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like the Hubble Space Telescope (HST), to sm_i and
. targeted to a specific scientific program, like the Sub- _
A millimeter Wave Astronomy Satellite (SWKS). How-

i _ _ ever thefact that they share several classes of operating

constraints (periodic loss of target visibili_, limited on- -
: _ board resources, like battery charge and=data storage, -
"_ = etc.) suggests the possibility of a common approach.

_ The complexity of the problem stems from two sources. _

First, they display the difficulty of classical scheduling
_ _ : problems: optimization ofobjectiv_ relating to overall

system performance (e.g., maximiz-ing return of science
data), while satisfying all constraints imposed by the
observation programs (e.g., precedence and temporal

_ • separation among observations) and by the limitations
_, on the availabiIity of capacity (e.g., observations re-

quiring different targets cannot be executed simultane-
= . ously). Second, _ safe mi_ssion operation requires the :
! ° detailed description of all the transitions and interme-

" diate states that support the achievement of observing
goals and are consistent with an accurate description

-_ of the dynamics of the observatory; this constitutes a
classical planning problem.

_ Another characteristic of the problem is its large

scale. The size of the po01 of observations to be per-
:_ _ formed on a yearly horiz0n can typically range from

Introduction

/The generation of executable schedules for space-based _-

observatories is a challenging class of problems for the
planning and scheduling community. Existing and
planned space-based observatories vary in structure
and nature, from very complex and general purpose, :

HSTS was developed and originally applied in the con-
text of the HST scheduling problem, motivated by the
limitations of the current solution and, more generally,
the insufficiency of classical planning and scheduling
approaches in this problem context. We first summa-
rize the salient architectural characteristics of HSTS

and their relationship to previous scheduling and AI
planning research. Then, we describe some key prob-
lem decomposition techniques supported by HSTS and
underlying our integrated planning and scheduling ap-
proach, and discuss the leverage they provide in solving
space-based observatory scheduling problems.

Planning and scheduling for

space-based observatories

The management of the scientific operations of the
Hubble Space Telescope is a formidable task; its solu-
tion is the unique concern of an entire organization, the
Space Telescope Science Institute (STScI). The work of
several hundred people is supported by several software
tools, organized in the Science Operations Ground Sys-
tem (SOGS). At the heart of SOGS is a FORTRAN-
based software scheduling system, SPSS, originally en-
visioned as a tool which would take astronomer viewing
programs for a yearly period as input and produce ex-
ecutable spacecraft instructions as output. SPSS has
had a somewhat checkered history [Wa189], due in part
to the complexity of the scheduling problem and in part
to the difficulty of developing a solution via traditional
software engineering practices and conventional pro-
gramming languages. To confront the computational

thousands to even tens of thousands, and, for large problems of SPSS, STScI has developed a separate,
observatories, the dynamics of system operations in, knowledfe-based tool for long term scheduling called
volves several :tens of interacting system components. : SPIKE [Johe0]. SPIKE accepts programs approved
To effectively deal _with prol_len_sof this size, it is es- _ for execution in the current year and partitions obser-

sential to employ problem and model decomposition - rations into weekly time buckets, each of which can
technique: In certain cases, this requires the ability
to represent and exploit the available_static structure of

IM-_ _" the problem (e.g., interacting system "c?mponents);-in
other cases, where an explicit structure is not immedi-

ately evident (e.g., interaction among large_numbers:of
_ temporal and Capacity constraints), the problem solver

should be able to dynamically focus on different parts

of the problem, exploiting the structure that emerges
during the problem solving process itself.

., In this paper, we discuss issues of problem and model

decomposition within the HSTS scheduling framework.

then be treated as a smaller, more tractable, short
'- term scheduling problem. Detailed weekly schedules

are generated through the efforts of a sizable group of
operations astronomers, who interactively utilize SPSS
to place observations on the time line.

In the HSTS project we have addressed the short
- term problem in the HST domain, efficiently gener-
° ating detailed schedules that account for the major

telescope's operational constraints and domain opti-
mization objectives. The basic assumption is to treat

-" resource allocation (scheduling) and auxiliary task ex-
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pansion (planning) as complementary aspects of a
more generalprocessofconstructingbehaviors ofa dy-

namical system [Mus90].
Two basicmechanisms providethe basisofthe HSTS

approach:

1. a domain description language for modeling the
structure and dynamics of the physical system at

multiple levelsof abstraction.

2. a lemporal data baseforrepresentingpossibleevolu-

tionsofthe stateofthe system over time (i.e.sched-

ules).

The natural approach to problem solvingin HSTS

isan iterativeposting of constraintsextracted either

from the external goals or from the descriptionof the

system dynamics; consistency istested through con-
straintpropagation. For more details,see [MSCD91].

Three key characteristicsdistinguish the HSTS

framework from other approaches:

i. the explicitdecomposition of the state of the mod-
eled system into a finiteset of "state variables"

evolving over continuous time. This enables the

development of scheduling algorithms that exploit
problem decomposability and providesthe necessary

structurefor optimizing resource utilization.

2. the flexibility along both temporal and state value
dimensions that is permitted by the temporal data
base (e.g., the time of occurrence of each event does
not need to be fixed but can float according to the
temporal constraints imposed on the event by the
process of goal expansion). This flexibility con-
tributes directly to scheduling efficiency, since over-
commitment (and hence the greater possibility of the
subsequent need to backtrack) can be avoided.

3. the flexibility of the constraint posting paradigm
to accommodate a range of problem solving strate-
gies (e.g., forward simulation, back chaining, etc.).
This allows the incorporation of algorithms that op-
portunistically exploit problem structure to consis-
tently directproblem solvingtoward the most criti-
cal tradeoffsthat need to be made.

The importance of integratingthese three features

within a singleframework can be appreciated by con-

sideringthe limitationsof other approaches that ad,
dressthem separatelyor partially.

Planning research has focused on the problem of

"compiling" activitynetworks that bring about de-
sired goal statesfrom more basic representationsof
the effectsof actions in the world. In contrast to

HSTS, however, the modeling assumptions ofmost ap-

proaches [FHN72, Wil88] do not support explicitrepre-

sentationoftemporal constraintsdepending on contin-

uous time (e.g.,task duration,temporal separationbe-
tween events),and representationof the world stateis

not structured into state variables.More recentplan-

ning frameworks have only partiallyaddressed these
issues[Lan88, DFM88, Ver83]. Furthermore, in most

cases,these frameworks have placed fairlyrigidcon-
straintson the manner inwhich solutionsare developed

(e.g.,strictrelianceon top down goal refinement with

forward simulation[DFM88]), preventing an adequate

considerationofefficientresourceallocationover time,

an issueoffundamental importance inthe space-based

observatoryschedulingdomain.

The monitoring of state variablesover continuous
time Izasalways been at the coreofschedulingresearch

[Bak74]. Operations research has produced optimal
solutionsfor very simple scheduling problems [GraB1,

Bsg0] or has focused on the definitionof dispatch pri-

orityrules [P177]formore realisticproblems. More re-
centresearchin constraint-basedscheduling[SOM+90,
Sad91], has demonstrated the advantages of dynami-

callyfocusingdecision-making on the most criticalde-

cisionsfirst.HSTS differsfrom other scheduling ap-

proaches initstemporal flexibilityand in itsabilityto

dynamically expand auxiliarygoals and activities.

Issues in Integrating Planning and

Scheduling

We now highlightsome aspects of our approach that
support the development of solutions for large scale_

scheduling problems in complex dynamical domains

and, in particular,theirrelevanceto space-based ob-

servatorydomains.

Use of Abstraction

The use of abstract models has long been exploited

as a device for managing the combinatorics of plan-

ning and scheduling. In HSTS, where models are ex-

pressed in terms of the interactingstate variablesof
differentcomponents ofthe physicalsystem and itsop-

eratingenvironment, an abstract model isone which

summarizes system dynamics in terms of more aggre-

gate structuralcomponents or selectivelysimplifiesthe

representedsystem dynamics through omission of one
or more component state variables.Given the struc-

ture of space-based observatory s_eduling pr0[)]ems,

the use of an abstract model provides a naturalbasis

for isolatingoveralloptimization concerns, and thus
providing global guidance in the development of de-

tailed,executable schedules.In the case ofthe HST, a
two-levelmodel has proved sufficient.At the abstract

level,telescopedynamics issummarized in terms of a

singlestatevariable,indicating,at any point in time,

whether the telescope(as a whole) istaking a picture,

undergoing reconfiguration,or sittingidle.The dura-

tion constraintsassociatedwith reconfigurationatthis
levelare temporal estimates of the time required by

the complex ofactualreconfigurationactivitiesimplied

by the detailedmodel (e.g.,instrument warmup and

cooldown, data communication, telescoperepointing).
Execution of an observation at the abstract levelre-

quiresonly satisfactionofthisabstractreconfiguration

constraint,target visibility(a non-controllablestate
variableaccessibleto both the abstract and detailed

models), and any user specifiedtemporal constraints.

Thus, the descriptionat the abstract levellooks much

likea classicallyformulated scheduling problem: a set

of user requests that must be sequenced on a single

resourcesubjectto specifiedconstraintsand allocation

objectives.

Planning relativeto a fulldetailed levelis neces-

sary to ensure the viabilityofany sequencing decisions
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_ made at the abstract level and to generate and coor-
dinate required supporting system activities. The de-

_: gree of coupling between reasoning at different levels
depends in large part on the accuracy of the abstrac-

" _ tion. In the case of HST, decision-making at abstract
levels is tightly coupled; each time a new observation is
inserted into the sequence at the abstract level, control

passes to the detailed level and supporting detailed sys-
" _ tern behavior segments necessary to achieve this new

goal are developed. Given the imprecision in the ab-
stract model, goals posted for detailed planning cannot

L_ be rigidly constrained; instead preferences are specified
(e.g., "execute as soon as possible after obsl"). The re-
suits of detailed planning at each step are propagated
upward to provide more precise constraints for subse-

quent abstract level decision-making.

_" Model Decomposability and Incremental

Scaling

Large problems are naturally approached by decom-
posing them into smaller sub-problems, solving the
sub-problems separately and then assemble the sub-

solutions. We can judge how the problem solving
framework supports modularity and scalability by two
criteria:

* the degree by which heuristics dealing with each

sub-problem need to be modified when adding sub-
problem assembly heuristics to the problem solver;

i * the degree of increase of the computational effort
_- needed to solve the problem versus the one needed

It_ to solvethe component sub-problems

To test the scalability of the HSTS framework, we
conducted experiments with three models of the HST

i

operating environment of increasing complexity and
realism, respectively denoted as SMALL, MEDIUM and
LARGE model. All models share a representationofthe

__ telescope at the abstract level as a single state variable;
le they differ with respect to the number of components

modeled at the detailed level. The SMALL model con-
tains a state variable for the visibility of each of the
celestial objects of interest with respect to the orbit-
ing telescope, a state variable for the pointing state of
the telescope, and three state variables for the state
of an instrument, the Wide Field Planetary Camera
(WFPC). The MEDIUM model adds two state variables

for an additional instrument, the Faint Object Spec-
trograph (FOS), while the LARGE model includes eight
additional state variables accounting for data commu-
nication. The LARGE model is representative of the
major operating constraints of the domain. Figure I
shows the relations among the various models.

! The problem solver for the SMALL domain contains

heuristics to deal with the interactions among the dif-
ferent components of the WFPC (e.g., when a WFPC
detector is being turned on, make sure that the other

WFPC detector is kept off), with the pointing of the
HST (e.g., select a target visibility window to point
the telescope), and with the interaction among WFPC
state and target pointing (e.g., observe while the tele-

scope is pointing at the proper target). The heuristics

1.41OI

Targets

HST

Pointing

Figure I: The SMALL, MEDIUM and LARGE HST mod-
els.

added for the MEDIUM domain deal with the interac-

tionswithin the FOS, between FOS and HST pointing
state,and between FOS and WFPC. Since the nature

of the new interactionsisvery similarto those of the

SMALL model, the additionalheuristicsare obtained

by simply extending the domain of applicabilityofthe

SMALL's heuristics.Finally,for the LARGE model we

have the heuristicsused in the MEDIUM domain, with

no change, plus heuristicsthat address data commu-

nicationand interactionamong instrument statesand

data communication (e.g.,do not schedule an obser-

vationon an instrument ifdata from the previous ob-

servationhas not yet been read out of itsdata buffer).
The previous discussionsupports the scalabilitywith

regard to the structureof the problem solvers.

To verifyscalabilitywith respect to the degree of
computational effort,we run a test problem in the

SMALL, MEDIUM and LARGE domain; the testconsists

of a set of 50 observation programs, each containing
a singleobservationwith no user-imposed time con-

straints.The experiments were run on a T! Explorer
II-kwith 16 Mbytes of RAM memory.

Table 1 supports the claim of scalabilitywith re-

spect to the required computational effort.The mea-

sureofthe sizeofthe model (number ofstatevariables)
excludes target and communication satellitevisibili-

tiessincethese can be considered as given data. The
number of tokens indicatesthe totalnumber of dis-

tinctstate variablevalues that constitutethe sched-

ule. The temporal separationconstraintsare distance

constraintsthat relate two time points on different

statevariables;theirnumber givesan indicationofthe
amount of synchronizationneeded to coordinate the

evolutionofthe statevariablesin the schedule.

Notice that sincethe heuristicsthat guide the plan-
ning search exploitthe modularity of the model and

the localityofinteractions,the average CPU time (ex-

cluding garbage collection)spent implementing each

requiredcompatibilityconstraint(corresponding to an

atomic temporal relationamong tokens)remains rela-

tivelystable.In particular,given the high similarityof
the nature of the constraintsbetween the SMALL and

the MEDIUM models, thistime isidenticalin the two
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CPU TL-ne/ _tlau

T_me /_pau'_
Tmal _ _me

Totall_ap_d "I'd'no
ScheduleHmizo.

_t4ALL MEDIUM LARGE

4 6 13
587 6O4 _3

• ' 555 60.5 716
1296 1328 1474

I1.62 12.25 21.74

O.29 0.29 O.33
9:41.00 10:11.50 18.'07.00

1._'_.00 1:13:16.00 2:34.'07.00
41"_7:_.00 .54"_.5:46.0052.'44:41.00

Table 1: Performance results. The times are reported
in hours, minutes, seconds and fraction of seconds

cases. The total elapsed time spent generating an ex-
ecutable schedule for the 50 observations is an accept-
able fraction of the real time horizon covered by the
schedules; this indicates the practicality of the frame-

work in the actual HST operating environment.

Exploiting Opportunism to Generate
Good Solutions

In the experiment just described, a simple dispatch-
based strategywas used asa basisforoverallsequence

development: simulating forward in time at the ab-
stractlevel,the candidate observationestimated to in-

cur the mininmm amount of wait time (due to HST

reconfigurationand target visibilityconstraints)was

repeatedlyselectedand added to the currentsequence.

This heuristicstrategy,termed "nearestneighbor with

look-ahead" (NNLA), attendsdirectlyto the globalob-

jectiveofmaximizing the time spent collectingscience
data. However, maximization of scienceviewing time

isnot the only globalallocationobjective.
One critical tradeoff that must be made in spa_e-

based observatory scheduling is between maximizing
the time spent collecting science data and satisfying
absolute temporal constraints associated with specific
user requests. The scheduling problem is typically
over-subscribed; i.e., it will generally not be possible
to accommodate all user requests in the current short
term horizon and some must necessarily be rejected.
Those requests whose user-imposed time windows fall
inside the current scheduling horizon become lost op-
portunities if rejected. Those without such execution
constraints may be reattempted in subsequent schedul-

ing episodes.
As indicated above, the first objective (minimizing

telescope dead time) is amenable to treatment within a
forward simulation search framework. However, a for-

ward simulation provides a fairly awkward framework
for treating the second objective (minimizing rejection
of absolutely constrained goals). A goal's execution
window may be gone by the time it is judged to be
the minimum dead time choice. Look-ahead search

(i.e. evaluation of possible "next sequences" and po-
tential rejections) can provide some protection against

unnecessary goal rejection but the general effectiveness
of this approach is limited by combinatorics. A sec-

ond sequencing strategy of comparable computational
complexity that directly attends to the objective of
minimizing rejection of absolutely constrained goals

18

Sequencing Pctg. Constrained
Strategy Goals Scheduled

NNLA 72
MCF 93
MCF/NNLA 93

Pctg. Telescope
Utilization

21.59
17.20
20.54

Table 2: Comparative Performance of NNLA, MCF
and MCF/NNLA

is "most temporally constrained first" (MCF). Under
this scheme, the sequence is built by repeatedly select-
ing and inserting the candidate goal that currently has
the tightest execution bounds. This strategy requires
movement away from simulation-based sequence build-

ing, since the temporal constraints associated with se-
lected goals will lead to the creation of availability
"holes" over the scheduling horizon. Adopting a se-
quence insertion heuristic that seeks to minimize dead
time can provide some secondary attention to this ob-
jective, but effectiveness here depends coincidently on
the specific characteristics and distribution over the
horizon of the initially placed goals. As is the case
with the simulation-based NNLA strategy, one objec-
tive is emphasized at the expense of the other. This
second MCF sequencing strategy, incidentally, is quite
close to the algorithm currently employed in the oper-
ational system at STScI.

Both NNLA and MCF manage combinatorics by
making specific problem decomposition assumptions
and localizing search according to these decomposition
perspectives. NNLA assumes an event based decom-
position (considering only the immediate future) while
MCF assumes that the problem is decomposable by
degree of temporal constrainedness. Previous research
in constraint-based scheduling[SOM+90] has indicated
the leverage of dynamic problem decomposition selec-
tive use of local scheduling perspectives. In the case of
NNLA and MCF,-one-aspect of current problem struc-
ture that provides a baals for selection at any point
during sequence development is the current variance
in the number of feasible start times remaining for in-
dividual unscheduled goals. If the variance is high,
indicating that some remaining goals are much more
constrained than others, then MCF can be used to em-
phasize placement of tightly constrained goals. If the
variance is low, indicating similar temporal flexibility
for all remaining unscheduled goals, then emphasis can
switch to minimizing dead time within current avail-
ability "holes" using NNLA.

To test this multi-perspective approach, a set of
short-term (i.e. daily) scheduling problems where
solved with each base sequencing strategy and the
composite strategy just described (referred to as
MCF/NNLA). The results are given in Table 2 and
confirm our expectations as to the limitations of both
NNLA and MCF. We can also see that use of the op-
portunistic MCF/NNLA strategy produces schedules
that more effectively balance the two competing objec-
tives. Further details of the experimental design and
the strategies tested may be found in [SP92].
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These results should be viewed as demonstrative and
we are not advocating MCF/NNLA as a final solu-
tion. We can profitably exploit other aspects of the
current problem structure and employ other decom-
position perspectives. For example, the distribution
of goals over the horizon implied by imposed temporal

constraints has proved to be a crucial ,guideline in other
scheduling contexts [SOM+90, Sadgl], and we are cur-
rently investigating the use of previously developed
technicjues for estimating resource contention [MS87,
Mus92J. There are also additional scheduling criteria
and preferences (e.g., priorities) in space-based obser-
vatory domains that are currently not accounted for.

[Lan88]

[MS87]

[MSCD92]

Conclusions

in this paper, we have considered the solution of a [Musg0]

specific class of complex scheduling problems that re-
quire a synthesis of resource allocation and goal ex-
pansion processes. These problem characteristics mo-
tivated the design of the HSTS framework, which we [Mus92]

briefly outlined and contrasted with other scheduling
and AI planning approaches. To illustrate the ade-
quacy of the framework, we then examined its use in

solving the HST short-term scheduling problem. We [PI77]
identified three key ingredients to the development
of an effective, practical solution: flexible integration

of decision-making at different levels of abstraction, [Sadgl]
use of domain structure to decompose the planning
problem and facilitate incremental solution develop-
ment/scaling, and opportunistic use of emergent prob-
lem structure to effectively balance conflicting schedul-
ing objectives. The HSTS representation, temporal
data base, and constraint-posting framework provide
direct support for these mechanisms.
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