
w

=

--,=_

7_-

L

--=

__=

•2: 2

CABINS : Case-Based Interactive Scheduler

Kazuo Miyashita Katia Sycara
miyashita@cs.cmu.edu katia@cs.cmu.edu

The Robotics Institute

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

1. Introduction

Although there has been a lot of progress in knowledge-
based scheduling [5, 4], there is still a need for schedule

improvement and repair through interaction with a human

scheduler. There are several reasons for this. First, a user's

preferences on the schedule are context dependent (e.g.,

may depend on the state of the scheduling environment at a

particular time). Also, interactions among preferences and

effective wadeoff very often depend on the particular

schedule produced. This means that generally a user of the

scheduling system can't fully specify his/her preferences a

priori before getting the scheduling results from the system.
By looking over the obtained schedule results, the user of-

ten thinks of additional preferences. Consider, for example
a situation where a human scheduler does not like to use
MACHINE-A which is substitutable for MACHINE-B bet

is of lower quality than MACHINE-B for processing
ORDER-X. The reason high quality results are desired is

that ORDER-X belongs to a quite important client. Sup-
pose, however, that the schedule indicates that ORDER-X

is tardy by an amount above an acceptable tardiness

threshold due to demands on MACHINE-B (by orders more
important than ORDER-X). Then, the human scheduler

may decide to use the less preferable machine, MACHINE-

A for the less important order; ORDER-X. if the tardiness

was below the threshold, he/she may prefer to allow a tardy

order. It is very difficult to elicit this type of preference and

preference thresholds from the human scheduler indePend-
ent of the presence of a particular context.

The second reason interactive schedule repair is desirable

is that it is impossible for any given knowledge based

scheduling model to include all the constraints that may be

relevant. Current advanced scheduling systems can exploit

very complicated models to represent the factory, orders

and user's preferences. But no matter how richly the model
is constructed, there are always additional factors which

may influence the schedule but had not been represented in

the model. For example, for a certain foundry it may be

good to decrease usage of a sand castingmachine _d_g

the summer, because the combination of heat and humidity,

of the weather may make it slower than usual. But how

should the model of the scheduling system represent the

season, weather or humidity? And isn't it necessary for the
model to represent time of the day, strength of wind or

health of a machine operator and so on? [2]. Nevertheless

these factors, that an experienced human scheduler learns to

take into consideration, could have a big influence on

schedule quality but it is very difficult to represent in a

principled manner so they can be used by an automated

scheduling system.

The third reason interactive schedule repair is desirable is

that factories are dynamic environments. Unexpected

events, such as operator absence, power failure and

machine breakdowns frequently happen. Therefore, it is

necessary for the scheduling system to adapt to the events

in the factory environment as soon as possible by reactively

repairing the existing schedule. Although initial progress

has been made in automatic schedule repair [3], human in-

tervention may be necessary as a result of the reasons given
(context dependent user preferences, and difficulty of

representing all relevant constraints).

Another consequence of the above is that local repair
rather than re-scheduling is more desirable, since re-

scheduling will suffer from the same ills as the initial

scheduling. In addition, it is in general desirable [3] to min-

imize disruption to the shop floor. If re-scheduling from the

point of failure is attempted, the new schedule may be dras-

tically different from the original schedule, thus necessitat-

ing disruption of the work flow in the shop, and new work

allocation. The new schedule, moreover may solve the cur-

rent problem but introduce new problems that have to be
solved.

One extremely beneficial side effect of interactive

schedule repair is the insight that the user obtains into

his/her scheduling preferences and their context of ap-

plicability. The process of interactive repair requires the

human scheduler to analyze the current problem, repair it

by clarifying or modifying his/her preferences and finally

evaluate the result. This gives the human scheduler good
opportunities to understand his/her criteria in diverse situa-

tions. So later when he/she encounters a problem that is

similar to a previous one, he/she can be reminded of the

applicable previous repair and re-use it in the current situa-
tion.

47

1.1. Why case-based repair? 2.1. System Architecture

Case-based R_ing (CBR) is a recent AI problem After the initial schedule is made, it is examined by the
solving paradigm [!]. A CBR system tries to solve a user and the defect detector (a rule-based system) to find
problem by (1) retrieving the most similar case with the undesirable parts in the existing schedule. If some defects
current problem _ its _ base, _*(2) modifying-ii _to _ =_dete.cted.ihe-|nf0rmafion about the defects are passed to
adapt to the current situation and (3) applying it to the cur- the repairer. If local repairing is determined to be feasible
rent problem. At the end of problem solving, the new by the repairer, resource reservations in the current
solved problem is storedas a _ case in the case memory, schedule _ _fly modified ot _celed by the repairer
As a computational model the first feature of C'BR is its and the scheduler is asked to re-schedule the conflicting

method of knowledge acquisition. In CBR the unit of o_fions whose reservations were canceled. When local
repair turns out to be impossible, the repairer modifies theknowledge is the case, which is an experience encountered

during problem solving. This makes it easier to arfic_ite,

examine and evaluate the knowledge. The second feature is
its learning capability. A CBR system can remember its
performance and modify its =beha,_%r to avoid =repeating

prior mistakes. The third feature is its adaptive power. By

scheduling model and re-scheduling is attempted based on
the modified model. The overall goal of CABINS is to

make repairs as cheap as possible trying at the same time to
minimize interfering side effects of these repairs on the cur-
rent schedule. Figure 2-1 depicts the architecture of

reasoning from analogy with the past experiences, a CBR CABINS.
system should-be ableto construCt soiufio-ns-fo-novel = _ = = : =
problems. These features make CBR very amacfive for in-
teractive schedule repair.

Because a ease describes a particular specific experience,
the factors that were deemed relevant to this experience can
be recorded in the case. This description fully captures the
dependencies among features and their context. So if a
similar situation is encountered, the system can re-use the
repairing method which is stored in the retrieved case. In

addition, a case serves as a knowledge structuring
mechanism so that all relevant factors are local to a

rather than distributed through the system (as happens with
rule based systems). Even when the result of applying the
repairing method of the retrieved case turns out to be
failure, if the user can explain the t'_l_, _then _ie-systern
can create a new case based upon this failure experience
and store it as a new case along with the associated ex-
planation. Thus, as the case base is enriched with successful
and failed experiences, the system becomes more robust for
various type of schedule defects that would have been dif-
ficult to predict in advance. This enables the replacement of
expert users with novices that rely on the system's ex-
periences.

2. Case-based Interactive Scheduler (CABINS)

Based upon the above discussion, we are developing the
Case-hased Interactive Scheduler (CABINS) whose goal is
to support interactive schedule repair. A CABINS user is

envisioned to be a person who is responsible for making
schedules in advance of production. In making an initial

Rc-_aeduh ,_-_ P. atrial re-sclbeduk =

_ D efe_ dele_l. [

, Defects j

Idodolmodification Localisatch_9

Figure 2-1: An:hitecture of CABINS

2.2. Schedule Repairing Process

The processing of CABINS has four stages:

• defect detection
• defect selection
• selection of repair strategy
• selection of repair tactics

Currently defect detection and defect selection are per-
formed by the user who finds the most impo_nt defect and
identifies the features associated with the defect. These fea-

tures are used as indices into the case memory to find
similar past defects. Out of the reuieved similar past
defects, the least critical is selected. To determine defect

criticality, the system uses the cost of repairing the defect as
a measure: the lower the repair cost, the less critical the

schedule, the user may be assisted by an automated defect. Low repair cost is usually associated with local
scheduling system. If the user identifies undesirable fea- patching whereas high cost means that more changes are
tunes of the current schedule, be/she uses CABINS for made to the overall schedule. So, beginning with the lowes[
schedule repair, so as to improve the current schedule.
CABINS finds defects in scheduling results and repairs
them by patching locally or modifying part of its model
(resources, orders, shifts and user's preferences).

cost repair is a good heuristic since the defect can be poten-
tially fixed cheaply.

CABINS uses two level of repairs: repair s_ategies and
repair tactics. A repair sa'ategy is associated with a par-
ticular high level description of classes of defects. Each
repair strategy has a variety of repair tactics associated with

/,8

I

|

U

m

Ill

B
l

J

I
I

i

I

Z
W

m

I

m

I

J

I

g

m
I

m

L

i: --':=

it. The repair tactics are appropriate for particular
specializations of the defect classes. We have identified two
general types of repair swategies: local patching and model
modification.

To seTect a Slrategy for repairing important defects,
CABINS looks for the most similar case to the current

situation in the case base and selects the same strategy
which succe_,ded in the past case. The system has several
alternative s_'ategies for each defect and one of them is
selected based on the feature similarity of the current situa-
tion and the past experience. Some of the features that we
are currently using for ease retrieval are various defect

types, Such _ order tardiness and various schedule charac-
teristics, such as schedule tightness, inter-order slack, and
machine idle time. For example, if the type of defect is
"tardy order', there are seven repair strategies:

1. Reduce the slack between operations in the tardy
order

2. Reduce the idle-time of resources neededby opera-
tions in the tardyorder

3. Relax due-date constraint of orders (the tardy order
or interfering orders)

4. Relax release-date constraint of orders (the tardy or-
der or interfering orders)

5. Reduce the shop load
6. Increase shifts
7, in_ resource cap_ity.

The first two strategies belong to the general category
"local patching" and the rest to the category "model
modification'.

In general, we have presented the repair strategies in or-

der of expensiveness (from the cheaper -strategy 1 to most
expensive --strategy 7). For tardiness repair, the dis-
criminating feature between selecting cases with repair
strategies in classes 1 to 2 and selecting cases with repair
strategies 3 to 7 is the tightness of the current schedule. If
the current schedule is not very tight (i.e., there are a lot of

idle intervals on resource_ needed by operations of the tardy
order), CABINS will select cases where tardiness was
repaired by local patching. Whether cases with repair-
strategy-1 or repair-strategy-2 will be selected depends on
whether, beside enough idle interval, there is also slack be-
tween adjacent operations of the tardy order. If there are,
then cases where strategy-1 was used will be selected. Tac-
tics associated with strategy-2 could be to move every
operation of the tardy order upstream (left shifting) on the
time line if enough idle interval is available for the opera-
tion.

If the current schedule is tight, then cases that prescribe
model modification rather than local patching will be
retrieved. If there are no discriminating features to deter-
mine the applicability of strategies 3 to 7, CABINS uses the

default ordering: use strategies in ascending cost. The
cheapest model modification is relaxing due-date con-
straints of the tardy order or interfering orders (strategy-3).
This is cheap since it is easily accomplished and has no side
effects on the shop floor environment. On the other hand,

reducing the factory load (strategy-5) (e.g., by subcontract-
ing orders) and re-scheduling is in general more expensive

than relaxing due dates of interfering orders because one
must determine the orders to be subcontracted out, price of
subcontracting, possible delays etc. An additional concern
is that the resulting scheduqe might not be entirely satis-
factory and may need to be repaired anew. Similarly,
swategies 6 and 7 are increasingly expensive, since ad-
ditional investments in paying overtime or buying new
machines are needed.

Although strategy-3 is the cheapest of the repair
strategies of type "model modification", it may not always

be desirable. To determine applicability of strategy-3,
CABINS retrieves cases where application of strategy-3 has
failed. If other features of the current situation match fea-

tures of the past failures of strategy-3 (e.g., the tardy order
has a stiff penalty for tardiness), then CABINS is warned
that strategy-3 is not applicable. Similarly, if there are no

discriminating features to distinguish among the application
of strategies zl to 7, retrieval of previous cases where the

strategy under consideration has failed gives the system ad-
ditional .discriminating information. Thus, CABINS uses
the default ordering of repair strategies as well as successful

case application as necessary conditions of the applicability
of particular repairs; it uses past failures as sufficiency con-
ditions. As more cases are encountered, both the necessary
and sufficiency conditions are refined. Therefore, it is
hoped that CABINS can improve its performance over
time.

For each repair strategy, there could be a variety of repair
tactics that are applicable. For repairing order tardiness,
there is a variety of appropriate tactics for local patching.
Below, we present some of these tactics.

1. left-shift on same resource: move the operation as
much to the left as possible, _hile maintaining the
amount of disruptions as small as possible.

2. left-shift on substitutable resource: if the operation
that is desired to be moved has a substitutable
resource, then move the operation as much to the
left as possible, while maintaining the amount of
disruptions as small as possible.

3. swap on same resource: find another operation
which is to the left of the operation to be moved on
the same resource and whose duration is ap-
proximately equal to the duration of the current
operation and swap the two operations.

4. swap On substitutable resource: if the operation that
is desired to be moved has a substitutable resource,
then find another operation which is to the left of the
operation to be moved on the substitutable resource
and whose duration is approximately equal to the
duration of the current operation and swap the two
operations.

The last two tactics may result in tardiness of other or-
ders but this may be allowable.

For model modification, possibly applicable tactics along
with the associated repair strategy are:

49

!. relax-due-date-of-tardy-order (strategy-3)
2. fred-most-interfering-order with the current tardy

order and make it tardy (strategy-3)
3. relax-release-date-of-tardy-order (strategy-4)
4. find-most-interfering-order with the current tardy

order and make it start earlier (strategy-4)
5. subcontract'least-profitable-order to create more

slack (strategy-b)
6. subcontract-most-interfering-order to create more

slack (strategy-b)

7. overtime-work on weekday (2 hours) (strategy-6)
8. overtime-work on weekend (8 hours) (strategy-6)
9. increase-capacity-of-most-critical-resource

(strategy-'/)
10. capacity-of-substitutable-resource-of-most-cridcal-

resource (strategy-7)

Each retrieved case has been repaired by possibly using a

combination of repair strategies and tactics. Upon recog-
nition of similarities in schedule defects and defect context,

the appropriate re_ plan could be applied. If the applica-

tion of a repair step leads to failure, the user is asked to

supply a possible explanation of the failure. The failure is

then stored in memory so it can be retrieved and help the
user avoid similar failures in the future.

3. Example

In this chapter we explain how CABINS works by using

a simple example. In the example we make a schedule of 4

orders on 5 resources. Each order has a client, fixed release-

date and fixed due-date. Every order is composed of 5

operations (ope-1 to ope-5), which should be ordered in that

order. Each operation has fixed duration and requires one

resource which may or may not have a substitutable

resource. The detail specifications of the example problem

are depicted in figure 3-1. In Figure 3-2 we show the result

of:the original scheduling. Each rectangle represents the

reservation of each operation over the time-interval on the

machine. The small number inside each rectangle shows the

order to which the operation belongs. In scheduling the 4
orders, the scheduler failed to meet the due<late of order-3

by 130. (The due-date of order-3 is 790, while order-3 is

scheduled to finish on 920.) Suppose that the client of

order-3 has had the late shipment of his orders several
times, s/he is sure to cancel her/his contract as a result of

our more tardy shipment. Therefore, finding and fixing this

situation is critical. A human scheduler at the factory tries

to fix this problem by consulting with CABINS.

First, CABINS considers the current problem as a case

by compiling the current scheduling results with respect to

the tardiness of order-3. A human scheduler gives ad-
ditional contextual information to it if s/he finds it's neces-

sary or helpful for finding the solution of the current

problem. The vocabulary of this information is maintained

by CABINS and a human scheduler can update it by

adding/deleting terms. Figure 3-3 shows the contents of

this example problem case.
Then, CABINS tries to retrieve the case most similar

NO IU

mdl2 '.N_u_laqt_amlllqmaur_

m u _Im_
p

,=_t_ j ,=.=5
m1 I u I

U ui_ i

Figure 3-1: Problem Specifications

m m !1_ m _ll a m m m

Figure 3-2: Initial Schedule

Figure 3-3: Current Problem Case

cases to the current problem case from its case-base library.

The retrieved case includes not only the problem situation

description but also repairs and repair outcomes. For repair

strategy selection, every solution includes the information

of the selected strategy, the result of applying the strategy

and the explanation of why it succeeded or failed. The ex-

planation of the solution Outcome is added to the ca_ by a

human scheduler only when s/he thinks it is necesmry for

creditor biame assignment of the selected strategy. Figure

3-4 depicts _e re,eyed case to solve this example

problem.

After display of the retrieved cases, a human schedulcr
examines whether s/he can apply the same solution method

m

g

J

|

I

il

u

III

I1

i

u

m

ll

II

50 w

E =

|_

w.==,.

u

lU_r TIqM: T_

: C:_'lmpo_m the IJml_ Imatom

lru_Owle¢: _ TaNIMn: 140

Clle_ TJ_tf Re4owl: • Ov_dl Tenlkmes : _0

Meel Inmwledng ONier: e_fa2 LamM iendliei_ O_qdw:

lleltago:. 11.4 EIA_tdedlldloRadlo: 17._

I_k iiladio : 0.0

IMmlN_okR4_ofao@: meau_el _dmil_lS_0R0_UmN: _40ur_2

S01VtleR

I_-Megy: _Le_PwlNideC_le_ Romdl: Fakn

_: Ev_rgood_utmW

Set.on

Sarme_: kuueamGouke_kCupJ_ ;torero: Smun

F.zlslanJoR : Ilolkme_ _ b --* _llo

Figure 3-4: Retrieved Case

to the current problem. Even when the result of the solution

in the retrieved case was failure, the solution may be worth

trying ff the explanation of failure given in the previous
case does not hold in the current situation. On the other

hand, a human scheduler should also check the validity of

the explanation of a successful previous solution before s/he

applies it to the current problem. In this example, even

though the fast solution failed when it was applied in the

precedent case, a human scheduler can try to apply it, be-

cause the explanation of the failure given CEvery good sub-

contractor is busy") is apparently related to the description
of the context of the problem ("Industry in Boom"). There-

fore the explanation is not necessarily true in the current
situation which doesn't share the same context. Note that

those judgments are done by a human scheduler. However,

by retrieving and displaying previous similar cases,

CABINS gi_,eS her/him useful information to help making

her/his decision. Moreover, the greater the number of new

cases that are added into the case-base library, the more

likely CABINS is to retrieve the case which is close enough

to the current problem. Therefore, it becomes progressively

easier through CBR to decide whether the solution of the

retrieved case is applicable or not.

After determining the solution method, a human

scheduler can execute it by interscdng with the scheduling

system. Figure 3-5 depicts the result of rescheduling

order-3 after _su_ntracting the least profitable order

(order-l) in this example. It shows that order-3 meets its

due-date, i.e. the repair was successful.

mmtata_

Figure 3-5: Repaired Schedule

4. Concluding Remarks

--_In this paper we discuss the need _r interactive facto_

schedule repair and improvement, and identify case-based

reasoning (CBR) as an appropriate methodology. Case
based reasoning is the problem solving paradigm that relies

on a memory for past problem solving experiences (cases)
to guide current problem solving. Cases similar to the cur-

rent case are retrieved from the case memory, and
i_ similarities and differences of the current case with past

i' cases are identified. Then a best case is selected and its

repair plan is adapted to fit the current problem description.

i If a repair solution fails, an explanation for the failure is

i _;tored along with the-case in memory, so that the user can
avoid repeating similar failures in the future.
: So far we have identified a number of repair strategies

- and tactics for factory scheduling and have implemented a

part of our approach in a prototype system, called CABINS.

As a future work, we are going to scale up CABINS to
evaluate its usefulness in a real manufacturing environmenL

References

[1] Kolodner, J., Simpson, R. and Sycara, K.
A Process of Case-Based Reasoning in Problem

Solving.
In Proceeding of the Ninth International Joint Con-

ference on Aritificial Intelligence, pages
284-290. IJCAI, Los Angeles, CA, 1985.

[2] K.Mckay, J.Buzacott, F.Safayeni.
The Scheduler's Knowledge of Uncertainty: The

Missing Link.
In Proceedings of IFIP Working Conference on

Knowledge Based Production Management
Systems. Galway, Ireland, 1988.

[3] P.S. Ow, S.F.Smith, A.Thiriez.
Reactive Plan Revision.

In Proceedings of the Seventh National Conference
on Artificial Intelligence, pages 77-82. AAAI,
St-Paul, Minnesota, 1988.

[4] Norman Sadeh.

LOOK-AHEAD TECHNIQUES FOR MICRO-
OPPORTUNISTIC JOB SHOP SCHEDULING.

PhD thesis, School of Computer Science, Carnegie
Mellon University, 1991.

[5] Stephen F.Smith, Peng Si Ow, Nicola Muscettola,
Jean-Yves Potvin Dirk C.Matthys.
AN INTEGRATED FRAMEWORK FOR

GENERATING AND REVISING FACTORY
SCHEDULES.

Journal of the Operational Research Society, 1990.

m
51

