
%,,,7

z ,

m

U

U

w

L

[]

U

N93-18660

• /
/
l

/

Spike: AI Scheduling for Hubble Space Telescope

After 18 Months of Orbital Operations

Mark D. Johnston

Space Telescope Science Institute
3700 San Martin Drive,

Baltimore, MD 21218 USA
johnston@stsci.edu ....

Abstract

This paper is a progress report on the Spike schedul-
qng system, developed by the Space Telescope Sci-

ence Institute for long-term scheduling of Hubble
Space Telescope observations. Spike is an activity-
based scheduler which exploits AI techniques for

: eons_! representation and for scheduling search.
The system has been in operational use since shortly
after HST launch in April 1990. Spike has been
adopted for several other satellite scheduling prob-

...... _ems: of particular interest has been the demonstra-
tion that the Spike framework is sufficiently flexible
to handle both long-term and short-term scheduling,
on timescales of years down to minutes or less. We

-- describe the recent progress made in scheduling
search techniques, the lessons learned from early
HST operations, and the application of Spike to
other problem domains. We also describe plans for
the future evolution of the system.

1 Introduction

Efficient utilization of expensive space-based observatories
is an important goal for NASA and the astronomical commu-

nity: the cost of facilities like Hubble Space Telescope
(HST) is enormous, and the available observing time is
much less than the demand from astronomers around the

world. The Spike scheduling system was developed by the
Space Telescope Science Institute starting in 1987 to help
with this problem. The aim of Spike is to allocate observa-
lions to tlrnescales of days to a week, observing all schedul-
ing conslraints, and maximizing preferences that help ensure

that observations are made at optimal times. Spike has been
in use operationally for HST since shortly after the observa-
tory was launched inApril 1990. -- i

Although developed specifically for HST scheduling,

Spike was carefully designed to provide a general frame-
work for similar (activity-based) scheduling problems. In
particular, the tasks to be scheduled are defined in the system
in general terms, and no assumptions about the scheduling

timescale were built in. The mechanisms for describing,
combining, and propagating temporal and other Constraints
and preferences were designed to be general. The success of
this approach has been demonstrated by the application of
Spike to the scheduling of other satellite observatories:
changes to the system are required only in the specific con-

straints that apply, and not in the framework itself.
In the following we first provide a brief description of

the HST scheduling problem and of the Spike scheduling
framework. We then discuss some of the experience gained
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with the system since the start of HST flight operations. This

is followed by a description of the changes required to adapt
Spike to other satellite scheduling problems. We conclude
with some comments on the implementation of Spike, and

on our plans for future work.

2 Overview of HST Scheduling

HST scheduling is a large problem: some 10,000 to 30,000
observations per year must be scheduled, each subject to a
large number of operational and scientific constraints. Most
of the operational constraints arise from the low earth orbital
environment of the telescope. With an orbital period of about
96 minutes, potential targets are only visible for a portion of

each orbit before they are occulted by the earth. There are
constraints due to guide star availability, avoiding the earth's
radiation belts, and stray light from the sun, moon, or bright
earth. There are also constraints arising from thermal and

;power eonsideratlons, which tendio restrict the allowable
attitude of the satellite at different times during the year. Sci-

entific constraints are specified by astronomers when they
define the exposures to accomplish their scientific goals.
These frequently take the form of minimum exposure times,
temporal relationships among exposures (before, after,
grouped within some time span, separated by some mini-
mum and/or maximum interval, etc.). Astronomers may also

constrain the state of the telescope in other ways, e.g. by
requiring exposures when HST is in earth shadow (to
exclude scattered earthlight), by specifying the orientation of
the telescope, or by configuring one of the six instruments in
a particular mode. A recent change to the HST ground sys-
tems now permits the scheduling of two instruments for
simultaneous operation: this is expected to significantly
increase the amount of useful data taken by the telescope.

Because of the design of the telescope and ground sys-
tem, nearly all HST activities must be scheduled in detail in

advance. The detailed schedule specifies what commands
will be executed by the onboard computers, and when com-
munications contacts will be available for uplinking com-
mands and downlinking data. Real-time interaction by
observers is limited essentially to small pointing corrections
to place targets accurately into the proper instrument aper-
ture.

Scheduling HST has been divided into two processes:
the first is long-term scheduling, which allocates observa-
tions to week-long time segments over a scheduling period
of a year or more in duration. This is the responsibility of the
Spike system. Individual weeks are then scheduled in detail
by the Science Planning and Scheduling System (SPSS),
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which orders observations within the week and generates a
detailed command sequence for the HST control center at
NASA Goddard Space Flight Center. Further details on HST
scheduling may be found in [1,2].

3 Spike and HST Long-Term Scheduling

HST observing programs are received at STScI in machine-
readable form over national and international computer net-
works. They are then translated by an expert system called
Transformation [3] into a form suitable for scheduling. The
Transformation system collects exposures into "scheduling
units" which are collections of exposures to be executed con-
tiguously. Transformation makes use of the Spike temporal
constraint mechanism to collect and propagate temporal con-
straints: these are made path-consistent and saved in files
along with the scheduling unit definitions. Spike takes the
saved scheduling units and derives scheduling constraints
and preferences for them, based on operational and scientific
factors such as those described above. Spike then determines
an allocation of scheduling units to weeks which satisfies all
hard constraints and as many soft constraints as possible.
Constraints from different sources are combined using a
weight-of-evidence mechanism generalized to cover a con-
tinuous time domain, as described in detail elsewhere [4].
The result is a set of "suitability functions" which indicates
goodness over time for each scheduling unit, and also indi-
cates timeswhen a schedulingunitcannotbescheduleddue
toviolationsofstrictconstraints.Most oftheHST-specific
schedulingdetailsgo intothedefinitionofthesuitability
functions,which,forlong-termscheduling,aredefinedata
highlevelofabstractionand relativelycoarsetimegranular-
ity.More detailsaboutSpikeconstraintrepresentationand
manipulationmay be foundin[5].

Spike treats schedule construction as a constrained opti-
mization problem and uses a heuristic repair-based schedul-
ing search technique. An initial guess schedule is
constructed, which may have temporal or other constraint
violations as well as resource overloads (in fact, given that
HST observing time is intentionally oversubscribed by about
30%, it is known ahead of time that there is no feasible
schedule that can accommodate all the requested observa-
tions). Repair heuristics are applied to the initial guess
schedule until a preestablished level of effort has been
expended. At that point observations are removed to elimi-
nate remaining constraint violations, until a feasible sched-
ule remains. There are several important measures of
schedule quality employed, including the number of obser-
vations on the schedule, the total observing time scheduled,
and the summed degree of preference of the scheduled
observations. The heuristic repair method is fast, and typi-
cally many runs are made and the best schedule is adopted as
a baseline, The Spike algorithm has desirable "anytime"
characteristics:atany pointintheprocessingaftertheinitial
guesshasbeenconstructed,a feasibleschedulecanbepro-
duced simplyby removing any remainingactivitieswith
constraintviolations,asdescribedfurtherbelow.

The repairheuristics used by Spike are based on a very
successful neural network architecture developed for Spike
[6,7] and later refined into a simple symbolic form [8] which
has made the neural network obsolete. The Spike repair heu-
ristics make highly effective use of conflict count informa-

t/on, i.e. the number of constraint violations on scheduled
activities or on potential schedule times. Min-conflicts time
selection is one such repair heuristic, in which activities are
moved to times when the number of conflicts is minimized.
Both theoretical analysis and numerical experiments have
shown that min-conflicts can be very effective in repairing
good initial guesses [9]. We have found that further improve-
ment comes from the use of a max-conflicts activity selec-
tion heuristic, which selects activities for repair which have
the largest number of conflicts on their current assigned
time. Spike permits different constraints to have different
conflict weights, which can be used to cause the repair of the
most important constraints first; in practice, however, all
constraints have so far been given the same weight. Both
hillclimbing and backtracking repair procedures have been
tried, but h]lltl[m_hg has_n s_hown to be the most cost-
effective on problems attempted to date.

The choice of a good initial guess is important for
repair-based methods, and to this end we have conducted
experiments on different combinations of variable and value
selection heuristics tofind the "bes_" combinafibn. Over a

thousand combinations of heuristics were tried by making
multiple runs on sample scheduling problems. The adopted
inifial-gucss-h-efir_fi_c selects mosf-c0nstr_ned activities to
assign first, where the number of min-conflicts times is used
as the measure of degree of constraint. Min-conflict times
are assigned, with ties broken by maximum preference as
derived from suitability functions.

Spike currently uses a rather simple technique to
remove conflicting activities f_m an oversubscri_ sched-
ule: activities to be removed are selected based on [0Werpri-
ority, higher numbers of conflicts, and lower preference time
assignments. If there remain gaps when all conflicting activi-
ties have been deleted, then a simple best-first pass through
the unscheduled activities is used to fill them. This final
phase of "schedule deconflicting" has been little studied and
is an area which could benefit from further effort.

Spike provides support for rescheduling in several ways.
Two worth mentioning in particular are task locking and
conflict-cause analysis. Tasks or sets of tasks can be locked
in place on the schedule, and will thereafter not be consid-
ered during search or repair (unless of course the user
unlocks them). These tasks represent fixed points on the
schedule. Conflict-cause analysis permits the user to force a
task onto the schedule, then display what constraints are vio-
lated and by which other tasks. The conflicting tasks can be
unassigned if desired, either individually or as a group, and
returned to the pool of unscheduled tasks. This helps with
the most common rescheduling case, where a specific activ-
ity must be placed on the schedule, thereby disrupting at
least some tasks which are already scheduled. A limited
study of minimal-change re.scheduling has been conducted
[10], but much more work remains to be done in this_

Rillclimbing repair methods like the one used in Spike
have much in common with simulated annealing techniques
such as described by Zweben et al.[ll]. One of the open
research issues is which technique has an advantage on
which types of problems.
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4 The Experience of HST Operations

Shortly after HST was launched it was discovered that the
telescope main mirror had been figured incorrectly, resulting
in lower resolution than anticipated. This has not only lim-
ited the scientific usefulness of HST (although it still remains
far superior to any ground-based telescope), it has also
greatly disrupted the scheduling process. Observing plans
made years in advance of launch have had to be revised,
leading to a shortage of ready-to-schedule observing pro-
grams and thus reducing the efficiency with which schedules
couldbegenerated. This problemstillaffectsongoingopera-
tions,andasaresultSpikehasonlyoncebeenusedtogener-
atea truelong-termschedule.Instead,Spike isused
routinelytoidentifyobservationstoplaceintheschedule
approximatelytwo monthsintothefuture.As thecharacter-
isticsofthetelescopeand instrumentshavebecome better
understood,thepoolofobservingprogramshasbeengrow-
ing:thesecondroundofopen proposalselectionwillbe

completedinDecember 1991,andwe anticipatethatby the
Springof 1992 asufficientpoolwillexisttopermitlong-
rangeplanningasoriginallyexpected.NASA isnow plan-
ningaservicingmissiontocorrecttheHST opticsinearly

5 Hierarchical and Short.Term Scheduling

Spike has been adopted for scheduling three future astro-
nomical satellite missions:
* the Extreme Ultraviolet Explorer (EUVE), an ultraviolet

telescope built and operated by UC Berkeley and God-
dard Space Flight Center,

• ASTRO-D, a joint US-1apan X-ray telescope, and
• XTE, the X-ray timing Explorer (MIT/GSFC) to study

time-variability of X-ray sources.
The adaptation of Spike for these problems has led to

the successful demonstration of the flexibility of the Spike
scheduling framework. As indicated above, Spike was
designed so that new tasks and constraints can be defined
without changing the basic framework. For ASTRO-D and
XTE, Spike is operated in a hierarchical manner, with long-
term scheduling first allocating observations to weeks much
as they are for the lIST problem (and with similar types of
long-term constraints and preferences). Then each week is
scheduled in detail, subject to the detailed minute-by-minute
constraints of low earth orbit operation. The major changes
required to implement short-ten_ scheduling were:
• a new type of task that can have variable duration

1994.
The most significant lesson learned since launch, how-

ever, is the impact of high levels of change on the planning
and scheduling systems. Instead of the anticipated level of
about10% ofproposalschanging,theactualrateofchange
has been closerto 100%. While some ofthischange is
clearlyatu'ibutabletothediscoveryofHST's sphericalaber-
ration,many otherfactorshavecontributedaswell:nearly
everyinstrumenton thetelescopehasdemonstratedunex-
pectedbehaviorinoneformoranother,andeachhasledto

revisionsinobservingplanstocompensate.The neteffectis
thatchangeisthen0_, nottheexception,totheextentthat
stress has been high on the software systems and on the peo-
ple who operate them. The problem stems from the fact that
an observing program may consist of many hundreds of
exposures, which can all be at different stages of the sched-
uling pipeline. If an observing program is changed, users
must back up to the beginning of the process for that pro-
gram, thus work done on the previous version is potentially
wasted. Alternatively, a new observing program can be cre-
ated to describe the changed portions of the original one, but
then keeping track of active and obsolete portions Of the
original is required.

If there is any recommendation to be made to develop-
ers of future systems like those for HST, it is to build in the
expectation of change from the outset [i2]. Even though the
initial_costwillbehigher,theoperationalcostswillbesi_if-
icantlylower.

Spikeand theotherHST ground systemshavebeen

exercisedseveraltimeson"targetsofopportunity"---pro-
gramstobe scheduledandexecutedon ancrashbasis.Turn-

aroundhasbeenasshortasafew days,whichisWellwithin
thepre-launchexpectations.One suchtargetofopportunity
program took the pictures of the dramatic storm on Saturn in
De_ember 1990, which were subsequently made into a time-
lapse movie.

depending on when it is scheduled, and which can be
interrupted and resumed when targets are occulted by the
earth or the satellite is in the radiation belts

• new classes of short-term scheduling constraints which
more precisely model target occultation, star tracker
occultation, ground station passes, entry into high radia-
tion regions, maneuver and setup times between targets,
etc.

• an interface between different hierarchical levels, by
which a long-term schedule constrains times for short-
term scheduling and conversely

• a post-processor which examines short-term schedules
for opportunities to extend task durations and thus utilize
any remaining small gaps in the schedule to increase effi-
ciency •.
Allofthegeneralconstraintcombinationand propaga-

tionmechanisms,and theschedulesearchtechniques,apply
directlytobothlong-termandshort-termscheduling.Figure
IillustratestheapplicationofSpiketoshort-termscheduling
forasampleofX-raytargetssuchasmightbeobservedby
ASTRO-D orXTE. Notethatseveralobservationsarebro-

ken tofitaroundoccultationsand soaretakeninmultiple
segments.

Most oftheeffortrequiredtoapplySpiketothenew
problemswas limitedtothespecificdomainmodellingnec-
essary,whichtypicallyinvolvescomputationrelatedtothe
geometryofthesatellite,sun,target,and earth.Theseprob-
lemscanbe expectedtodifferfromone satellitetoanother,
and itisnotsurprisingthatdifferentmodelsarerequired.
Some ofthemodellingincludesstateconstraints,although

Spikedoesnotperformexplicitplanning(see,e.g.[13]).
EUVE isunusualinthatitmakes long(2-3day)obser-

vations,incontrasttoFIST,X'I_,andASTRO-D whichtypi-
callymake numerousshort(15-40minute)observations.As
aconsequence,EUVE isschedulableoveryear-longinter-
vatswithoutbreakingthescheduleintohierarchicallevels.
One ofthemore interestingresultsfrom acomparisonof
_h algorithms for scheduling EUVE was that the Spike

repair-based methods gained an extra 20 days of observing
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Figure 1: An exampleof Spike outputon shon-te_n schedulingof astronomicalobservations.Shown is a 2A-hour_'lion of a 7-day sched-
ule. The start-time suitability for e,_h exposure is plottedas theuppergraph,with interruptionsdue to targetblockageby theear_ andby
satellite passage throughhigh-radiationregions. The availableexposureintervalsare shown below as open bars, which arefilled in to indi-
cate the actualscheduledlimes. Some of the observationscan be fit withinone orbit;othersmustbe interruptedandthusspan severalorbits.

time in a year, when compared to the best incremental sched-
uling approach.

6 Spike Implementation

The implementation of Spike started in early 1987 and was
initially based on Texas Instruments Explorers as the hard-
ware and software environment. The Spike graphical user
interface was implemented in KEE CommonWindows
(Intellicorps, Inc.), but the remainder of the system (about
40,000 lines of code) used only Common Lisp and the Fla-
vors object system. At HST launch, STScI had a complement
of 8 TI Explorers and microExplorers used for Spike opera-
tion, development and testing.

Since the initial development of Spike began there has
been a great deal of evolution in Lisp hardware and software.
A significant amount of effort has gone into modifying the
system to keep current with these changes. In late 1991 we
are in the process of moving from Explorers to Sun SparcS-
tation IIs as the primary operations and development work-
station. All of the Flavors code has been automatically

converted to the Common Lisp Object System. The Lisp
used on the SparcStation is Allegro Common Lisp from
Franz Inc. Allegro CL supports a version of CommonWin-
dows based on X-windows, and so the user interface contin-
ues operate on Unix platforms as it did on the Explorers. We
are presendy investigating the use of ahemative window sys-
tems, and have prototyped the use of CLX, CLIM, and Motif
for the user interface (the latter is based on the publicly
av£i_bieGII,TATt"LM),We expect _se_ a completerede-
signof the user interface in the next year. Spike can also gen-
erate high-resolution Postscript versions Of schedules and
constraints,one example of _ is shown in Fill ....

Opda_-Sfiike- fornew i_p _-guage feai_ _ not
been difficult. There are, however, plans to remove some fea-
tures that were developed for Spike whichhave since
become part of the language (such as a logical filename
mechanism). At present there are no plans to convert any of
the system to C or C++.

4

I

II

J

m_

'U

m

m

r--

I

R

_p

i
i

I
E

m

_p



L

r_

N""

r.

g_

m

i=

m

t

J

em
W

E

i

7 Future Directions

Several significant enhancements to Spike are planned [1]
over the next year. One of these, a rewrite of the graphical
user interface, has already been mentioned above. Another
enhancement deals with tracking the status of HST observ-
ing programs and exposures. All scheduled programs pass
from the proposal entry system through Spike, while feed-
back on scheduling and execution status is received by Sp_
both from SPSS and from the HST data analysis pipeline.
This provides information to Spike users which forms the
basis for rescheduling decisions. We plan to integrate this
data into a relational database, along with additional infer-
marion from the HST optical disk data archive, which Will [3]
provide a central source of information on the status of all
HST observations.

We are also planning several systematic studies of the
Spike scheduling search heuristics to see what further

improvements can be made, either in performance or in qual- [4]
ity of schedule. These will include, the initial guess, repair,
and deconflict strategies. We also plan to investigate whether
the use of short-term scheduling on the HST observations [5]
can improve the quality of the long-term schedule sent to
SPSS. There ate, however, no plans to have Spike do the
final short-term scheduling for HST, due to the extreme cost
of integration with the existing telescope and instrument
commanding software which generates the command [6]

sequences for the spacecrafL

8 Conclusions

The Spike system has performed as planned in the first 18
months of HST operations. The success of Spike helps dem-
onstrate the utility of AI technology in NASA flight opera-

tions projects. The flexibility of Spike has been
demonstrated by adapting it for several other missions, and

by integrating long-term and short-term scheduling at differ-

ent hierarchical levels of abstraction in the same constraint

representation and scheduling search framework.

[7]

[8]

[9]
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