
't,,,,.¢

Scheduling
of an

Aircraft Fleet

=t

|

m

lm=:

ii

= m

z

D

Massimo Paltrinieri c') Alberto Momigliano ('') Franco Torquati

= __

Bull HN Italia

Direzione Sistemi Esperti

Pregnana Milanese, Milano

Italia

Abstract

Scheduling i, the task of assigning resources to operations. When the resources are mobile vehicles, they
describe mutes through the served stations. To emphasize such aspect, this problem b usually refencd to as
the routing problem. In particular, if vehicles are aircraft and stations are aiq_oas, the problem is known as
aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative
M_agement of Aircraft Routing), a system implemented by_i_In our approach, aircraft
routing is viewed as a Constraint Satisfaction Problem. e_lving strategy combines network
consistency and tree search techniques.

1. Introduction

Two of the main concerns for a major airline are
flight planning and aircraft routing.

Flight planning involves both technical and
market issues, such as the choice of the cities to

....be served and the weekly frequency of flights. It
produces an aircraft rotation, valid for a whole
season, which we shall refer to as the virtual plan
(see fig. 1); it consists of a periodical time table
where flights are organized in lines, one for each
virtual aircraft, an hypothetical resource that
could perform them in absence of technical and
maintenance constraints.

Aircraft routing assignes tail numbers - the
identifiers of the aircraft - to flights, usually for a
time window of 24 hours. This process, called
predictive routing, is trial and error: routes are
drawn on the virtual plan, performing switches,
i,e. connections between flights on different lines
of the plan, to satisfy the constraints that prevent
an aircraft to cover the next flight on the same
line. When there are no more tasks available for

the given aircraft, an assignment to an already
scheduled task is possibly invalidated. If the
scheduler is not able to cover all the activities
with the available resources, maintenance are

delayed or, in some extreme cases, flights are
dalayed or even cancelled. The schedule
produced by predictive routing is coded in the
routing plan, which differs from the virtual plan
in replacing _,irtual with actual aircraft and
arranging programmed maintenance. The routing
plan is often modified in real time to avoid or
contain, propagation of delays. Such an activity
is said reactive routing.

This paper describes the Prolog kernel of OMAR
(Operative Management of Aircraft Routing), an
interactive system designed to provide predictive
and reactive routing of the Alitalia fleet. Routing
is formulated as a Constraint Satisfaction

Problem (CSP): each variable (task) has a
domain of possible values (aircraft) while
constraints (relations between variables) are used
to restrict such domains. Since the refined

domains are not in general single-valued,
solutions must be found by search, iteratively
selecting an aircraft and assigning it to a set of
consecutive flights. Aircraft selection is driven by
the first fail principle: the most constrained
aircraft is scheduled first. A controlled form of

backtracking is implemented to partially recover
from heuristics flaws while maintaining
predictable response time.

Present addresses:

(*) Stanford University - Department of Computer Science - Stanford, CA 94305 - l_lmas@cs.stanford.edu

(**) Carnegie Mellon University - Department of Philosophy - Pittsburgh, PA 15213 - am4e@andrew.cmu.edu

_ 25

2. Problem Definition

In this section we give a formal definition of both
predictive and reactive aircraft routing.

The constraints of the problem are captured by
the function label, that associates to each task the
set of aircraft that can perform it. The function
startqs returns the airport from which an aircraft
has to depart after time qs, the start time of the
scheduling window.

Predictive Routing

nlma

set T of tasks
set AP of airports
set AC of aircraft
set Q of times
schedule start time qs and schedule end time qe
total order $ on Qu {qs} u {qe} s.t. VqeQ, qs<q<-qe
total function departing time,
total function arrival time,
total function departing airport,
total function arrival airport,
total function label,
total function starq,,

dt: T -> Q
at: T -> Q
_: T->
aa: T ->
label: T -> 2AC

S_qs: AC ->

9.atlml

an aircraft routing, i.e a total function s: T -> AC, s.t.

(i)
(_)

Vte T, s(t)e label(t)
ff s'l(ac) is not empty, then its elements can be
ordered in a sequence (therouting path of ac)

rac--<hc,o,hc, l he,a> such that

da(t,,:.0)= starh,(ac)
aa(tac_.l)= da(t_.i) i=ln
at(hc,i-Â)< dt(hc,i) i--1....n

Reactive Routing

aircraft muting as defined above
an unexpected event

an aircraft routing that copes with the unexpected event

and most closely conforms to the given routing.

3. Aircraft Routing as a
Constraint Satisfaction Problem
±

A task is said programmed if its departure and
arrival airports and times are fixed. Flights, as
well as main maintenance, are programmed,
whereas secondary maintenance not necessary.
The duration of each task is a given constant. Let
us assume that we have a set T = {T h,
h--I m} of programmed tasks to be scheduled
in a time window of 24 hours.

Two tasks Th and Tk are said to be connectible

(denoted T h -> Tk), if the following Prolog
clause holds:

connectible(Th,Tk) :.

task_arrival_airport(Th Airp),
task_de_artur e_.airpo_ ,4irp),
task_arri val_ti me (Th.M inArr T) ,
task .departure_timelTk_l axDep T),
ground time(Airp,GrT),
ArrTO is MinArrT + GrT,

ArrTO < MaxDepT.

In other words, task T h is connectible to task Tk

iff the arrival airport of the former is equal to the
departure airport of the latter and the arrival time
of the former plus the ground time precedes the
departure time of the latter. The graph of the
connectibility relation is said the connection
graph. It is directed and acyclic. Fig. 2 shows the
connection graph for the portion of virtual plan in
fig. 1.

We say that T h precedes T k and write T h < Tk iff

(Th,Tk) is!n the transitive closure: of->. If

neither T h < Tk nor Tk < T h, then Th and Tk are

said incompatible, denoted T h >/< Tk:

incompatible tasks cannot be assigned to the
same aircraft. A routing path P is a finite
sequence of elements from T

P-<TI, T2 ,Tn>

such that Th -> Th+ 1 for each h, 1 < h < n. A
path S is operable by aircraft Ac if each task in
the path is operable by Ac, i.e. there are no
technical reasons that forbid the assignment to
Ac.

!

1

m

I

=..

1

1
l

J

m

m

z_

lip

ml
1

E

ii

m

I

w

1

t

1

w

I ,

D

l

26 1

=

m

m
m
!

An initial state for the fleet is a one-to-one map

from Acs, the set of aircraft in the fleet, to a
subset of T, the set of programmed tasks. The

image of Acs under such map is the set of initial
tasks of T, which correspond to those nodes in
the connection graph with no entering arcs. The
set of final tasks is the set nodes in the
connection graph with no exiting arcs. In the
following, paths will have an initial task as first
element of the sequence; the idea is that paths arc
the formalization of the routes that an individual

aircraft may cover, starting from its initial state.

We look at the elements:of T as variables which
take their values from the domain Acs. As

already mentioned, a label of a task is the set of
aircraft that can perform it. This concept can be
extended to the set of all tasks: the labeling of the

set T is a map 1 : T -> P(Acs), where P(Acs) is
the powerset of Acs.

Constraints are relations in Acs x P(T) that are
used to refine the labels of tasks. They come in

two types: a commitment constraint between
aircraft Ac and tasks T1 Tn requires that Ac
execut_g at least one of those tasks; an exclusion
constraint between an aircraft Ac and and tasks

T1 Tn requires for Ac to be excluded from
those tasks.

aC_ 8 10 12 14 16 18 20 22

sto lin fco lin ira lin dus

1 I I V_I_t V-1
391 09 _' 442/3

lin tee bru leo par !©o

085 274/5 332/3

Icho leo I_ leo Par leo

3 [-], [--], f 1 t
237 410/I 1452/3

leo wn leo blq leo blq leo

4 [--tr I
1156/1 2,¢'/1239 z3o/'t

v_ fco Na lJ_ .bl_ fin

1155 1120 1272/3

muc leo goa leo w'a leo

6 r-q r---n,
4"77 1052/3 1158/g

per lin leo Ira fco

7. f_] 7-11 1
3_? o95 .,o/J :_o

frl

44B

eh¢

112

lep

!

1458/421
Im Ico

[--1
_8/g

Psi hn vrn

1121 1154

psi

1102

lin ham.

7-'t
1484

Fig. 1. A portion of about 0ne-fourth of

the virtual plan for the DC-9 fleet.

27

Each singleton labeling that satisfies all the
constraints is an aircraft routing, i.e. a solution to

the routing problem formalized in sect. 2. Such a
singleton labeling generates a partition of the set
T of tasks such that each element of the partition
is a routing path for a distinct aircraft.

4. Routing Process

The routing process implemented in OMAR starts
loading the state of the fleet and the relevant
information on the tasks to be scheduled from the

Alitalia database. A necessary, but not sufficient,
condition for the existance of a fleet routing is
checked, namely whether the number of
resources available to be assigned to each task is

always greater than or equal to zero. We briefly
describe the algorithm, linear in the number of
tasks, that tests such condition.

Each airport airport served by the fleet identifies a
sequence of chronologically ordered events
belonging to one of two classes: departures or
arrivals. Each task entails two events, its arrival

and departure, unless it is initial, in which case
we consider only the arrival. A resource counter
representing, at each time; the balance between
arrivals and departures, is associated at every
airport. The resource counter is initially set to 0
and is incremented or decremented, at each flight

arrival or flight departure, respectively. If,
scanning the whole plan, the counter of some
airport becomes negative, the necessary condition
is not satisfied and no routing exists. On the
other hand, if the counters are always grater than
or equal to zero, then the condition is satisfied
and the system enters its next stage.

Fig. 2. The connection graph for the

virtual plan in fig. 1.

A sample list of events at Linate airport is shown
_elow.

Time Event Flight Resource Level

17:50+0 d 448 0

17:25+35 a 267 1

17:45+35 a 074 2

18:30+0 d 316 1

Observe that the arrival of flight 267 at 17:25,
given the ground time of 35 minutes, follows the

departure of the flight 448 at 17:50.

The constraint satisfaction algorithm refines the
labels so that most dead-ends are avoided and

expiry maintenance requirements are implicitly
satisfied: this means that aircraft planned for the
latter tasks are excluded by those routes that do
not lead to the set of airports where maintenance

jobs are possible.

If the network is not found consistent, no

complete routing exists and the control goes to
the human scheduler who relaxes the constraints.

It is our opinion that this kind of expertise cannot
be adequately simulated by a computer, since the
knowledge required to recognize the causes of_an
inconsistent situation and suggest a solution is
too extended and fuzzy. If, on the other hand,

everything is succesfull, the system is ready to
schedule.

The aircraft are sorted in decreasing order

according to the number of occurrences inside the
labeling; the idea is that the aircraft coming ftrst
in this order are the most constrained ones, since

they have a smaller number of tasks on which
they can be enrouted. Routes are then created
according to such an order by the Prolog
procedures sketched below.

route_gen([Ac/Acs],Lab_VewLab):-

pathgen(Ac,Lab,TmpLab),
/,

route..g en(Acs,TmpLab,NewLab).
route gen([] ,Lab J.ab).

path..gen(Ac,Lab,NewLab):-

last_started(Ac.Task),

path_g en(Ac,Task,Lab,N ew Lab).

path_gen(Ac.TaskJ.,ab 2VewLab) :-
select(Ac,Task2,ab _VextTask,TmpLab).

path gen(Ac_VextTask,TmpLab,NewLab).

path_gen(Ac,_TaskJ.,ab,Lab).

The recursive procedure route..genl3 terminates
when the list of aircraft to be scheduled is empty.

It searches for a solution in depth-first mode,
generating a descendant of the most recently
expanded node and backtracking if some dead
end is reached. If we relied exclusively on

backtracking, the process duration would be
unpredictable. Fortunately, we have developed
some criteria that help us to discard paths likely
to fail. On each aircraft Ac, route_gen/3 calls

pathgen/3, passing as par_eters the aircraft Ac
and the labeling Lab and returning a new labeling

TmpLab in which the tasks assigned to Ac are
the generated path. The procedure pathgen/4
btiilds a path recursively, task after task, starting
from the first one returned by laststarted/2.

A limited amount of backtracking is allowed:
different choices are considered only during the
coupling of a task with one of its direct

offsprings. Yet paths cannot be invalidated after
its completion (note the use of the cut sign '!'
after pathgen/3). In case of failure, the interaction
with the user is more effective. In our

experience, after the relevant modifications have
been performed, another run of the scheduler is
usually sufficient to achieve a complete solution.

Let us analize the path generation process in more
detail. The problem is not trivial, since there are
both local and global optimizations which
influence the choice at various extents, often in

opposite directions. For instance, we could
always choose the first task departing after the
given one (local optimization), but this could
generate a new line switch hard to manage in the
overall muting (global optimization).

select(Ac,Task,Lab,NextTask filewLab) :-

propose(Ac,Task,Lab dVextTask),

check..rc(Task,NextTask),

update_l ab(A c ,Next Tas k,Lab ,New Lab).

pr opose(Ac ,Task Lab ,NextTask) :-

get_methods(Ac,TaskAtethods).
member(Method,Methods),

offsprings(Task,Offs).
choose(Method,Ac,Offs,Task,NextTask).

getmethod(Ac,Task,Methods):-

rule(Con&'tion,Methods),

apply(Condition,Ac,Task).

rule(open_switch, [clo se_swite h,strai ght,c lose st.stop l).

rule(default. [strai ght,open_switch,closest,_top]).

28

w

B

D

S

ID

t

M
B

g

i
II

I

m
!

m

i

m

i

II

l

I

I

il

II

m
ll
r-
w

H

! N

E

The basic step of the path generation process is
performed by the Prolog procedure select�5
shown above. Given an aircraft Ac, just assigned
to a flight or maintenance (Task), select/5 extends
the path of Ac to a new flight or maintenance
(NextTask). The procedure propose/4 returns
Nextask, then check rc/2 checks whether the

becomes negative: in such a
case it fails, otherwise it succeedes and the

labeling is updated, aircraft Ac being assigned to
NextTask. The path of Ac is extended with
NexTask by propose/4 as follows: first, a list
Methods of methods compatible with Ac and

Task is selected by get_methods�3; then, one
Method is chosen nondeterministically from such
a list; after, the offsprings of Task in the
connection graph are returned by offsprings/2
and finally, one of them, NextTask, is returned
by choose/5, which basically applies Method to
the given Ac and Task.

A method is a technique to choose the next task
that extends a given path. Methods are gathered
in lists and are associated to conditions. The
relation between conditions and lists of methods

is defined by rule/2. Two sample rules are shown
above for the open_switch (remember that an
aircraft opens a switch when its path is extended
on a different row) and the default conditions.

Given Ac and Task, if a condition is applicable to
Ac and Task, which is checked by apply�3, a list
of methods is returned by getmethods/3. Such
methods are tried in the same order as they
appear in the Methods list, the first one being the
most desirable. For any possible Ac and Task
there is at least one rule whose condition is

satisfied, thus a list of methods is always
selected, eventually by the default rule. In such a
ease, _thelist of methods tries to extend the path
on the same _line of the virtual plan with the
straight method, which is considered optimal,
otherwise a switch is opened by open_switch; if
it is not possible to open a switch, the closest
flight is selected by closest to minimize the
consumption of the resources; if even this
method is not applicable, the path is terminated
by stop.

5. Conclusions

Akcraft routing is a problem for which no exact
solution is known. Consequently, all models are
heuristic and research is now concentrating on
the systematic interaction between human and

computer.

OMAR is an interactive system for the routing of
the Alitalia.fleet. Its kernel is presently composed
of 20,000 lines of Quintus Prolog source code,
and the system's response time is satisfactory.
Once the derived structures have been computed
from the primary database, the fleet routing is
returned nearly in constant time (approximatively
30 seconds for a fleet of 26 aircraft with 170

flights).

Moreover, if the constraints are compatible with
complete schedules, there is a very high
probability that the system succeeds finding one
of them. Of course, we cannot expect that the
solution perfectly matches the user's
expectations. According to our experience,
however, an intervention by the user modifying,
on average, five assignments, is suffucuent to

reach such an accomplishment. ,....

In the tests supplied by Alitalia so far, OMAR's

solutions can be compared with those of a senior
scheduler.

References

[Da] Davis E., Constraint Propagation
with Interval Labels, Artificial Intelligence, 32,
1987, 281-331.

[De&Pe] Dechter R. & Pearl J.,
Network-Based Heuristics for Constraint

Satisfaction Problems, Artificial Intelligence, 34,
1988, 1-38.

[Et&Ma] Etschmeier M.M. &

Mathaisel D.F.X., Aircraft Scheduling: the
State of the Art, XXIV AGIFORS Symposium,
Strassbourg, 1984,181-225.

[Ha&Eli Haralick R.M. & Elliot

G.L., Increasing Tree Search Efficiency for
Constraint Satisfaction Problems, Artificial
Intelligence, 14, 1980, 263-313.

[Na] Nadel B.A., Tree Search and Arc

............ in Constraint Satisfaction Problems,
in Kanal & Kumar (eds), Search in Artificial
Intelligence, Springer-Verlag, 1988.

[Ri] Richter H., Optimal Aircraft
Rotations based on Optimal Flight Timing, VIII
AGIFORS Symposium, i968,34-69.

[Ste&Sha] Sterling L. & Shapiro E.,

The Art of Prolog Programming, MIT Press,
Cambridge, Massachussets, 1986.

[Wall Waltz D., Understanding Line
Drawings of Scenes with Shadows, in The
Psychology of Computer Vision, edited by P. H.
Winston, McGraw-Hill Company, 1975.

29

