Hammond88] learns to optimise its

planning from successful opportunistic problem-

solving. While in the MD approach, a system learns

which goals interact negatively and modifies its plan-
ning behavior to deliberate over these goals and avoid

the interaction, TRUCKER learns which goals interact
positively and modifies its planning behavior to take

advantage of this interaction. Other work on learn-

ing from failure deals with purely deliberative plans, in

contrast to the composite plans in the MD approach.

CONCLUSION

This paper has presented an approach to integrating

reactivity and deliberation in planning and scheduling

in uncertain domains. In this approach, called Min-

imum Deliberation (MD), the problem-solver initially

attempts to solve all goals reactively. When the sys-

tem encounters failures it responds by moving reactive

goals into the deliberative component. By performing

this refinement, the system extends its analysis of the

problem minimally until the reactive component can

solve the remainder of the goals. Resultant successful

plans are then generalised using a combination of EBL

and default generalization information. By introducing

deliberation minimally, the MD approach retains some

of the benefits of reduced computation and flexibility

from reactivity while still being able to fall back upon
deliberation to solve complex interactions.

Acknowledgements Portions of this research_were

performed by the fret Propulsion Laboratory, Califor-

nia Institute of Technology, under a contract with the

National Aeronautics and Space Administration. Other

portions of this work were performed at the Becl_man

Institute of the University of Illinois and were sup-
ported by the Office of Naval Research under Grants
N-00014-SS-K-0309 and N-00014-91-J-1563.

References
P. E. Agre, UThe Dynsmlc Structure of Everyday Life,"

Ph.D. Thesis, Department of Electrical Engineering ud

Computer Science, MIT, Cambridge, MA, Oct 1988.

D. Chapmu, 'rPluning for Conjunctive Goals = , Artificial

Intelligence 3£, 3 (1987).

S. A. Ckien, M. T. Gervuio, tad G. F. DeJong, "On
Becoming Decreasingly Reactive: Learning to Deliberate
Minlmal]y," Proceedings of the Eighth International Work.

shop on Machine Learning, Evanston, IL, Jun 1091.

G. F. DeJong ud R. J. Mooney, "Explanation-Based
Learning: An Alternative View, u _[lachine Learning I, 2
(Apt 198S).

M. Drummond ud J. Bresina, "Anytime Synthetic Pro-

jection: Maximising the Probabnity of Goal Satisfaction, u

Proceedings of the Eighth]_ational Conference on Artificial

Intelligence, Boston, MA, Aug 1990.

M. T. Gervnsio, reLearning General Completab]e Reactive

Plus, s Proceedings of the Eighth]¢a_onal Conference on

Artificial Intelligence, Boston, MA, Aug 1990.

K. Hammond, T. Converse ud M. Marks, nLearning from
Opportunities: Storing and B_-uaing Execution-Time Op-
timisutionm," Proceedinga of the Seventh National Con/er.

ence on Artificial Intelligence, St. Paul, MN, Aug 10SS.

K. Hammond, T. Converse ud C. Martin, nlntegrsting
Planning and Acting in • Cue-Bued Framework, = Pro-

ceeding, of the Eighth National Conference on Artificial

Intelligence, Boston, MA, Aug 1990.

S. Hanks and R. 3. Pirby, mIuues ud Architectures for

Planning and Execution, _ Proceedings of the Workshop on

Innovative Approaches to Planning, Scheduling and Con-
fro/, Su Diego, CA, Nov 1990.

L. P. Kaelbling, man Architecture for Intelligent Reactive

Systems, m Proceedinga of the 1986 Workshop on Reasoning
About Actio_ _ Plans, Timberline, OR, Jun 1986.

J. Laird and P. Rosenbloom, "Integrating Execution, Plan-
ning, ud Learning for External Environments," Proceed-

ings of the Eighth National Conference on Artificial Intel-
ligence, Boston, MA, Aug 1990.

N. G. Martin and J. F. Allen, "Combining Reactive ud

Strategic Planning through Decomposition Abstraction, m

ProceedingJ of the Workshop on Innovative Approaches to

Planning, Scheduling and Contro_ Su Diego, CA, Nov
1990.

T. M. Mitchell, R. Keller ud S. Kedar-Cnbelli,
_Explanutlon-Bued Genera_ation: A Unifying View, _

Machine Learning 1, 1 (Ju 1986).

T. M. Mitchell, "Becoming Increuingly Reactive," Pro-

ceedings of the Eighth National Conference on Artificial

Intelligence, Boston, MA, Aug 1990.

L. A. Suchmu, Plus and Situated Actions, Cambridge
University Press, Cambridge, 1987.

J. 'Parney ud A. Segre, "SEPIA: An Experiment in In-
tegr•ted Planning ud Improvis•tion," Proceeding_ of The

AAAI Spring Sionposiurn on Planning and Search, Mar
1989.

q! 121

-18a85
Completable Scheduling: An Integrated Approach to Planning and Scheduling

Melinda T. Gervasio and Gerald F. DeJong

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

405 N. Mathews Ave., Urbana, IL 61801

gervasio_.uiuc.edu dejong@cs.uiuc.edu

S

7
Abstract

The planning problem has lraditionally been treatkt separately
from the scheduling problem. However, as mare realistic do-
mains are tackled, it becomes evident that the problem of de-
ciding on an ordered set of tasks to achieve a set of goals cannot
be treated independently of the problem of actually allocating
resourees to the tasks. Doing so would result in losing the ro-
bustness and flexibility needed to dealwith imperfectly mod-
eled domains.Completableschedulingisanapproachwhich

integratesthetwo problemsbyallowingana prioriplanning
module to deferparticularplanningdecisions,and conse-
quentlytheassociatedschedulingdecisions,untilexecution
time.Thisallowsa completableschedulingsystemtomaxi-
mize planflexibilityby allowingruntimeinformationtobe

takenintoconsiderationwhen makingplanningandschedul-
ingdecisions.Furthermore,tkroughthecriterionofachievab-

ilityplacedon deferreddecisions,acompletablescheduling
systemisabletoretainmuch ofthegoal-directednessand
guaranteesofachievementaffordedbyaprioriplanning.The

completableschedulingapproachisfurtherenhancedby the
useofcontingentexplanation--basedlearning,whichenables
acompletableschedulingsystemtolearngeneralcompletable

plansfromexampleandimproveitsperformancethroughex-
perience.Initial experimental results show that completable
schedulingoutperformsclassicalschedulingaswell as pure
reactiveschedulinginasimpleschedulingdomain.

Introduction

The planningproblemhastraditionallybccntreatedseparate-

lyfrom theschedulingproblem. Planningdealswith thede-

termination of an ordered set of actions for achieving a set of

goals. In the context of scheduling domains, planning deals
with determining an ordered set of tasks fora set of jobs. In

conwast, scheduling deals with the actual assignment of tasks

to machines and is generally concerned morewith finding the
best of sev_ altemativ_task-machine assignments than

with f'mding a particular task-machine assignment. As mote
realistic scheduling domains have been addressed, however,

it has become apparent that planning and scheduling cannot

be treated independently. The comific_dty _ _-wodd do-
mains makes perfect characterizations difficult to construct

and often unwieldy. To this end, researchers in both planning

and scheduling have investigated reactive approaches which
allow for decision--making during execution [Agre87, Fir-

by87, Kaelbling88, Muscettola90, Ow88, Prosser89].
However, the classical approach of first doing planning and

then scheduling s_ remains a problem. Consider giving a

classical system in a process planning domain the job of man-

ufacturing a particular part. Its planner must decide a priori
ca an ordered set cf actions or operations which will result in

the conversion of the raw material into the desired product.

Its scheduler is then given the responsibility of actually allo-
eatingresources and carryingout the operations ca the ma-

chines. However, because the planner commits the system to
a particular set of operations, the scheduler may not execute

the best plan. For example, the planner may not be able to
guarantee that the efficient new milling machine will be avail-

able and sochoose the older, slower one. However, during ex-
ecution, the more efficient machine may turn out to be avail-

able, but the scheduler does not have the option to alter the

plan. Furthermore, an over-constrained classical plan may
prevent quick fixes to unpredictable runtime situations, For

example, a chosen drill bit may turn out tobe unavailable, thus
rendering invalid those subsequent actions involving a corre-
Spondingly S'_clbol(ahd _rchc_. Kshnpie _ Wouiffbc fO

use a differentdrillbit,and switchtotheappropriatelysized

boltand wrench, but a schedulerwitha completely-deter-

mined plandoes nothave thiscapability.

A purelyreactiveapproach,withno aprioriplanning,has

itsown problems. Most manufacturingdomains are fairly

well-behaved;thereismuch informau'.onavailablea priori

and fairlyaccuratepredictionscan bcmade aboutthebehav-

iorof the world under particularcircumstances.A purely

reactive approach which performs no projection cannot take

advantage of this information to constrain its actions and pre-

vent thrashing. With the planning problem and the scheduling

problem combined, the runtime decision-making problem
also becomes a larger and more complex one.

This research began as an attempt to address the problems

withclassical,aprioriplanningand purereactivity.Inpartic-

ular,completableplanningwas developed as an approach

which combined thegoal_edness and provablycorrect

pln of Classical planning with the flexibility and ability to

utilize runtime information afforded by reactive planning.

This enabled a completable planner to more efficiently deal
with the problems arising from imperfect a priori information

whiie stili ret_g the benefits ofplanningbeforehand in rel-

atively well-behaved environments. More recently, we have
been investigating scheduling, and we have found that many

of the techniques originally developed as part of the complet-
able approach to planning are also useful for solving some of

the problems which arise from scheduling in realistic do-
mains where perfect a priori information about _e environ=

merit is unavailablk For example, in the scheduling scenario

above, a completable scheduling system could defer the deci-

122

z

I

W

N

m

g

i

i

m

m

D

-:z

m

m

I

B

i

m

m
mm

[]

m

alon _ which milling machine to use as well as the choice of
bit, bolt, and wrench sizes. During execution, it can then use
additional information regarding resour, e availability to ad-
dress the deferredplannin." g decisions and make the asscx:iated

.=_ schedu_lingdecisions as well.
......:- :Inthis paper, we presentan integratedapproach toplanning

and scheduling called ccmpletable scheduling. We will In-st
give an overview of the maln ideas behind ccmpletable plan-

-: ning, and then discuss the extension to scheduling. We will
..... then discuss h_owcc_np]etable schedules are learned through

an explanation-based learning strategy called contingent
EBL. Finally, we will briefly discuss the implementation, in-

_ eluding some preliminary results and ongoing experiments.

COMPLETABLE SCHEDULING

Overview of Completable Planning

.... _ cotnpletable planning [Ocrvasio9Oa, Gervasiog0b, Gerva-

...... si_l]_a c!assi_ planner is augmented with a reactive com-
ponent which provides it with the ability to defer planning de-
cisions until execution time. As an augmented classical
planning approach, Complctable planning retains the advan-
tages of classical planning while buying into the advantages
provided by reactivity. From classical planning, completable
planning borrows the ability to construct provably-correct

° plans for providing goal-directed behavior. From reactive
planning, it borrows planning flexibility andthe ability to uti-
lize nmtime inform aft_ca__ making planning decisions. Com-

__:-p_taSlepl_g achieves the integration through the achiev-
ability criterion, which requires every deferred goal to be
proven achievable. Proving achicvability requires proving
thatthe_e_ aplanwhichwillaclfievcthegoal.Ourre-

....__earchYnassh_ thatproving_existenceofaplandoesnot
_n_cess_Lrilyentaildeterminingtheplanitself,andtheintuition

isthatprovingachicvabflityrequiresmuch simplerandmore

readilyavailablea prioriknowledgethanfull-blownplan-
_ning.A completableplanneristhusabletocomtractpro-

vably--corrcctplansinspiteofincanplcteaprioriinforma-

tion,and in doing so provide goal_ctedness to its _ctive
componentwhile allowing itself to defer decisions and utilize
nmtimeinformationinaddressingdeferredgoals.

: Deferring Decisions

The deferment of scheduling decisions is a powerful tool in
dealingwithimperfectaprioriinformation.Thecomplexity
ofreal-worlddomainsmakesitdifficulttoconstructperfect

models.Evenwhenperfectmodelsexist,theirnscoftenex-
ceeds_c_bie c:<_nl)t_t_bounds.A realisticschedul-

_ ingsystemisthuslefttocontendw)thimperfectknowledge.
Th_i'e_fdt_rt_)csC_]n_pl_cness whichcanresultfrom

usingclassicalplanningtechniquesonimperfectinformation.

First,aschedulemay bcincompleteduetoanunspecifmblc
parametersetting.Withthelackofaf'mc--grainedandtracta-

..... ble W-_id_eJ, a schc-d_g-'s-y_ may na be able to de-
termine precise parameter settings a priori. For example, the
parameters of an operation may be dependent on the proper-
ties of a particular object, which may not be known prior to

execution.Inattachingtwopartsusingabolt,allthatasystem

may know isthatitwillbegivenaboltofsomesize,butitmay
notknow preciselywhatsize.However,providedithasac-

cesstodiffcrently-sizexlbitsandwrenches,itcanplanadrill-
ingoperationfollowedby aboltingoperationwithoutspeci-

fyingtheprecisebitandwrenchtouse.Duringexecution,

whenitisgiventhebolt,itcanthendeterminetheappropriate
valuesforbitsizeandwrenchsize.Complctablcscheduling

allowstlmuseofconjecturedvariablestoactasplace,holders
forunspecifiedparametersettingsprovidedachievability

proofscanbeconstructedfortheireventualinstantiation.By
allowingdeferredparametersettings,complctableschedul-

ingenablesasystemtobothplanaheadandyetremainflex-
ibleenonghtodealwithsomeuncertainty.

Second,aschedulemay beincompleteduetoanundeter-

minablenumberofiterations.An imperfectworldmodelmay
includeincompletecharacterizationsofoperationsandtheir

effects. Cc_sequently, for an action thatrequiresrepetition to
achieve some goal, the precisenumberof iterations needed
may notbedeterminablepriortoexecution.Forexample,the

depthtowhichamillingoperationcutsthroughapartisde-
pendentonthefacecutterused.Priortoexecution,asystem

may notknow whichfacecurerwill be set uponthemachine.
However,itknowsthatregardlessofwhichfacecutterisused,

thedesiredcut can be achieved bysimplyrepeating themill-
ing operationasmany timesasnecessary.By nottyingitself

toaparticularfacecutterandconsequentlyaparticularnum-
bexofiterations,duringexecutionthesystemcanchooseto

usethecurrentset-upandsavethecostofchangingset-ups,

oritcanelecttochangetoamac efficientset-up.Complct-
ableschedulingpermitsthedefermentofiterationdecisions

providedincrementalprogresswhichccavergcstothegoal
canbeproven.Throughthisdcfcnnent,acomplctablcsystem

canuseimperfectoperationdescriptionsaswellasmake opti-
mizationstoaschedulebasedonruntimcinformation.

Third,aschedulemay bcincompleteduetoanunidcntifi-

ableoperationchoiceortask-machineassignmem.Thiscase
ariseswhen therearemultiplewaysofachievingthcsame
goalfromdifferentstatesandthesystemlacksthenecessary
aprioriinformationforidentifyingwhichparticularstatewill
bereached.Thiscasealsoariseswhentherearemultipleways

ofachievingagoal,withdiffercmsituationsresultingindif-
ferentpreferencesamong thevariousalternatives,and the

systemdoesnotknow aprioriwhichsituationwillbcreached.

Forexample,inplanningtoshapeanobject,asystemmight
usesomeor all ofvariouscuttingoperaticms,suchasmilling,
planing, sawing, or grading. Whether there are several possi-
ble states requiring diffcav,nt operations ormultiple applicable
cgerations with unknown preferences, a system can use addi-
tional runtime information to make a more-informed opera-
tion choice. Completable scheduling allows a systemtodefer
operation choice provided it can prove that there exists a way
to reach the next state regardless of which of the possible
_ates is reached. This deferment is useful for two reasons.

First, it enables a system to use the same schedule to achieve
a goal from any of several different states. Second, it allows
a system to apply preferences to a set of possible operations

_g mac complete and accurate runtime infcxmation.

123

Fourth, a schedule may be incomplete due to an unorder-
able se_of_ons. Imperfect a priori information may re-
sult in insufficient cons'tmin_ for completely ordering a set of
operations. Fa"trample, in the construction of two parts, the
only precedence constraints may be between the milling,
drilling, and tapping operations for each part--i.e, th_ opera-
tions for the different pans can be ordered in any way. De-
pending upon a pried known factors such as the pans in-
valved and the difficulty of changing set-ups as well as a
priori unknown factors such as the initial set-up and machine
availability, particular ¢xflerlngs will be mac desirable than
others. By deferring the decision until all the factors are
known, a system can utilize runtime information to make de-
cisions for more optimal ordertngs. Ccmpletable scheduling
permits the deferment of ordering decisic_ provided the dif-
few.nt orderings areall capable of achieving the goal. In doing
so, a completable planner can utilize runtime infcxmation in
making more-informed ordering decisions for an uncon-
strained set of acticm.

Proving Achievability

While imperfect apriori information is the primaryreason for
deferring decisions, achievability is the primary criterion for
deferment in completable scheduling, By requiring thata de,f-
erwxl goal be proven achievable, complctable scheduling en-
ables the construction of incomplete yet provably-correct
plans. Previous work on achievability involved finding
prods for the existence of plans to achieve deferred goals.
Achievability proofs for deferred parameter settings and
number of iterations arc discussed in [Gcrvasio90a, Gcrva-

sio90b], and for deferred operator choice in [Gervasio91]. In
[Gervasio91], completable planning was also emended to
probabilistic domains by relaxing the original criterion of ab-
solute achievability to probable achievability.

Scheduling domains give rise to further new issues in ach-
ievability. In planning, the main focus is irmding a plan, or se-
quence of actions, which achieves the goal from a given initial
stale. In scheduling, the existence of several poss_le sched-
ules is taken as a given, and the focus is choosing c_c from
among them using some set of prcfexcnce criteria, maximiz-
ing particularperformancemeasures. Examples c_ perform-
ance goals are meeting deadlines and minimizing idle time.
Thus, simply defining a goal to be achievable if there exists
a plan for it is insufficient for scheduling. Achievability must
also be related to the idea of (13timization and relative prefer-
ences between ix3ssible ccurs_ of acti_L Forexample, prov-
ing the achievability of the goal associated with an uncrdered
set of actions is implicit in the construction of a ncalincar
plan--i.e,actionsarcleftunordcredifthcrearenoconstraints

requiringprecedencerelationsbetweenthem.Thusthereex-
istsaplanforachievingthegoal.However,thereistheinter-
cstingissueofdecidingonacompleteorderingduringcxecu-

tim. This involves seeking out additional information for
evaluating the different cpti(ms as well as carrying out the op-
erations themselves. In tying the concept of achievability to

c_timization, we can also better investigate a primarymc_iva-
tim for combining classical and reactive techniques: the abil-
ity to utilize nmtime information inplanning. Goal--directS,

124

robust behavior in the face cf uncertainty is one reason for
augmenting a classical planner with reactive abilities. How-
ever, another reason tointegratethe two approaches, is totake
advantage of the wealth of information which becomes avail-
able at runtime. This additional information facilitates plan-
ning byhelpingto focusthesearchfor anappropriateaction.

LEARNING COMPLETABLE SCHEDULES

Explanafion--ba,w_ learning [DeJoag86, Mitchell86] has
been de,m_ to be useful in improving the performance
ofvariousplanningsystems [Bennett90,Chien89,Fikes72,
Hammond86, Minton85], and in [Gefvasio90a, Gervasio91]

we presentan explanation-basedlearningstrategycalled
contingentEBL forlearningcomplctableplans.Learning

completableschedules basicallyinvolves learning to distin-
guish between a priori planning decisions and decisions
whichhaveto be made orarebettermade duringexecutiou.

Learningwhen todeferdecisionsinvolvesfirstidentifying
the defen'ed decision, then _cting an achievability
prooffortheassociateddefen_l goal.Thena canpletor for
makingtheddcrreddecisionduringexecutionmustbeincor-

poratedintothelearnedgeneralplan.

Identifying Deferred Decisions

A main difference between classical plans and complctable
plansistheexistenceofdeferred decisions in complctable
plans. In constructing an explanation for how agiven training
exampleachievesatargetgoal,anEBL systemmust explain
how each aaica is chosm for execution. In planning, this

usually means verifying that previous actions achieve the pr¢-
cc_ditiom necessm'y for the execution of an action. However,
withtheadditionofreactiveabilitiesandtheoptionto utilize
runtimeinformation,asystemneedstodistinguishbetween

apriorisatisfiedpreconditionsandruntimc-vcfificdprecon-
ditions.Our sdutionistoallowthesystemtodistinguishbe-

tweenaprioriinformationandruntime--gathcrcdhifonnation
andtopreferaclassicalprod ofcorrcctncsstoanexplanation

ofachievability.Thus,inexplaininghow anactionischosen

forexecution,asystemfu,_'tattemptstoexplainits_ex.ondi-
).ionswithaprioriavailabicinfa'mation.Ifthisisunsucces-

sful,thentheactionbeingexplainedistaggedasapotential
deferreddecision,andthesystemattemptstoconstructan

achicvabilityexplanationfortheprecondition.Onlyifitis
successfulisthelearningprocessallowedtocontinue.Thefi-

nalexplanationwillthuscontaintheidentifieddcfcn'eddeci-

sionsaswellastheirsupportingachlevabilityexplmations.
Tyingtheconccptdachievab_y to__on addsfur-

therconcerns.An explanationofexccutabilityisno longer

en_ough. Explanations for preferences may also n_ to be
constructed, and as with aher deferred decisions, the asso-
ciated runtime verified conditions need to be distinguished
froma priori satisfiedconditions.As with proofs ofccxrcct-
ncssandexplanationscfachicvability,explanationsofprcfer-
e.ncesmay alsobeconstructedinstandardEBL fashion.

Constructing Achievability Proofs

To construct provably--cot_ct plans, a completable planner
must construct achievability proofs for the deferred goals of

m_

l

u

m

ml

L

m

i

J

m

m

q;

m
D

i

mm
Ilm

Wl

m

im

J

i

i

m_
U

ft...

H

=,__=

r_

ir-=-.1

.i

m

L_W

=--

w

m

=_
m

_m

m

itsincompleteplans.Whilethemechanicsofconstructing
proofsof_ess vs.proofsofachievabilityareessential-
lythesamo--IxxhusestandardEBL onagivendomaintheo-

ry----thereare some requirements needed for a donmin theory
: to_u_ inprovingachievability.

Therearefour types of deferred decisions and eachrequires
particularkindsof informationforprovingachicvability.

_First,deferredparametersettingsmustbe represented,and
:_ isdoneusingconjecturedvariables.Thesevariablesmay

.... only beintroducedinthecontext of the rulesusedtocoistruct
theircorrespondingachievabilityexplanations,thusguaran-

.teeingthateveryconjecturedvariableinanexplanationhas
asupportingachievabilityproof.Second,asystemmustbe

abletoreasonabouttheincrementalprogressachievedby a
. repeatedaction. This requiresactioncharacterizationsto in-
cludestatementsregardingthechangesmade withrespectto
sone measurablequantity.Thiscanthenbeusedtoreason

aboutprogresstowardsthegoal.Third,theincompletely

known situationrequiringadeferredoperatorchoicemustbe
representedinsuchaway thatthesystemcanreasonaboutthe

spaceofpossibilities.Achievabilitycanthenbemeasuredin
termsofthecoverageprovidedbythealternativeactionsover

space.Finally,provingachicvabilityWithrespecttoan

unordcredsetofoperationsisimplicitintheabsenceofprece-
denceconstraintsbetweentheoperations,whichmeansthat

anyofthepossibletotalorderingswillachievethegoal.
The secondaspectof achievability,optimality,alsoim-

posescertainrequirementsonthedomaintheoryusedtocon-

structexplanations.Theheuristicstobeusedinmakingdis-
patchingor schedulingdecisionsmust be builtin tothe
domain theory.Theseheuristicscanthenbc usedbothfor

constructingaprioriexplanationsandmakingruntimedeci-

sions.Inexplainingparticulardecisionsmade inatraining
example,asystemcanthencoastl-aCtexplanationsincorpo-

ratingtheheuristicsand learngeneralcomplctablcplans
whichwillemploytheheuristicsinfutureapplications.

IncorporatingCompletors

The finalstepinl_g h0w toconstructa complctablc
scheduleistoincorporatecompletionstepsintothelearned

general plan. There are four types cf complctors correspond-
ing to the four different types of deferred decision. The In-st,
amonitor, finds avalue toreplace aconjectured variable---i.e.
it'determines a specific parameter setting. The second, a re-
peat loop, repeatedly executes an action until a particular exit
condition, the deferred goal, is reached. The third, acondi-
flonal, evaluates the current state and determines an appropri-
ate action based on which conditions are satisfied. Finally, the
four&, a dispatcher, determines a complete ordering for an
unordered set of operations, based on agiven set of henristics.
The achievability proofs constructed for the defen-ed deci-
sions addressed by these completors are incorporated into the
cxpl_ons supporting the learned pian. ThUSthe achievab-

ility conditions guaranteeing the existence of a completion
are also in the learned plan. Provided these conditions, along
with other preconditions, are satisfied in future instances, a
completion is guaranteed to be found for the incomplete plan
yielded by the learned general plan.

125

IMPLEMENTATION

A simple scheduling domain theory has been constructed to
comparetheperformanceofacompletableschedulingsystem
withthatofapurelyclassicalschedulingsystemaswellasa

purely reactive scheduling system. The domain involves a
single machine which can bc set up in various ways, each set-
up of which is capable of pexforming some set of tasks. The
same task may take different processing times on differem
set-ups. Furthermore, there is a set-up cost involved in
changing set-ups. A job consists of apartially ordered set of
tasks, and a scheduling problem involves a set of independem
jobs. Initially, the only ordering constraints between tasks are
based on deadlines. However, additional precedence con-
straintsmay beimposedbetween the tasksofajobiftheapri-
ori planningmoduleofthesystemdeterminesthatonetaskis
neededtoestablishthepreconditionsforanothertask.Uncer-

taintyentersintothepicturethroughanunknown initialsta-

te--i.e,thesystemdoesnotknow aprioriwhichset-upwill

beonthemachinewhenitstartsexecutingitsplan.Finally,
thegoodnessofascheduleismeasuredbythelengthoftime
takenbythesystemtofinishasetofjobs.

Preliminaryresultsshowthatacomplctablcsystem'sabil-
itytoadapttovaryinginitialstatesenablesittoconstructmore

efficientplans/schedulesthanaclassicalscheduling,which
commitsitselftospecificset-upsandcompletetaskordcrings

priorto execution.Furthermore,thecompletablcsystem
needslesstimebothtolearnageneralcompletablcschedule

aswellasconstructaspecificcomplctablcschedule,although

it does incur the additional cost of runtime plan completion.
The completable system is also able to construct more effi-
.cient plans than a reactive system because it is mac focused
inits searchforan applicableaction,havingdeterminedas
many precedenceconstraintsbetweentasksasitcanpriorto

execution. Although both use the same heuristics for choos-
ing between multiple applicable actions, the reactive system
has the a_d_ditionalburden of sorting out precedence relations
betweefi_stiuring execution. Furthermore, although the
completable system initially needs to construct a complctable
schedule, the use of learning helps reduce the a priori planning
cost it incurs over the reactive scheduler. We are currently
running experiments to gather more data about the perform-
ance of the three approaches given different distributions and
different machine/set-up/task-processing profiles. The re-

sults arc expected tohelp identify particular domain and prob-
lem characteristics which favor the different approaches.

SUMMARY AND CONCLUSIONS

This work integrates planning---the determination of an or-
dered set of tasks--and scheduling---the as signmem of those
tasks toresouree---qhrough completable plato. Because com-
pletable plans are incomplete, additional planning is neces-
saryduring execution,when scheduling has begun todispatch
thetasks. Thus,thisworkdiffersfrom reactiveapproaches,
such as those discussed in [Ow88, Prosser89, Smith90, Zwe-
ben90], where planning is separated from scheduling, and the
main approach to uncertainty in the environment is to replan
when the constraints of the original plan are violated. While
replarming is a valuable toot which any real system will even-

tually need, our work fn, st focuses on _cting plans

which are as flexible as possible to minimize the need for fail-

ure recovery. Intl_ sense, iris similar to ideas presented in
['Drummond90,_]. DrummondandBresinapresent
an algorithm for maximizing the probability of goal satisfac-
tion in the case of actions with different possible cetccmes,

which is one _tha problems the conditionals in completable
scheduling address. Martin and Allen also prove the achier-

ability of goals deferred to the reactive planner, but they do so

using empirical methods, in contrast tothe explanation--based
methods we use. Ccmpletable scheduling may also be viewed
as a shallow hierarchical planner, where nmtime decisions are

at the lowest level. However, unlike other hierarchical plan-
net's and schedulers, such as ABSTRIPS [Sacerdoti74],

MOLGEN [Stet_81], and ISIS [Fox84], a completable

scheduling system uses the achievability constraint to guaran-
tee completability at lower levels. The ordered monotonic

hierarchies of ALPINE [Kuoblockg0] are a similar idea. The

difference is that ALPINE peff_ms abstraction based on the

deletion of literals, while in proving achievability complet-

able scheduling uses explicitLy_,more general or abstract
knowledge regarding the ddetred goals and their properties.

The idea of deferred decisions is not anovel one---the least

commitment principle is a basic foundation of nonlinear plan-
ning, for example. What ccmplctable scheduling does is ex-
tend the least commitment principle to execution time and in

doing so, achieving a well-fotmded integration of planning
and scheduling. Unlike other reactive approaches, in which

all decisions are subject to deferment, in ccmplctable sched-

uling only achievable decisions may be deferred. This has
two main bcnef'_. The fh'st is that the cost of dynamic deci-

sion--making is minimized, since only some goals must be
planned for and scheduled during execution. The second is

that the robustness and flexibility afforded by reactivity is

gained withont losing the goal-directedness and guarantees
of success afforded by aprioriplanning. Additionally, the use

of contingent EBL enables a completable scheduling system
to improve its performance through experience. By learning
general complemble schedules from example, the system can

amortize the cost of constructing a completable schedule over

the number of times the learned general schedule is applied
in future instances as well as reduce the planning cost incurred

by the system's a priori planning module.

Acknowledgments. This research was supported by the Of.
rice of Naval Research under grants N-00014-86-K--0309
and N-00014-91-J-1563. We would also like to thank Scott

Bennett, Steve Chicn, Jon Gmtch, and Dan Oblingerfor many
interesting discussions, as well as Michael Shaw, for intro-

ducing us tothe domain of process planning and scheduling.

References

[Agre87] P. Agre and D. C_apman, "Pengi: An Implementation of
a Theory of Activity," Proceedings of the National Conference on
Artificial Intelligence, Seattle, WA, July 1987, pp. 268-272.
['Bennett90] S. Bennett, "Reducing Real-world Failures of Ap-
proximate Explanation-based Rules," Proceedings of the Seventh
International Conference on Machine Learning, Austin, TX, 1990,
pp. 226-234.
[Chien89] S. A_ Chlen, "Using and Refining Simplifications:
Explanation-based Learning of Plans in Intractable Domains, _Pro-

126

c_edingsofTheEleventhInte_l JointConferenceonArtifi-

cialIntelligence, Detroit, ML August 1989, .t_,,.590-595.
[DeJong86] G. E DeJongand R. J.Mooney, 'ExpIanatkm-Based
Learning: An Ahemative View," Machine Learning I, 2 (April
1986), pp. 145-176. (Also appears as Technical Report UILU-
ENG-86-2208, AI Research Group, Coordinated Science Labora-
tory, University of illinois at Urbana--_ampai_gn.)
[Dmtnmond90] l_ Dnnnmond and J. Bresma, "Anytime Syn-
thetic Projection: Maximizingthe Probability of Goal Satisfaction,"
Proceedings of the Eighth National Conference on Artificial Intelli.
gence, Boston, MA, August 1990, pp. 138-144.
[Fikes72] R. E. Fff.es, P. E Hart andN. J. N'dsson, "Learning and Ex-
ecuting Generalized Robot Plans," Artificial Intelligence 3, 4
(1972), pp. 251-288.
[Firby87] R. J. F'n'by,"An Investigation into Reactive Planning in
Complex Dom,_ms,"Proceedings of the National Conference onAr-
tificiallnteUigence, Seattle, WA, July 1987, pp. 202-206.
[Fox84] M.S. Fox and S. E Smith, "ISIS--a knowledge-based
system for factory scheduling," Expert Systems 1, 1 (July 1984),
[Gervasicg0a] M. T. Gervasio, "Learning General Completable
Reactive Plans," Proceedings of the Eighth National Conference on
Artificial Intelligence, Boston, MA, August 1990, pp. 1016-1021.
[Gervasio90b] M_ T. Gervasio, _aming Completable Reactive
Plans Through Achievability Proofs," Technical Report
UIUCDCS-R-90-1605, Department of Computer Science, Univer-
sity of l]finois, Urban& IL May 1990.
[Gervasio91] M T. Gervasio and G. E DeJong, "Learning Prob-
ably Completable Plans," Technical Report
UIUCDCS-R-91-1686, Department of Computer Science, Univer-
sity ofIllinois,Urbana,IL,April 1991.
[Hammond86]IC Hammond, "CHEF: A Model ofCase-Based

P]a_ing," Proceedin. _s of the National Conference oaArtificial In.
telligence, Philadelphia, PA"August 1986, pp. 267-271.
[Kaelbling88] L. R Kaelblin_ "Goals as Parallel Program Specifi-
cations,"Proceedinl_s of The SeventhNational Conference onArtifi-
cial Intelligence, Saint Paul, MN, August 1988, pp. 60--65.
[Knobloek90] C. Knoblock, '1_eaming Abstraction Hierarchies for
Problem Solving," Proceedinss of the Eight National Conference on
Ar6ficial Intelligence, Boston, MA, 1990, pp. 923--928.
[Marring0] N.G. Martin and J. F. Allen, "Combining Reactive
and Strategic Planning through Decomposition Abstraction," Pro.
ceedings of the Workshop on Innovative Approaches to Planning,
Scheduling and Control, San Diego, CA, November 1990, pp.
137-143.

[Mmton85] ,S. Minton, "Selectively Generalizing Plans for Pro-
blem--Solving, Proceedings of the Ninth lnternational Joint Con.
ference on Artificial Intelligence, Los Angeles, August 1985, pp.
596-599.
[Mhchel186] T.M. Mitchen, R. Keller and S. Kedar--Cabelli, "Ex-
planation-Based Generalization: A Unifying View," Mach/n¢
Learning 1, 1 (January 1986), pp. 47--80.
[Muscettola90] N. Muscettola and S. E Smith, 'ffategrating
Planning and Scheduling To Solve Space Mission Scheduling Prob-
lems," Proceedings of the Workshop on Innovative Approaches to
Planning, Scheduling and Control, Sen Diego, CA, November
1990, pp. 220-230.
[Ow88] R S. Ow, S. Smith and A. Thiriez, "Reactive Plan Revi-
sion," Proceeding sof the Seventh National Conference on Artificial
Intelligence, St. P_ml, MN, August 1988, pp. 77-82.
[Prosser89] P. prosser, "A Reactive Scheduling Agent," Pro.
ceeding sof the Eleventh !nternationaIJoint Conference on Artificial
Intelligence,Detroit, MI, August 1989, pp. 1004-1009.
[Sacerdofi74] E. Sacerdoti, "Planning m a Hierarchy of Abstrac-
tion Spaces," Artificial lntelligence 5, (1974), pp. 115-135.
[Smith90] S. E Smith, P. S. Ow, N. Muscettola, J.Potvin and D.
C. Matthys, "OPIS: An Integrated Framework for Generating and
Revising Factory Schedules," Proceedings of the Workshop on Inno-
vative Approaches toPlanning, Scheduling and Control, SAnDiego,
CA, November 1990, pp. 497-507.
[Stefik81] M. Stefik,"Planning and Metaplanning (MOLGEN:
Part 2),'Artificiallntelligenc¢ 16, 2 (1981), pp. 141-170.
[Zwebeng0] M. Zweben, M. Deal and R. Gargan, "Anytime Re-
scheduling," Proceedings of the Workshop on Innovative Ap-
proaches to Planning, Scheduling and Control, San Diego, CA, No-
vember 1990, pp. 251-259.

m

Ill

W

II

I1

I$

W

g
l

l
m

!

111

m

m

i

i
mm

i

i

ID
i

r

E=

L

u

v

E

w

IOPS Advisor:

Research in Progress on

Knowledge-Intensive Methods for
Irregular Operations Airline Scheduling*

,/2 .6-_4

Ngs- 6

John E. Borse _==_h_ristopher C. Owens

The University of Chicago
Artificial Intelligence Laboratory, Department of Computer Science

1100 East 58th Street, Chicago, IL 60637

borse@cs, uchicago, edu

1

Abstract " /

Our research focuses on the problem of recovering from
perturbations in large-scale schedules, specifically on the
ability of a human-machine partnership to dynamically
modify an airline schedule in response to unanticipatea
disruptions. This task is characterized by massive in-
terdependencies and a large space of possible actions.
Our approach is to apply both qualitative, knowledge-
intensive techniques relying on a memory of stereotypi-
cal failures and appropriate recoveries, and quantitative
techniques drawn from the Operations Research com-
munity's work on scheduling. Our main scientific chal-
lenge is to represent schedules, failures and repairs so as
to make both sets of techniques applicable to the same
data.

This paper outlines ongoing research in which we are
cooperating with United Airlines to develop our under-
standing of the scientific issues underlying the practical:
ities of dynamic, real-time schedule repair.

Irregular Operations Scheduling (IOPS)

Airline schedules are highly complex, structured ob-
jects, with large numbers of internal interdependen-
cies. Airlines must confront the consequences of uncer-
tainty in the execution of their daily schedules -- un-
certainty stemming from inclement weather, sick calls
from crew members, mechanical problems with aircraft,
constraints on airport resources, and other problems. A

"This work is supported in part by the Air Force office of
Scientific Research under contract AFOSR-91-0112, and in
part by the Defense Advanced Research Projects Agency and
Rome Laboratory under contract F30602-91-C-0028. The
authors gratefully acknowledge the assistance of United Air-
lines in providing data and observer access to llve opera-
tions. Nothing in this paper represents any policy, position,
or opinion of United Airlines.

snowstorm at a key airport, for example, can have dev-
bstating consequences on the operations of an airline, ef-
fects from which it may take days to recover. The inter-
dependencies among factors like crew scheduling, main-
tenance routing, and congestion at airports add further
complication to the daily planning problem. Because
of these interdependencies, even a single disruption and
the consequent attempts at recovery typically involve

widespread and long-lasting downstream effects. The
search space of possible recoveries to a schedule disrup-
tion is enormous.

Airlines employ schedule planners who attempt to
mitigate the effects of schedule disruptions. Their main
goals are to minimize both passenger inconvenience and
the cost of implementing the repair, while accounting
for crew work rules, aircraft maintenance schedules, and
other factors. An additional goal is to minimize the
overall complexity of a repair.

Controllers attempt to balance the trade-offs and un-
certainties of irregular events, typically using informa-
tion provided by various decision support systems such
as real-time scheduling displays and passenger booking
data. However, very few, if any, of these systems provide
the planner with decision-making advice in the form of
strategies or specific recommendations to counteract the

adversity of a particular event. The goal of our research
is to develop the scientific foundations for a new class of
decision support tool to address this problem.

From the viewpoint of Artificial Intelligence planning
and decision support, the key features of the irregular
:operations planning task are:

• Airline schedules are large, complex, and highly inter-
dependent.

• Solving schedule problems by exhaustive search is
generally infeasible.

• Current situations typically share more with past sit-
uations than they differ from them.

127

• While they may be similar, no two situations are ever

entirely identical. This means that simply storing and

reusing a "libr_y _ of solutions will not suffice.

The size of the search space, together with the re-
curring nature of typical problems, suggests a solution
based on the re-use of plans. But re-using plans means
more than just retrieving and replaying old solutions.
Because the details of situations change over time, the
system will need to be able to notice that a retrieved
plan does not exactly fit the current situation, there-
fore it will need to modify its retrieved plans to fit new
situations.

Our approach to plan repair is to provide qualitative

expertise in the form of a case library linking descrip-
tions of stereotypical problems with appropriate recov-
ery strategies, and quantitative expertise in the form
of optimization techniques drawn from the Operations
Research (OR) community. The goal of our research is
to develop the scientific foundations for a new class of
decision support tool. The IOPS Advisor, currently un-

der development, couples _the experiential knowlodge of
schedulers, which is essential in generating strategies for
solving a schedule problem, with the quantitative power
of operations research techniques, which are effective in

comparing the costs and effectiveness of the potential
solutions generated by those strategies. Furthermore,
the quantitative models may be responsible for optimiz-
ing the details missing from a sketchy solution suggested
by a qualitative strategy. For example, if a strategy is
"stop to refuel _, a quantitative analysis may indicate
where to stop and how much fuel to take on.

The IOPS Advisor, currently under development, is
intended to represent schedules, failures, and repairs so
that both sets of techniques can cooperate using the
same representational constructs.

Research Objectives

The primary scientific focus of this work is on represen-
tation. Specifically, we are determining how to represent
schedules, schedule failures, and repair strategies so as
to enable the IOPS advisor to:

• Identify and characterize schedule problems so as to

determine the applicability of prior solutions or spe-
cific quantitative techniques.

• Acquire new descriptive features as they become nec-

essary to discriminate among otherwise indistinguish-
able situations.

• Compare the applicability of multiple, competing so-
lutions to the same problem.

Knowledge Representation Issues:

The main knowledge representation issue, and the pri-
mary focus of our current activity, is to categorize and
represent the heuristic knowledge used by controllers
and OR analysts, specifically:

• How problems are detected and described.

• What problem-solving strategies exist.

• What aspects of a problem indicate the applicability
of one strategy over another.

w
In order to gather a realistic set of failures and repairs,

we have been observing controllers as they detect, diag-
nose, and repair schedule problems. Our initial study
has suggested to us that controllers build and use so- !P
phisticated, high-level repairs from a small number of

primitive operators. The primitives form the basic rep-
resentation vocabulary used to describe actions, and it
is anticipated that the list will be stable over time. The m

higher-level strategies, on the other hand, are more dy-
namic, and one of our tasks is to model the acquisition

of new high-level strategies. _
Typical primitive operators represent concrete actions

like:

• Cancel a segment _

• Delay a segment

• Divert a flight to s different airport

• Substitute one aircraft for another lw

• Substitute one crew for another

• Ferry an empty aircraft from one airport to another =
w

Higher-level strategies, on the other hand, may in-
volve both primary actions and secondary actions de-
signed to mitigate the side-effects of the primary actions. =_
Or, they might involve a series of steps taken to defer
the impact of a problem, in the expectation that an op-
portunistic solution may present itself in the intervening
time. Other high-level strategies include geographically _-
localizing the impact of a problem or, conversely, dilut-
ing the impact of a problem by spreading a minor delay
across several geographic points.-.

As we gather more high-level strategies from our ob-
servation of controllers and from our encoding of quanti-
tative techniques, our plan is to encapsulate the strate-
gies in knowledge structures that also include descrip- ,1 i
tions of appropriate situations for the strategies. The
IOPS advisor will extract from the user a description
of the current situation, propose repair strategies based
upon the match between t_ current situation and the --

stored descriptions, and quantitatively evaluate the util- w
ity of situations generated by competing strategies. As
it performs this selection and comparison, it can acquire,
from the user, information about features of the world g
that determine the applicability of one strategy over an-
other. These newly-acquire.d features can then become ffi
part of the selection criteria encoded with the strategies --
in memory. I

Knowledge acquisition

While the list of primitives is expected to remain rela-
tively static, an important aspect of the IOPS Advisor

m

W

128

m
mw

K-dW

v

w

m

--D

z

m

4rap

nE

lime ¸

F_

ILB

is that it will be able to acquire new descriptive features
as it is used. If the system erroneously suggests a prior
case as being a good match to the current situation, the
user can correct this by supplying a descriptive feature
that would-different|ate the _current situation from the

case stored in memory. The error might have occurred
either because the discriminating feature was not men-
tioned in the description of the current situation, or be-
cause it was not mentioned in the stored case. In the _o
latter scenario, it can be added.

In general, a longer-range goal for the lOPS advisor
is that, in having a human user interact with a plan-
ning tool, we have an opportunity to record information
about plan accessing strategies, modification techniques
and typical failures that can, in turn, become the heuris-
tics used by a more autonomous system. A system that
observed human schedulers in action and recorded their

responses to specific planning problems, and which in-
dexed those responses in memory using the functional
criteria discussed above, would become a powerful ex-

pert assistant _ an assistant with a good memory for

Much of the emphasis of CBR research to date has
been on issues of plan indexing, retrieval and modifi-
cation. While these issues are clearly present in this
domain, our emphasis is primarily on plan evaluation

through objective analytical (OR) tools which are also
under development. Specifically, we are focusing on how
to direct the search for relevant cases based on the OR

model's assessment of the feasibility or "utility" of pre-
viously proposed solutions. Because the two sets of tech-

niques tend to characterize the problems differently, in-
tegrating them is a challenge.

Operations Research Issues

Operations research analysts tend to think in terms of

opportunities for optimization. One of our preliminary
findings is that schedule planners do not read_y identify

these opportunities. Accordingly, an important aspect
of the integrative research is to identify classes of situ-

ations in which particular optimization techniques are
appropriate, and to select descriptive features that al-

low the system or planners to differentiate among these
what worked and what didn't in the past.

Case-Based Planning Issues

While case-based planning addresses many of the qual-
itative problems in the irregular scheduling domain,
much work must be done before a practical system could
be put in the hands of a human scheduler. Fortunately,
the core idea in case-based planning, that of incremen-

tal modification, is one aspect of the technology that
could be usefully applied in the near term as a way to
deal with the type of changes that have to be made to
schedules during execution.

One of the recurring problems of automated planning
is the issue of the repairs that have to be made during ex-
ecution as a result of unforeseen circumstances. There

are always unexpected problems that arise. Weather,
crew sickness, and equipment failures cannot be pre-
dicted. Bottlenecks show up where none was suspected.
Each of these classes of problems can be recognized using
a specific set of symptoms, and each requires a specific
type of repair.

Run-time repair and optimization, while useful, has
to be traded-off against the overall stability of an exist-

ing plan. If a single aircraft is unexpectedly grounded,
one form of optimization might be to rebuild the en-
tire system schedule, minus that aircraft. But even if

such a repair were computationally feasible, implement-
ing it would be preposterous. A planner that deals with
unexpected changes in the state of the world by com-
pletely replanning will be constantly creating new plans

classes. We intend to codify this knowledge in the form
_ _ii_i of Cases which couple the relevant optimization tech-

niques with characteristic features of the appropriate
class of situation.

Case Study

The following hypothetical case study is based on ob-
servations of airline planners. The case illustrates the
interplay between qualitative and quantitative reason-
ing described in this paper. Airports are designated by
the following three letter codes: SFO = San Francisco,
EUG = Eugene, and MED = Medford.

A runway construction project at EUG has imposed

a ,weight restriction on departing flights. A depart-
ing flight EUG-SFO is over the weight limitation by
approximately 20 passengers. The flight is sched-
uled to depart on time, however, inbound flow con-

trol is in effect at SFO (due to fog) and is imposing a
53 minute pre-takeoff delay on the EUG-SFO flight.

The planner generates some alternative solutions:

1. Move the excess passengers to a later EUG-SFO flight.

2. Have a flight enroute to SFO passing nearby EUG
stop to pick up the excess passengers.

3. Remove enough fuel to carry the excess passengers,
and stop at an intermediate point to refuel.

At this stage, the alternatives are qualitative: they
simply match a problem with a strategy. Although in
many cases this step of the solution process is trivial

that will do little more than confuse the people that are (e.g., weather-related IOP forces cancellations), we be-
using them. What is needed instead is incremental, 1o- lieve that in general this step is non-trivial and it is

ca] plan repair, coupled with local optimization. One one aspect of the planner's job which distinguishes an
wants to perturb the schedule as little as possible in the experienced planner from an inexperienced one.
achievement of an acceptable response to an unexpected The next step of the planning process involves evalu-

occurrence, ating the relative merits of each proposed strategy with

129

respect to the planner's goals. In this case the planner
chose not to solve the problem using strategy (1) be-
cause pushing the problem to a later flight would most
likely cause weight restriction problems downline and
would disservice the excess passengers. Strategy (2) was
not chosen since it would involve delaying a large num-
ber of passengers on a different flight to accommodate a
relatively small number of connecting passengers on the
EUG-SFO flight. On further analysis of strategy (3), the
controller determined that, since SFO air traffic control
had already imposed a 53-minute delay on the inbound
flight for reasons of airspace crowding, the flight could
in fact refuel at MED and carry all passengers to SFO as
planned without incurring additional delays. The cost
of landing and departing at MED was considered negli-
gible in comparison to the alternative costs of delaying
passengers and causing misconnections of aircraft and
people (although this calculation was not performed ex-
plicitly).

Notice that the planner's analysis in choosing among
alternatives remains highly qualitative. The planner
uses various sources of information to determine the vi-
ability of each approach, however, he rarely explicitly
calculates the cost impact of various strategies. We be-
lieve that at this stage the planner could be greatly aided
by OR models which:

• provide an objective analysis of the relative merits of
each strategy based on utility measures.

• determine optimal implementations of high-level
strategies, for example, given strategy (2), choosing
an appropriate flight, or, given strategy (3), choosing
an appropriate airport.

Anticipated Results

Our key preliminary result is a growing catalogue of
stereotypical problems and appropriate repair strate-
gies, which form the backbone of a domain theory of
schedule failure repair. We anticipate that a longer-
term result of our research will be a working prototype
of the IOPS Advisor System. This prototype will em-
body the failure descriptions and recovery strategies, as
well as a set of features characterizing appropriate situ-
ations in wh!ch to app!y specific quantitative optimiza-
tion tools. The knowledge-based system will suggest
strategies, given a description of the problem, while the
OR components will be responsible for evaluating the
costs and benefits of the proposed strategies and for de-
termining specific implementations of the strategies.

Evaluation

The bases against which we can evaluate the IOPS ad-
visor project are:

• Does the system enable a controller to produce good
schedule repairs? In particular, can a controller use
the system's prepackaged strategies and OR evalu-

q

ation methods to improve upon solutions produced
using the controller's own judgment? m

• How good are the high-level strategies that the ex-
perienced planners employ? How often do controllers
choose the best Strategy? While the strategies obvi-
ously work, are they applied inappropriately? Does
post-facto analysis repeatedly indicate that some
other strategy might have been preferable?

W• Are individuals able to make use of the canned strate-

gies? Can one individual recognize and re-use canned
strategies? Is there any transfer across individuals,
such that one individual can use strategies developed l
by another? If so, how should the strategies be pre-
sented to the user?

• Can novices use the strategies and optimizations from
the lOPS advisor to generate expert-like repairs? In
general, how do solutions built by novices differ from
solutions built by experts? Does the availability of a
library of expert solutions improve a novice's perfor-
mance?

• Does the integrative AI/OR approach provide a bet- --

ter method than either technique applied alone? Is it
even possible to model the IOPS problem using either
technique alone? What form would these models take
(e.g. large scale linear programming, expert-system)?
How would each of these approaches compare to the W
integrative approach?

Summary : _1
The airline irregular operation problem is representa-
tive of a general class of scheduling problems. An ideal
solution would embody both the best quantitative tech- -_
niques and the genuine expertise of skilied, experienced
controllers. Traditionally, the two classes of solution
have been described in such divergent terms as to make
integration, or even Comparison, difficult. By building
a uniform representation of schedules, failures and re-
pairs, our intention is to provide a framework for ex-
perimenting with qualitative and quantitative solutions
and, ultimately, for integrating the two. iU

i
I

!

II

I

i

U

'lg

130

i

m

z

mmmi
m

i .

m.

m -

w
D

m

An Extended Abstract: A Heuristic Repair Method for

Constralnt-Satisfaction and Scheduling Problems

Steven Minton 1 mad Mark D. Johnston 2 and Andrew B..Philips 1 and Philip Laird s

1Sterling Federal Systems
NASA Ames Research Center

AI Research Branch
\ f _o_ \ Mail Stop: 269-2
_.',__-_ i _ Moffett Field, CA 94035 USA

_ Introduction

One of the most promising general approaches for solv-

ing combinatorial search problems is to generate an
initial, suboptimal solution and then to apply local
repair heuristics. Techniques based on this approach
have met with empirical success on many combina-
torial problems, including the traveling salesman and
graph partitioning problerns[10]. Such techniques also
have a long tradition in AI, most notably in problem-
solving systems that operate by debugging initial so-
lutions [18, 20]. In this paper, we describe how this
idea can be extended to constraint satisfaction prob-
lems (CSPs) in s natural manner (see also [14] for full
paper).

Most of the previous work on CSP algorithms has
a_sumed a standard 1)acktracking approach in which
a partial assignment to the variables is incrementally
extended. In contrast, our method starts with a com-
plete, but inconsistent assignment and then incremen-
tally repairs constraint violations until a consistent
assignment is achieved. The method is guided by a
simple ordering heuristic for repairing constraint vio-
lations: identify a variable that is currently in conflict
and select a new value that minimizes the number of

outstanding constraint violations.

We present empirical evidence showing that on some
standard problems our approach is considerably more
efficient than traditional backtracking methods. For
example, on the n-queens problem, our method quickly
finds Solutions to the one million queens problem[15].
we _e tha_; the reason that repair-based methods

can outperform backtracking methods is because a
complete assignment can be more informative in guid-
ing search than a partial assignment. Howeve:, the
utility of the extra information is domain dependent.

The work described in this paper was inspired by
a surprisingly effective neural network developed by
Adoffand Joh_nston [1] for scheduling astronomical ob-
servations on the Hubble Space Telescope. Our heuris-
tic CSP method was distilled from an analysis of the
network. In the process of carrying out the analysis,
we discovered that the effectiveness of the network has

little to do with its connectionist implementation. Fur-

_Space Telescope Science Institute
3700 San Martin Drive,

Baltimore, MD 21218 USA

3NASA Ames Research Center
AI Research Branch

Mail Stop: 269-2
Moffett Field, CA 94035 USA

thermore, the ideas employed in the network can be

implemented very efficientlywithin a symbolic CSP

framework. The symbolic implementation isextremely

simple.Italsohas the advantage that severaldifferent

search strategiescan be employed, although we have

found that hill-climbingmethods are particularlywell-

suitedfor the applicationsthat we have investigated.

We begin the paper with a briefreview ofAdoff and

Johnston'sneuralnetwork. Followingthis,we describe

our symbolic method for heuristic repair. _ _. _

Previous Work: The GDS Network

By almost any measure, the Hubble Space Telescope
scheduling problem is a complex task [11, 17]. Be-
tween ten thousand and thirty thousand astronomi-
cal observations per year must be scheduled, subject
to a great variety of constraints including power re-
strictions, observation priorities, time-dependent or-
bital characteristics, movement of astronomical bod-
ies, stray light sources, etc. Because the telescope
is an extremely valuable resource with a limited llfe-
time, efficient scheduling is a critical concern. An ini-
tial scheduling system, developed using traditional pro-
gramming methods, highlighted the difficulty of the
problem; itwas estimated thatitwould take over three

weeks for the system to schedule one week of observa-

tions.This problem was remedied by the development

ofa successfulconstraint-basedsystem to augment the

initialsystem. At the heartofthe constraint-basedsys-

tem isa neuralnetwork developed by Adorf and John-
ston,the Guarded DiscreteStochastic(GDS) network,

which searches for a schedule[i].
From a computational point of view, the network is

interestingbecause Adoff and Johnston found that it

performs well on a varietyof tasks,in addition to the

space telescopeschedulingproblem. For example, the

network performed significantlybetteron the n-queens

problem than methods that had been previouslydevel-

oped. The n-queens problem requiresplacingn queens

on an n x n chessboard so that no two queens share a

row, column or diagonal. The network has been used

to solveproblems of up to 1024 queens, whereas most

heuristicbacktracking methods encounter difficulties

z

m 131

with problems one-tenth that size[10].
The GDS network is a modified Hopfield network[8].

In a standard Hopfield network, all connections be-

tween neurons are symmetric. In the GDS network, the
main network is coupled asymmetrically to an auxiliary
network of guard neurons which restricts the configu-
rations that the network can assume. This modifica-

tion enables the network to rapidly find a solution for
many problems, even when it is simulated on a serial

machine. Unfortunately, convergence to a stable con-
figuration is no longer guaranteed. Thus the network
can fall into a local minimum involving a group of un-
stable states among which it win osculate. In practice,
however, if the network fails to converge after some
number of neuron state transitions, it can simply be
stopped and started over.

To solve the n-queens problem with the GDS net-
work, each of the n x n board positions is represented
by a neuron whose output is either one or zero depend-
ing on whether or not a queen is located in that posi-
tion. (Note that this is a local representation rather
than a distributed representation of the board.) If
two board positions are inconsistent, then an inhibit-
ing connection exists between the corresponding two
neurons. For example, alI the neurons in a coiunm will
inhibit each other, representing the constraint that two
queens cannot be in the same column. For each row,
a guard neuron is connected to each of the neurons in

the row and gives the neurons in that row a large exci-
tatory input, large enough so that at least one neuron

in the row will turn on. Thus, the guard neurons en-
force the constraint that one queen in each row must be
on. The network is updated on each cycle by randomly
picking a row and flipping the state of the neuron in
that row whose input is most inconsistent with its cur-

rent output. A solution is realized when the output of
every neuron is consistent with its input.

Why does the GDS Net Perform So Well?

Our analysis of the GDS network was motivated by
the question: "Why does the network perform so much
better than traditional backtracking methods on cer-
tain tasks? _ In particular, we were intrigued by the
results on the n-queens problem, since this problem
has received considerable attention from previous re-
searchers. For n-queens, Adorf and Johnston found
empirically that the network requires a linear number
of transitions to converge. Since each transition re-

quires linear time, the expected (empirical) time for
the network to find a solution is O(n2). To check this
behavior, Johnston and Adorf ran experiments with n
as high as 1024, at which point memory limitations
became a probhm.1

I The network, which is programmed in Lisp, requires
approximately 11 minutes to solve the 1024 queens prob-
lem on a TI Explorer IL For lvager problems, memory be-
comes a limiting factor because the the network requires
approximately O(n _) space.

Nonsystematic Search Hypothesis

Initially, we hypothesized that it was the nonsystem-
atic nature of the network's search that allowed it to

perform much better than systematic depth-first back-
tracking search. There are two potential problems
associated with systematic depth-first search. First,
the search space may be organized in such a way
that poorer choices are explored first at each branch
point. For instance, in the n-queens problem, depth-
first search tends to find a solution much more quickly
when the first queen is placed in the center of the first
row rather than the corner. It would appear that solu-

tion density is much greater in the former case[19], but
most naive algorithms tend to start in the corner sim-

ply because humans find it more natural to program
that way. However, the fact that a systematic algo-
rithm may consistantly make poor choices does not
completely explain why the GDS network performs so

well for n-queens. A backtracking program that ran-
domly orders rows (and columns within rows) performs
much better than the naive method, and yet still per-
forms poorly relative to the GDS network.

The second potential problem with depth-first search
is more significant and more subtle. Depth-first search
can be a disadvantage when solutions are not evenly
distributed throughout the search space. As the distri-
bution of solutions becomes Iess:ilfi|f0rm,-_" there-
fore, the solutions become more clustered, the time
to search between solution clusters increases. Thus,
we conclude that, in a tree where the solutions are
clustered, depth'first search performs relatively poorly.
In comparison, a search strategy which examines the
leaves of the tree in random order is not affected by
solution clustering.

We investigated whether this phenomenon explained
the relatively poor performance of depth-first search on
n-queens by experimenting with a randomized search

algorithm, called a Las Vegas algorithm [2]. TEe al-
gorithm begins by selecting a path from the root to
a leaf. To select a path, the algorithm starts at the

root node and chooses one of its children with equal
probabiIity. _ process continues recursively until a
leaf is encountered. If the leaf is a solution the al-

gorithm terminates, if not, it starts over again at the
root and selects a path. The same path may be _;
ined more than once, since no memory is maintained
between successive trials.

The Las Vegas algorithm does, in fact, perform bet-
ter than simple depth-first seardi On n-queens. In fact,
this result was already known [2]. However, the perfor-
mance of the Las Vegas algorithm is still not nearly as
good as that of the GDS netw0rk, and so we concluded

that the systematicity hypothesis alone cannot expl_ :'
the network's behavior.

Informedness Hypothesis

Our second hypothesis was that the network's search

process uses information about the current assignment

l

l

J :

w

i

u

J

J

m

gl

m

U

W

m

I

Z
E

j

m

m
i

M

132

m

I

st

vm_

E

u
m

W

m

m

U

I

mm
mu

m_

that is not available to a standard backtracking pro-
gram. We now believe this hypothesis is correct, in
that it explains why the network works so well. In par-
ticular, the key to the network's performance appears
_to beth at state transitions are made so as to reduce the

number of outstanding inconsistencies in the network;
specifically, each state transition involves flipping the
neuron whose output is most inconsistent with its cur-

rent input. From a constraint _atisfaction perspective,
it is as if the network reassigns a value for a variable by
choosing the value that violates the fewest constraints.

This idea is captured by the foUowing heuristic:
Min-Confllcts heuristic."

Given: A set of variables, a set of binary constraints,
and an assignment specifying a value for each vari-
able. Two variables conflict if their values violate a
constraint.
Procedure: Select a variable that is in convict, and as-
sign it a value that minimizes the number of contllcts?
(Break ties randomly.)

We have found that the network's behavior can be

approximated by a symbolic system that uses the min-
conficts heuristic for hill-climbing. The hill-climblng
system starts with an initial assignment generated in a
preprocessing phase. 3 At each choice point, the heuris-
tic chooses a variable that is currently in conflict and

fe_signs its value, until a solution is found. The sys-
tem thus searches the space of possible assignments,
favoring assignments with fewer total conflicts. Of
course, the hill-climblng system can become "stuck"
in a local maximum, in the same way that the network
may become "stuck" in a local minimum.

There are two aspects of the rain-conflicts hill-
climbing method that distinguish it from standard
backtracking approaches for CSP problems. First, in-
stead of extending a consistent partial assignment, the
rain-conflicts method repairs a complete but incon-
sistent assignment by reducing those inconsistencies.
Thus, to guide its search, it uses information about
the current assignment that is not available to a stan-
dard backtracking algorithm. Second, the use of a hill-
climbing strategy produces a different style of search.

We have also found that extracting the method from
the network enables us to tease apart and experiment
with its different components. In particular, the idea of
repairing an inconsistent assignment can be used with

a variety of different search strategies in addition to
hill-climbing.

21n general, the heuristic attempts to minimize the num-
ber of other variables that will need to be repaized. For
binary CSPs, this corresponds to minimizing the number
of conflicting variables. For general CSPs, where a single
constraint may involve several Variables, the exact method
of counting the number of variables that will need to be
repaired depends on the particular constraint. The space
telescope scheduling problem is a general CSP, whereas the
other tasks described in this paper are binary CSPs.
='see[i4i for Ualy, of how erent init

merits can a_ect the repair phase.

Highlights of Experimental Results

This section contains highlights from experiments in
which we evaluate the performance of the min-conflicts
heuristic on some standard tasks. These experiments
identify problems on which mln-conflicts performs well,
as well as problems on which it performs poorly. The
experiments also show the extent to which the min-

conflicts approach approximates the behavior of the
GDS network.

The/V-Queens Problem

• Min-conflicts hill-climbing approximates the GDS
network for n-queens.

• For n _> 100 rain-conflicts hill-climbing has never
failed to find a solution.

• For min-conficts, the required number of repairs ap-
pears to remain constan_ as n increases, and the time
to find a solution grows linearly with n.

• Standard backtracking using the _most-constrained
first" heuristic quickly grows large: for 100 runs

when n > 1000 a backtracking program implement-
ing the heuristic took more than 12 hours to com-
plete.

• Min-conflicts hill-climbing solves the million queens
problem in less than four minutes on a SPAltCsta-
tion I.

• N-queens is actually quite an easy problem given the
right method.

Scheduling AppHeations: HST

• Min-conflicts hill-c_bing approximates the GDS
network for HST scheduling.

• Much of the overhead (particularly the space over-
head) in the GDS network is eliminated by using the
min-conflicts method.

• Because the min-conflicts heuristic is so simple, a
rain-conflicts scheduler for HST was quickly coded
in C and is extremely efficient.

• The simplicity of the min-conflicts method makes it
easy to experiment with modifications to the heuris-
tic and the search-strategy.

• Other telescope scheduling problems have started to
use the min-conflicts scheduler developed for HST.

Graph Coloring

• Min-conflicts hill-climbing approximates the GDS
network for graph coloring.

• A standard backtracking algorithm employing a
Brelaz-like[3] heuristic outperforms rain-conflicts
hill-climbing.

Summary of Experimental Results

For each of the three tasks we have examined in detail,
n-queens, HST scheduling and graph 3-colorability, we
have found that the GDS network's behavior can be

133

W "

approximated by the min-conflicts l_-climbing algo-
rithm. To this extent, we have a theory that ex-
plains the network's behavior. Obviously, there are
certain practical w:lvaxitages to having "extracted" this
method from the network. First, the method is very
simple, and so can be programmed extremely effi-
ciently, especially if done in a task-specific manner.
Second, the heuristic we have identified, that is, chops-
ing the repair which minimizes the number Of conflicts,
is very general. It can be used in combination with dif-
ferent search strategies and task-specific heuristics, an
important factor for most practical applications.

Insofar as the power of our approach is concerned,
our experimental results are encouraging. We have
identified two tasks, n-queens and HST scheduling,
which appear more amenable to our repair-based ap-
proach than a tr_litional approach that incrementally
extends a partial assignment. This is not to say that
a repair-based approach will do better than any tra-
ditional approach for solving these tasks, but merely
that our simple, repair-based method has done rela-
tively well in comparison to the standard traditional
methods. We also note that repair-based methods have
a special advantage for scheduling tasks: they can eas-

ily be used for both overconstrained and rescheduling
problems. Thus it seems likely that there are other
applications for which our approach will prove useful.

Discussion

The heuristic method described in this paper can be
characterized as a local scarchmethod[lO], in that each
repair minimizes the number of conflicts for an indi-

vidual variable. Local search methods have been ap-
plied to a variety of important problems, often with

impressive results. For example, the Kernighan-Lin
method, perhaps the most successful algorithm for
solving graph-partitioning problems, repeatedly im-
proves a partitioning by swapping the two vertices
that yield the greatest cost differential. The much-

publicized simulated annealing method can also be
characterized as a form of local search[9]. However,
it is well-known that the effectiveness of local search

methods depends greatly on the particular task.

In fact, it is easy to imagine problems on which
the rain-conflicts heuristic will fail. The heuristic is

poorly suited for problems with a few highly critical
constraints and a large number of less important con-
straints. For example, consider the problem of con-
structing a four-year course schedule for a university
student. We may have an initial schedule which satis-
fies almost all of the constraints, except that a course
scheduled for the first year is not actually offered that
year. If this course is a prerequisite for subsequent
courses, then many significant changes to the sched-
ule may be required before it is fixed. In general, if

repairing a constraint violation requires completely re-
vising the current assignment, then the rain-conflicts
heuristic will offer little guidance.

The problems investigated in this paper, especially
the HST and n-queens problem, tend to be relatively
uniform in that critical constraints rarely occur. In
part, this is due to the way the problems are repre-
sented. For example, in the HST problem, as described
earlier, the transitive closure of temporal constraints
is explicitly represented. Thus, a single "after" rela-
tion can be transformed into a set of "after" relations.
This improves performance because the mln-conflicts
heuristic is less likely to violate a set of constraints

than a single constraint. In some cases, we expect
that more sophisticated techniques will be necessary
to identify critical constraints[5]. To this end, we are
currently evaluating explanation-based learning tech-

niques [4, 13] as a method for identifying critical con-
straints. _

The algorithms described in this paper also have an
important relation to previous work in AI. In partic-
ular, there is a long history of AI programs that use
repair or debugging strategies to solve problems, pri-
marily in the areas of planning and design[18, 20]. This
approach has recently had a renaissance with the emer-

gence of case-based[6] and analogical [12, 21] problem
solving. To solve a problem, a case-based system will
retrieve the solution from a previous, similar problem
and repair the old solution so that it solves the new
problem.

The fact that the mln-conflicts approach per-
forms well on n-queens, a well-studied, "standard"
constraint-satisfacti0n problem, suggests that AI

repair-based approaches may be more generally use-
ful than previously thought. However, in some cases it
can be more time-consuming to repair a solution than
to construct a new one from scratch.

There are many possible extensions to the work re-
ported here, but three are particularly worth mention-
ing. First, we expect that there are other applications
for which the min-c0nflicts approach will prove useful.
Conjunctive matching, for example, is an area where
preliminary results appear promising. This is particu-
larly true for matching problems that require only that
a good partial-match be computed. Second, we ex-
pect that there are interesting ways in which the rain-
conflicts heuristic could be combined with other heuris-

tics. Finally, there is the possibility of employing the

rain-conflicts heuristic with other search techniques. In
this paper, we considered only one very basic method,
hill climbing. However, since the number of conflicts
in an assignment can serve as a heuristic evaluation
function, more sophisticated techniques such as best-

first search are possible candidates for investigation.
Another possibility is Tabu search['/], a hill-climbing
technique that maintains a list of forbidden moves in
order to avoid cycles. Morris[16] has also proposed a

hill-climbing method which can break out of local max-
ima by systematically altering the cost function. The
work by Morris and much of the work on Tabu search
bears a close relation to our approach.

u

g

m

D

I

m

W

W

=
mm
I

g

m

l

L

I
I

i

'W

m
m

J

ill

I

_q

m

134 IB

Conclusions [9]
In thispaperwehaveanalyzed a very successful neural
network algorithm and shown tha t an extremely sim-
ple, heuristic search method behaves similarly. Based
on our experience with both the GDS network and [10]

rain-conflicts hill-climbing, we conclude that the min-
conflicts heuristic captures the critical aspects of the

GDS network. In this sense, we have explained why . [11]
the network is so effective. Addit_0nally, by_iso]a_ng
the mln-conflicts he_istic from the search strategy, we
distinguished the idea of a repalr-based CSP method

from the particular strategy employed to search within
the space of repairs. [12]

Finally, there are several practical implications of
this work. First, the scheduling system for the Hub-
ble Space Telescope, SPIKE, now employs our sym-
bolic method, rather than the network, reducing the [13]
overhead necessary to arrive at a schedule. Second,
and perhaps more importantly, it is easy to experiment

with variations of the symbolic method, which should [14]
facilitate transferring SPIKE to other scheduling ap-
plications. Third, by demonstrating that repair-based
methods are..... applicable to Standard constraint satlsfac- "
tion problems, such as N-queens, We have provided a
new tool for solving CSP problems.

References [15]

[1] H.M. Adoff and M.D. Johnston. A discrete

stochastic neural network algorithm for constraint
satisfaction problems. In Proceedings of _he In-
ferna_ional Join_ Conference on Neural Networl_s, [16]

San Diego, CA, 1990.

[2] G. Brassard and P. Bratley. Algorflhmics - Theory
and Practiee. Prentice Hall, Englewood Cliffs, NJ,
1988.

[3] D. Brelas. New methods to color the vertices of a
i _ ._ graph. Communications of the A CM, 22:251-256,

1979.

;i w

[17]

[4] M. Eskey and M. Zweben. Learning search con-

i I t_rol for c0nstr_t-based scheduling. In Proceed- [18]
ings AAAI-gO, Boston, Mass, 1990.

[5] M.S. Fox, N. Sadeh, and C. Baykan. Constrained

heuristic search. In Proceedings IJCAI-89, De- [19]
 roit;m: i9s9.

[6] K.J. Hammond. CaJe-based Planning: An Inte-
grated Theory of Planning, Learning and Mem-

o_. PhD thesis, Yale University, Department of [20]
Computer Science, 1986.

[7] A. Hertz and D. de Werra. Using tabu search [21]
techniques for graph coloring. Computing, 39:345-
351, 1987.

[8] J.J. Hopfield. Neural networks and physical sys-
tems with emergent collective computational abil-
ities. In Proceedings of _he National Academy of
Sciences, volume 79, 1982.

D.S. Johnson, C.I_ Aragon, L.A. McGeoch, and
C. Schevon. Optimization by simulated annealing:
An experimental evaluation, Part II. To appear in
Journal of Operations Research, 1990.

D.S. Johnson, C.H. Papadlmitrou, and M. Yan-
nakakis. How easy is local search? Journal of

Computer and System Sciences, 37:79-100, 1988.

M.D. Johnston. Automated telescope scheduling.
In Proceedings of the Symposium on Coordination
of Observational Projects. Cambridge University
Press, 1987.

S. Kambhampati. Supporting flexible plan reuse.
In Minton S., editor, Machine Zearning Methods
for Planning and Scheduling. Morgan Kaufmann,
1992.

S. Minton. Empirical results concerning the util-
ity of explanation-based learning. In Proceeding8
AAAI-8& Minneapolis, MN, 1988.

S. Minton, M. Johnston, A.B. Philips, and
P. Laird. Minimizing conflicts: A heuristic repair
method for constraint-satisfaction and scheduling
problems. Submitted to Special Issue of Artifi-
cial Intelligence Journal on Constraint Saris]ac-
tion Problems.

S. Minton, M. Johnston, A.B. Philips, and

P. Laird. Solving large scale constraint satisfac-
tion and scheduling problems using a heuristic re-
pair method. In Proceedings AAAI-90, 1990.

P. Morris. Solutions without exhaustive search:

An iterative descent method for binary constraint
satisfaction problems. In Proceedings the AAAI-
90 Wor_hop on Constraint-Directed Reasoning,
Boston, MA, 1990.

N. Muscettola, S.F. Smith, G. Amlri, and
D. Pathak. Generating space t'_lescope observa-
tion schedules. Technical Report CMU-RI-TR-
89-28, Carnegie Mellon University, Robotics In-
stitute, 1989.

R.G. Simmons. A theory of debugging plans and
interpretations. In Proceedings AAAI-88, Min-
neapolis, MN, 1988.

H.S. Stone and J.M. Stone. Efficient search tech-

niques - an empirical study of the n-queens prob-
lem. IBM Journal of Research and Derelopment,
31:464-474, 1987.

G. J. Sussman. A Computer Model o.f Sldll Acqui-
sition. American Elsevier, New York, 1975.

M.M. Veloso and J.G. Carbonell. Towards scaling
up machine learning: A case study with derivation
analogy in prodigy. In Minton S., editor, Machine
Learning Methods for Planning and Scheduling.

Morgan Kaufmann, 1992.

135

f

/372E
_T

v . v

Combining Constraint Satisfaction and Local Improvement Algorithms to
Construct Anaesthetists' Rot_ :

Barbara M. Smith Sean Bennett

Division of Artificial Intelligence

School of Computer Studies

University of Leeds

Leeds LS2 9JT, U.K. f

/
Abstract

A system is described which has been built to com-
pile weekly rotas .for the anaesthetists in a large hospi-
tal The rosa compilation problem is an optimization
problem (the number of tasks which cannot be assigned
to an anaesthetist must be minimized) and has been
.formulated as a constraint satisfaction problem.

The .forward checking algorithm is used to find a
.feasible rots, but because of the size o.f the problem, it
cannot find an optimal (or even a good enough) so.
lution in an acceptable time. Instead, an algorithm
has been devised which makes local improvements to a
.feasible solution. The algorithm makes use o,f the con-
straints as ezpressed in the CSP to ensure that ,feasibil-
ity� is maintained, and produces very good rotas which
are being used by the hospital involved in the project.

It is argued that .formulation as a constraint sat-
isfaction problem may be a good approach to solving
discrete optimization problems, even if the resulting
CSP is too large to be solved ezactly in an acceptable
time. A G,qP algorithm may be able to produce a feasi-
ble solution which can then be improved, giving a good,
if not provably optimal, solution.

The Rostering Problem

Leeds General Infirmary (L.G.I.)is s large teaching
hospital in the centre of Leeds. The anaesthetics de-
partment consists of 19 consultant anaesthetists and
24 other full-time anaesthetists in more junior grades,
who are referred to collectively as junior anaesthetists.
The junior grades are primarily training grades, and
part of the junior anaesthetists' training is to work
alongside a consultant anaesthetist. However, in the
U.K., junior anaesthetists also do some work on their
own. At the L.G.I., there is a set of operating lists,
referred to as junior lists, which are always covered
by junior anaesthetists working on their own. Junior
anaesthetists may also be required to cover consul-
taut lists on their own if the consultant is away. The
consultants work the same pattern of operating lists
every week, but a weekly rots is required for the ju-
niors, showing what each will be doing in each of ten
weekly sessions (Monday to Friday, a.m. and p.m.).

Department of Anaesthetics T

The General Infirmary at Leeds

Great George Street

Leeds LS1 3EX, U.K.

There are three grades of junior anaesthetist: Se-
nior Registrar (Sit), Registrar and Senior House Offi-
cer (SHO), in descending order of seniority. The Sits
and half the Registrars are assigned for a month or
more at a time to a training block, which is a spe-
cialty such as paediatrics, in order to improve their
skills in that area. Most of the SRe work to a fixed
timetable in their own specialty for most or all of the
week, assisting a consultant. The Registrars who are
on a training block should also work with the consul-
taut in their training specialty for much of the week,
although they do not have a fixed training timetable.
The remaining Registrars are assigned to General Du-
ties, and are available to cover junior Iists, stand in for
absent consultants and so on, for most of the week, as
are the training block Registrars when not involved in
training. The SHOe are not assigned to a particular
specialty, but are doing general training in the spe-
cialties not covered by the training blocks; the least
experienced SHOe should spend most of their time

accompanyin_ a consultant, while those with more ex-
peraence can oo some of the junior lists on their own,
or stand in for an absent consultant.

One of the SRs is assigned to the 'General Du-
ties/Admin' block, and the administrative part of this
is to compile the weekly rota. The Admin SR spends
half a day a week compiling the rots for the following
week. Since each Sit spends a maximum of six months
on this block, the Admin Sit is only becoming expert
at compiling the rots by the time that the next person
takes over. The job therefore takes much more time
than it would if the same person did it all the time; it is
also difficult to ensure consistency. On the other hand,
the person compiling the rots needs to be an experi-
enced anaesthetist, in order to know what specialties
different people can cope with on their own, and so
on. The Admin Sit is also responsible for making any
adjustments to the rots after it has been compiled,
for instance if someone is ill, and needs to be able to
judge whether s particular operating list will be rela-
tively straightforward, or requires someone with con-
siderable experience in the specialty. Hence it is not
appropriate to entrust the compilation of the rots to
a clerk, but it was felt that a system which could pro-
duce the initial rots automatically, under the control

.t

a-..

i

N

b,

IIW

Ii

lit

m

=_
m

a

atom
m
I

II

BB

136

b--

r_

E

m

IZI

m
B

i

m

m
m,

H

of the Admin SR, Would be of grezt benefit. It would
_dso-ali0-w more strategic questions to be explored, for
instance, how many anaesthetists of each grade axe
required to cover the operating workload.

The rots varies from week to week, partly because
of the on-call rota. This is compiled separately, for a
month at a time, and shows for each night of the week,
and the weekend, five junior anaesthetists who are on
callto deal with emergency work, for instance in ob-
stetrics or the Intensive Care Unit. For Registrars and
SHOs, being on call at night governs what they do on
the immediately previous and following days. The rots
also varies because of staff absences, which result in
changes to the work that needs to be allocated in the
week. If an SR is away, in many cases the work that he
or she would have done has to be assigned to someone
else, preferably to the Registrar working in the same
specialty, if there is one. If a consultant is absent,
sometimes no action need be taken, for instance if an
SR would normally assist the consultant, and can take

.... responsibility for the list instead. Often, however, a ju-
nior anaesthetist w_o is capable of doing the list alone

...... must' be=found. When-junior anaesthetists axe absent,
the work to be done has to be shared amongst fewer

_ people; in some weeks the level of absences means that
several operating lists have to be cancelled. Compiling
the rots therefore means solving a different problem

• each week: the work to be done varies/,From week to
week, as do the personnel available to do it.

If the+opportunities for Registrar and SHO training
..... _e included, it is not possible to compile a weekly rots

which covers all the work, and the Admin SR tries to
strike a balance between covering as many operating
lists as possible and allowing adequate training. The
first priority, however, is to cover those lists where the
consultant is absent; the junior lists can, if necessary,
be left uncovered, in which case the list is cancelled,
and itisn0t es_ntiM that juniorsshould be assigned
tO allthe traininglistsavailable.

Compiling the Rots

The firststep in compiling the rots for a given
week (whether manually or by computer) isto record
the planned absences of each junior anaesthetistand
theirpredetermined assignments,i.e.those due to reg-

-_: ular continents or to the on-call rots. This gives
a partly completed rots, the gaps showin_ where the
juniors are still available to do the remmning work.
The Admin SR then needs to know which other oper-

" sting lists need+ to be covered and which training lists
.... axe available in that week, given the planned absences

of both consultants and juniors. This gives a set of
tasks to be done in each session of the week, together
with a set of people available to do them. In addition,
some anaesthetists must be assigned an half day off
during the week: normally, an afternoon off is taken
following a night on call, but if an anaesthetist is not

_ =6_ _1 duringthe week, an afternoon off has still to be
_igned, A half day for the compilation of the next
rots must also be set aside for the Admin SR..

The rots compilation system extracts the set of

tasks to be done, and the junior anaesthetistsavail-
able,from itsbasicinformationabout the department,
which does not change from week to week, and from
data on absencesand the on-can rots,which does need
to be input each week. The departmental data in-
cludes,for each consultant operating list,the action
to be taken ifthe consultant isaway: variousstrate-
giesare available, for instance, to assign a specific ju-
nior anaesthetist if they axe available, and failing that
one of the different grades of junior, listed in order of
preference.

Compiling the rots then consists of assigning an
anaesthetist to each task, taking into account the re-
quirements of the different tasks, e.g. some operating
lists require a particular grade of anaesthetist, some
training lists axe only appropriate for the anaesthetist
training in that specialty, and so on. At the same
time, the additional afternoons off must be assigned.
The rots must be optimized, in the sense that the
number of tasks left unassigned must be minimized,
while a satisfactory balance is kept between training
and covering the junior lists.

The number of tasks to be done variesfrom week

to week, but isnormally about 90-100,and the num-
ber of anaesthetistswho can do each task averages
about 5.5. The number of anaesthetistswho need to

be givena halfday offisabout 4 or 5. The sizeofthe
problem can be reduced ifwe recognize that some of
the traininglists,i.e.the general traininglistswhich
are principallyfor SHOs, rather than the specialized
traininglistsattached to the trainingblocks, axe of
much lower prioritythan other tasks.Acceptable ro-

tas can be compiled by assigningthe other tasksfirst,
and then fittingthe generaltraininglistsinto the re-
maining gaps. This reduces rots compilation to two
separateproblems, the second ofwhich istrivial.The
firstproblem then has about 75 tasks to be assigned.

Constraint Satisfaction Problems

The constraintsatisfactionproblem has been dis-
cussed extensivelyin the ArtificialIntelligencelitera-

ture [seereferenee.s]iitcan be used asa formulationof
many problems arming inOR. In a constraintsatisfac-
tionproblem thereaxe a number ofvariables,each of

which has a discretesetofpossiblevalues(itsdomain).
There axe alsoa number ofconstraintrelations,speci-
fyingwhich valuesare mutually compatible forvarious
subsetsof the variables:for instance,the assignment
of an anaesthetistto a task isincompatible with the
assignment of the same anaesthetistto another task
in the same session.A solutionto the constraintsat-

isfactionproblem is an assignment of values to the
variableswhich satisfiesthe constraints.

Although the definitionofthe CSP does not distin-
guish between solutions,so that allassignments which
satisfythe constraintsaxe equallyacceptable,itispos-
sibleto representoptimizationproblems asCSPs. The

objectiveis represented as an additionalconstraint,
which changes each time a new solutionisfound. For
instance,in a minimization problem, the constraint

isthat the value ofthe objectivemust be lessthat its

m 137

g

value in the best solution found so far (or, initially, less
than some very large number). This ensures that each
solution is better than the previous one, and when all
the solutions to the CSP have been found, the last one
will be optimal. A similar scheme for representing dis-
crete optimization problems as CSPs is described by
van Hentenryck [3].

In general, constraint satisfaction problems are NP-
comprete, so that although several algorithms exist for
solving them ([2], [4]), they are not guaranteed to find
a solution in a reasonable time unless the problem
is small or has special structure. However, in many
cases there is a good chance of finding a feasible as-
signment quite quickly. Optimization problems, on
the other hand, will almost certainly suffer from the
exponential worst-case performance, since the search
cannot be terminated when the first feasible solution
is found. Despite this difficulty, it may still be possi-
ble use a constraint satisfaction formulation as a basis
for finding good solutions to optimization problems,
as demonstrated below.

Nadel [4] surveys the available algorithms for the
CSP, and compares their performance on some stan-
dard problems. One of the best algorithms in these ex-
periments is the forward checking algorithm, described
by Haralick and Elilott [2], and this algorithm is used
by the rots compilation system.

The Rota Compilation Problem as a CSP

As mentioned earlier, the first stage in compiling
the rots is to record the predetermined assignments
and the planned absences for the week. The CSP for-
mulation will only be concerned with the problem of
assigning the remaining tasks to those anaesthetists
who are still available after this first stage.

The variables of the CSP are used to represent the
tasks to be assigned in the given week, and the domain
of each variable is the set of anaesthetists who can do
that task. In addition, there is s small number of vari-
ables which represent a half day off for an individual
anaesthetist. The domain of such a variable is the list
of sessions in which the anaesthetist could take a half

day off.
The domain of each task variable is arranged in pri-

ority order, with the best choice of junior anaesthetist
for the task appearing first. The forward checking al-
gorithm selects values from the domain in the order
in which they appear, and hence the anaesthetist ap-
pearing first in the list is the one most likely to be
assigned, if available. Although ordering the domains
is not guaranteed to give the overall best allocation of
anaesthetists to tasks, it does in practice give accept-
able results

In order to express the relative priorities of the dif-
ferent types of task, they are divided into three cate-
gories: essential, preference and optional. The essen-
tial tasks are those arising from consultant absences:
an anaesthetist must be assigned to each of these in
order to achieve a feasible solution. (It is extremely
unllke]y that a situation could arise in practice where
consultant absences could not be covered.)

The preference tasks correspond to the jun_ior lists
and the Registrar accompanied lisfS,i.e, t_ose traln_g
lists which allow a Registrar to accompany a consul-
tant anaesthetist in their assigned specialty. To allow
the algorithm to leave the preference tasks uncovered
if necessary, an extra value, NON_E, _sadded as the
final dement in the domain of each of the correspond-
ing variables. When this variable is considered by the
algorithm, this value can be selected, if all the an_
thetists who could do this task have been assigned to
something else. =

It has been found that a satisfactory balance be-
tween covering the junior lists and assigning the Reg-
istrars to tralnin_ lists in their own specialty can be
achieved by covering as many of the preference tasks as
possible, i.e. the number of preference tasks assigned
the value NONE should be minimized. This can be
done by using an additional _co_t _represent
this objective, as described in section 3.

The final category is the optional tasks: these are
the training lists for the SHOs, in which they accom-
pany a consultant. These also have the value NONE
as the last element of their domain. $HOs can be

assigned to these tasks if there is nothing of higher
priority which they could do instead; to reflect this,
the optional tasks axe assi_ed onTy slier _ _tisfac-
tory assignment of the essential and preference tasks
has been found. The current state of the rots is then
fixed and the optional tasks are assigned to those ju-
nior anaesthetists who have not so far been allocated
to do anything in that session.

The constraints of the CSP firstly arise from the
fact that an anaesthetist cannot do two things at once,
so cannot be assigned to two task variabIes in th6-same
session, or to have a half day off at the same time
as doing a task. These constraints may be thought
of as general rostering constraints; similar constraints
expressing the fact that no-one can be assigned to do
two tasks at the same time will occur in any rots com-
pilation problem. The anaesthetists' system also has
a constraint representing the objective, as already de-
scribed.

In addition, there are other constraints reflecting
particular rostering rules used at the L.G.I., which
have in fact changed several times during the course of
the project. Currently, for instance, there is a rule that
Registrars who are on a training block can be taken
off training, and assigned to a junior list instead, at
most once during the week. Constraints of this kind
are likely to vary from hospital to hospital and, as
experience at the L.G.I. has shown, to change over
time. The system has therefore been designed in such
a way that constraints are_ easy to express.

..... _ - _ _ -_ _

Improving a Feasible Solution

Having set up the variables and their domains, the
forward checking algorithm is used to find an assign-
ment of the essential and preference tasks and the haft-
day variables. Very little backtracking is required to
find a feasibh assignment, because most variables do
not represent essential tasks and so can if necessary

g!

|

m

U

!
B

e

|

$

I

I

g

m

g

I

m

r___
m

i

I

g

138

=_

m_

be assigned the value NONE, which, at this stage,
does not conflict with any other assignment. The al-
gorithm therefore finds a first feasible solution very
quickly. However, because of the size of the problem,
finding the optimum solution would take a very long
time. Often, finding any improvement to the first so-
lution takes far longer than would be acceptable.

It is possible that improvements in the way that
the forward checking algorithm isused might achievea
sufficientincreaseinspeed toallowan optimal solution
tobe found. For instance,thereare variableand value

orderingheuristics,such as those discussedby Nudel
[5]which can be expected to give significantimprove-

ments in appropriate cases.Value ordering heuristics
cannot be used inthiscase because the originalorder-
ing of the domains must be preserved,and the vari-
ables with smallestdomains cannot be assigned first,
as iscommonly advised,because they do not represent
tasks which are hard to assign,but rather the Regis-

trar traininglists,which should not be given higher
prioritythan other tasks. It isstillconceivablethat
variableordering rulesbased on problem knowledge

could be developed. However, rather than pursuing
thispossibility,we have used the forward checking al-
Orithm only to produce a feasiblesolution,and looked
r ways ofimproving such a solution.This approach

p,krOducesgood resultsvery quickly,and itseems un-

ely that an improved forward checking algorithm
would be able to do any better.

In order to improve on the best solutionthat the
forward checking algorithm can find quickly,an algo-
rithm has been devised that considerseach uncovered

task in turn and looks for reassignments of related
tasks which will allow it to be covered. This local

improvement algorithm was developed through exam-
iningfeasiblebut non-optimal rotas,and lookingfor
reassignments that would improve them.

Suppose that there isan uncovered task that we

want to try to find an assignment for.This isa vari-
able which has been assigned the value NONE. All the
anaesthetistsin the variable'soriginaldomain must
have been assigned to do something elsein this ses-

-_on (otherwise the assignment of NONE would not
have been made) but itmay be possibleto freeone of
these anaesthetistsby reassigningthe task that they
are currently.assignedto (aswap),or by moving a half
day offfrom thissessionto another session(a more).

The following example (adapted from an actual
rota) shows the kind of swaps within a sessionthat
can be made in order to improve the solution.

Variable OriginalDomain Assigned
ORTHO-TRAUMA- (R-4R-6 It-5SHO-I R-4

THU-AM _ SHO,2 NONE)
CW-ILTHU-AM (R-4 i%-6R-5 SHO-I R-6

SHO,2 NONE) +
OBS-THU-AM (1%-5P_4 R-6 NONE) R-5
GARDNER-THU-AM (1%-5NONE) NONE

PSU-I/A-THU-AM (R-4 R-6 R-5 NONE) NONE

The variablesare shown in the order in which the

forward checking algorithm considers them, so that
the value assigned is the first remaining value in the
domain. (Valuesassigned toother variablesrepresent-
ing tasksin thissessionhave been omitted.) The two
uncovered operating listsin this Thursday morning
session(GARDNER and PSU-I/A) can be coveredby
making use ofSHO-1 and SHO-2 who are so farunas-
signed in thissession.The simpler swap isto assign
the ORTHO-TRAUMA listto SHO-1, thus allowing
R-4 to do the PSU-I/A list.Covering the GARDNER
listentailsa chain oftwo exchanges: SHO-2 takesthe
CW-II list,1%-6takes the OBS list,and I%-5can then
do the GARDNER list.

A simple example of a move isto move an anaes-
thetist'shalfday offfrom a sessionwhere there isan
uncovered task that thisanaesthetistcould do to an-

other sessionwhere they have not been assignedto do

anything. More complicated changes involvea swap,
of the kind illustratedabove, combined with a move.
This isdone ifmoving a halfday offwould allowan un-
coveredtask tobe done by the anaesthetistconcerned,
and the swap has to be done to freethe anaesthetist
inthe sessionthat the halfday offisbeing moved to.

The local improvement algorithm considers each
uncovered task in turn in the current solution,and
for each anaesthetistin the originaldomain of the
corresponding variable,each of the above changes is
tried,startingwith the simplerchanges, untila change
which willallow the task to be covered isfound, or
the variable'sdomain isexhausted. This procedure
ensures that the firstvalue in the domain which can

be assigned to the task isfound, thus observing the
preferenceordering ofthe values.

..... In allcases,potential changes to the current solu-
tionare checkedagainst the constraints,so that even

when new constraintsare introduced (_e.g.an upper
limiton the number of junior listsa Registrar on a
trainingblock can do ina week, as mentioned above),
the algorithm stillproduces a feasiblesolution.

The local improvement algorithm works through
the listof uncovered tasksonce, and then presentsthe
resultingsolutionas the best that itcan achieve.The

combination ofswaps and moves seems tobe adequate
to produce an optimal rota;so far,we have not been
able to see any furtherscope forreducing the number
of uncovered tasks in the rotas produced, except by
relaxingthe constraints.

Producing the Rota

At thispoint,the rota willhave severalgaps,where
--ar_ anaesthetisthas not been assigned to do anything.

The finalsta_e in constructingthe rota isto assign
the optionalliststo fillthese gaps. The resultingrota
isthen printedout, with a note of any remaining un-
coveredjuniorlists.

The Admin SR may stillwish to make changes to
the rota before it is issued. This is partly because
theremay be placesinthe rota where an anaesthetist

- has not been found anything to do; sincethe workload
variesso much from week to week, thereare oRen ses-
sionswhere thereare fewer tasksthan availableanaes-

I

139

W _

thetists, as well as sessions in the same week where ses-
sions have to be left unassigned. The Admin SR can
assign spare anaesthetists to give additional assistance
at operating lists which have already been covered.
Occasionally, when there are outstanding unassigned
tasks, the Admin SR may be able to relax the con-
straints in order to allow them to be covered. Even
when the system does not produce immediately us-
able rotas, the remaining tidying-up takes only a few

minutes: the difficult part of the job has been done.

Alternative Approaches
Dhar and Ranganathan [1] describe a similar prob-

lem to rots compilation (that of assigning teaching fac-
ulty to courses) and compare an integer programming
formulation to an expert system. In their expert sys-
tem, production rules are used to express both prob-
lem solving knowledge and constraint knowledge. In
the rots compilation problem, however, expert prob-
lem solving knowledge is not easily available. The Ad-
rain SR changes every few months, so that there is not
usually sufficient time to develop any great expertise
and there is little opportunity to pass on experience
from one incumbent to the next; each person therefore
evolves their own method of rots compilation, based
largely on trial and error. It seemed best, therefore, to
use an algorithmic approach to constructing the rota
and to use the successive Admin SRs only as a source
of constraint knowledge.

There is scope, however, for making more use of

problem solving knowledge in rots compilation. For
instance, at present there is no attempt to identify
the session which will be most difficult to cover and
to assign the tasks in that session first. Hitherto, this
has not been important because there has been lit-
tle interaction between the different sessions; the con-
straints are for the most part between tasks in the
same session. If the interaction between sessions in-
creased, then it could become important to use this
kind of problem-solving knowledge, by using it to di-
rect the order in which the forward checking algorithm
considers variables.

Results and Conclusions

The rota compilation system has been developed in
Common LISP on a Sun 3/160; it _ now also run-
ning on a PC. It can produce a weekly rota Within 30
minutes, including entering the required data, com-
pared with the half day allocated to compiling the
rota manually. The system has been producing good
quality rotas for the L.G.I. for over a year, and has
coped with changes in the rots compilation rules. We
are currently improving the user interface so that the
system can be used by hospital staff. In future, we in-
tend to investigate similar problems in other hospitals
and to extend the system to deal with them.

Apart from the fact that the system saves the Ad-
rain Sit several hours work each week, with less risk
that a task will be forgotten, another benefit is that
it can be used to evaluate different policies, reflected
in different sets of constraints. A series of rotas which

would result from the different policies can be pro-
duced and compared, using real data on absences, etc.,
from past weeks. Hitherto, there has been no way of
evaluating the effects of proposed changes in policy.

A common approach in Operational Research to op-
timization problems which cannot be solved exactly
is to find (somehow) a feasible solution and then to
look for local improvements which will hopefully pro-
duce an acceptable solution. Incorporating the two
stages, of finding a feasible solution and then improv-
ing it, into the constraint satisfaction framework has
a number of benefits. First, constraint satisfaction
seems a natural way of formulating many discrete oI>-
timization problems; there is a close correspondence
between the variables and values of the CSP and prob-
lem entities. In OR approaches, on the other hand,
especially those based on mathematical programming
formulations, there may be a significant translation

ap between the original problem and its formulation.
econdly, since there are already CSP algorithms, a

means of finding a feasible solution is readily avail-
able: it is not necessary to write a special-purpose
algorithm.

Finally, the local improvement algorithm can make
use of the constraints, as expressed in the CSP formu-
lation, to ensure that any changes maintain feasibility.
This has been demonstrated in the rots compilation
system, when a new constraint has been introduced.
Adding a constraint to the CSP requires only a few
lines of LISP; the local improvement alggrithm needs
no modification at all, since it merely checks- any po-
tential changes against the new constraint. Hence,
building the local improvement algorith_m within the
CSP framework gives a very flexible mad easily modi-
fied system, which would be herd to achieve otherwise.
Although the system described here is very special-
ized, the general approach of finding a feasible solution
and then improving it, all within the CSP framework,
is one that might be applicable to many optimisation
problems in scheduling.

References

[i] V. Dla_and N. _ganathan (i990)]nteger Pro-
gramming vs. Expert Systems: An Experimental
Comparison, Communications o/ the ACM 33,
323-336. : _ _ _

[2] RIM. Haralick and G.L._llott (1980) In_-reasing

Tree Search Efficiencyfor Constraint Satisfaction
Problems, Artificial Intelligence, 14, 263-313.

[3] P. van_Hentenryck (1989) Con_trainl $atis/ac_ion
in Logic Programming, MIT Press.

[4] B.A. Nadel (1989) Constraint Satisfaction Algo-
rithms, Compnt. Intell. 5, 188-224.

[5] B.A. Nudel (1983) Consistent Labeling Problems
and their Algorithms: Expected Comple_ties
and Theory-Based Heuristics, Artificial in_elli-
gence 21, 135-178.

m_

Q_

j

I

l

J

W

m

l

l

l

g

i

J

R

J

U

m

m

i

m

140 g

l

L

JIGSAW: Preference-Directed,
Co-operative Scheduling

:- !

Theodore A. Linden
David Oaw

Advanced Decision Systems,
a Division of Booz._en & Hamilton, Inc.

1500 Plymouth St.
Mountain View, CA 94043

_ linden@ads.com
415-960-7562

m

/
/

/
Abstract* /

i Techniques that enable humans and machines to co-

operate in the solution of complex scheduling
problems have evolved out of work on the dally
allocation and scheduling of Tactical Air Force
resources, A generalized, formal model of tlese

applied techniques is being developed. It is called
JIGSAW by analogy with the multi-agent, constractive
process used when solving jigsaW puzzles. JIGSAW
begins fromthis analogyandextendsitby pro_gaee8
local preferences into global statistics that dynamically
influence the value and variable Ordering decisions.

:=The statistical projections also apply to abs_act

resources and time periods---allowing more oppor-
tunities to find a successful variable ordering by
reserving abstract resources and deferring the choice of
a specific resourceof _me period,

Keywords: Scheduling, constraint propagation,
.... statistical l_k_hlerarchi_ phnning, resource

abstractions, Iransformatioml synthesis.

I. Introduction

For many scheduling problems, partial automation

i is a realistic but difficult goal. Partial automation:imeans- that-h_i__ets can participate in incre-

mental scheduling decisions. Algorithms from oper-
= atlons resear_ an_J_most heuri_c search_ tcf_hniques

vol huma!___ _ _ problem set up but not in the
- generation of schedule These algorithms work Well

when the problem is modeled perfectly and is
J

mw

z

* This work was partially suppcxled by the Defense
Advanced Research Projects Agency (DARPA) under
contract DAAH01-90-0080 and partially supported by
IR&D fending from Advanced Decision Systems.

2. Background and Overview

....... JIGSAW generalizes techniques originally
developed to partially automate the daily allocation and

=_sche_fing of Tactical Air Force resources. The
complexity of the knowledge involved in this
scheduling problem is such that, when done mammlly,
a team of 8-16 people works over a period of 12 or
more hours. An interactive system that solves this
Ix'oblem by allowing humans and the machine to make

incremental scheduling decisions was designed three

computationally tractable. Unfortunately, practical
scheduling problems occur in very complex environ-
merits, it is usually impossible to capture all of the
domain complexities in the formal model. In practice,
the results of fully automated scheduling algorithms
are used primarily to debug the problem set up. This

results in a very large debugging loop that is inefficient
and does not always converge to an acceptable
solution. Furthermore, details about myriads of
individual preferences are seldom handled effectively.
While a human scheduler may notice that an important
task in today's schedule is one on which John Jones

performed effectively last week, it is impractical to
expect that the knowledge acquisition task can capture
a_thesesubtlepreferencesin advance.

A co-operative approach to schedule generation
exploits the slrengths of both humans and automation,

butco-operationimplies that the schedulingsoftware

hastowork withan incompletemodel oftheproblem
domain. Human scheduling decisionsshould be

viewed as dynamic extensions to that model.

Fu=rthermore, many scheduling problems are

dominated by preferences rather than by hard

constraints,and thesepreferencesneed tobe exploited

in the same way thatconstraintsare exploitedin

consuaint-directedscheduling.

141

B
I

years ago, has undergone two years of user
evaluations, 1 and is now being hardened for

operational use. JIGSAW is a generalization and
formaliz_on of the automated reasoning techniques

originally designed for this application.

JIGSAW is an open collection of techniques that
allow humans to participate as schedules are con-
structed incrementally. JIGSAW begins with a trans-
formational approach---similar to the transformations
commonly used to compile program specifications into
programs and to refine design specifications into
designs. Correctness-preserving transformations
encapsulate knowledge about incremental allocation
and scheduling decisions. They separate the definition
of these decision rules from the control decisions about

when they should be invoked.

JIGSAW extends this Iransformational approach
with statistical look-ahead techniques. Statistical look-
ahead uses local constraints and preferences to project
the expected contention for resources over lime. These
statistical projections allow local scheduling decisions
to be influenced by statistical knowledge about lhe
global context. Statistical look-ahead enhances both
value and variable ordering techniques. Our ongoing
work extends these statistical projections to deal with
abstract resource groupings. Partially determined time
intervals are also handled as abstract resources. An

assignment of an abstract resource to a task creates a
reservation for an unspecified instance of the abstract
resource. These reservations for abstract resources

enable incremental commitments tilat provide more

opportunities to find variable orderings that avoid or
reducebacktrackS.

The name JIGSAW is based on an analogy with

jigsaw puzzles where:

• Many independent agents_th human and
automatect----co_perate to construct a solution.

• The order in which scheduling decisions

are made is not predetermined by the

problem.

• Partial solutions can (usually) be evaluated as

(probably) extenstble to an acceptable solution.

JIGSAW extends this analogy with a combination

of techniques for reasoning about preferences,
abstraction levels, variable ordering, and uncertainty.

Unlike Jigsaw puzzles, JIGSAW seeks a globally good
solution by making a series of local decisions that are

informed by statistical knowledge about how the local
decision is likely to impact global optimality.

The overall JIGSAW approach involves associating
a transformation with each incremental, atomic

allocation and scheduling decision. The users can
commit some scheduling decisions, and the automated
JIGSAW techniques accept and work with partial
schedules developed by users. The users control
which transformations will be candidates for
execution. The control software invokes the

transformations that produce the most promising
extensions of the current partial schedule.

3. Exploiting Value and Variable
Ordering Opportunities

To fully exploit value and variable ordering

opportunities when constructing a schedule
incrementally, individual transformations of partial

assignments should be kept as atomic as possible.
Most job shop scheduling techniques exploit variable
ordering opportunities only at the leve[0f complete
orders or resources; that is, they make assignments to

all the tasks involved in an order or they completely
schedule a single resource. Like Cortes [Fox &

Sycara 90, Sadeh 91], JIGSAW enables separate

decisions for each in_vidual task or act_i'vitY.2
JIGSAW allows a task to be assigned a re_urce or

scheduled into a time period without simultaneously
committing to decisions about other tasks or times.
Furthermore, by in_oducing resource abstraction
hierarchies, JIGSAW can reserve an abstract _urce

for a task while deferring the assignment of a specific
resource or time interval. These assig_ents of
abstract resources allow more opportunities for

variable ordering heuristics to he effective.

When allowing very small incremental_ trans-
fo_-6hs _-nlay be _=_ade-in_alm_ost:airy order, one

has a problem preserving the property that any partial
assignment that is generated can be extended to a
nearly optimal solution. In particular, related tasks
must all eventually receive consistent assignments,
tasks that are assigned an abstract resource must
eve nt_a!ly receive specific _n_mrces, tasks that _ve
resources must eventually be scheduled, and tasks
assigned a flexible time period must eventually he

scheduled into a s_ific ti_'me !n_rv_, These
problems are largely avoi_ in earlier Sch_l]ng
systems where all of the decisions associated with an
order or resource are made simultaneously; however,

I

i

!

III

I

Is

I

I

II

i

i

tw

i

l

m
i
J
I

!I

m

g

ii

llI

I

W

|

I

i

!

I
I

1Tke realities of a large implementation have led to an
early focus on machine assistance foe human decision-
making; implementation of the automated decision-making
techniques on which JIGSAW is based is quite recent.

142

2 nOSAW's _ are equivalent to Cortes' _vlties.
The terms "operation" and "variable" are also used in the
literature with an equivalent meaning.

II

w

m

L_

lint

m

this grouping of decisions limits the opportunities to
fully exploit value and variable ordedngs.

JIGSAW includes substantial bookkeeping func-
tions and statistics that summarize flie state of current

_ _gnments and project the probable effects of future
assignments. This information is used to inhibit trans-
formations that are Hkely to interfere with the

completion Of existing partial assignments. Projec-
- tlons about the expected demand on resources allow

the increments] transformations to achieve a balance
_ between greedy local optimization and altruistic

minimlzation ofresource conflicts [Sycara et al. 90].
The bookkeeping functions and statistics apply to

= abstract as well as specific resources and time periods.
Reservation for abstract resources are guaranteed in
that transformations making assignments to other tasks
will preserve enough instances of the abstract resource
to fulfill all prior reservations. Significantly, many of
these same bookkeeping functions and statistics are
also useful to the human experts who co-operate in the

_ l_oblem solving _.

The bookkeeping functions and statistics are also

used to dynamically select the order in which the
Uansfmnatiom are executed. The goal is to defer each
transformation until there is enough information

available to predict that its decision is a step toward
achieving a nearly optimal assignment. Note that if all
transformations meet this goal, then whenever a

specific task-resource or task-time-period pairing is
required to achieve an optimal assignment, other
transformations will not use up the last instance of the

resource or time period that is ueeded by this task. Of
course, with invocation criteria as stringent as this, the
problem is whether there will always be a
Iransformation that does not need to be deferred. An

experimental hypothesis being evaluated is: for many
large problems that are characterized by many
preferences and that can be solved adequately by teams
of human experts, there will usually be some
"obvious" transformation that does not need to be

deferred. When there is no such transformation, then
either human intervention or a branch and bound

search strategy can be used effectively.

In summary, the automated portion of JIGSAW

startsfrom any consistent partial assignment (initially
from the empty assignment unless human experts
make some initial decisions), finds a transformation

that is statistically the least in need of being deferred,
executes that transformation, and iterates. Humans

control the overall process and can interleave their own
decisions between transaction invocations.

4. Statistical Projections

In the Tactical Air Force application, statistical look-
ahead was used to give more sophistication to what is

21

basically a greedy algorithm augmented with plan
repair techniques. However, the statistical look-ahead
techniques together with reservations for abstract
resources also work in the context of backtracking or
breadth-first search strategies. The choice of fe
search strategy is controlled by the size of the problem

and the need to interact with human schedulers, not by
the statistical look-ahead. Human schedulers appear to
be most comfortable with divide-and-conquer, greedy
algorithms, and plan repair strategies--together with a
very limited amount of breadth-first search and
backtracking.

The critical pert of JIGSAW is the inner loopwhere

statistics about expected resource availability ate
projected and a transformation that does not need to be

deferred is found. This section summarizes the steps
used in the Tactical Air Force scheduling problem from
which JIGSAW evolved. A more formal, general
treatment can be found in [Linden 91], and we are
currently trying to formalize these ideas more directly
In terms of Bayesian uetworks and declson theory.

This description of the inner loop in JIGSAW is a

step toward generalizing the computations, not
optimizing them. The Air Force application where
these techniques were applied deals with the
optimization issues; many optimizations are available
by reusingprevious computations.

The stepsoftheinnerloopare:

I.Local rating: Use constraintsto identifythe

alternative resources and time periods that can be
assignedtoeachtask,and use preferences to order
or rate these possible values. "I'nis local rating is
based on the easily-processed constraints and
preferences directly associated with the task;
initially, it does not deal with global issues like
resource availability.

Global statistics: Translate the local ratings for
each alternative value assignment into a subjective
probability that this assignment will be made, and

global statistics about the expected demand for each
._._ resomee. Comparison of the expected demand for

resources with the_ available resources identifies
probamebotdenec .

3. Trade off: Re-evaluate the alternative value

assignments in terms of which choice is most likely
to be part of a globally optimal assignment. This
re-evaluation uses the statistics about resource

..... contention and makes a trade off between local

...... utility and global resource contention.

4, Commit: For one or more. tasks, "commit" to a

.... transformation that is projected to lead toward a
good complete assignment. Choose to make this

143

commitment for tasks where the decision is
"obvious" and/or "Influential":

a. Obvious decisions are those where one can
project a very high confidence level _at a
decision made now will be "right." This
confidence is evaluated in terms of:

- Strength of the local preference for the
proposed commitment relative to alternative
possible values. This may be computed as
the delta between the rating of the value to
be committed and the rating of the next best
value.

- The commttment's use of low contention

resources based on the statistical projections
of the expected demand for each resource at
various times.

- The quality of the current understanding
about how interactions with other tasks

might ect thistas
b. Influential decisions are decisions which

clarify many other decisions; for example, a
decision to commit bottleneck resources is
influential because it narrows the choices that

remain open for all others decisions.

5) Phm repair: Plan critics are available as a way of
undoing a previous decision0along with the
decisions that directly depend on it. Plan critics

resolve conflicts that arise from imperfect look-
or from changing conditions in the external

environment. Plan critics have been included in the

design of JIGSAW applications, but lhey have not
yet _n added to the formal JIGSAW model.

5. Conclusions

JIGSAW evolved from work on large scheduling

applicationsthatmustbe solvedco-¢verafively and are
dominated by preferences rather than by hard
constraints. JIGSAW exploits those preferences to
project statistical characteristics of the global situation
which me then used to enhance local value and variable

ordering decisions. JIGSAW extends these statistical
proj_ons to abs_ group|ngs of _urces and

allows partial schedules to include reservations for
abstract resources. These reservations for abstract

resoerces_o_n ' more' _pp_ortuni-tieS-for Value and
variable ordering techniques to be effective.

JIGSAW is proposed as one of a range of
scheduling techniques It is appropriate for large
resource allocation and scheduli_ applications that are

currently solved by teams of human experts. It is
especially appropriate for problems where the
evaluation criteria ae complex, changing, and not fully
formalized--problems for which human schedulers

need to be involved to help evaluate the feasibility and
effectiveness of the evolving schedules.

6. References
[Fox & Sycara 90] Mark S. Fox and Katia P. Sycara,

"Overview of CORTES: A Constraint Based
Approach to Production Planning, Scheduling,
and Control," Proc. of the Fourth Inter. Conf. on
Expert Systems in Production and Operations
Management, May, 1990.

[Linden 91] Theodore A. Linden, "Preference-
directed, Co-operative Resource Allocation and
Scheduling." Final Technical Report, DARPA
Order No. 6685, Advanced Decision Systems
Report TR-1270-3, SepL 1991.

[Sadch 91] Norman Sadeh, '%ook-ahead Techniques
for Micro-opportunistic Job Shop Scheduling."
PhD Thesis, School of Computer Science,
Carnegie Mellon University, 1991.

[Sycara et al. 90] Katia P. Sycara, S. Roth, N. Sadeh,
and M. Fox, "Managing Resource Allocation in
Multi-Agent Tune-consWatned Domains." DARPA
Workshop on _nov_ve Approachesto Planning,
Scheduling, and Control., Morgan Kaufman
Publ., San Mateo, CA, Nov. 1990, pp. 240-250.

144

m

u

!

m

m

m
J

m

m

i

i

I

l

I
u

w

I

m

!
l

l

l

i

L

=7

at._m

I

u

l

i

m

Ig_
l

-____

m

Bernd Hellingrath

Peter Ro_ach

Fatdd lk_at-$armadi

AndTeas Marx

Praunhofcr-lnstitute for Material Row and Logistics

Emil-Rgge-Str. 75

D-4600 Dortmund 50

_ F.R.G.
/

j

y

Abstract

The intention of the scheduling system developed at the Frannhofer-Institute for Material Flow and

Logistics N the support of a scheduler.w_cmg in a ,_b-_op. Due w the existing _lmnts for a

job-shop scheduling system the usage of flexible knowledge representation and processing techniques

is necessary. Within this system the attempt was made to combine the advantages of symbolic AI-

techniques with those of neural networks

System structure

The scheduling system is situated below a

MRP system giving the relevant data for the

schedule generation. This data contains

information about the orders, wark plans and

resour s, the op tion and the
strategies. Out of this data local, global and

strategicconstraintsaregenerated.

The local constraints describe the strict

requirementsthe schedule has to _ These

are the sequence of operations, the demand for

resources,thecapacity restrictionof resomees,

and the due dates. Beside the strict

requirements global optimization goals have to

i: be _nsidered within the schedule. An

optimization goal consists of an optimization

criterion whose value describes certain costs

(throughput time, resource utilization,

inventory, tardiness) and a goal description

(min/mizationof thronghputtime, -,i.i_,_ion

of weighted resomce utilization). These

global constraints represent the optimization

goals as preferences. Strategies for building up

and refining a schedu_le are fo_uiated as

strategic
contains a description about when certain

_gies can be used, where the schedule can

be made more detailled, how specific situations

i45

I '

can be detected nnd whnt kind of _tions have

to take place, how the data of the schedule can

be aggregated tO m____¢ the detection of

situations possible, and how specific

requirements of the factory can be taken into

account. All three type of constntints are used

Generation of the schedule

For the generation of the schedule all three

schedulers Work on it while the infom_tion

between them is exchanged through the

partially detailled schedule. The process of the

l

J

m

as
q

D

ii

m

8

E

..i

m

local

Scheduler
m

m

m

m

m

Control

Fi&. 1: Suucune of the Scheduling System

by the diffcrent schedulers (local, global,

suategic) to build up a schedule. The structure

of the scheduling system is shown in Fig. 1.

........ _

schedule generation can be described as

follows. _ a,first_pha___.th© |o__ scheduler

makes a preliminary analysis of the starting

time for every operation. This analysis is done

146

m

m

m

i

m

m
l

L--

z

m

m

l
W

E

W

m

with respect to the strict requirements and

preferences the schedule should fulfill. The

possible starting times are determined through

the propagation of the local constraints within

so called suitability functions [JOtnqSTON 89].

Suitability functions describe for every

operation how desirable it is to start it at a

certain time, so they can be described as

functions over the time (Fig. 2). When the

value of a suitability function for an operation

is zero this operation cannot be started at that

time. The local scheduler generates a schedule

in which all times where an operation cannot

start are excluded. The propagation of the local

consm_/ts are based onto Allen's time relations

[AxJ.,_ 83], the values of the consu'am_ being

suitability functions (Fig. 3).

opl

op2

op3
_ll" t

malt

FiB. 2: Example of suitability function before

propagation

Each time relation is expressed by a utility

function (Fig. 4). This type of function

represenlsa relative measm'e for the preferetu_

of the starting time of an operation. In an

extention of the time relations mfic cons!zalnts

for the first possible start time, the least

possible end time, and the capacity of st

resom_ are built.

147

bet_oO

Fig. 3: Constraints as utility functions

In each propagation step an operation is chosen

and for each constraint to another operation a

sub-suitability function is being built. The

result is a suitability that shows the possible

starting times of this operation under a

constraint.

C1

C2

Fig. 4 : Resulting sub-suitability functions

At each propagation step the new suitability

function is formed out of the product of all sub-

suitabilites and the static suitabilities. Within

this new suitability all constraints have been

taken into account (Fig. 5). If the sui_bility

function has changed all suitabilities of a

constrained operation must be ulxlate_ When

no suitability changes anymore the propagation

ends. In the CSP - notation this propagation

creates an arc consistent graph.

new

opl
|

Fig. 5: Suitability Function after propagation

Besides the strict requirements the global

optimization goals should also be considered

within the schedule. This is done by the global

schedulerwhichrefinesthe possiblestarting
times of everyoperationby usinga neural
network.

This neural network is built up based upon the

possible starting times determined through the

local scheduler. The neural network is a

Guarded-Discrete-Stochastic Network (GDS) a

 :of Hopneldnet [J0"SSTON/
Axx_ 89], [Mm'rONET_ 90], [I-IOP_J._/

TANK -85], [HOPFI_D/"rANK 86]. The main

idea is a unit guarding a subset of normal units,

the scheduling domain it helps to generate

schedules for all operations and resources and

not for a subset what would only be possible

with Hopfield-nets [JOHNSTON/ADORF 89].

Thenetisdividedinto two _ theoperation

net and the resource net. The weights between

the units of the operation net are explicitly set

by the goals of the optimization (minlmi_tion

of throughput time, :weighted resource

utilization, tardinessand work in progress).All

units have a bias which is based on the results

of the local scheduler, thus representing the

suitability functions. The activation of the units

of the operation net corresponds to it's

praenedstart actlvaaon
of the resource units represent the remaining

capacityin thatt_ne intc_tL....

The net is arranged in a matrix-._ke manner.

While the rows represent the operations and

resources, the columns contain the time

intervals in which the suitability _func'|ions of all

operations are constant. The update of all units

of both nets is done synchronically with the

prot ulty reg j mteofthc
guarding units. The convergence of GDS-

networks is not guaranteed, and so we impose

148

a restriction on the number of epochs

[JOHNSTON/ADOP, F 89]. The result of a stable

state of the neural network is an optimized

schedule with respect to the different

optimization goals.

The local and the global scheduler work on the

schedule as a whole, i.e. changes in the

schedule affect all operations. These changes

are generally rather coarse. The strategic

scheduler on the other hand selects one

operation out of the schedule for which it does

a detailled planning. The strategies the

scheduler uses for this are described within the

strategic constraints. Strategic constraints are

formulated as rules on four levels of

absuaction:

• metandes

These rules describe which strategies are

adequateatcertainstatesof theschedule.

• strategies

The strategies describe how to refine the

schedule (e.g. scheduling the cridcal_

operations fn'sO taking into account the

state of all operations and reso_

• situation & action

These rules arc Used to detect situati_

(e.g. when an operation is critical) and to

Suggest actions _(e_g_ _ scheduling_m _

operation in it's preferred time interval).

The view of these rules is local, looking

at the actual state of an operation or

resource wifilin the schedule.

m

ull

b

W

l

11

iiw

m

m

m
b

I

II

!

MI

m
m

M

II

l

R

U

m
IB

m

m

E

m

m

m

! E

• transformation & reduction At the moment the system described above is in

With these rules the actual state of the the state of implementation. So a judgement

current_"_schedule-__ can _=bereduced__ __tothe _ _t the quality of the sched_g system can't

relevant informations (e.g. the preferred be done yeL But the pans implemented so far

show promising results, so that we are rathertime interval for starting an operation)

used by therules of the higherabstraction
levels.

As a first step the strategic scheduler selects an

adequate strategy by using the metarules. The

strategies suggest detailled Changes for the

scheduling of a selected operation. This

selection is done by the strategic constraints

desc_bing _ the _sitnati0 n &action _d

transformation & reduction. The suggestions

are based upon the actual schedule containing

the possible and the preferred starting times for

each operation as a result of the local and the

global scheduler. The suggestion which seems

to _have the most promising effects on the

schedule is integrated into the schedule and the

effects are propagated through the suitability

functions using the local scheduler. This cycle

0ocal - global- strategicscheduling)continues
un_ all operations are scheduled. In the case

that the decision of the stra_gic scheduler leads

to an inconsistent schedule this decision and all _=

it's effects have to be retracted and an

alternative has to be chosen. This work is done

by a control component. The work of the three

schedulers can be seen as a stepwise refinement

of the schedule. The possible starting times for

each operation are repeatedly restricted unl_ a

sufficient, exact_starting point or a s_t_Icient _....

small interval for the starting time is

de_

hopeful about fulfilling the objectives the

system should meet concerning the quality of

the schedule.

Literature

[_ 83]
James F. Allen ; "Maintaining

Knowledge about Temporal Intervals", In :
Communications of the ACM, 26, 832-843,
1983

pOt_S'm_ADO_ 89]
Mark D. Johnston, Hans-Martin Adorf;

"Le_,,-ning in stochastic neural networks for
Constraint Satisfaction Problems" ; In: Proc
NASA Couf on Space Telerobotics. Pasadena
CA, 1989

[JOHNSTON 89]

Johnston, Mark D.; "Reasoning with
Scheduling Constraints and Preferences",
SPIKE Technical Report 1989-2, Space
Telescope Science Institute, Baltimore, MD,
1989

[HO_, TANK 85]
Hopfield, John T.; Tank, David W.;

"Neural' Computation of Decisions in
Optimization Problems", in: Biological
Cybernetics, 52, pp. 141-152, 1985

[I-IOPFIELD,TANK 86]
Hopfield, John T.; Tank, David W.;

."Computing with Neural Circuits: A Model",
m:Sctence, 233, pp. 625-633, 1986

[MncroN_. ,,.t. 90]
Steven Minton, Mark D. Johnston,

Andrew B. Philips, Philip Laird; "Solving
Large-Scale Constraint Satisfaction and
Scheduling Problems Using a Heuristic Revatr
Method"; In : Proc. AAA190, pp. 17-24, 1990

149

. _-:

,9:" 18691T '
Pmdit: a o_mporal PredictiveFramework forScheduling Systems

E.Paolu¢¢i,E.Patriarca,M.Sem, G.Gini
Politecnico di Milano

Pia_a Leonardo da Vinci 32

20133 Milano - Italy
Paolucci@ipmel Lpolimi.it

w

D

t

i

J

Abstract

Scheduling can be formalized as a Constraint Satisfac-
tion Problem (CSP). Within this framework activities
belonging m a plan are interconnected via temporal
constraints that account for slack among them. Tempo-
ral nwesentation must include methods for constndms
propagation and provide a logic for symbolic and nu-
merical deductions.

In this paper we describe a support framework for
opportunistic reasoning in co_ directed schedul-
ing. In order to focus the attention of an incremenud
scheduler on critical pm_ aspects, some _-r_
temporal indexes are presented. They are also nsef_l for
the prediction of the degree of resoutces contention.

The predictive method expressed through our indexes
can be seen as a Knowledge Source foran opportunistic
scheduler with a blackboard architecture.

1. Formalization of scheduling problem and

strategies for its solution

Scheduling can be formalized as a Con.maim Satisfac-
tion Problem (CSP)[Keng and Yun, 1989]. This ap-
proschisconcernedwiththeassignmentof values to
variablessubjecttoasetofconstraints.Inscheduling
variables are constitutedby activitiesstartrimesand
from resources allocation; for this reason we have to
deal explicitely with two types of constraints: Icmporal
relations among tasksandresourcescapacity[Fox.86].

In out approach we assume that we have a set of plans
to be scheduled, where a plan is defined as a
ordering of activities. Each activity may require one or
more resources and for each of them there can be
alternative choices. Beside resources capacay _:be
used contemporarly by different tasks; for the sake of
simplicity we will assume all resources wi_ unary
capacity.

Scheduling is an NP-hard problem and methods re-
qulred for its solution must face this comple_ty._ oout_:
research we decided to focus our atten_n on contribu-
tion in scheduling coming from hi, aridparticularly on
oppommisdc xeasoning [Hayes-Roth, 79].

1. This work has been partially supported by CNR PRF
Project and Mauro grants

150

We me concerned with the issue of how it'spossible
focus the anentionof an increment_scheduler_n_
most criticalschedulingchoicesinordertoeval_
whicharethemostcriticalpoints,whichdecisionsseem
to be the most pmmis_mgLqreducing _6mp_lexity
and improving quality of resulting schedule. ID

Our strategy is to identify the most "solvable" aspects
of the problem through the evMuation of the degree of
interaction existing among activities belonging to dif-
ferentorders. Tbe aim is to reduce the number of steps
required to obtain a solurion.

The nece_ty toovercome the limitsofpartialdecom' i
position appmsch, such as order-based and resource-
based decompositions, has led us towards an

event-based pet_'pecrive whit chronologically-grouped Iinformation. : - _-....... -_: _: -

This basic search strategy is realized through most-con-
strained and least-impact policies.Every stcp_'_di_ : I
into two parts: tim the mnst-con_ralnedpolicy selects mS
dynamically on which agent must be focused schedul-
ing attention; then, the least-lmpact policy chooses for
that agent a value whose impact on the rest of the "_
non-scheduled agents is asdmalI as p0ssibile. _ _ M
is the identification of critical activities that heavily rely
on the possession of highly contended temparal inter- a
yah or resources because of i_-a-o_r_i-order :, i
interactions 0mk-ahead_m'ategy).

two policies need numericindexes which, analyz- :_
ing the particular strucum_ of a problem, are able_ S
measure the interacrion among activities and resources
in terms of variable looseness and value _oodneu
[Sadeh and Fox, 88].___.... • . -

is a resouroe or an _'tiviW, value goodness measu_s
which variable value, mnong all the feasible ones, gives
the least impact (i.e. a sort of maximum _) _::
avmlability of feasible (and good) values for non-scbe-
duled variables.

We somenumericindexesthatconu ninfor-
marion required to realize an evem-basedpolicy: these
indexes are useful for differem reasons"

i :

k ,

=

P

qc:-y

M

m
m

m
L_

u they makepossible to point out critical resources
aria activiues;

m they identify "island of certainty" that will he a
part of problem solution;

a they give information about activities start times
that have the least impact on non-scheduled acti-
vities.

u aninternalbound (INT),whichrepresema
minimun timeinterval whichmust separateme
-e_ of the first lapse from the begin of the second
oFtw0 related lapses;

u an external bound (EXITS,which re.prese.ntsJh c
maximum timeintervalrromme negromine nrst
lapsetotheendofthesecond.

- - - Through these two parameters it's possible to model
This behaviour is a sort,of "opportunistic reasoning" any temporal relation in a schedulingproblem. They are
[Hayes-i'_oth, 79]: this term has been used to charac-
terize a problem-solving process where reasoning is
consistently directed towards those actions that appear
most promising for solving a problem.

Our predictiveapproach,usedtogetherwithanoppor-
tunisticreasoning,isalsousefultodetectunsatisfiable
CSPs assoon as possible,simplyby analyzingthe
indexeswe defined.Inthissensethesystemcan be
viewedasa KnowledgeSourceinablackboardarchi-
tecture,which assumes responsibility for preventive
analysis of activitiesinteractions andforthedetection
of prospectivebottlenecks.

simpler than thirteen Allen's primitive relations; more-
over, INT and EXT improve greatly the efficiency of
numerictemporalreasoning,thatisinsteadalimitin
AHen'sprimitive.

3. The Predit indexes

Temporal relation constraints are used to describe par-
tial orderings among activities as provided by the pro-
cess planning step.

We will refer to the graph defined by these constraints,
for a given CSP, as the CSP's Temporal Constraint
Graphs (TCG).

2. The predictive approach: basic assumptions We have to schedule a set of activities (AI,A2 AN).

The main goal of our research was to provide a simple Let rkbe the time interval ass0ciated with Ak. Activities
but complete inference mechanism to support schedul-
ing, working in a discrete time domain. This mechanism
isbased on some indexesandisdesignedtoperforman
a-prioriguidanceforsearchinschedulingdomain.We
kept a particular attention on the efficiency and on the
speedofsucha mechanism,becausewe realizedthat
such properties are necessary in schedulingsystems for
real applicative environments like, for instance, manu-
facturing ones. For this reason we decide to consider a
discreterepresentationof lime instead of a conrinous
one.

Our indexes are based on the constraints analysis (and
on the propagation of the temporal ones) and on a
particular representation of existing time relations.

In terms of constraints analysis we differentiate be-
tween restr!'ctio_ _ preferences [Fox, 86]. Temporal
prefe_ces are represented through utility functions
defined on activity start times that maps possible values
onto utility levels ranging from 0 to 1. Moreover in our
analysis we consider the existence of intra-order
(among activities belonging to an order) and inter-order
constraints (among activities belonging to different or-
den).

areconnectedbyasetoftemporalrelationconstraints,
therebyformingaTCG. We viewTCGs asundireaed
graphs.An Arc inaTCG indicatesthepresenceofa
temporal relation between two intervals represented by
the couple INT-EXT (Fig.1).

Ai

Aj

I
I s_

Figure I

Additionally there me capacity constraints limiting the
use of each resource to only one activity at a time. The
nextexamplepresentsa simplecaseof a TCG com-
posedof two orders.

In order to provide a predictive support for oppommis-
..i:_ _:;: .:, - :::=_::i:_::__:::_ __:__,flc schedulersoperatingina discretetimedomainwe

The mooe_ aooptateo in represenung ume and m rea- have considered interactions among activities caused
sorting about temporal relation is based on the concept by temporal relations.
of lapse, that is defined as the period of time associated
with an activity. In a temporal axis a lapse is represented The first issue we faced was to detect as soon as possible
by two temporal parameters, namely Startdine and end during the scheduling the possible arising of conflicts
time. Relations between different lapses me expressed due to interactions among activities.
by two parameters [Paolucci, 90]:

151

For this issue we _fined an index called Co_lnt
(CD), which measures the how tight is the link

existing bctwce_ two generic activities Ai and Aj con-
nected by a temporal relation consuaint (represented by
INT-EXT) in a contralto graph.

relationsbetweenintervalsmay simplybe
expressedby usingpotentialinequaIidesassociated
with the bounds ofintervalssuchas:

[I] Di + Dj + I]VT $ ET)- 5"]_

[2] Di + Dj + INT < EXT

Tim first inequality verifies that lime interval composed
of activities durations and Internal Bound is included in

maximum temporal window allowed by Aj lamst end
time and Ai earliest start lime.

The second inequality controls that the same time inter-
val doesn't violate External Bound temporal constraint.
These inequalities lead to define the CD formula
through a multiplication of their members:

13] co#= i(=oi+ q+ Ira') 2
EXT , (ETj- S_)

0 <COii < 1 _ :,: :i , : ,

Dk = Ak duration INT = internal botmd be-

tween Ai aridAj

S_l'k= Ak start time EXT = exmmal bound be-

twe_ Ai and Aj

Elk = Ak end time

The ConstraintDegree is calculated ofl the rationof
alackbetweentwo activitiestiedby temporallinks.

m CDij = l means thatAi allowsno slackto Aj
tmostconstrained)

u CDij = 0 means that Ai allows maximum slack to
Aj.

To sum up,theCD indexdetects(following_themost,
consu-ainedpolicy)the-iddSt critical acdvifi_ re-
spectto intra-order temporalrelations (expressed by
INT andEX_ andtotemporalwindows(expressedby
activitystartandendtime).

The second index, called Preferential Start Tinw
(PST), is a local measure of value goodness and glo-
bally, a measure of variable !oo_ for activities start
times. It lielpshl cho0_ng mn0rig all ac_]ss|ble-Sta_
times the one that minimizes furore conflicts. It is
calculated between each pair of activities connected in
the TCG (i.e. Ai and Aj) and it d_on.the_ _ _e
of the firm activity (i.e. sfi).

The main goal of PST index was to introduce some
es_ma_on rule for activity_ _ in order to idem-
ify the least impact values arising from intra-order
interactions.

PST index is computed for every activity start time
evaluated between earliest start time (STi),or value- ::
Allowed by INT-EXT, and latest start time (ETi-Di), or
valueallowedby INT-EXT, increasing stiwithd¢fixed
time unit.

PST is expressed by the ratio:

[4] P_'T#(_i)= .bu{/(sti)

0 < /'ST# (sty) s 1

where:

u intij(s_) = relative imemal bound

acdvides

The numerator is calculated for s_ values fn:nn Eadiest
Start Tune to the maximum allowed by temporal con-
straints, increasing each time _ with a chosen time unit.
Itmay be Mso considen_l as "actual" slack betweenthe
two activites corresponding w s_ value.

The CD=:=com_putational_:_=:=-_=_=:'::_:_algomhn_cons[d_..........._::_allcon-:::- Therefom,the_maxormaybevtewedas_-:_ :......... ' _ :: _:: "
nectedactivitiesfrom thebeginningtotheend ofthe mum slackbetweenthetwo activities.The closeris

graph.Therefore,forendingactivitieswe setCD index PSTijvaluetoone, thegreateristheslackbetweenAi
tozero(endingactivitiesaremt co_, withtern- andAj.11z_re, forage_d/f_i_y_measums
poralrelation,withanyotheractivityinthegraph), foreachadmissiblestarttimeitsgoodne_ and likeli-

• hood to minimize furore scheduling conflicts.
The validity of CD index is preserved by a previo_ _-_
optimization procedurein Orderto_v_eS_---_- Tocompu_tyT_d[_V_-m-h_ d_r _,
poral windows cuttingout start time valuesdmt can . we have combined dmWa.Tueg_6f _e_
never be involved in CD computation (the same is lime (expressed by PST) with the activities chuations.
made for other indexes). Moreover, as assumed in [Sadeh-Fox, 88], an activity

152

i

II

11

I
II

J
I

i

J

|

|

IB

m

g

II

1
I

g

|

R

M

L

E

u

u

r _

E_

N

IW

E_

L--

Ai can use a resource Rj if Ai is active at time t and Ai
usesRj at time t to fulfill its resource requirement.

From each PST graph we achieve an Individual De-
mand graph (whose values are expressed by ID index)
for each activity, expanding PST values with a lapse
equal to the activity duration and adding all values in
function of time. We obtain a histogram representing
activity resource demand in function of time.

Individual Demand values are combined to measure
resource A_m't_te DemAnd (AD), always in function
of lime. AD shows when resource competition is par-
ticuiarly high and which are activities that heavily rely
in the possession of these resources. AD values must be
tightly evaluated in function of time because temporal
constraint propagation doem't allow for any resource
preference (as explained before, we assume all resour-
ces with unary capacity). Therefore, AD index can
estimate the amount of contention for each resource
over temporal axis but only as a function of start time.
Moreover, it's easy to improve this approach repre-
senting, for example, resources preferences with utility
functionsandpropagating these resourcesreservations
through [he TCG graph.

Figure 2 shows a simple example in order to illustrate
our graphicresultsconcerningtemporaldiscretein-
dexespresentedabove.

Order1

ia" E"

-

AD Resource R3

|D I•

• iI

i "

Time

Order 2

F_re 2

The temporal constraint _ at each i_er-_ °
equal for all couple of activity and it is expressed by
INT=0 and EXT=40. However, these values may be
optimized as described before.

Start Tune and End Tune are expressed by numbers
above each activity and the same is made for requested
resources. For the sake of simplicity, in this example
have not introduced preferential start times (so acdvity
start times are equally preferred).

153

P_ure 3

Pst a7 Order 2
Pm

O.l•

i| 18 14 I• 1• is U 14 J U N

Time

F_4

Next resultsaxeconcernedwith the rea_mble steps
thatanOppommisticSchedulershouldachieve in order
to producethe _ Gana chart.

AI A2 A3 A4 A5

0,25 0,2 0,2 0.182 0

Table 1: CD values for order I acgv/ge$

A6 A7 A8

_ 0,2.5 0,25 0

Table 2: CD val_J for order 2 activities

Among the aggregate demands, the most highly con-
tended resource is 113(fig. 3), required by A2, A3, A4,
A7; the next activities we will focus our attention on axe
A4, A3 and A7 Coecause A2 has an alternative in R1).

Taking a look at the CD indexes of order 1 and order 2,
A7 appears to be the most constrained activity because
of its highest CD value. Now, A7 PST graph (fig. 4)

presentsamaximumfort=20andscheduling A? with
st-20 we can assign the resource RI to the activity A2
at the same start time,

The same considerations based on temporal indexes
evaluationallow the identification ofotheractivity pref-
erential start times leading to the Gantt chart presented
below in fig. 5.

@

GAS'IT CHART order 1

t" 1" I

1o lit _ zit _ _ .. ,e ,o u .e .6 n_...
GAN'IW CHART order 2

Ait lit IW _ it@ _ 40 _ IIQ U It_ ms '_
ires

Figure_5...............

The qualityofasched-ul_iSbasedon thecapabilityof
theschedulertosatisfyasetofPerformanceme_,

Moreover,a satisfiablescheduleisalwaysa com-
promisebetweentheattempttomeet performancere-
quiredand thenecessitytorespectallitsconsw_ts:
schedulequalitymirrorsthistrade-off,Each setof

organizational constraints has its effects on final pro-
duction schedules and, following the CSP formulation,
if we change the constraints the solution will change
too.

In order to improve schedule quality, our research is
focusingontheevaluationofwhichimpactmighthave
anunexpectedeventontheresultingsolution.PREDIT
approachthroughtheevaluationof discretetemporal
indexesproducesrelativelyaccurateearlypredictions
of activities behaviour as soon as PREDIT receives their
changes and as longas conslmintsremainconslam
duringindexescomputation.The abilitym matt m
changesthatoccurindynamic environments providing
a feasible solution in a sufficiently short lime is very
important expecially in manufa_g scheduling do-=
main.

4.Concluding remarks

The approachwe presentedin this paper constitutes
basis for integrating an evem-bascd mechanism and a

predictivesupportinan oppommisticschedulingsys-

We implemented this model in a_-DOS environment
with a particular attention towards speed performances.
Our experiments indicate that our approach]s_- =
ful in supporting opportunistic scheduling. This system
is very efficient (it takes few seconds to calculate in-
dexes in non-trivial real problems).

.......... ..-. __=_=-_:i-_._?= ,_:: _ • ,

Ourmodelseemstobehighlyappropriateforproblems
wherethecostsofbacktrackingishighbecauseit'sable
topointoutschedulingdecisionsthatwillmi"nirnize
intm-order and inter-order conflicts. It increases sigrd=
ficantly the performances of an opportunistic scheduler,
making it possible to introduce such a tools in real
applicatiol_.'_ _-- _:_

Moreover the policies used by Predit to control the
solution search (must constrained and least impact) can
be used also in dynamic manufacturing environments.
We aredevelopingourresearchin_S _, _ _g- :
to support reactive scheduling and to manage multia-
gent production control systems.

References

[Fox, 1896], Fox M., Observation on the role of con-
straints in problem solving, ProceedingaSixth Cana-
dianConferenceon,4],Montreal,1986.

[Hayes-Roth,79],Hayes-RothB.etal.,Modelingplan-
ningas an incmnentaloppommisdcproblem,Proceed-
ings3rd lJCAI, Tokio, 1979.

[Keng and Yun, 89], Keng. N'._ YunD:, A planning
scheduling methodology for the constrained resource
problem", Proceedings IJCA! 1989, pp. 998-1002.

[Paolucci,90], Paolucci eL a]., "CRONOS-I_ require-
ments for a knowiedge-basedscheduling tool covering
a broad class of pnxluction environments", in Expert
systems in engineering, G.GoulobandW.Nejdl (eds.),
Springer-Verlag, 1990. _L

[Sadeh and Fox,88], Sadeh N. and Fox M., Preference
pmpag_on in temporal capacity _ graphs,
Technical report CMU-CS-88-193.

154

J

m
w

!

D

i

i

I

g

i

l

U

m

E

h

m

i
g

I

g

g

Im

I

i

m

m

B

n

TIME MANAGEMENT

/

/

Michael B. Richardson

miker@aldrin.ksc.nasa.gov
and

Mark J. Riccl

mrieci@aldrin.ksc.nnsa.gov
Advanced Computing Technologies Group

Boeing Aerospace Operations, FA-71
KSC FL 32899

SITUATION ASSESSMENT (TMSA)*

?.-J

•_ STRAC'T

TMSA is a concept prototype developed to
support NASA Test Directors (NTDs) in schedule

execution monitoring during the later stages of a
Shuttle countdown. The program detects
qualitative and quantitative constraint
violations in near real-time. The next version

will support incremental rescheduling, and
reason over a substantially larger number of
scheduled events.

INTRODUCTION

The Time Management Situation Assessment

(TMSA) program is a prototype developed to
assist NASA Test Directors (NTDs) manage
the later stages of a Shuttle countdown. The

NTDs are primarily concerned with the orderly
and timely execution of the countdown process.
The cognitive model they reason with is a
relatively high-level one which includes a

nominal (planned) model of the countdown and a
set of qualitative and quantitative constraints

that def'me such a countdown by specifying
temporal duration and ordinal relationships

between countdown events. Constraints vary
both in their specificity (e.g. < is more explicit,
<ffi is less explicit) and in their necessity (i.e.

from critical - more necessary to desirable -
less necessary).

countdown situation. Even in an anomalous
situation the NTDs' focus remains on the

temporal duration and ordinal unfolding of the
countdown. When an anomaly occurs the NTDs

participate in the anomaly response, primarily,
for the purpose of determining the impact the
anomaly will have on the temporal and ordinal
aspects of the countdown.

The HTDs monitor the current countdown and

assess its compliance _with tfieir-nomlnal
countdown model. When there is a need for a

deviation, they consider alternative revisions of

the current countdown and assess the legality
and desirability of the revised countdown with
regard to the constraints. The countdown

schedule may be revised by reordering events
and/or adjusting the durations of intervals
between events.

The existing prototype monitors launch
processing during the later stages of the
countdown. It detects deviations from a nominal

countdown by detecting temporal and
prerequisite constraint violations. It then

identifies the violated constraint(s). The system
is initialized and operates with both qualitative
and quantitative constraints on the order of
events and intervals, and the duration of
intervals.

From the perspective of knowledge engineering

for TMSA, what is not included in the NTDs' view The prototype is implemented in Smalltalk and
is as important as what is included. The details
of a subsystem or procedural failure, and what is
required to correct or bypass it are not, for the
purposes of TMSA, a partof the NTDs' view of the

"This wo_ is a portion o'f _e _l_al" ;uppo-n"

provided to the Artificial Intelligence Se_ctlon,
Design Engineering Directorate, by Boeing

runs on a 2.Smhz 486, under MS _S. It appears
that a C++ version of the program will be able to
handle a schedule_contalning 200-300 events
wi_ response times of < 1.5 seconds for each
assimilation input (i.e. relation vector

refinement).

SALIENT CHARACTERISTICS OF THE SITUATION

Aerospace Operations under the Engineering In formulatintt our approach to this.,_scheduling
Support Contract at Kennedy Space Center. - _ task we found the following characteristics of

Arthur E. Beller is the NASA Technical Contact. the situation to be especially important.

155

I. The situation is highly structured. A pre-
existing nominal schedule is available. There is

a well formulated, proven set of constraints on

the schedule. The horizon for rescheduling is
limited by fixed synchronization points which
divide and encapsulate the countdown schedule.
All possible events in the countdown are known
and are of limited number.

2. Although this is an advisory system used by

experts, the criticality of the situation places a
premium on timeliness and correcmess beyond
that of many applications. Near reai-time (< 1.5
second) responses and an assurance of

correctness are required. Rescheduling with
ve_fication must be supported with response
times, again, in near real-time. The amount of

time available for considering schedule

alternatives is severely limited, especially near
the end of the countdown.

The verification and validation issues in our

software environment, along with the above

mentioned characteristics led us to approach the
problem algorithmic.ally, and avoid using
heuristics.

While the countdown is formulated in terms of
both events and intervals, the constraints

between• intervals• are such that we have be_
able to represent intervals as start and end pairs
of events. This has permitted us to restrict our

representation to a point algebra that along with
our variation of the Waltz algorithm provides a
reasoning mechanism that is both sound and

complete.

KEY CONCEPTS AND DEFINITIONS

Time

From the NTD's perspective countdown time is

discrete, with a relatively coarse granularity
(i.e. the smallest increments are about one

second). Accordingly, welassume a discrete time

model and interpret points in time ItS single

integer,and intervalsas pairs of integers,with

consecutive integers forming the smallest
nontrivialintervals. Effectivelythen, our points

are "moments" in the sense of (Allen and Hayes,

1985). A differentapproach to discretetime

and "moments" is described in ($chmiedel,
1990).

Pseudo Events

For several purposes TMSA employs events that
are not members of the universe of countdown

events employed by the NTDs. As with

156

countdown events, pseudo events have integer
time stamps and generally can be manipulated in
the same ways as countdown events. Current
uses of pseudo events are described below in the
Uncertainty discussion.

Uncertainty
Uncertainty arises in the countdown schedule

situation in several distinct ways. First of all
many of the qualitative constraints between
countdown events are ambiguous (e.g. <=).
Secondly, ambiguity also occurs in some

quantitative duration constraints on the length
of intervals.

We represent and reason about q_titative _
constraints and uncertainty with the same

mechanisms used for qualitat!ve constraints and
uncertainty. For example,-m repre-_.nt i_at _
event Ej must occur at or after some point in time

we generate a pseudo event FA, time stamp Ei
with the appropriate time and establish a
constraint relation Rij of <=. This approach

extends to duration constraints by using two
pseudo events, one for the start and one for the
end. By representing quantitative constraints in

this way we are able to take advantage of the
soundness and completeness of the
ConstraintChecker algorithm.

In addition to the nominal countdown model and

constraints, the NTDs also employ a quantitative
concept of slack time. not uni|ke_ _ed in =
project planning systems such as PERT or CPM.
For the NTDs slack time is a valuable resource

that they seek to preserve for use later in the

countdown should ii be needed. C_urre_y=_ do
not explicidy represent or reason about slack

time, but, we are now examining approaches to
representing slack time and evaluating the

quality of schedule alternatives in light of the
relative preservation of slack each provides.

Fmally, there is the usual uncertainty related tO
confidence in estimates of temporal duration.

Currently we do not deal with confidence factors,
but, my in the f_u_re, when-we begin eying
the quality of schedule alternatives seek some

measure theoretic approach to confidence.

Event (m):
A primitive object without discrete time
duration. Events are used to define the two

fundamental types of countdown objects,
Intervals and Milestones, and to uniquely
represent specific points in discrete time.

l

J

am

ms

g

m

M

sm

m
m

|

m

I

m
Is
ms

m r

m

m
m

m

qm

!

W

|

|

|

i

= :

m

w

- _---

v

Universe of Events: "

All the possible events that can occur as part of

a countdown. These events are specified in
advance to TMSA :or are generated pseudo events,

and are to be reasoned about by TMSA.

Interval (Iij):

A court!down object with temporal duration

(trivially one) defined by two Events Ei and Ej
such that if the time stamp associated with Ei is

<= Ej then Ei is the start of the Interval Iij and Ej
is the finish.

Assertions:

Assertions about Events may be of two types:
point assertions about a single Event (e.g. Eventi

occurred at time t); and Relationship Assertions
about pairs of events (e.g. Eventi <> Eventj).

Quantitative Relation:

A temporal duration between two Events that is

expressed as a natural number corresponding to
some number of units of discrete time.

Qualitative Relation:

One of the following relationships between two

Events: =, <, <=, o, <=> (unconmralned), 0 (null).
The program converts > to < and >= to <=.

M.OORH'Hlv_

Two algorithms have been developed for TMSA.

These form the reasoning Kernel of the program
and are designed to monitor and interpret the
legality of the temporal duration and sequential
unfolding of a countdown.

The fu-st algorithm, ConstrsintChecker, is used
to maintain a qualitative representation of the
currentstatusof a countdown and to check the

consistency of that statuswith the qualitative

constraintsthat define the legalityof a
countdown.

A popular approach in the scheduling literature
is Allen's Interval Algebra (Allen, 1983) and
his adaptation of the widely used Waltz
Algorithm (Davis, 1987). The ConstraintChecker

Algorithm is also an adaptation of the Waltz

Algorithm and employs the Point Temporal
Algebra presented in (Vilain and Kautz, 1986).

The ConstralntChecker Algorithm deals only
with qualitative Relationship Assertions (in the
form of Relation Vectors). One of the tasks of the

ScheduleMaintainer Algorithm is to generate
Relationship Assertions from Point Assertions
received from the live data stream or the NTDs.

157

The second algorithm, ScheduleMaintainer, is

used to maintain both a qualitative and
quantitative representation of a countdown, the
representation includes both the current status

of the countdown and the quantitative
constraints that define the legality of a

countdown. This representation is also used to

generate relational assertion vectors as input to
the consistency checking algorithm.

ConstraintChecker

ConstraintChecker differs from the Waltz

algorithm presented in (Vilaln and Kautz, 1986)
in two ways. Our algorithm uses an upper

diagonal array rather than a n x n array. For our

problem we needed to maintain not only a
current representation of the
constraints/relations between events, but, also
the original constraints used to define a nominal

countdown. This permits the algorithm tO

recognize the situationwhere a change in the
relation between two events violates the current

relation, but, not the original one. An
alternative approach would have been to not

update the relations vectors, but only check for

validity of the new assertion. We opted for the
approach used in order to permit not only the
checking of new assertions with the original

constraints, but, also to permit the tracking of
relation vector changes over time. This

capability is useful for debugging the constraint
database.

We state the following theorems without the
proofs because of space limitations.

The time complexity of ConstralntChecker is
O((n3)/2).

The Space Complexity of ConstraintChecker is

O(n 2).

The inference mechanism for ConstraintChecker
is sound.

The inference mechanism for ConstraintChecker

is complete.

ConArray (constraint array)

An upper diagonal array indexed by events, and
in which ConArray[i, j'] holds the asserted

constraint relationship between events i and j.
ConArray holds the def'ming qualitative
constraints(given or generated) that the NTDs

use to defme a legalcountdown. Note that

W

unlike EmpArray, ConArray is not updated.
Thus ConArray maintains a record of the
original constraint matrix.

EmpArray (empirical array)

An upper diagonal array indexed by events, and
in which EmpArray[i, j] holds the asserted

empirical relationship between events i and j.
EmpArray holds the current, but, changing

relationships (given or generated) that actually
occur during the countdown.

EPQueue (event-pair queue)
A FIFO data structure used to keep track of
those Pairs of Events for which a changed
relationship is asserted.

The addition operation (+) computes the sum of

two vectors by i'mding the cognmon r constituent
simple relations. This is a means to identify the
least restrictive relationship the two vectors

together admit. Addition is implemented as a

Table lookup and is the same as that presented
in (Vilain and Kautz. 1986).

The multiplication operation (x) is defined
between pairs of vectors that relate three Events.

For example: if l_ij relates Events i and j, and Rj_
relates Events j and k, the product of Rij and Rjk
is the least restrictive relation between i and k

that the two vectors together admit.
Multiplication is also implemented as a table

lookup and is similar to that presented by
(Vil_in and Kautz, 1986). The table has

been reorganized to yield valid results using the
upper diagonal array only.

ConstraintChecker

Assert (Rij)
/" Rij is a relation being asserted between El and
Ej.'/
{ Tempij:= EmpArray[ij];

F.mpArray_j_:-_'_.mpA_ray[ij] + R|j;

If EanpArray[ij'] -= Tempij
Then Put EiEj on l_hzeue; }

Assimilate

/" Monitors EPQueue for new Relationship
Assertions */

{ While EPQueue is n0i e mp_ Do

Oct next EiEj from EPQueue;
Propagate (EmpArray[ij]); }

Propagate (EmpArray[ij'])
/* Props new Relation Assertion between Ei and

Ej to other Events */

158

For each Event F..k Do

Tempij:= EmpArray_k] ÷

(EmpArray[ij] x EmpArray[jk]);
If Tempij = 0

Then (Check

(ConArray[ij]));

If EmpArray[ik] .-= Tempij
Then Put EiF_ on

EPQueue;

EmpArray[ik]:= Tempij;
Tempj:= ._npArray[jk] ÷
(EmpArray[ik] x _pArray[ij]);

If Tempij = 0
Then (Check

(ConArray[kj];
If EmpArray[jk] --= Temp|j

Then Put EjEk on
EPQueue;

EmpArray[jk]:= Tempij;)

Check (ConArray[ij])
/* Checks to see if new Relation Assertion

between Ei and Ej, Rij, violates the Original
constraint between them*/

[Tempij:= ConArray[ij];
ConArray[ij_]:= CoziArray[ij] + Rij:
If ConArray[ij] = 0

Then (signal illegal count);
If ConArray[ij] -,= Tempij

Then Peplace EmpArray[if] with

ConArray[ij] and Put EiEj on
EPQueue; }

ScheduieMaintainer

ScheduleMaintainer generates qualitative
relational assertion Vectors by moving an Event

data point and time stamp received from an

external source into the appropriate position on
the multi-linked list that is the central data
structure for ScheduleMaintainer. A re|afional

assertion vector (Rij) is generated by taking the
moved Event and its new successor as an Event
pair EiEj. Quantitative consu-aln_=_

maintained by using pointers between related

Events, P.i and Ej for example, and when Ei is
moved, Ej is moved sppmpriately, and EVentj is

then _sed as a moved Event. just as the
original moved Eventi was processed.

We state the following theorems without the
proofs because of space limitations.

The Time Complexity of ScheduleMaintainer is _
O(n). =:

I

m

m

I
J

m

W

i

m

|T

m

m

I
m

l

[]
g

m

I

I
m

g

m
m

m

B

m

j

m

U

= =

m

===

g_

m

= m

W

The Space Complexity of ScheduleMaintalner is
O(n).

ScheduleMaintainer is initialized by

constructing an indexed (by External Time)
multi-linked list data structure (EventList) that

consists of records corresponding to every Event
in the Universe of Events. Each of the n records
(REj) include:

1. Name of the Event

2. Marker indicating whether the Event
has occurred

3. Time stamp

4. Marker indicating whether the Time "
Stamp is observed, assigned as a

constraint, or assigned arbitrarily by

the program
5. Pointer to Predecessor l_i
6. Pointer to Successor REk

7. Variable number of nonnull Pointers

to other _ with quantitative

constraint relationships between P.Ei
and the other individual REs

8. Corresponding quantitative constraint-
for each Pointer

9. Marker indicating whethcr the Record
is to be Moved

The algorithm receives as input the name of an
Event and an external time Stamp. The time

stamp may be when the Evem actually occurred
or assigned by the user (to support interactive
incremental rescheduling i.e. what-ifing).

The algorithm then examines the corresponding

REi t° determine if the g_ should be moved in
order to maintain a partially ordered
(isomorphic) relationship between the discrete
time of the time stamps of items on EventList and

the natural numbers. This is done by comparing
the new discrete time stamp with the time stamp
of the successor RE.

If the new External time stamp violates the
partial order condition, l_i is marked to be
moved and moved to a location that maint_ns

the partial order condition.

In the new location, the successor to l_i, P_j is

selected and • relation vector for the pair EiEj is
generated. Depending onthe time stamps of the
two records, the vector is either - or >. If the

time stamps are equal the vector is =. If the time

stamps are ordered the vector is >.

The new relation Rij is then passed to
ConstraintChecker.

WORK

C++ is being used for the version currently
under development. The new version of the

prototype will provide an exploratory
function which permits the user to query the

system about the impact of changes to the
preplanned countdown schedule. Both of the
above developments are straightforward and will

result in improved performance and increased
functionality, respectively.

A more challenging task addresses the
redundancy inherent in an array representation
of the constraint set. We believe the bandwidth

(e.g. Zabih, 1990). of the transitive closure of
the countdown graph is quite small and
substituting the transit!re closure for the

original graph, will permit us to profitably use
an adjacency list (e.g. Mehlhorn, 1984) rather

than an array representation of the constraint
set. We currently believe we can maintain
inferential soundness and completeness with

such an approach. The issue seems to be, what
impact this might have on the scope of the
models specifiable with such • system. If we are

able to use this approach, a substantial
reduction in the time complexity of

ConstraintCheeker is possible.

(Alien s3_ _mes F,_ Allen, _nmin_ng
Knowledge About Temporal Intervals.
Communications of the ACM 26(11), 832-843.
1983

(Allen & Hayes 85) James F. Allen, PatrickJ.

Hayes, A Common-Sense Theory of Time, Proc.

9th IJCAI, Los Angeles (Cal,),528-531, 1985

(Davis 87) Ernest Davis, Constraint Propagation

with Interval Labels, Artificial Intelligence 32.
281-331,1987

('Mehlhom 84) Kurt Mehlhorn. Data Structures

and Algorithms 2: Graph Algorithms and NP-

Completeness, Springer-Vorlag, 1984

(Schmiedel 90) Albrecht Scluniedel, A Temporal
Te_olo'gi_c_-"LogiC__oc 8th AAAI _0. Boston

0vtw.), 19_
CLabih 90) l_unin Zabih , Some Applications of
Graph Bandwidth to Constraint Satisfaction
Problems, Proc 8th AAA/ '90, Boston (Mass.),
1990

(Vihtin & gautz 86) M. Vilain. H. Kautz,

Constraint Propagation algorithms for Temporal

Reasoning, Proc 4th AAAI '86, Philadelphia
(Pa.), 1986

159

Constraint monitoring in TOSCA *
Howard Beck

Artificial Intelligence Ap_cations Institute

....... University of Edinburgh

80 South Bridge

Edinburgh EH1 1HN

United Kingdom

Introduction

_The Job-Shop Scheduling Problem (JSSP) deals with
the allocation of resources over time to factory oper-
ations. Allocations are subject to various constraints
(e.g., production precedence relationships, factory ca-
pacity constraints, and limits on the allowable number
of machine setups) which must be satisfied for a sched-
ule to be valid.

The identification of constraint violations and the
monitoring of constraint threats plays a vital role in
schedule generation both in terms of (3 directing the
scheduling process and (h_ informing scheduling de-
cisions. This paper describes a general mechanism for
identij_/inf ¢on_rGint eiolatio_ and monitoring threats
to the satisfa_io_ of eomfl_ints throughout schedule

generation. _.: _.'.',._

Identifying-constraint violation To achieve a
valid result in which ull constraints are satisfied, a
scheduler must be capable of distinguishing between
valid and invalid solutions. This involves, at minimum,
being able to identify constraint violations in fully-
generated schedules. Clearly, if the scheduler is on/W
able to identify constraint violations in fully-generated
schedules, backtracking can only be introduced after
considerable computational effort has already been ex-
pended. To avoid wasted effort, the scheduler should
be capable of identifying]ailed states (i.e., states from
which it will be impossible to achieve a valid solution)
during the process of generating the schedule. The
earlier that failed states can be identified, the lees un-
necessary work need be done.

Monitoring of threats to constraints Given a
particular factory capacity, constraint violations may
be identified from the specification of the factory prob-
lem itself and could lead to a respecification of the
problem. Alternatively, constraint violations may be
(inadvertently) introduced by decisions Men by th_
scheduler. To avoid taking such decisions, potential
threats to constraint violations may be tracked by a
Iookahend analysis (e.g., [Lin88, Sad91]). -P0tentls]

"This retearch is supported by Hitachi Ltd.

constraint violations occur where the nmguitude of the
estimated demand is close to the avail-able capacity.
Monitoring constraint threats may be used to direct
the scheduling process to the most critical constreinta
and inform the decision making process.

Constraint Monitoring

Methods of constraint monitoring
assuming distributions of operation
demand

The monitoring of temporal-capacity constraints has
been a central aspect of a number ofscheduling systems
(e.g., [Liu88, sadgl, Bergl]). Each of these _ms has
been concerned with estimating demand on resources
over time to al]ow comparisons with available capacity
to be made , _ :. :-

A]tho--u-g_ there s-reimportant differences between

the methods adopted for monitoring temporal-capacity
constraints, the general approach ad0pted_ for._t__ _
tag demand is based On mumpti_ asto thede-_d
each operation imposes on a resource. In the case of
RF._s-n[Liu88], operation demand is assumed to be
split equally acmes the valid timewindow of the op-
eration. In the case of MICRO-BOSS [Ssdgl], Oi_efi_ _
tion demand is assumed to be split across the valid
timewindow of the operation on essentially the inverse
proportion of the cost associated with different start
ti_

Temporal-capacity analysis provides strategic infor-
mation to the scheduler by highlighting critical re-
source time periods. This information can then be
used during schedule generat|on to ¢h_wh]cl_ 1_;
titular resource time period to address next, to choose
which operation to anocate and when to allocate the
operation to effectively redistribute estimated resource
demand.

Limitations of making assumptions about

distributions of operation d_d. :

It is hi-underMing an analysis based on mplitting op.
e_t/on demand into a nwmber of sepanafe time periods
that limitations are introduced in that:

J

m
m

!
I

I

am
ua

i

i

m

W

u
m

g

ss
II

!
M

i

|
]J
I

160 I
J

-._._

r
=LL'

P=

a=_l..

I. the estimated demand for resource over time in-
troduces uncertainties usocisted with assumptions
made regarding operation demand over time

2. contiguous time periods are not recognised as being
conti_otlg

For schedulem undertaking an analysis of temporal.
capacity constraints based on splitting operation de-
mand over time, capacity bottlenecks indicate regions
of high resource contention. As a result of the uncer-
tainties introduced by the assumptions made reprding
estimated operation demand, it is not poaib]e to tell,
even where the estimated demand is greater than avail-
able capacity, whether a capacity constraint has been
violated or not. This is illustrated in the next section.

.....

Constraint monitor|rig in TOSCA

TOSCA analyses temporal-capacity and setup-capacity
constraints throughout the factory capacity hierarchy
across multiple time periods. Operation demand is rep-
resented down to the granularity where the operation
must legally occur, i.e., the full operation demand is
associated with the legal timewindow of the operation.
The operation demand is not subdivid_ed over the du-
ration of its legal timewindow, avoiding the need to
mmign probabilities to the possible start times of each
operation. Normally the operation timewindow is set
by the release date and due date of the job and the
intra-]ot temporal relationshil_. Aggregated demand
can be checked against available capacity both before
and during schedule generation.

An example
To distinguish the TOSCAapproach, a srrml]example is
considered using, in the first case, a method based on
assumptions as to the distribution of operation demand
and, in the second case, the method adopted in TOSCA
which avoids such assumptions. The example involves
the allocation of three operations to a single resource
which is available for 7 hours per day. For the purpose
of capacity analysis, the schedule timeline is split into
periods of 1 day duration.

Demand:

Operation

opl
op2
op3

Duration

(srs)

31m
12 hrs

Earliest Latest
Start End
(Day) (Day)

I 4
2 5

Capacity:
7 hours per day

161

Method 1: Constraint monitoring
assuming distributions of operation
demand

Constraint monitoring typically involves:

• maintaining an up-to-date representation oftbe legal
timewindow of each operation throughout schedule
generation

• splitting the timeline into discrete periods for the
purpose of analysis

• for each operation, making assumptions about the
likelihood of start times across its legal timewindow

• for each operation, calculating an expected opera-
tion demand across its legal timewindow

• aggregating demand for indiv/dua] resources and
comparing it against available capacity

lq_source bottleneck periods (i.e., periods where de-
mend is high relative to available capacity) indicate
potential threats to capacity constraints and are typi-
cally used to direct the scheduler to the most critical
parts of the remaining schedule.

Methods which split operation demand across the
operation timewindow assume that each operLtion ex-
erts a demand across eeeA of the discrete time per/-
ods under consideration that fall within the operation's
timewindow. For instance opl exerts a demand in peri-
ods dayl, day'2, day3 and day4. Every operation which
could pouildy be active over a particular time period
contributes to the overall aggregate demand over that
time period. In this example, the three operations
(opl, op2, op3) all contribute to the estimated resource
demand in day2.

Bottlenecks where estimated demand exceeds avail-
able capacity cannot be used for the purpose of detect-
ing constraint violations. Where estimated demand ex-
ceeds available capacity, it may or may not be poaible
to redistribute demand away f:om the bottleneck and
so avoid a constraint violation.

Figure 2 indicates a distribution of operation de-
mend based on an assumed uniform probability distri-
bution of start times. Figure 3 shows the aggregation
of the demand of these operations, with the horizontal
dashed line indicating the available capacity. The ver-
tical dashed lines indicate the granularity of capacity
anal_is.

Method 2: Constraint monitoring without
assuming distributions of operation
demand

In TOSCA, the demand of an operation is smociated
with its temporal constraints (i.e., its legal timewin-
dow), mitl, olt unming any slbdi,_ision o/OLaf demand
across Me timeu,indow. An operation's demand is ns-
sociated with a sinfle time period. For instance, op2

lad/vidail

I

I I I
I I I
I I I

=====================

l,_khi! ; ; ; ; ;
I i I I l
I I ! ! I
l I I I I
| I i I I
! I I I I
I I I I l

i I I ! ,
i i i I i

2 $ 4 5

]z_vidml I |

I i
! I
I I

_: _ _-"_:"_ _ :'-';_:__ _ ii _:.k;_;::. _:':::_,:.i-i.::._ -;-;:"':-;.2:_.::;._:::-:-:6::'
I':_.:-.-.:_:_._- -:.;:__:_:i_..:':._

._, ,':'_::_. :."._'._::;;-'..:_-,L_

..,. ._.i_.,,,._.?:.-:....:..

[.....................::::::::::::::::::::::::::::::::: : :
1 3 3 4 $

Figure 2: Individual operation demand usuming a uni-
form operation start time distribution

! !

.':"_i_i_!!__!_:.k..-'::_;-_I _ _:_ .--_:_._::<._::::::_,:
:_;_-:N:_:::_:._)_:'_-_):::::",x::_:_:::::_:.te

-.;_'_.:_i:_:':.-':!_:...:__'_.::i:.::_lk_ll_ _ "" .:_.-._.,;:::::::::::,_: . --:_:_:f_:_:;;::-

:_._............_:_-

I _ li_'*'i_i:'.... :_'. _2:_:_:

...... !_!.;i_._:_.._..×_. II _'._i:_-'::i " •

I_._

! 3 $ 4 5o

Figure 3: Estimated aggregate demand assuming a
uniform operation start time distribution

exert, a demand of 3 hours over the period [2, _, no as-
• umpt/ons being made regarding the prohabilistic dis-
tribution of that demand within that period.

Only operations which are necessaril_l active, given
that their temporal constraints are to be satisfied,con-
tribute to the aggregate demand over the time period.
That is, demand arises from only those operations
whose legal time_udow are subperiods of the period
under consideration. For instance, only the demand of

opl sad op3 are associated with the time period [1,4];
the demand of op2 is not included.

Fibre 4 shows thedemand over time associated with

the individmd operations, opl has a demand of 18

hours associated with the period [I, 4], op2 has a de-
rmmd of 3 hours s_ocisted with the period [2, 5]; and
oi)3 has a demand of 12 hours associated with the pc-
nod [2, 3].

lad/vidmd

I •

la_vidIIl

I

i +

I

i i i i

I 3 $ 4 $

i

I I
I i
I _ = I
I I
I I
!

I l I I IiiliI I I

3 $ 4 $

m i i ill

1

..... ,...... _,_L

ii_-__2,.:;_k._-,_i_i_i_i.-..:_i-_i._ii_]
:_;:'_.:::@@#_ :::::::::::::::::::::::

:" .::_:_;_::-""_:_::_:_

o . -- I I
1 2 $ 4 5

÷

Figure 4: Individual operation demand not assuming
an operation start time distribution

In estimating resource demand, temporally overlap-
ping operations are aggregated. The operations opl
sad op2 together ({opl, op2}) have a demand of 21
hours over the period [I, 5], {opi,-op3)have a demand

of 30 hours over the period [1, 4], (op2, op3} have

i

i
i
E

m

I

[]
i

I
I
i

I

|

I
I

[]

I
I

162

[]

I

--- .

w

=

L_

v

TimePeriod [1,4]

::-'.::_:::_:!::#::_F:::_'-:"-::::::!:!.'.:.!::::::::_:::::::-!:: :'.:_::.:_:":-::.'g|
! I I I

1 2 3 4

! !

•._.&,_:::.-,..,..-:>... ::_:_.:.:-.-.!..:.:,....._ • .. :,.,.._-.-..',1_-_

1 2 3 4 $

TimePa'Jod [1,5/

Aarep'- I_14

! I o I

1 2 3 4 5

Figure 5: Aggregate demand not mmuming operation
start time distribution

=

: a demand of 15 hours over the period [2, 5] and all
three operations together have a demand of 33 hours
over the period [1, 5]. Where multiple sets of opera-
tions are associated with a time period, the demand
is that of the mzz_mal _ef of operations. This means
that the demand on the period [I, 5] is 33 hours, the
demand associated with {opl, op2, op3} rather than
{opl, op2).

The demand sesociated with any time period can
be direct]y compared with the available capacity -- in
this example, 7 hours per day -- to find constraint vi-
olations and threats. A capacity constraint violation is
indicated by the demand of {opl, op3}, its demand be-
ins greater than the maximum available capacity over
the period [I, 4]. Figure 9 shows the demand asso-
ciated with the maximal sets of operations suociated
with the periods [I, 4], [2, 3], and [I, 5].

In that each timeline period is associated with a set
of necessary operations - assuming that the operation
tirnewindow constraint holds - the operations impli-
cared in a constraint violation can be readily identified.
This can be used to inform constraint relaxations. In
this example, the timewindow and duration constraints
of opl and op3 introduce a constraint violation. One
of the_" constraints will need to be relaxed to avoid
this constraint violation. Altering the constraints of
op2, another operation active over this period, will not
avoid the violation of the capacity constraint in the
period [1, 4].

Scheduling in TOSCA involves the _ter_e rej_e.
meat of the timewindow of each of the operations.
Each decision to restrict the tirnewindow of an opera-
tion has the effect of redistributing resource demand.
Before scheduling bests, opl has a demand usocisted
with the period [1, 4]. In deciding, for example, to re-
strict the timewindow ofopl to end by the third day at
the latest, the operation demand becomes associated
with the period [I, 3]. The effect of these decisions is
monitored using Aabolrap]_.

Constraint monitoring using
habographs Habograpbs (Hierarchical Abstraction
for Balancing Objectives) are two-dimensional datas-
tructures used within TOSCAto represent and monitor
temporal-capacity constraints. Habograpb coordinates
are given as start-end pairs and refer to cells represent-
ing a time period at a resource. Esch operation's earfi-
eat start time is plotted on the y _ and its latest end
time is shown on the x axis. Since it does not make
any sense to have an earfieat start time which is later
than a latest end time all of the celk above the leading
diagonal are always empty. The units of the axes are
problem-dependent.

In referring to habographs it is important to be clear
about the use ors couple of terms with respect to infor-
marion held at a habograph cell:/oca/and egg_egafe. A
cell refers to a time period at a resource. Information
about a resource time period may or may not include
information about its sub-period.

_-, 163

Figures 7 and 9 present an illustration of local and
ag_epte demand in habol_phs on the example de-
scribed above.

I I Loc [Co
Cel! [operationsIDemand

12"I1l+II"2, 6 op2 3

,3 op3 12

Figure 6: Local demand

Start

5

4 0 0

3 0 0 0

2 0 12 0 3

1 0 0 0 is 0

1 2 3 4 5

End

Figure 7: Habol_sph showing local demand

Figure 7 indicates the local operations over the pc-

rio<is: [1, 4], [2, 5] and [2, 3]. opl is]oca] to [I, 41, op2
is local to [2, 5] and op3 is lo_ to [2, 3].

Aggregute Aggregate

Cell .operations Demand
1, 4 _opl,op3) 30
2, 5 {op2,op3} 15
2,3 (op3) 12
i1, 5 (opl,op2,op3}. 33

Figure 8: Aggregate demand

Figure 9 indicates the as_regute set of opemtious
over three time periods. The aggregate set of opera-
tions includes all the operations which must be pro-
ceased in a particular period. In the period [I, 4], two
operations must be processed, these bein_ opl, which

must occur between [1, 4] (i.e., dayl through day4),
and Ol)3, which must occur in the subperiod [2, 3] (i.e.,

day2 through day3).

m

Start

5

4 0 0

3 0 0 0

2 0 12 12 15

1 0 0 12 30 33

.........+ ++++4......S .+
End

Figure 9: Habogrsph showing aggregate demand

J

m
m

m

11

m

B

g

The contents of habograph cells Each cell within
s habograph has s representation of number of 0bjects.
The main object within each cell is a list of the oper-
ations which are local to that cell. Each of these op-
eratious exerts a demand for capacity at that cell and
the sum of the demand exe_ by+all the cell's local
operations is stored as the cell's local demand. Each
cell also has an agfrefate demand figure, a number c_l-
eulated by summing all the local demands in all of the
cell- that are above and to the left of the current cell.

In addition to the demand associated with a Jet of

operations, infommtion is also held as to the capac-
ity available over the time period represented by the
cell. As with demand, capacity information is repre-
sented by s local and an aggregute figure, Local ca-
pacity is represented on]y OV_ the leading diagonal of
the the habograph. In the example under _onslder-
stion, the capacity of 7 hours per day is represented
along the leading dingomd with sero's everywhere else,
as is shown in Figure I0. Affreoate capeciO/, shown in
Figure 11, is calculated in the _ manner as the sg-
gregate demand, described above, except summing the
local capacity figures rather than the local demand.

Finally the cell also has:_ rep_ntstion for demand
premre (Figure 12). This is simply the ratio of the

i

m

m
Ii +

i+

m
m

m

mm
m

m

nil
l
m

aggregate demand st that ceil, divided by the aggre-

gate capacity of that cell. Where the d_d_, _ !
is greater than one, a constraint viohttion ts md_csted. lm

Where the demand pressure is cl_e to but less than

one, s constraint threat is indicated. In thk example, _ i
t]constrs_t violation is indicated over the period [I,

Conclusion

Most current approaches to capacity constraint moni-
toring involve assumptions regarding the prohabilistic

!

m

164

_m

g

L _

--.m

r _

m

[]

m

IB

Start

5

4

3

2

1

Start

5

4

3

2

1

7

1

7

0 0

2 3

End

7 0

7 0 0

0 0 0

0 0

4 5

Figure I0: Babogmph showing local capacity

7 14

7 14 21

7 14 21 28

7 14 21 28 3S

1: 2-s4- s
End

Figure 11: Habo_,sph sho_g aggrepte capacity

Start

5

4

3

2

1 0

1

0 0
i

0 0 0

0 12/14 12/21 1En8

0 12_ _/'a _

2 3 4 5

End

Figure 12: Habogrsph showing demand pressure

distribution of operation start times. Such approaches
indicate resource bottleneck periods (i.e., periods of
potential constraint threat) but are unable to identify
constraint violations.

This papexdescribes habogmpha, a novel datastruc-
ture, used for capacity constraint monitoring in TOSCA.
The approach avoids assumptions regarding the prob-
ab_fic distribution of operation start times ud has
the advantage of enabling the identification of resource
bottleneck periods which necessarily involve a con-
stralnt violation.

Hsbographs are currently being investigated within
the TOSCA project ms a unifying representation to sup-
port resource allocation, temporal allocation and setup
management.

References

[Bergl] Pauline Berry. A Predictive Model ?or Satis?_-
lagConflictingObjectivesinSchedulingProb-
lem. Phi) Thesis, University of Strathclyde,
Glasgow, 1991.

[Liu88] Bing Liu. Scheduling via reinforcement. Your-
hal o? AX in Engineering, 3(2), 1988.

[Sad91] Norman Sadeh. Look-ah_d Techniques/or
Micro-opo_nnizticjobshop scheduhng.PhD

. Thesis,schoolofComputer Science,Carnegie
Mellon Univmity, 1991. (CMU-CS-91-102).

, H

i _ 165

/3 ..

.-,.
SOCAP. Lessons learned in applying SIPE-2 to the

military

#

./

operations
Roberto Desimone

SI_ International

333 Ravenswood Avenue (EK335)

Menlo Park, CA 94025

robertoOerg.sri.COm-- _ _ _

crisis action planning

Abstract

This report describes work funded under the

DARPA Planning and Scheduling Initiative that
led to the development of SOCAP (System for
Operations Crisis Action Planning). In particu-
lar, it describes lessons learned in applying SIPE-
2, the underlying AI planning technology within
SOCAP, to the domain of military operations de-
liberate and crisis action planning. SOCAP was
demonstrated at the U.S. Central Command and
at the Pentagon in early 1992. A more detailed re-

port about the lessons learned is currently being
prepared [7].

This report was presented during one of the panel
discussions on "The Relevance of Scheduling to AI
Planning Systems".

Introduction

Many agencies, in addition to the military, have the
need to manage crises. Good crisis management is
characterized by quick response, decisive action, and
flexibility to adapt to the changing situation. Devel-
oping a good course of action (COA) and modifying it
as necessary must take into account a number of fac-
tots: approaches used in past cases that have worked
we]l, novel features of the new situation, differing pri-
orities for subparts of the crisis, and feasibility of sug-
geared COKs. The objective of this program of applied
research was to develop decision _dsto enable more
flexible and accurate joint military COA_ to be devel-
oped in response to a crisis. To date, no research or
development activity has integrated a futl-blowngener-
ative planning system into an operational environment.

SOCAP (System for Operations Crisis Action Plan-
ning) embodies SIPE-2, together with a user interface
tailored to military operations and a situation map di_
play system. SIPE-2 (System for Interactive Planning
and Execution) is a domain-independent, AI planning
system that was developed during the 1980s by David
Wilkins of SKI International's Artificial Intelligence

domain

Center [4, 5, 6]. It supports both automatic and in-
teractive generation of hierarchical, partially-ordered
plans. This system p_ovides ei_c_ent methods for rep-
resenting properties of objects that do not change over
time, and uses these to constrain the choice of objects
associated with actions in the plans generated. Sl?F_,-2
has been tested, out on a variety of small-scale prob-

lerns for travel, robot, and aircraft planning, and for
extended blocks-world problems. More recently it has
been applied to a larger scale planning problem in the
brewery domain.

In early 1992, SOCAP was demonstrated both at the
U.S. Central Command in Tampa-, Florida and at the
Pentagon. The aim was to demonstrate the feasibility
of applying the SIPE-2 technology within SOCAP for
the generation of large-scale military operations plans
(OPLANs). The overall objective is to generate several
OPLANs that describe employment p[ans for dealing
with specific enemy COAs, and identify deployment
plans for getting the relevant combat forces, support-
ing forces, and their equipment and supplies to their
destinations in time for the successful completion of

their mission. [3] provides a description of the some
of the requirements for automating the joint military
operations planning process.

The rest of this report will describe SOCAP and the
lessons learned in applying SIPE-2 to the military op-

erations crisis action planning problem.

SOCAP - System for Operations Crisis

Action Planning

Figure 1 shows the SOCAP architecture, highlighting
the necessary inputs for the generation of OPLANs,
the available outputs, and the user interaction. It is

assumed that the following inputs would be fed into the
SOCAP database from available military datab_ases:

• threat assessment - list of enemy threats, locations
and dates.

• ter:ain analysis - information on terrain features

that might affect mobility and observability.

g

i

m

i

i

El-

l

|

i

m
m

E

I

i

I

m

[]

m

i

m

[]

166

w

I_.

B

L

Figure I: SOCAP Architecture

• apportioned forces - List of combat forces available
for planning purposes.

• transport capabilities - list of aval]able assets.

Other inputs would come from the user:

• planning goals - llst of goals that match _ion
statement.

• key assumptions - e.g. rules of engagement, non-
intervention of third party forces.

• operational constraints - e.g. overflight privileges,
troop limits in country.

,!

In this case, a typical user wonld be either the mission

commander orone of his/her joint staff'.

Most of the above information is inherently dynamic
and is best represented in SIPE-2 as simple first-order
predicates. However, a great deal of the available data
are static, and for efficiency reasons are best repre-
sented in SIPE-2 using its hierarchy of classes and ob-
jects, together with (static) properties of objects. For
example, cargo requirements, and combat capabilities
for specific combat forces should be denoted se (static)
properties of these forces.

SOCAP also requires a large set of plan operators to
describe military operations that can a_.hieve sp_c
employment or deployment goals. For instance, there
are a variety of military operations for deterring an en-
emy army, navy or air force. Each of these operations
may be represented by a different plan operator Which
all have the common effect of deterring an enemy force.
However, they may have different sets of preconditions
that need to be satisfied before they can be brought
into the plan, or different resource requirements.

The SOCAP user interface provides facilities for guid-
ing the user through the plan generation process. The

amount of user interaction can be varied during the
planning process. It can range from being fully auto-
mated, in which case SOCAP generates a plan with no
human interaction, to send-automated, in which the
user makes some choices; to fully manual, where the
user makes all the choices. At each goal in the plan,
the user can request the possible operators that achieve
the goal to be displayed. Likewise, when attempting
to bind a variable associated with an argument of an
operator, the possible bindings can be displayed. For
instance, the user may be presented with the set of
military units that have the appropriate capabilities
to deter an enemy threat, or a list of suitable locations
for the military operation. This set may be constrained
by the preconditions and other constraints associated
with the arguments of the relevant plan operator. At
the end of each plan level, the plan is checked for log-
ical consistency, and then progresses to the next level
until there axe no more goals to be satisfied or actions
to be decomposed further.

The plan may be displayed at each plan level, either
as a partially-ordered network of actions and goals, or
_ap_ically on a time-based map display. The map di_
play shows the actions that axe occurring on different
days during the mission. The temporal information for
the map display is derived from durations associated
with each action and from the dates when the enemy
threats should be deterred or countered.

The following gives an idea of the size and complexity
of the problems we are dealing with and the knowl-
edge base within SOCAP. The size of plans we have
generated have about 100-200 actions in the final plan
level. The $OCAP knowledge base comprises: 200-250
classes/objects, 15-20 properties per object, around
1200 predicates, and 50-100 plan operators.

Lessons Learned

The lemons learned from applying SIPE-2 to the mili-
tary crisis action planning domain can be divided into
three main sections: successes and difficulties in apply-
ing the existing SIPE-2 technology, and open research
iSSUes

Sttccesses

The hierarchical plan decomposition process embod-
ied within SIPS2 maps we]] onto the military opera-
tions planning process, and delays the detail until the
appropriate planning level. As a result, it was rela-
tively easily to group sets of plan operators according
to the various phases/levels of the operations planning
process. For the purposes of the demonstration, these
were:

]Level 1: Select mission type.

Level 2: Identify threats and their locations.

167

Level 3: Select employment operations, major forces,
and deployment destinations.

Level 4: Add deployment actions.

The cla_/object hierarchy provides a clear represen-
tation of static information within SOCAP, and also
aids validation. A simple constraint language permits
the properties associated with dames and objects to
be posted on the arguments of operators. Thus, vari-
able binding can be delayed until the constraints point

to a single instance. It is also possible to force instan-
tiatious of these variables with user guidance. For in-
stance, this facility might be used to force the selection
of a favored n_tary unit for a specific operation.

SIPE-2 provides a mechanism for permitting domain-
specific knowledge to determine the number of itera-
tions of an operator. For instance, in order to deter-
mine the number of enemy threats to deter or counter,
SOCAP checks the number of enemy threat units iden-
tified in the threat assessment database, and generates
a sub-goal for each. SOCAP has a variety of itera-
tire operators that search for different types of enemy
threats.

$IPE-2 permits a great deal of information to be pre-
sented to the user at a variety of hveis of detail. The
SOCAP user interface extracts the appropriate detalk
sad presents them to the user during the planning pro-
tess. Thus, when a user is viewing the possible choices
of military units for an operation, SOCAP presents
the constraints that led to these choices. Nodes that

contain certain predicates or arguments may be high-
lighted on the graphical display. Predecessors, suc-
cemors and nodes in parallel may also be highlighted.
This is especially useful when the plan display is large
and convoluted.

The time-based map cKsplay provides another means
of displaying the plan that is particularly appealing
to military planners. It is possible to show the opera-
lions that occur on each day of the mission and display

appropriate information about the type of military op-
eration, the units involved and the boundary of the
operation.

Difficulties

Although SIPE-2 does have capabilities for resource
reasoning, spedflcally the representation of reuseable
and consumable resources, we were unable to make use
of them effectively, becsu_ of the lack of temporal res-

soning within SIPE-2. Time windows associated with
each action involved in a resource conflict would pro-

vide information that would help to resolve the con-
flict. Temporal information on "t_ea_y of the
resource would permit simple conflict resolution with-

out resorting to scheduling

Continuing with the temporal reasoning issue, we

found it would have been very useful to have had
Allen's 13 temporal relations [1, 2]. This would have

permitted more versatile operations including actions
starting or finishing at the same time, overlapping each
other, or one occuring during another, as opposed to
just one strictly before another. There_are many _-
pies of dependen¢i_ between _erent miltary actions
that could have been represented, if only...

Although SIPE-2 does have a mechanism for repre-
senting shareable resources between actions in paral-

lel,it is ve_ inflexibh, in that you have to determine
in advance how such resources might be shared over
several actions. For i_tance, a large milltm-y unit,
such as a division, may be employed in several opera-
lions simultaneously, where each operation uses some
of the division's capabilities. The number of operations
over which the div_on may be Shared depends on the
amount of resource required for each operation. Thus,
the only way to reason about the shared resource is to
consider the capabilities of the division as a consum-
able resource purely for this specific set of operations.

We would have liked to have had a flexible procedure

for preferring to associate specific resources with ac-
tions. For instance, when choot[ng rnmtary units for
operations, in order to minimize the number of troops
involved in the operation, it is often wise to choose
units already involved in the plan. provided they have
not been overutilised. It is pc_le-_:_ts-such
heuristics in SIPE-2, but these are fairly rigid, and
a trade-off between several heuristics k really what is
required.

Another capability we would have liked is the ability
to combine sub.goals at will, or serendipitously. For
instance, at present, for every enemy threat identified,
a f_iendly unit is identified to deter or counter it. If
several small enemy forces are located close to each
other, SOCAP attempts to deal with each threat indi-
vidu_n_, rather-th_-_nsidering thdm_ _a_-a_e
threat that might be Countered _th-_mgle_l_ _
friendly force. Whether the aggregation was done by
the user or by some conceptual clustering algorithm,
it k important that the original sub.goals are replaced
by a new sub.gonL One could write a large set of plan
operators that atteinpt different ways of dnsteKug sub-

goals, but this is not practical for large problem. _ •

of a taskC urirentlyl it's difl_c_VC_ represent t_not_0n _
force whose composition is determined by whichever
military units were assigned to lower level actions. It
is pc_ibte _repr_ent a _I_s 0f0_je_ ofiyp_tuk
force, and make use of a part-of predicate to relate
specific military units to a specific task force, but this
is not an easy procedure. _

We ordeductive= es
within $IPE-2 to highlight dependenci_ between parts
of the plan that involve long chains of deduction.
For instance, the arrival of communications equipment

168

I

m

M

U

s
mm
mm

R

J

m

M

D
atom

g

smm

I

m
B
mm
B
I

M

i

m
m
m

M

am
J

m

m

I

W

L_

7=='

= ,

L_

.3

E

v

E_

could have triggered deductive rules to fire that would
have eventually, after several rules, pointed to the
availability of the necessary command and control fa-
cilities for another operation.

It would have been very helpful to have had feedback
from a "tame" combat simulator. Such feedback could
have been used to guide the choice of operations, forces,
locations and times. It could also have been used to

compare the effectiveness of a variety of courses of ac-
tions and to provide appropriate metrics for identifying
qualitatively different CO,as.

Another problem involves SIPE-2's mets-level control

...... of the goal achievement protein. Unfortunately, this
proeem can only be done by having additional opera-
tot's that copy their goals down to the next level when

certain preconditions are true. For instance, one may
decide to achieve ai] employment goals first and only
start on the deployment goals when the employment
goals have been satisfied. This notion of encapsulating
such meta_level heuristics for goal achievement in the
preconditions is very rigid. Ideally, one would want a
more flexible procem that permits a trade-off between
several heuristics.

As you can gather, we managed to deal with some of
the above difficulties with less than acceptable solu-

tions. In most cases these solutions were very rigid and
might even work well for some problems, but certainly
would not be flexible enough for a variety ofsituations.

Open Research Issues

We were continuany asked by most military operations
planners to whom we showed SOCAP about support
facilities for updating and writing new operators. We

explained that this would involve providing extensive
facilities for making sure that the preconditions and
effects were syntactically and semantical]y correct. It
would also require flexible test algorithms to ensure
that the revised or new operators did not adversely
affect other existing operators. This may provide an
excellent domain for machine learning techniques.

There are a whole set of research issues concerning the
relationship between and integrlfion of planning and
scheduling techniques. Below, I have just listed a few
questions below that ought to be addressed:

• How can information from plan structure guide con-
straint re]a_ati0n?

• When to stop plan generation and choose to generate
schedule?

• When to repair schedule versus plan repair?

• When to project/simulate the plan/schedule?

Summary and Conclusions

The SOCAP work discussed in this report provides the
first steps towards an operational prototype that win
eventually be tested out on real military crises. So far,
it has been tested on a single scenario developed at the
Armed Forces Staff College. We will be extending the
system significantly over the next few years, and will
test it on a variety of different scenarios. You should
expect a steady stream of progress reports!

Acknowledgements

This work was funded within the DARPA/Rome Lab-
oratory Planning Initiative under contract number
F30602-91-C-0039.

This report could not have been written without the
tireless efforts of the SOCAP team headed by Marie Bi-
enkowski, and comprising Marie desJardins, Roberto
Desimone, Jeff DeCurtins, Kate Finn, and Robert
Hicks. We are also grateful for support received from
David Wilkins, Peter Ksrp and John Lowrance.

[1]

[2]

[3]

[4]

[5]

[6]

[71

References

J. Allen. MAintaining Knowledge about Temporal
Intervals. Technical Report TR-86, University of
Rochester, 1981.

J. Allen and J. Koomen. Planning using a Tem-
poral World Model. In Proceedings of rite £ightA
IJCAL International Joint Conference on Artificial

Intelligence, 1983.

M.A. Bienkowski. Initial Requirements Analysis
for Automation in Support of Joint Military Plan-
ning. Technical Report ITAD-2062-TR-92-40, SItI
International, March 1992.

D.E. Wilkins. Domain Independent Planning: Rep-
resentation and Plan Generation. Artificial Intelli-
gence, 22, 1984.

D.E. WUldns. Recovering from execution errors in
SIPE. Technical Note 346, SIll International, 1985.

D.E. Wllkins. Hierarchical planning: Definition
and implementation. In Proce_ings o.f ECAI-
86. European Conference or, Artifiical Intelligence,
1986.

D.E. Wilkins and II.V. Desimone. SOCAP: Lessons

learned in applying SIPE-2 to the military opera-
tions crisis action planning domain. In preparation,
1992.

m.

169

User-Centered Scheduling Support in the

Military Airspace Management System Prototype

!

Abstract

The Military Airspace Management System
(MAMS) is a multi-user distributed scheduling
prototype designed to npport the _bedu]ing of
Special Use Airspace in the CONUS region. The
prototype has emphasized the user interface de-
sign of the scheduling system as the primary
means of producing de.conflicted schedules. This
paper reports on work in progress and provides a
technical description of the user interface support
for the scheduling process.

1 Introduction

1.1 Problem Description

Nearly 25 percent of continental United States (CONUS)
airspace is designated as Special Use Airspace (SUA) for
use by the Department of Defense (DOD) for militaryoper-
ationai readiness training, research and development, and
test and evaluation. Demand for this airspace continues
to increase from both the military and the civil sectors
resulting in the need for better management.

There are over 200 military airspace scheduling offices
of the different services in the United States. In the south-

west, where the MAMS prototype is being field tested,
there are at least 20 sites where airspace scheduling is per-
formed. The military services differ in the schedule infor-
mation they report on airspaces, and some military areas
report only scheduled-use, not actual-use data. The ser-
vices therefore have no uniform source of data to determine

their actual use, or to compare actual to scheduled use.
The DOD plans to develop the Military Airspace Man-

agement System (MAMS) as a solution, automating
scheduling and reporting of SUA use and providing near
reai-time joint use of airspace. The MAMS prototype is
being developed to define the requirements for a tool that
supports efficient ocheduling and utilization data collection
and reporting.

1.2 History
Schedulers of SUAs currently have limited automated sup-
port for scheduling, or simply form a daily flight schedule
manually. Airspace users phone or fax their requests for
SUA accem to the offices with local scheduling responsi-
bility. The initial contact is usually followed by s series
of phone calls. Clarifications are made, and eventually a

preferred mission time is established. Then, if the local pri-
ority rules do not interfere, the scheduler of the airspace

will allow the requested mission to take place. In some

P. O. Perry

The MITRE Corporation,

Burlington Rd,

Bedford, MA 01730

pop@mitre.org

cases the scheduler can override the local priority rule.
For example, when a fleet is conducting maneuvers 0_-
shore it expects to receive the highest priority, but may
be overridden ff a Top Gun class at the Naval Air Sta-
tion Miramar needs to fly. There are governing _!es for
airspaces estsblkhed by the FAA an_ter of agree-
ment. The DOD rules for assigning priorities in an airspace
may change from service to service, and sometimes from•
airspace to s_space. The scheduler currently can resolve
conflicts by generating alternatives, assigning priorities, or
trying to negotiate a mutually acceptable solution.

1.3 Prototype Approach

The MAMS prototype is planned as a widely distributed

network of scheduling sites sharing a database of airspace
resources. The sites will be part of a national military
airspace management system that preserves their local con-
trol of resources and provides a hierarchical structure for
reporting schedule data. The network will allow DOD
airspace managers to quickly _uest and schedule mis-
sions in local airspaces and efficiently request use of remote
airspaces.

It was recognized early in user surveys that it would

be difficult to capture the many scheduling strategies that
s diverse use_ community bad evolved over time, and to
establish a consistent set of heuristics that would satisfy

most users. Many organizations had developed site spe-
cific policies and procedures for scheduling and managing
their airspace _sources. Scheduling rules and practices
are therefore very diverse, as are user interface s, and_there-
has been some disagreement oi _a_fi al_p_ to re-
solve the di_erences. Incorporating the daily negotiation
procem in an automated scheduling system would also be
complicated.

The approach taken in developing the MAMS prototype
was to provide an intuitive user interlace first, and later

integrate antomated .upport algorlt_. Tbk_ has bad_the
advantage of providing a method-t-o_G-ai_s-[tl-o-n-to--a--more
automated scheduling system while extr-acting from the
users their knowledge of scheduling processes.

The variety of organisations and their particular
scheduling strategies he,, also led us to develop a scheduling
aid where the user has an explicit role rather than fully au-
tomating the scheduling system. In an environment of con-
tinuous dynamic rescheduling it seemed more effective to
provide the necessary took via better user intert_ac_ mech-
anisrus, rather than to incorporate explicit knowledge of
numerous considerations of the scheduling process. Since

a given schedule is continuously revised due to changing
mission requirements, the emphasis on the user interface

170

I

g

I

|

g

W

I
J

m

m

_=

D

i i

J

b

r_

E

4

m

m

m

w

m

m

w

M
m

underscores the role of the _beduler as a prohim solver _act]_-m_-be edi_ted_md chang_i through the user in-
rather than a data entry clerk. The effort therefore cen- terrace either by the requester or the scheduler responsible
tered on providing useful interface components that facili- for the relevant resource.
tare forming and maintaining a schedule regardless of local
practices or procedures.

In its technical approach, the MAMS prototype ad-
the following principal areas: the internal repre-

sentation of the domain, development and optimization
of an efficient user interface, supporting analytic routines,
database and the distributed aspects of the application,
and data gathering for standardized airspace utilization
reporting.

2 Domain Representation

MAMS uses an object hierarchy to represent Resources
and Activities. Both resources and activities share a com-
mon parent, Schedule, that enforces the identification and
naming of each object in the hierarchy. Domain specific

types of resources and activities are then specialized by
inheritance.

2.1 Resources

A resource class represents airspace resources. The at-
tributes associated with the class define the state of the
resource, which consists of the activities scheduled at the

resource. A]] scheduling functionality is embodied in the
resource object. From thin class we specialize two classes

of airspaces: Special Use Aimpac_ (SUAs) and Military
Training Routes (MTRs).

Mint SUAJ were created as military areas for train-
ing, testing, and national security. There are six different

types: Prohibited Areas, Restricted Areas, Military Op-
eratioM Are_ (MOAs), Warning Areas, Alert Areas, and
Controlled Firing Areas (CFAs). In 1989 the number of
SUAJ included approximately 350 MOAs, and 120 Warn-
ing Areas. The airspaces are organized hierarchically and
are subdivided into further categories designated by the
organ_tlon eontrolhng a particular airspace.

SUAI can be designated either for exclusive use (only
one organization may use the airspace), shared use (several
military organizations may share the airspace), or joint
use (which allows for simultaneous use of the airspace by
military personnel and civilians). Airspaces may be also
dynamically created to support special missions.

The DOD also uses point to point air routes known as
Military Training Routes (MTP_). There are four types:
IPJ, which require an Instrument Flight Rules (IFR) flight
plan, VP_, which require a Visual Flight Rules (VFR)
flight plan, Slls, designated as special routes primarily for
slow speed, low altitude operations, and AR routes for sir
rdueli_. _

2.3 State

State describes the mint recently completed action on an

activity. An activity's state is changed by the requester
or scheduler through the user interface. A requester may
create a new activity, delete an existing activity, or modify
a current activity. A scheduler may look at an activity,
approve an activity or a conflicting activity, or unschedule,
deny, or modify an activity. The system also may change
the state of an activity if a conflict arises.

The main states of an activity are requests, activities
which have not been examined by s scheduler, and tasks,
activities which have been acted upon by a scheduler.
State k represented in the interface by color coding. Sub-
mitted requests are shown in blue, when scheduled they
are changed to green, and if conflicting they are changed
to red.

3 User Interface

In contrast to developing a user interface that provides the
user with some insight and some control in the automated
scheduling process [Cooper, 1990], the MAMS prototype
has approached the problem by first addressing the user
interface, then ascertaining how more automated support
could be integrated behind the interface. This section high-
lights some of the key elements that aid the scheduler in
establishing a conflict-free schedule.

3.1 Design Influences

The MAMS user interface design is based on previous
MITRE efforts [Mulvehill, 1986]. It also draws on the

Range Scheduling Aid [Smith, 1990], a prototype designed
to support scheduling of the Air Force Satellite Control
Network (AFSCN) ground stations and equipment [Smith
and Katz, 1990; Halbfinger and Smith, 1990].

All menus and dialogs in the prototype have been devel-
oped through extensive interaction with the user commu-
nity. This feedb_ has forced many changes, and is the

source of much of the volatility in the user interface design.

3.2 Visual Representation

The user interface is the scheduler's primary means of es-
tablishing a de-conflicted schedule. As in many similar
systems, the interface is modeled on an interactive Gantt

chart. The main window k divided into horizontal areas,
or "panes', associated with the resources being scheduled.
The window is divided from left to right by vertical grid
lines the user can adjust to represent one hour to one day

2.2 Activities increments.

An activity is any operation scheduled within an airspace.
It can be scheduled within any of the resources mentioned
above, and may contain different domain attributes de-
pending on the desired resource. In general an activity

in MAMS is crested by a requester, a person desiring the
SUA. A scheduler must then examine the activity, evalu-
ate it in the context of the schedule, and act upon it. The

Each requested activity is represented by a
colored b_ i_m_nfix_ed in height and proportional in length
to the duration of the mission. Its placement on the screen
corresponds to the actual time at which the task is due to

take place.

3.3 View Control

The user interface is designed to draw the scheduler's at-

tention to these areas in the schedule that need repair. At

171

I

Figure 1: The MAMS Gantt Chart Interface

startup the interface begins with the current day's time
frame so that the scheduler can address immediate requests
first.

The interface allows the u_r to focus on a narrow time

period, yet gain quick access to distant areas of the ached-
ule. Using the t_neline control at the top of the Gantt
chart, the user can rapidly view resource data within a
sliding time interval that can be varied in duration from
one hour to two weeks.

3.4 Use of Domain Knowledge

Airspace resources are nsturai]y organized hierarchically:
at the top is the controlling organization and in lower
nodes are sub-areas that are independently scheduled. A
requester is able to submit a request at any level of the
resource hierarchy. This action, in effect, is a shorthand
for requesting all airspaces below the requested node. The
user may view an airspace at any level in the hierarchy.
This organization presents an overview of the schedule by
displaying a summary of resource usage. The prototype
also supports formation of arbitrary groupings of resources
to simultaneously schedule at all airspaces of the _uped
l'_OUrCel.

3.5 User Conveniences

To change the time of an activity, the user drags the icon
horizontally with the mouse. To take other actions, the
user selects the icon and calls up an appropriate menu.

The act of selecting an icon prints information about the
activity in a documentation line along the bottom of the
scr_.n.

A fired capability helps the user locate a mission of in-
terest. It displays a list of missions that fit certain search
criteria, such as requests not yet acted on by the scheduler,

or conflictin s tasks in the scheduler's airspace. The user
can then select a mission from the tabular list and have

the screen reconfigured to the time period of the selected
item, facilitating the context switch to a new mission.

The user interface also includes a number of keyboard
accelerators, error correction on moet_aput fields, an error
reporting dialog, on-line help, and context sensitive help.
Commands are supported both througJa the mouse and
through key bindings.

3.6 Multi-User Support

Unlike previous multi-user scheduling systems [Beard et
81., 1990] the MAMS prototype updates user changes in
near-real-time so that changes made by a requester or
scheduler will he conveyed immediately to a second sched-
uler who is working with the same resource for an overlap-
ping time period. However, MAMS provides the two users
independent views of the schedule at the same time, with
independent screen layouts and time intervals.

The interoperability of the X Window System simplified
development of a multi-user scheduling system by enabling
the application to open connections to multiple X servers.
But supporting multiple users introduces additional com-
plications that need to he addressed in the user interface.
We added authentication and authorization checking to

give a user permission appropriate for their role as a re-
quester or scheduler [Psttemon, 1991]. In addition, the
application needs to support individual user preferences so
that a user can configu_ the screen to their liking.

U

M
a

m

I

m

±

J

mm

b

i

J

J

im

m

D

me

ii

m

im

i

172

z

r_

i

= ;

U

L _

4 Ana]ytics 4.s Conflict Description

It may be thought that ,, simple _ion _ might _ The MKMS prototype graphically provides an explanation
have sufficed, since requests are made and se_riced by • of why two or more activities are considered in conflict

by associating them with connected lines. To sad manual
scheduling authority. However,_ the scheduler also needs
_upport in maintaining temporal and resource constraints.

4.1 Temporal Relationships

MAMS maintains • point-based representation of time for
• single activity, and • symbolic representation of time
for links between activities. While the prototype does not
incorporate • temporal constraint engine for maintaining
temporal relations, it needs to support some temporal re-
lations. We have found that usem need to represent I¢-
/ore, meetmand e4n,./relations [Allen, 1983] for • number
of situations, but users requested that we represent only
three relations between activities because other possible
relations do not have a corresponding use in the applica-
tion. Temporal relations are used when a complex linked
mission is being planned, with multiple groUla, of aircraft
operating in multiple airspaces according to an interdepen-
dent sequence of events. The scheduler needs to be •hie
to define and maintain these relations. When an activity
that is part of • linked mission is created, the scheduler
can establish its dependencies to • concurrent or adjacent
activity and maintain them graphically in the interface. If
one activity is moved to a different time the related activ-
Rice move with it.

4.2 Resource Relationships

MAMS needs to maintain resource re]ationships for
almpsces affected by adjoining airspaces. If, for example,

resolution of conflicts, the user is then provided with •
pop-up window containing • scroll•hie list of conflicting
missions with conflicting field titles in red.

The scheduler may choose to accept • conflict, overriding
the conflict detection. The color of the activity's icon is
then changed from all red to green with • red border.

5 Management

The schedule, and therefore the airspaces, are managed
primarily through collection of utilization data. After each
mission, the partidpants are expected to report ifthey flew
the mission as scheduled, and if not, to reportany differ-
ences. This data is then entered into the system and is
used to cr_te utilization data reports. The quality of •
particular mission can be recorded, and if the conditions
were degraded one can enter the reason. This data can
then be used to gather statistics •bout the number of suc-
cessful missions run in • particular airspace.

6 Database

The prototype interfaces to • relational database for long
term storage and management of schedule dat•. The
choice of • relational dat•base was deemed important be-
¢._use _ system n-et..;_pport ar_r-sry quench the
d•ta for report generation. Analysis of utilization dat• us-
ing such reports will support long term planning of sat•pace
utilization. To maintain • record of multiple users' actions

an MTR passes through an SUA, scheduling in the MTR on the data, all transactions are time-stamped so that •
will siso schedule the SUA for the duration of activity in historical trace of changes can be retrieved. This function
the SUA. These kinds of dependencies are automatically is considered useful when • scheduler needs to revmw how
maintained; the user need not be aware which aimpaces a particular request was serviced.
are related.

...... 7 Data Distribution

4.3 Conflict Identification - One of the primary requirements of the MAMS system,
Currently when conflicts in SUAs are detected for activities
which overlap in time and altitude within an exclusive use
sampsce, the conflicting activities me highlighted in red. In
addition_ if the airspace is an MTR, conflicts are detected
if activities are ta]dng place at the same time either at the
crossing point of two routes or on the same route. This
would occur, for example, if one airplane were to overtake

from both • DOD and an FAA perspective, has been timely
dissemination of accurate utilization statistics. There is

• pere._ived practical and technical need to develop
• distributed scheduling system. Practically, many site
surveys showed that few sites would relinquish to an-
other agency the necessary control to manage their own
airspaces. This has led to distribution of the application,

another.Conflict identification is performed each time an so that each site can continue to manage and control its
activity changes state (is either scheduled or moved inter- sampace, locally.
actively). Technically, • distributed approach yields a system that

4.4 Conflict Resolution

Thus far, the resolution of conflicts is left to the user. Msny
types of resolutions simply are not pomible to automate
because the system does not explidtly represent all factors
in a particular scheduling choice. Rather than maintaining
eontinuotudy changing knowledge in the application, the
scheduler is left to resolve thee aspect, of the schedule that
require human judgment, while the prototype maintains
consistency in the schedule while managing a large set of
scheduling data.

is more tolerant of failures. We have experimented with
the procem group paradigm for developing a distributed
application [Birman et aL, 91; Mak_angou and Birman,
I990]. This has been useful because the programming
model directly supports the hierarchical structure of the
DOD command. The hierarchy can be implemented as •
set of overlapping process _)upa.

8 Implementation

The current prototype was developed on Sun Microsys-
terns Sparcstation 2s, using C++, the X Window Sys-

173

tem, OSF/Motif, ORACLE RDBMS, sad _ (& toolkit
for distributed applications from Cornell University [Bir-
man et i/., 91]). The C++ object-oriented programming
paradigm supports our problem domain well.

The prototype has been evaluated through quarterly
phased deliveries. Installation of each MAMS phase has
been accompanied by user feedback meetings that were
an important source of system improvements. Some user
needs had to be generalized to arrive at a consistent
scheduling interface.

9 Further Work

The Gantt chart has proven to have limitations as a user
interface metaphor for representing and resolving non-
temporal constraints. We are therefore considering adding
the ability to view the problem space in additional dimen-
sions. To resolve time and altitude conflicts ,dmultane-
ously, for example, it would be helpful to the scheduler to
view a time versus altitude display of a particular airspace.
We have applied the Gantt chart to linear travel routes,
such as an MTR, with some success, in that the scheduler
has enough information to recognize that there is a conflict,
but there may not be enough to gain an intuitive sense of
how to resolve a conflict by direct manipulation. We have
therefore considered displaying an activity that uses MTR
resources along time and distance axis to better represent
where a conifict has occurred along • given route. Finally,
many airspace managem and some nsem have expressed an
interest in being able to view the use of airspaces on • map
in order to better understand the geographic rel•tionships
of airspace utilinfion. _ geographic capability would
also support interactive designation of new airspace parti-
tions.

It is recognised that some portions of • schedule are
repeated weekly or monthly. The users have requested
the ability to be able to "paste in" a preset template of
events. To support this feature we plan to provide user
interface functions to cut a portion of the schedule and
save it ss • template. The user can then select from a list
of templatm and paste the events _t • new date in the
schedule. Invariably users will feel • need to customize
their environment, and we plan to evolve the application
to incorporate more user preference selections. We plau to
run • usability study on the user interface to validate the
design thus far.

10 Conclusion

The MAMS prototype k • proof of concept w/gem, aimed
at improving the scheduling pmcem within • diveme DOD
community of schedulers. We found the MAMS ,chedul-
Lugpmcem complex and difficult to specify completely, and
thus could not provide • purely automated solution. Our
approach has therefore been to support the human sched-
uler with an integrated, easy to use set of took. MAMS
is an interactive system enabling the scheduler to visualise
the interdependence of requested activities and to g_uge
the impact of modifying • schedule. The user can thus
understand the gate of • portion of • Jchedule, and inea_-
mentally improve it to develop • fair, conflict-free schedule.

We believe the prototype has helped define the requize-
meats for & future scheduling support system servi_ •

large and diverse user community. The emphasis on the
user interface is believed to be appropriate for scheduling
problems that have large unstructured domains such as
MAMS.

II Acknowledgments

The work described herein is the product of many peo-
ple. The author wishes to thank the current development
team. This work was _o_oM by the Electronic Systems
Division (AF$C), Hanscom AFB, MA.

References

[Allen, 1983] J.F. Allen. Maintaining Knowledge about
Temporai Interval. Commuaicefioms of tAe ACM,
26(11):832-843, 1983.

[Beard ef el., 1990] David Beard, Murugappan Palaniap-
pan, Alan Humm, David Banks, Ani] Nair, and Yen-
Ping Shin. A Visual Calendar for Scheduling Group
Meetings. In Proceedinfs of the Con/create on Com-
p=ter Supported Cooperatiee Wo_, pages 279,290, 1990.

[Birman et I/., 91] Kenneth P. Birman, Robert Cooper,
and Barry Gleeson. Programming with Procem Groups:
Group and Multicast Semantics. Technical Report TR-
91-1185, Dept. of Computer Science, Cornel] University,
January 91.

[Cooper, 1990] Lynne P. Cooper. User Interface Issues in
Supporting Human-Computer Integrated Scheduling. In
Secoud Annual Comfereuce of _e International Auoci-
alia of Knowledge Emg/neera, pages 268,274, 1990.

[Halbfinger and Smith, 1990] FAis=er M. Halbfinger and
Barry D. Smith. The Range Scheduling Aid. In Fosr_
Auud Weri_kop om Spoce Operetioms Appli_tiomJ sed
P,_e_rck (SOAR "gO),pages 280,_4. NASA Conference
Publlcstion 3103, 1990.

[Mskpangou and Birman, 1990] Meesac Mskpangon and
Ken Bhlnan. Designing Application S0_ware _ Wide
Area Network Settings. Technical report, Dept. of Com-
puter Science, Coruell University, October 1990.

[Mulvehill, 1986] Alice M. Mulvehill. A User Interface for
a Knowledse-bssed Plmg and Scheduling System.
Technical Report MTR-10175, The MITRE Corpora-
tion, Bedford, Massachnsetts, November 1986.

[Patterson, 1991] John F. Patterson. Comparing the Pro-
gramming Demands of Single-User and Multi-User Ap-
plications.In Proceedimp of tke ACM Swmposium on
UJer Interface Sofl_sre nd TecknolofN (UIST), p_es
87,94. ACM Press, 1991.

[Smith and Kate, 1990] Barry Smith and Jmeph Kate.
The Range SchedufingAid. In Tke Third Interue-
_ie.l C_lerence on Ind_trial sad Enl/neer/nl Ap-
plicatio_ of Artificial Intdligence and Ezpert S11stems,
pages 275,280, 1990.

[Smith, 1990] Barry D. Smith. A Portable Interface to a
SchedulingAid. in 5eo_d A,,_=_/Con/eremce o.?_eIf,-
ter_atiend A_odetion of Kno_vledle En_neers, pages
208,217, 1990.

h

m
m

m

m

mB

J

mJ

mm

J

m

m
m

g

m

m

i

!
--=m

174

i

