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Abstract

Mathematical-analyticai methods as used in
Operations Research approaches are often in-
sufficient for scheduling problems. This is due
to three reasons: The combinatorial complex-
ity of the search space, conflicting objectives
for production optimization, and the uncer-
tainty in the production process. Knowledge-
based techniques, especially approximate rea-
soning and constraint relaxation, are promising
ways to overcome these problems.

A case study from an industrial CIM environ-

ment, namely high-grade steel production, is
presented to demonstrate how knowledge-based
scheduling with the desired capabilities could
work. By using fuzzy set theory, the applied
knowledge representation technique covers the
uncertainty inherent in the problem domain.
Based on this knowledge representation, a clas-
sification of jobs according to their importance
is defined which is then used for the straight-
forward generation of a schedule.

A control strategy which comprises organiza-
tional, spatial, temporal, and chemical con-
straints is introduced. The strategy sup-

ports the dynamic relaxationofconflictingcon-
straintsinorder toimprove tentativeschedules.

1 Introduction

The task ofschedulingjobs and resourcesin a factoryis

difficultfor mainly three reasons. First,one has to deal

with the combinatorial complexity due to multiple ways

ofjob accomplishment [6].Second, conflictingobjectives

may hinder the definitionof an undisputed optimality

measure [11]. Finally,there isuncertainty in the exe-

cution of jobs due to the lack of knowledge about the
exact physicalfactsunderlying the production process.

Thus, itbecomes senselessto compute exact scheduling

solutions.Often reactiveschedulingisproposed as a so-

lutionto these problems [10].To illustratethe situation,

an existingscheduling task isdescribedin the following.

In a joint projectbetween the Alcatel-ElinResearch

Center Vienna and the CD-Laboratory for Expert Sys-

tems, an expert system was developed. It supports the
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technical staff of the BBhler steelmaking plant in gen- "

crating weekly schedules for steel heats [2]. Side condi- _"
tions are the same as for the approach proposed in this
paper, with the difference that no attempt to handle un-
certainty was made in this first expert system. BShler is
one of the most important European producers of high-
grade steel. The plant produces tool steel, high-speed

steel, and stainless steel. There are hundreds of differe,lt .:_
kinds of steel, with 42 chemical elements varying in their --
specification. The requirements concerning steel quality

are very strong.
One problem in scheduling is that residuals ofone heat --

in the electric arc furnace may pollute the next heat. As
a general rule of thumb, it can be said that 3% of a
chemical element in a heat remain on the electric arc

furnace's wall, and 3% of the difference of this elemelJt "
in the first heat and the second heat will be assimilated

by the second heat. Two heats that have similar shares
of the element in question pose no problem. However. : _
if the second heat has a much smaller percentage than ""
the preceding one, the pollution by the residual from the
first becomes too large to be compensated by decreasing
the amount added to the second heat. This either means

r=u,,

that the quality of the second heat will be badly influ-
enced, or if the polluting element is expensive, that it
will be wasted, and money is lost. In the following these
two constraints are called compatibility rule. The com-
patibility rule is effective for all 42 chemical elements,
but usually only 8 main elements are co,asidered, since
the others generally are not expensive, do not vary sig- --

nificantly, or have no great impact on the steel quality. =_-_
Uncertainty arises because exact vah,es for the chc,nical
elements can very often not be mesured. Further con-

straints for the scheduling process are temporal, distri- _,
bution control, spatial, and resource restrictions on and

among the aggregates.

2 Uncertainty Management --

One objective of the presented strategy is to schedule as "
many jobs as possible.In order to get the most impor- :
tantjobs scheduled,the evaluationfunctionforan entire

schedule must contain a factor representingthe impor-

tance ofjobs. Hence, an evaluationfunctionisdefinedto

assign an importance value to a schedule by addiug t,p
the importance values for each job in the schedule. These
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Table 1: Characteristics of given heats in the example

latter values are calculated by considering the resource
requirements, due dates, and various other attributes of
individual jobs.

A first schedule is generated straightforward by con-
sidering most important jobs first. The first schedule

may not contain all jobs and still violate some con-
straints. In these cases, jobs in the schedule will be ex-

changed to find a proper schedule. A hill climbing search
method is used to control this exchange. To compare so-
lutions, an evaluation function based on the given con-
straints is needed. Fuzzy logic is a sound AI-technique
to manage uncertainty as present in this problem [8, 12].
Since [9], and as recently as in [1], fuzzy logic has been
successfully applied to knowledge-based scheduling. Our
approach generalizes these former ones to include, beside

temporal constraints, other kinds like chemical or orga-
nizational constraints.

In section 2.1, we propose a method how the given
constraints may be represented by fuzzy sets and how
an evaluation for a eompleie schedule is computed. Sec-

tion 2.2 explains the generation of a preliminary schedule
and the search for a better schedule. Such a schedule can

only be found if constraints are relaxed, because many

constraints are antagonistic. This relaxation will again
be based on fuzzy sets.

A small example of the application is described to il-
lustrate the used techniques. The example is restricted
to one furnace and the planning horizon is only several
hours. Additionally, only a subset of the given con-
straints is considered in order to reduce the complexity
of the example. The exlstance of a schedule until 5am
is assumed. The input is a list of jobs that should be
scheduled. The first heat h0 in the list is the latest job
scheduled from the last scheduling process. The main
ingredients of each order are given in table 1.

Three heats of table 1 have special characteristics that

imply their classification as very important jobs. Heat
ha is processed on the continuous caster (CC) and has
a delivery date. The delivery date is 4pm, the overall
treatment takes about five hours, and therefore the pro-

cessing should start at 11am. Heats hs and he shall
BEST -treatment.be cast into big ingots with a special t

This implies that they cannot be produced immediately
one after the other. Instead, there should be a time in-
terval of at least ten hours between them.

aBEST stands for Bfhler Electro Slag Topping.

2.1 Qualitative Representation and Evaluation
of Constraints with Fuzzy Logic

The constraints of the given application can be divided

into three categories: Constraints on a particular job,
temporal constraints, and constraints on the compati-

bility of jobs.
Constraints on a particular job are constraints based

on required resources or aggregates. They are used to de-
scribe the importance of jobs. This importance of jobs
is used later to control the generation of a preliminary
schedule by scheduling the most important job first. Itl
our sense, this importance is a combination of the diffi-
culty to schedule a job in general and its urgency, that, is
to schedule it for the actual planning horizon. A job that
requires a bottle-neck resource like the continuous caster
is usually difficult to schedule. A job with a certain de-
livery date is important, because it must be scheduled
in the planning horizon in which the delivery date falls
.lobs that are not important may be shifted to the next
planning horizon. To schedule a shifted job eventually,

it is necessary that the importance of the job increases
over time. The range of fuzzy linguistic variables to rep-
resent importance is: urgent, very important, important,
medium, and not important. ..:

The classification of jobs in the list is dependent on the
situation in the actual planning horizon. For instance,
if for the actual planning horizon many jobs with a high
chromium-nickel-alloy exist, then a high percentage of
nickel (Ni) is no problem. On the other hand, when there
are only few jobs with high nickel percentages, these jobs
can be difficult to schedule.

Temporal fuzzy values can be used to describe that
jobs are too early or too late. The fuzzy value describes a
degree of uncertainty in both directionl One can identify

the following linguistic variables: very early, earl)', in
time, late, very late. For the evaluation of a schedule

it makes no difference whether jobs are too early or too
late. Therefore, the five variables are mapped onto three:
in time, nearly in time, and not in time. Representation
of temporal constraints with fuzzy sets is discussed in
detail in [1, 3, 4, 9].

The compatibility of two jobs integrates several fac-
tors: Different chemical elements, and the work load of
workers. The compatibility between two jobs is calcu-
lated by first evaluating the compatibility for each fac-

tor separately, in order to get restricted compatibility
measures. Accordingly, we define six fuzzy sets for the
global as well as for each restricted compatibility: very
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Table 2: Fuzzy inference to compute chemical compatibility between two beats

high, high, medium, low, very low, and no compatibility.

The latter is a special case, since a sequence being clas-
sifted incompatible can never be scheduled in this order
because of hard chemical constraints to be observed.

The compatibility calculation for nickel is shown in
table 2. The condition parts of the fuzzy inference rules
used for this calculation contain statements about the

percentage of some chemical element in the first heat
compared to the following heat. In the example taken
from table 1, the heat h5 must contain hs[Ni] = 1.2%
of the chemical element nickel, whereas heat hv should

contain only h¢[Ns] = 0.1%. The relative percentage of
hs[gz] is therefore 1200% of hT[Nz_. The question is,
considering only nickel, whether the sequence hs preced-
ing h7 is allowed or not, and if yes, how good this se-
quence is. To decide this with the given fuzzy inference
rules, the linguistic variables and numeric values must be

matched. This is done with a fuzzy membership func-
tion as defined in table 2, both for the condition and for

the conclusion part. In the example, the numeric input
of 1200% relates more or leas with the linguistic vari-
ables more and much more. Following the dotted lines
to the conclusion membership functions for such rules
as "IF the percentage of chemical element E in heat H0
is more than in heat Hz, THEN the E-compatibility of
H0 preceding Hz is medium" or "IF the percentage of
chemical element E in heat Ho is much more than in
heat Ha, THEN the E-compatibility of H0 preceding

Hz is low", membership functions lOW[N,](hs,h_) and

mediumlml(hs, hT) appear as a result of the calculation.
Their combination is a new membership function defin-

ing the nickel-compatibility of hs preceding hT. In order
to compare the result with other compatibilities, it must

be defuzzified. This can be done by calculating the cen-
ter of gravity of the surface and then taking the value
of its x-coordinate as the result, a standard method in

fuzzy calculation [8].

The conditions of the fuzzy inference rules consider
only relative values for the percentage of elements like
nickel in the two compared heats. Absolute values are of

minor interest for the compatibility problem, but could
easily be modeled by introducing more complex three-
dimensional membership functions. We chose a hall=
logarithmic graduation to be able to handle those rel-
ative values. Since the compatibility rule is asymmetric
and only restricts the second heat to a minimal value
for a certain chemical element, which must at least be

present in this heat, the graduation is asymmetric, too,
and only logarithmic on the right half. Beside simplify-
ing the visualization, this logarithmic scale has an ad-
ditional positive effect, since positions on the right side
of the 100% mark that are stilt near the center, are pre-

ferred and get more attention per unit than positions
more close to the physical limit on the far right This
reenforces the natural meaning of the fuzzy linguistic
variables positively.

The fuzzy inference rules like those used in table 2

give several fuzzy judgements how compatible the heats
are. These judgements in form of membership functions
can be simplified to the linguistic variable to which the
judgement mainly pertains. The resulting fuzzy-values
can all be combined by computing a weighted mean of

the defuzzified values to get one overall value for the two
heats:

comp( Hi, Hi) - _ g( E)comp[E]( H,, H_ )
EE{WI,Ni,Cr, }

In this formula, g(E) is the normalized weight of a rule
and E is a member of the set of all factors influenciag the
compatibility, namely work load (Wl) and the 42 chemi-
cal elements like nickel or chromium. This computation

is done for every pair of jobs that may be scheduled. The
result is a matrix of fuzzy values where the fuzzy values
describe how compatible the sequence of the job of a

column after the job in a row is according to all rules.
After defuzzifying the matrix, numeric values that can
be rematched with the original fuzzy linguistic variables
can be written in the matrix.

Table 3 shows the matrix for the example. It will
be used for the construction of the preliminary sched-

ule and during the improvement process To evaluate
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Note: H0

I H0 0 l U
hi
It2

h_
h4
hs
h6
h7

hl

low

very low
medium

high
medium
medium
medium

h2

medium
very low

high
very low

high
higl_

medium

_3

hi[gh
very low
very low

very low
hi'g[i
high
low

h4

lOW

very high
' 'lOW

medium

medium
medium
medium

h5

hilgh
low

very low
high

medium

very h!s._h-
medium

/t6

high
low

verylow

high
medium

very high

medium

]17

medium

very low
very low

high
medium
medium
medium

)recedes Hi, e.g., the compatibility of heat h3 preceding h2 is high, whereas h2 preceding h3 is very low.

Table 3: Compatibility matrix for heat sequences

compatibility: high medium low high very low low

I h0 I As I hv [ h3 I A, i hkl h i,
time: 5am 7ram 9am llam lpm 3pm Spin

Table 4: Preliminary schedule for example heats

schedules during improvement steps,itisnecessary to

compute an evaluationfunction for the compatibilityof

the entireschedule. This can be achieved with a fuzzy
and-operator.

2.2 Generating a Schedule

To generate a preliminary schedule, the jobs are classi-
fied regarding their importance. Then they are sched-
uled in the sequence of their importances. Scheduling
a job means assigning a temporal interval to it. These
intervals are spread over the entire planning horizon be-
cause of temporal and resource constraints. During the
scheduling process, empty intervals are created between
scheduled jobs. The compatibilities with the jobs before
and behind this empty interval are not considered. If

empty intervals with a duration of approximately one
job are created, they are filled with compatible jobs as
long as there are some available.

Usually, some jobs can not be scheduled, because no
interval exists where they would not violate some com-
patibility constraints. In addition_ some empty intervals
remain in the schedule, and the compatibility between
the jobs adjacent to this interval is usually bad. In order
to cope with the given complexity, instead of backtrack-
ing to the last scheduling decisions, such a preliminary

schedule is repaired or improved by exchanging jobs.
In the list of jobs given in table 1, job hs has a deliv-

ery date. It will be scheduled first. Thereafter, jobs hs
and h6 will be scheduled, because they are very difficult
jobs. They include a special treatment and therefore

need a long time span between each other. Fortunately,
one of them fits well after h0. hs is choosen to be the
successor of h0. The other is scheduled at the end of the
planning horizon. The job h? is scheduled between hs
and ha to close the empty interval between them. Heat
h_ is another difficult job for the actual planning hori-
zon, because most heats have high percentages of nickel

(Ni) and chromium (Cr), and h2 has only small amounts
of both. Moreover, h2 has large mounts of vanadium

(V) and tungsten (W). The best place for h2 is behind

heat h3. An empty interval remains between h2 and h6.

There exists no heat in the given list that fits between h_
and ha. To fill the interval, hi is scheduled between h_

and h6. Heat h4 remains for the next planning horizon.
This preliminary schedule is illustrated in table 4.

To improve a schedule, a measure for schedules that
evaluates which schedule of two is the better one is

needed. Unfortunately, the violation of constraints can
have far-reaching consequences. The violation of a tem-
poral constraint can cause the need for more resources
such as additional energy, or rescheduling in subsequent
plants. The violation of chemical compatibility can re-
sult in the loss of a heat which would be a heavy fi-
nancial damage. On one hand, one must consider hard
constraints that may not be relaxed, and on the other
hand constraints must be relaxed to a certain degree in
order to get a feasible schedule with as many jobs as
possible. In order to evaluate all these antagonistic con-
straints, an evaluation function based on the introduced
fuzzy values is needed.

The actual schedule is called the "currently best. sched-

ule". To improve a given schedule, a potel_tial constraiut
violation that could be irnproved is searched, hi the ex-
ample, such a violation is found between heat h_ and h_.
Therefore one of them is taken out of the schedule, if

hi is taken, no other heat is found in the whole list that

would fit better. Therefore h2 is taken out of the sched-
ule and another heat that fits better is searched, h2 can
be replaced by h4 and one gets the schedule shown in ta-
ble 5 which is the "current best schedule", because the
evaluation function based on fuzzy sets assigns a better
value to this schedule than to the old one.

In the next step, the compatibility of h7 preceding h3
is found low. Therefore a job that-would be a better

predecessor of ha is searched. Heat hs is tile best fit,.
There are two possibilities: a heat that can be processed
between h0 and hs can be searched, or h3 can be simply
shifted in time. Regarding only the compatibility con-
straints, the best solution would be to exchange hs and
h?. Unfortunately, another constraint is violated in this
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compatibility:

I ho
time: Sam

high medium low medium high low

I hs I h, I ha I hi I h0
Tam 9am llam Ipm 3pm 5pm

Table 5: Intermediate schedule for example heats

compatibility: high high high medium high low

I h0'"'"l h5 I hs I h7 I h., I hi I h6 I
time: Sam 7am 9am llam lpm 3pro 5pro

Table 6: Final schedule for example heats

case: The interval between the heats h5 and h6 should
be at least 10 hours. Therefore heat ha will be shifted.
Since delivery dates may be shifted up to two hours, heat
ha can start at 9am and heat h7 started after ha. The
result is the schedule shown in table 6.

Every exchange of jobs in the schedule can be inter-
preted as one operator in a search process. The search
for better schedules can be guided by heuristics based on
our evaluation function. This heuristic search is a kind
of hill climbing method. Unfortunately, the disadvan-
tage of a hill climbing method is that it can be caught
in local maxima. In [7] a technique called TABU search
is described that can be used to overcome this problem.

The search will end if no more constraint violations
can be detected, or no further improvement can be
achieved. It is not that easy to say that no further
improvement can be achieved. Here it makes sense to
define a distance function between an optimal schedule
where all compatibilities would be very high, and all the
other constraints would be observed too. If there is such
a distance function, the search effort can be restricted
by a ratio between distance and search effort. It would
be fruitless to invest much more search effort if only a
small distance exists. On the other hand, if the distance
is large, one should search longer for a better schedule.

3 Conclusion

Due to highly unreliable knowledge and conflicting
objectives in scheduling applications, mathematical-
analytical methods as used in Operation Research ap-
proaches are insufficient in many cases. We have illus-
trated this very problem for a steelmaking plant. In
order to overcome this deficiency we have developed a
solution which combines two sound AI-techniques for
problem solving: Approximate reasoning and constraint
relaxation.

We believe that, using the described techniques, the
development cycle for scheduling expert system becomes
shorter, the knowledge representation easier, and bet-
ter schedules can be generated compared to earlier used
techniques.
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