
m

Era,

_g7

lI

D

t

Ell

N93-18662

A Simulated Annealing Approach to Schedule
:J Optimization for the SES Facility

Mary Beth McMahon and Jack Dean

Planning and Scheduling Technology Group
McDonnell Douglas Space Systems Co.

16055 Space Center Blvd

Houston, TX 77062

Introduction

_The SES is a facility which houses the software and
hardware for a variety of simulation systems. The sim-
ulators include the Autonomous Remote Manipulator,
the Manned Maneuvering Unit, Orbiter/Space Station
docking, and shuttle entry and landing. The SES sim-
ulators are used by various groups throughout NASA.
For example, astronauts use the SES to practice ma-
neuvers with the shuttle equipment; programmers use
the SES to test flight software; and engineers use the
SES for design and analysis studies.

Due to its high demand, the SES is busy twenty-

four hours a day and seven days a week. Scheduling
the facility is a problem that is constantly growing and
changing with the addition of new equipment. Cur-
rently a number of small independent programs have
been developed to help solve the problem, but the long-
term answer lies in finding a flexible, integrated system
that provides the user with the ability to create, opti-
mize, and edit the schedule.

COMPASS is an interactive and highly flexible
scheduling system. However, until recently COMPASS
did not provide any optimization features. This paper
describes the simulated annealing extension to COM-
PASS. It now allows the user to interleave schedule

creation, revision and optimization. This practical ap-
proach was necessary in order to satisfy the operational
requirements of the SES. _ ' '

Statement of Problem

The SES facility is scheduled a week at a time. A work
week consists of seven days, each of which is divided
into six 4-hour "sessions." Each session h_ two sides,
side-a and side-b. This allows two people to work in
the facility at the same time. Each person requiring

time at the facility makes a request telling what equip-
ment is needed for the simu_!ation. A request consists
of the required simulators, the preferred days and ses-
sions, and optionally,a preferredside. Each person

may make one or more requestsper week and may ask

for multiple iterationsof the same request. The SES

scheduler satisfiestheir requests by creatinga sched-

ule based on priorities.The SES manager determines

the priorityof each request by the type of work being

done and the number of repetitionsrequested.For ex-

ample, missionrelatedactivitieshave a higher priroity

than software development activities.And the fourth

repetitionof a requesttypicallyhas a much lower pri-

oritythan the first.Each week there are about 60 -

70 requestsand 76 sessionslotsto be filled.There are

additionalrequestsat the lastminute forempty slots,

as well as high priorityrequests coming through that
may bump lower priorityitems.

There are a few guidelinesby which the SES fa-

cilityisscheduled. First,there is only one instance

of each simulator; therefore the persons working on

side-aand side-b must use mutually exclusivesets of

equipment. Second, certainpieces of equipment re-

side only on certainsides;thereforeside assignments

must coincidewith equipment requirements. Third, a

person may statea preferencefor particularsessions,

may statewhich sessionsare acceptable,and may state

which sessionsare unacceptable. The schedule should

try to accommodate the preferences,but can place the

person in an acceptablesessionwhen the preferredses-
sionsare not available.Under no circumstance should

a person be placed in a sessionwhich has been marked

as unacceptable. Fourth, a person can only work up
to two sessionsinone day, and ifthey do, the sessions

should be consecutiveso that a straighteighthour day

isworked. Fifth,each person should have at leastan

eight hour break between non-consecutive scheduled

sessions.Sixth,ifa person works more than one third

sh_t (sessionfiveor sessionsix) then the third shift

sessionsworked should be on consecutive days or at

leasttwo days apart.

Each requesthas a primary and secondary requestor.
The above rules must be satisfiedin the event that

either the primary or secondary requestor work the
session.

There are two goals to consider when scheduling the
SES facility. One is to produce a weekly schedule in
which the largest number of requests are satisfied. The
other is to fill the schedule with the highest priority
items. These two goals must be satisfied simultane-

ously, but there are no rules defining the trade-offs be-

ll

tween quantity and priority. It is left up to the sched-
uler to produce a schedule which, in his opinion, works
the best. In fact, if so inclined, the scheduler may actu-
ally violate resource or timing constraints listed above
when producing the schedule.

Currently, the requests are entered on a PC and then
transferred to a Cyber computer where an optimiza-
tion routine written in FORTRAN finds 10 candidate
schedules. The SES manager then selects one of the
I0 schedules and hand edits it. The editing usually
consists of adding late assignments and moving assign-
ments around for subjective reasons. This is done with
paper and pencil to keep track of resource assignments.
Finally the handwritten schedule is entered into a PC,
using a drawing program, where it is printed out for
distribution.

When providing an integrated solution for the SES
problem, all phases of the scheduling process must be
considered. First, the scheduling system must be able
to accept and handle all of the constraints and pref-
erences described by the requests. Second, the system
must provide the SES manager with an initial feasible
schedule which is at least as "good" as the initial sched-
ules produced by the FORTRAN program. Third, the
system must allow the schedule to be modified, even if
it means overriding constraints. And fourth, the sys-
tem must print the schedule in the prescribed SES for-
mat.

Background

An interactive scheduling system allows the user to
impose subjective constraints such as the trade-off, be-
tween the quantity of requests satsified and the prior-
ities of the activities scheduled. A non-chronological
system allows the user to place activities anywhere in
the week, so that high priority items can be scattered
throughout the week and low priority items can fill the
leftover time slots. These two characateristics, along
with the fact that COMPASS only produces feasible
schedules, lay the ground work for solving the SES
scheduling problem, The significance of these char-
acteristics is described further.

An interactive scheduling system provides an envi-
ronment where a mixed initiative is possible; that is,
it lets the computer do what it does best (check con-
straints and calculate feasible intervals) and lets the
human do what he/she does best (provide heuristic and
subjective inputs into the schedule). Together the two
can cooperatively produce a schedule which reflects
both the hard constraints and subjective preferences.
Subjective preferences may be controlled through in-
put from the user. The input may reflect scheduling
heuristics, such as the order in which to schedule the
activities and whether to schedule as soon as possible
or as late as possible. The input may reflect the de-
sired look of the schedule, such as choosing where to
place the activity from among the feasible intervals of
time. Or the user may interactively direct the search,

by specifying which items to freeze and which items to
optimize.

In contrast, a fully automated system requires that

all data be completely loaded before the system begins
scheduling. All rules about scheduling preferences and
optimization must be coded into the system before the
scheduling process begins. The system then runs unin-
terrupted until it finds one solution (or many depend-
ing on the system) and then presents its findings as the
final schedule. There is generally no effective way of
editing the schedule once the solution is found. This
method of scheduling is perfectly acceptable when the
problem is bounded and the domain can be described
completely. However, in a highly subjective scheduling
domain, coding all of the rules (and exceptions-to-the
rules) may become very laborious or even impossible.

A non-chronological scheduler allows the system to
place activities anywhere on the timeline. The sys-
tem has an omniscient view of time and can determine
all the feasible intervals ofrtime where the next activ-
ity may be placed. As each activity is placed on the
schedule, constraints created by that activity must be
propagated (either in the environment or directly to
other activities). When new activities are placed on
the schedule, they are constrained by the activities al-
ready on the schedule. A benefit of non-chronological
scheduling is that high priority items may be placed
on the schedule first and guaranteed that they be com-
pleted. Then the schedule may be filled with the lower
priority items.

In contrast, a simulation-based scheduler starts at
the beginning time of the schedule and as it pro-
gresses through time, it places activities on the sched-
ule. When resources become available, the system has
a choice about which item to place next on the sched-
ule. Once the schedule reaches the ending time, the
schedule can be evaluated and another pass may be
made, perhaps making different choices about what to
place at each decision point. Historically, simulation-
based schedulers are very popular in the job shop arena
as they naturally model the behavior of plant opera-
tions.

COMPASS, with its simulated annealing extension,
searches only the feasible solution space. Some sched-
ulers only search the feasible solution space, while
others search both the feasible and infeasible solution

space. It may be substantially easier to find good so-
lutions if the scheduler is allowed to wander through
the infeasible solution space. However, allowing in-
feasible solutions also greatly increases the size of the
search space. Theie are far more infeasible solutions
than feasible solutions. By prohibiting the search of
the infeasible solution space, the scheduler has more
time to spend evaluating feasible solutions. Deciding
which solution space to search depends on the optimiz-
ing algorithm.

12

= ,.

E _

m_ffia

m_E

m

D

I$

_! lgI

m

Approach

This section describes how the simulated annealing
routine is used in conjunction with COMPASS.

Given a group of selected activities to optimize, the
simulated annealing _algorithm calls upon the COM-
PASS scheduling engine to unschedule then reschedule
the selected activities in a different order. The ac-

tivities are continuously rescheduled and the objective
function is evaluated for each new schedule until a user
specified time limit is up. When time is up COMPASS
displays the schedule with the best score.

The user designates the focus of attention for the op-
timization by selecting a subset of activities. The user
can select all of the activities, in which case the en-
tire schedule is optimized with respect to the objective
function. Or the user may select a subset of activities,
in which case only part of the schedule is optimized. A
benefit of this is that the user can selectively optimize
parts of the schedule which need improvement, leaving
the rest of the schedule intact.

The user may also specify the amount of time in
which to run the simulated annealing algorithm. For
simple schedules or small subsets of activities a small
amount of time may be all that is necessary. COM-
PASS displays each new try as it is created. The user
can actually sit and watch as the schedule is being
modified. Once time is up, COMPASS redisplays the
best schedule.

A scenario for using COMPASS and its simulated
annealing extension is as follows. A first cut at the
schedule can be created using the optimization func-
tion. The user can edit the schedule by unscheduling
some activities or by forcing unscheduled high priority
activities (overriding any constraints) onto the sched-
ule. By evaluating the schedule, COMPASS will dis-
play all activities which now have conflicts. The user
can unschedule the conflicting activities and resched-
ule them (using the optimization function or by plac-
ing each down interactively). The interaction between
user placement and optimization continues until the

Simulated annealing is used to find global minima in
optimization problems in the following fashion. An ini-
tial solution to the optimization problem is found by
some means. The search space of solutions becomes
the state space of the simulated annealing algorithm.
An objective function, for which a global minimum is
to be found, is defined over the search solution space.
The objective function corresponds to the energy func-
tion. For each iteration, a random change is made to
the state to obtain a new state. If this new state has
a lower energy than the previous state, the new state
is kept. If the new state has a higher energy than the
old state, it is kept with a probability that varies with
the simulated temperature. Continuing the analogy to
the annealing of metal, this probability is proportional
to the exponential of-c/kT, where c is the change in
theenergylevel,k isconstantanalogousto theBoltz-
mann's constantforphysicalsystems,and T isthe
simulatedtemperature. At very high temperatures,
most changesinstateareaccepted,and the resultap-
proachesa random walk through the solutionspace.
At verylow temperatures,theprobabilityofaccepting
a changethatincreasesthe totalenergyvanishes,and
therandom walk islimitedtochangeswhich decrease
the totalenergy.This resultsin a gradientdescentto
thelocalminima. To achievetheglobalminimum, the

temperature is started off very high and gradually re-
duced. For each local minimum there is a temperature
which will allow the random walk to escape the local
minimum, but not the global minimum.

In order to apply this algorithm to the SES optimiza-
tion problem, the following have to be defined: (1) the
state space of searched solutions, (2) the energy or ob-
jective function to be minimized, (3) the method for
calculating the initial solution, (4) the method for ran-
domly changing from one state to the next, and (5) the
temperature decay algorithm. ..

The solution space consists of all feasible schedules.
A feasible schedule is one that satisfies all the con-
attaints. The constraints that are applicable to the

final schedule is reached.

Implementation

Simulated annealing is an optimization technique
which combines gradient descent with randomness to
find global optima. The process used to control the
optimization is analogous to the annealing of metal;
hence the name simulated annealing. The annealing
process is based on the laws of thermodynamics which
state that atoms tend toward a minimum energy state.
A metal is annealed by raising the metal to tempera-
ture over its melting point and then gradually cooling
it. At high temperatures the atoms are in a high en-
ergy state, violently and randomly moving about. As
the metal cools, lower and lower energy states become
increasingly likely. By cooling the metal slowly, the
lowest possible energy state, the global minimum, can
be achieved.

SES scheduling problem are the resource availability
constraints, the temporal constraints, and the rules
discussed in the Statement of Problem section of this

paper.
The objective function is the negative of the sum of

the values of the scheduled activities. (The negative
is used so that minimization of the objective function
indicates improving schedules.} The value for each ac-
tivity is derived from the priority input field of the
schedule request. The priority is an integer between
1 and 22 inclusive, with 1 being the highest priority
(most important). The value for the activity is set to
23 minus the request priority. Thus increasing value
means increasing importance of the task.

An initial solution is found using a first fit decreas-
ing algorithm. The activities to be scheduled are
sorted into decreasing value order. The sorted activ-
ities are then scheduled using a front loading, or first

13

fit, scheduling algorithm.
Once a feasible schedule is found, a new random

schedule is calculated in the following fashion. First,
the probability that a scheduled task should be re-
moved is calculated, 'based upon the current simulated
temperature. The probability of removal is calculated
using an equation of the form of the Boltzmann equa-
tion described above. Thus the probability of removal
is higher at high temperatures than it is at low tem-
peratures. This has the effect of allowing larger state
changes at high temperatures and minor changes at
low temperatures.

Next, each activity is examined in decreasing value
order. If the activity is already scheduled, and a ran-
domly generated number is less than the probability of
removal, the activity is removed from the schedule. If
the examined activity is previously unscheduled, and
a randomly generated number is less than a constant
probability of placement, the activity is placed on a
list of activities to be scheduled.

Once the entire activity list is examined, with some
of the activities randomly selected and unscheduled,
the list of activities to be scheduled is examined. For

each activity, the program first tries to schedule the
activity in one of the preferred sessions. If that fails
(the activity is not scheduled), the program attempts
to schedule the activity in any one of the acceptable
sessions.

Once the new schedule has been created, the energy
value for this new schedule is calculated. If the new

energy value is lower than the current energy, the new
schedule is kept since it reflects an improved schedule.
If the new energy is greater than the current energy
(reflecting a poorer schedule), the probability of ac-
cepting this schedule is calculated using the Boltzmann
equation described above.

Finally, the temperature decay used is a simple in-
verse linear function. The simulated temperature is set
according to the equation T = TO / (1 + t), where T is
the current temperature, TO is the initial temperature,
and t is the simulated time.

Conclusions

The simulated annealing algorithm has been success-
fully implemented and integrated into the COMPASS
architecture. This new addition allows the user to au-

tomatically, as well as interactively, create schedules.
This combination of automatic and interactive capabil-
ities provides the user with greater functionafity and
control over the development of the schedule. The user
can define the level of interaction/automation neces-
sary in order to produce the best schedule.

The user selects the activities that are to be opti-
mized. The user may optimize the whole schedule by
selecting all of the activities or part of the schedule by
selecting a subset of the activities. (In the SES prob-
lem the objective function is based on the priorities of
the activities, so it is feasible to apply it to subsets

of activities as well as the entire set.) The previously
scheduled activities that have not been selected remain
frozen on the schedule. This ii especial|y beneficial in
rescheduling once the initial schedule is underway and
an event occurs which requires parts of the schedule to
be reworked.

The SES scheduling problem requires an integrated
system which will create an initial feasible schedule, al-
low the user to alter or optimize parts of the schedule,
and will print out the schedule in the desired format.
COMPASS now provides all of these capabilities in one
cohesive package. The user can schedule both interac-
tivly and automatically. The user can override any
constraints by forcing an activity onto the schedule
at a specific time. The user can validate the sched-
ule using existing evaluation functionalities. And the
user can print out reports in the desired format using
PostScript.

References

[1] Fox, Barry R., Mized Initiative Scheduling, AAAI -
Spring Symposium on AI in Scheduling, Stanford,
CA, March 1989.

[2] Fox, Barry R., Non-Chronological Scheduling, Pro-
ceedings AI, Simulation and Planning in High Au-
tonomy Systems, University of Arizona, March
1990, IEEE Computer Society Press.

[3] Lund, Chet, gz_er_ System for Scheduling Simula.
tion Lab Sessions, Proceedings of the 1991 CLIPS
Conference, pp 784-791.

[4] Wasserman, Philip D., Neural Computing Theory
and Practice, pp 80-83.

i

I

m

J

qp

m

J

im

11r

111

I

14
Im

