
p

m

m

m

i

N98-
--f5Experiments with a Decision-Theoretic SchedUler*

Othar Hansson la and Gerhard Holt a and Andrew Mayer 1'2

aHeuristicrats Research Inc.

1678 Shattuck Avenue, Suite 310

Berkeley, CA 94709-1631

/-

/

Abstract /

This paper describes DTS, a decision-

theoretic scheduler designed to employ state-
of-the-art probabilistic inference technology
to speed the search for efficient solutions
to constraint-satisfaction problems. Our ap-

proach involves assessing the performance of
heuristic control strategies that are normally
hard-coded intoschedulingsystems, and us-

ing probabilisticinferenceto aggregate this

information in lightof featuresof a given
problem.

BPS, the Bayesian Problem-Solver [2],intro-

duced a similarapproach to solving single-

agent and adversarial graph search prob-
lems, yielding orders-of-magnitude improve-
ment over traditional techniques. Initial
efforts suggest that similar improvements
will be realizable when applied to typical
constraint-satisfaction scheduling problems.

1 Background

Scheduling problems arise in schools, in factories, in
military operations and in scientific laboratories. Al-
though many algorithms have been proposed, schedul-

ing remains among the most difficult of optimization
problems. Because of the problem's ubiquity and corn-

plexity, small improvements to the state-of-the-art in
scheduling are greeted with enormous interest by prac-
titioners and theo_reticians alike.

A large class of scheduling problems can be repre-
sented as constraint-satisfaction problems (CSPs), by
representing attributes of tasks and resources as vari-
ables. Task attributes include the scheduled time for

the task (start and end time) and its resource require-
ments. A schedule is constructed by assigning times
and resources to tasks, while obeying the constraints

"This research was supported by the National Aeronau-
tics and Space Administration under contract NAS2-13340.

2Computer Science Division

University of California

Berkeley, CA 94720

of the problem. Constraints capture logicalrequire-

ments (atypicalresourcecan be used by only one task

at a time) and problem requirements (taskTz requires

N unitsof time, must be completed before task Ty,

and must be completed beforea specifieddate).

One common approach to finding an assignment

forthe variablesemploys a preprocessingstage which

tightensthe constraints(e.g.,by composing two con-

straintstoform a third),followedby a backtracksearch

tofinda satisfyingassignment.Figure 1 illustratesthe

operationofsuch a searchalgorithm:searchingdepth-

firstuntila dead-end isreached,and then backtracking

to the nearestchoicepoint to continuethe search.

Choice of
task to assign first /]1_'_

Choice of _t_ "" _J "" "J
time for task L./,L_

Jl_ Choice of
/]J_ task to assign next

F_-_ vadable'°rdsdng)

no legal values
(dead-end)

Figure 1: Basic CSP Algorithm

Heuristic functions guide the ordering of variables
and values. For example, one heuristic for variable or-
dering counts the number of possible values for each
variable, and chooses the variable with the smallest
number of values as the next to instantiate. Typi-

...... 67

cally,the variableorderingin backtrackingalgorithms

isstatic,determined priorto searchby use ofa heuris-
ticfunction. As heuristicsfor variableand value or-

deringform the basisfor the algorithm'sperformance,

tremendous efforthas been investedindevelopinggood

general-purposeheuristics.However, practitionersof-

ten bypass the general-purposeheuristicsin favor of

hand-crafted domain-specificheuristics(e.g.,Sadeh's
work [8]).

2 DTS Rationale

CSP heuristics are imperfect and exhibit highly

domain-specificperformance. Although they oftenpro-
vide usefulsearchcontroladvice,the possibilityof er-

ror introduces uncertaintyintothe search algorithms

which relyon them. Consequently,currenttechniques

are forcedto pay a largecomputational pricein cases
where the heuristicfunctionmakes incorrectclassifica-

tions. Furthermore, the algorithms willrepeat these

costlymistakes,as thereare no robust learningmech-

anisms designed to improve a CSP heuristic'sperfor-
mance over time.

Existing heuristicfunctions encode many different

domain attributes.Some estimatethe qualityofpartial

scheduleswhileothersestimate the difficultyoffinding

a feasiblesolution. Unfortunately,there isno sound

methodology for combining the information provided

by an arbitrarynumber ofheuristicsforuse incontrol-

ling a singlesearch. This forceshuman schedulersto

make an unpleasant choice:

• decide a priorion a particularheuristic,and thus

concentrate on a singledomain attribute. This

can skew the system'sperformance at the expense
of other domain attributes.

• hand-crafta composite heuristicwhich captures

multiple domain attributesin a singlefunction.

For thisreason,the selectionofheuristicsand problem-

solvingtechniquesfor any given CSP domain remains
an artdespiteyears ofcomparative study.

DTS, which isderived from previous work on BPS

(the Bayesian Problem-Solver),isdesigned to address
these problems. The firstarea of innovation is the

heuristicerror model: a probabilisticsemantics for

heuristicinformation,based on the concept of con-

ditionalprobabilityin statisticaldecision-theory[3].

Heuristicsare interpretedby correlatingtheirestimates

with the actual payoffsof problem-solving instances.

When a problem issolved,the heuristicerror model

isupdated, adapting itto the problem's specificchar-

acteristics.Multiple heuristicsare combined by corre-

latingpayoffswith a set of heuristicestimates. This

alleviatesthe human scheduler'sdilemma by provid-

ing a dominating alternative,a sound framework for

combining an arbitrarynumber ofheuristicfunctions.
The second area of innovation isthe use of multi.

attribute utility theory, a formalized method for quan-

tifyingpreferencerelationshipsamong a set of uncer-

tain outcomes. An important target applicationfor

DTS is experiment schedulingfor the Hubble Space

Telescope. Figure 2 depictsa partialsetof utilityat-

tributes,whose non-lineartradeoffscan be encoded

by a multiattributeutilityfunction. In contrast to

Schedule Utility

• /\ /

iio.eoScaent,fic : I D,rect I1o.,^_.1

c0, Ialue Euu.u,,.u

ILsc , I LFees II Lu ,, s
I -time I for I I_ .

L_ _- u_pment

_..Areas _ L Tardiness L Payroll aM
Aooresseo Penalties Subcontracts

- Necessity of - Computational
Experiment Resource Cost

Figure 2: Utility Attributes for Experiment Scheduling

traditional CSP scheduling algorithms, which employ
special-purpose control rules, DTS's control rule is the
decision-theoretic rationality criterion of maximizing
expected utility.

In DTS, domain information is encoded in heuris-
tic functions and user preferences are encoded in util-

ity functions. By combining domain-independent and
domain-specific heuristics, and then using the user's
utility function to make search control decisions, DTS
provides a more efficient and flexible alternative to tra-

ditional scheduling techniques.

3 DTS: First Results

This section describes empirical results illustrating the
performance advantages of these two DTS innovations.

3.1 Combining Heuristics

The primary strength of the DTS prototype is the
method for combining information from separate
heuristic evaluation functions to improve constraint-

satisfaction search control. Experiments with the pro-
totype on the Eight Queens and Bridge-Construction
Scheduling [9] problems confirm that the combination
of heuristic functions provides more information than
any of the heuristics taken individually. This translates

into significant reductions in overall search time.
Traditionally, CSP algorithms make use of a vari-

able ordering heuristic and a value ordering heuristic.
Figure 3 shows the performance of a standard CSP
algorithm using all possible pairs (A1, A2, B1, B2)

I

I

I

=

I

I

li

I

I

nm
i
iii

i

68

u

L--

ro-

W

W

W

m

16
15
14
13
12
11

10

ik., ... B1

A2

A1
DTS Joint

, , , , I , , , , I I 1

0 5OO 1000 1500 2OOO 250O

. Problem Instance

Figure 3: Eight Queens: Combining Heuristics vs.
Heuristics in Isolation

drawn from two well-known variable ordering heuris-

tics (Most Constraining Variable (A), Minimum Do-
main Variable (B)) and two well-known value order-
ing heuristics (Least Constraining Value (1), Dechter's
Value Heuristic (2)[1]). Also shown is the DTS pro-
totype (DTS-Joint), which dominated the competition
by using all four heuristics in combination. The hor-
izontal axis plots the number of problem instances
solved and the vertical axis plots the running average
of search time over the entire experiment. The plot,
but not the average, beging with the tenth problem
instance.

Figure 4 shows s corresponding graph for the Bridge-

Construction Scheduling problem. The variable order-
ing heuristic used was Minimum Domain Variable and
the value ordering heuristics were Least Constraining

Value (curve AI) and ASAP, "as soon as possible"
(curve A2). Also shown are the corresponding indi-
vidual DTS performance curves (DTS AI, DTS A2)
as well as the combined heuristic performance curve

(DTS-Joint).
To summarize both graphs, the improvement is seen

to be nearly 50% on average for Bridge Construc-
tion Scheduling, and over 95% for the Eight-Queens

problem. Note that the sharp downward slope of
the DTS-Joint running average in Figure 4 demon-

strates the performance improvement accrued by learn-
ing, unattainable using traditional techniques.

3.2 Learning Heuristic Error Models

Figure 5 displays an example heuristic error model
learned over the course of 2500 Eight-Queens problem

69

1000

9oo

8OO

i 7OO

4OO

30o

200

AI

_/ _\ "....... "x.................. DTSAI

_- _, -" _-..

X _

,..1 i t i i I I t t

50 100 _0 200 250 300 350 400 450 500

Problem Insumce

Figure 4: Bridge-Construction Scheduling: Combining
Heuristics vs. Heuristics in Isolation

instances (for the Minimum Domain heuristic). The
horizontal axis plots the heuristic function estimate
and the vertical axis plots the preference for that esti-
mate. In DTS, preference is based upon the expected
utility associated with a heuristic estimate (dashed
line). In traditional algorithms, the heuristic is as-
sumed to rank-order alternatives perfectly, and there-

fore, preference is a monotonic function of the heuristic
estimate.

Most
Preferred

Least
Preferred Heuds_ Error Model _ -,, • l 1 _l_

1 2 3 4 5 6 7 I!

Heuristic Value

Figure 5: Sample Heuristic Error Model

The discrepancy between the heuristic estimates and
the actual utilities explains the poor performance of

traditionalapproaches,whichassume perfect heuristic and C(v) indicates the cost of searching the subtree
estimates. Further, it explains why DTS outperforms (whether or not a solution is found). P(v) and C(v)
these techniques, as it does not make this assumption, are attributes of the payoff mentioned above. Experi-
and instead learns to correct for the discrepancy, meats confirmed that once P(v) and C(v) are learned,

this rule outperforms traditional backtracking search
algorithms which interpret heuristic estimates at face

100[_ DT$ BI] value. This result indicates that decision-theoretic

90 _ _ /"_xr',c.c_-_v.f'- _ | search-control improves overall system performance. A
80 L ._ ._ _jr_, "--J similar analysis can also be performed for iterative im-

/_. _".,":_J , /
70 I-i_ T"_,.,_. ,----"-. BlJ provement [4].

i' '- "............... "

0 10 2o 30 4o 5o eo 7o so 9o 100 _"_"_b_ '_'+ r_BI

Problem _,,.tauce _¢_ __ C..(B)

4" c(A)
Figure 6: Generalizing Data to Larger Domains-,,.;_? _ _._._,,,-.v

_f _ l&_.

An additional benefit of the heuristic error model is _Ct_ose_ C(B)
the ability to generalize learned data across domains.

For example, Figure 6 depicts the performance of DTS
on the Thirty-two-Qheens problem with 1) no prior
heuristic error model, and 2) a heuristic error model

generalized (or "bootstrapped") from the 2500 Eight-
Queens examples solved in Figure 3. Generalizing data
from the simpler domain has reduced search complex-
ity. This is particularly important as the time required
to calibrate heuristic error models increases with prob-
lem complexity.

3.3 Decision-Theoretic Backtracking

The DTS prototype employed a simplified decision-
theoretic control mechanism which was adapted to a
conventional backtracking search algorithm: this al-
lowed for controlled experiments on DTS vs. tradi-
tional algorithms. The application of decision theory
to backtracking elucidates many important ideas.

The only search control decisions made in traditional
backtracking systems are the selections of which sub-

trees of the search graph to explore next. Once a sub-
tree is selected (by selecting the next variable or value),
it is explored exhaustively unless a solution is found.
Such an ordering problem can be viewed as a decision-
tree. Figure ? depicts the choice of ordering two sub-
trees A and B. We have proven a theorem [4] which
shows that the system's expected utility (search time
to first solution) is maximized if variables (or values)

are ordered by the quantity P(v)/C(v), where P(v) in-
dicates probability of finding a solution in the subtree,

Figure 7: Decision Tree for Value-Ordering Problem
(Values A and B)

As is evident from this discussion, DTS must con-
vert raw heuristic estimates at a node into estimates

of (1) probability of finding a solution in the subtree
under that node, and (2) the cost of search in that
subtree. We note here that while heuristics are usually
very good at rank-ordering nodes based on (1) and (2)
individually, the rank-ordering for the combination is
typically incorrect. DTS' heuristic error model corrects
for this.

3.4 Implementation Synopsis

The prototype performs a backtracking search, using
the standard optimizations of forward-checking and dy-
namic search rearrangement. Th_ searYh_s oMered by
the expected utility selection criteria (P(v)/C(v)) dis-
cussed above. The estimates of P(v) and C(v) are de-
rived from the heuristic error model, using traditional
CSP heuristics. The heuristic error model is updated
during and between trials using a bucketed histogram,
and interpreted by a Laplacian estimation.

@
g

I

I

m

m

w

m

m

m

j

l

i

i

i

i

W

|

i

70 I
m

= =

_I

'tem_

2

m

m

4 Future Directions

Our initial study of CSP and scheduling domains
demonstrates that applying even the simplest modeling
techniques of statistical decision theory can yield sig-
nificant payoffs. There are many other aspects of CSP
algorithms which would benefit from a similar decision-
theoretic approach. We conclude with two such exam-
pies.

4.1 Preprocessing and Caching of
Learned Constraints

Our decision-theoretic approach could be applied
equally well to the control of scheduling subprob-
ferns. For example, Minton [5] has considered a simple
utility-based model of the selective caching of learned
problem-solving rules.

Minton demonstrated that the caching of too many
rules acquired from problem-solving instances leads
to a substitution of knowledge-search (searching the
rule cache for an applicable rule) for problem-solving
search. Similarly, in a CSP problem, any number of
implicit constraints can be generated by preprocessing
or constraint-recording and cached in the constraint
graph. But additional constraints, while reducing
problem-solving search, increase the number of consis-
tency checks per search tree node (knowledge search).
Choosing to generate and record a constraint is, again,
a decision made under uncertainty, and it would be in-
teresting to consider a decision-theoretic approach to
the problem. We feel that decision-theoretic modeling
and the simple structure of CSPs can provide a firmer
theoretical foundation for this area of research.

4.2 Selective Value Generation

A common problem among search algorithms is selec-
tive expansion of successors. The textbook description
of most search algorithms calls for a full expansion of all
successors of a given node. For constraint-satisfaction
problems, this is clearly inadequate, as many variables
such as task start and end times have an infinite num-
ber of infinitesimally-spaced values.

One possible approach employs heuristics for value
generation. While we have applied decision theory to
search by designing an algorithm which evaluates all
successors and then selects among them, it is equally
possible_to apply these tools to selective expansion of
successors.Ifseveralheuristics (dispatch rules) can be
used to suggest plausible values, our approach can be
applied to the heuristics trivially. If no such heuris-
tics exist, one possibility is to employ a tree of values,
and perform an auxiliary search of this tree to select a
particularvalue.Thisbringson a new learningtask:
clusteringvaluesof similarmeritintoa hierarchyof
values.

5 Conclusion

The use of Bayesianprobabilitytheoryin DTS un-
derscoresthatschedulinginvolvesdecision-makingun-
der uncertainty,and illustrateshow imperfectinfor-
mation can be modeled and exploited.The use of
multiattributeutilitytheoryinDTS underscoresthat

schedulinginvolvescomplextradeoffsamong userpref-
erences.By addressingtheseissues,DTS has demon-

stratedpromisingperformanceinpreliminaryempiri-
caltesting.

References

[1]R. Dechterand J.Pearl.Network-BasedHeuris-
ticsfor Constraint-SatisfactionProblems. In

Search in Artificial lnfeUigence, L. Kanal and V.
Kumar, eds., Springer-Verlag, New York, 1988.

[2] O. Hansson and A. Mayer. Heuristic Search as
Evidential Reasoning. In Proceedings of the the
Fifth Workshop on Uncertainty/in Artificia ! Intel-
ligence, Windsor, Ontario, August 1989.

[3] O. Hansson and A. Mayer. Probabilistic Heuristic
Estimates. Annals of Mathematics and Artificial
Intelligence, 2:209-220, 1990.

[4] O. Hansson and A. Mayer. Decision-Theoretic
Control of Artificial Intelligence Scheduling Sys-
tems. HR,I Technical Report No. 90-1/06.04/5810,
September 1991.

[5] S. Minton. Learning Effective Search Con-
trol Knowledge: An EzTlanation-Based Approach.
Kluwer Academic, Dordrecht, 1989.

[6] U. Montanari. Networks of Constraints: Fun-
damental Properties and Applications to Picture
Processing. Information Processing Letters, vol.
7, 1974.

[7] N. Sadeh. Lookahead Techniques for Activity-
Based Job-Shop Scheduling. Technical Report TR
CMU-RI-TR-89-2, CMU, the Robotics Institute,
1989.

[8] N. Sadeh. Lool:ahead Techniques for Micro-
Opportunistic Job-Shop Scheduling. PhD Thesis,
CMU, the Robotics Institute, 1991.

[9] P. van Hentenryck. Constraint-Satisfaction in
Logic Programming. MIT Press, Cambridge, MA,
1989.

[I0] M. Zweben, M. Deale and R. Gargan. Anytime
Rescheduling. in Proceedings of the DARPA Plan-
ning Workshop, Morgan Kaufmann, San Mateo,
CA, 1990.

O
71

