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Abstract
In this paper we consider a simple model of
real-time scheduling. We present a real-time
_ . scheduling system called RTS which is based
on Korf’s Minimin algorithm. Experimental
results show that the schedule quality initially
improves with the amount of look-ahead search
and tapers off quickly. So it appears that rea-

sonably good schedules can be produced with
a relatively shallow search.

1 Introduction

Job shop scheduling is one of the most computation-
ally intensive parts of flexible manufacturing systems.
Scheduling in the real world is complicated by several
factors including the resource contention, unpredictabil-
ity of events, multiple agents with mutually conflicting
goals, and the sheer combinatorial explosiveness of the
task. In this paper, we simplify the real world scheduling
problem to a great extent and focus exclusively on one
aspect of the problem, namely its real-time character.
This paper looks at detailed job shop scheduling at the
level of individual machine operations. The scheduling
problem is treated as assigning the job-steps to individ-
ual machines and ordering them so that (a) the prece-
dence and resource constraints are satisfied, and (b) the
schedule is “good” in some measurable objective sense.
Most approaches to scheduling are static in that the
scheduling is done all at once and not during the pro-
duction process. Static scheduling has several obvious
drawbacks: First, optimal static scheduling is computa-
tionally prohibitive in any realistic manufacturing sys-
tem, which involves hundreds of jobs and machine oper-
ations. Second, since the static scheduler has to make
decisions based on predicted information, it has no way
of recovering from incorrect predictions even after they
were proved wrong. Thus, it is unable to readjust to
or recover from changes in the production environment,
including machine failures, new jobs, or machine delays.
Real-time scheduling prevents the above two pitfalls of
static scheduling by requiring that after every constant
time, some real world action is taken. This not only
prevents the system from losing itself in a combinatori-
ally explosive search space, but also makes it possible to
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continually readjust to the changing environment.

In this paper we present a system called RTS (Real-
time Scheduler) which uses the Minimin algorithm of
Korf [Korf, 1990] to do real-time scheduling. Minimin
is similar to the Minimax algorithm extensively used
in games. We view scheduling as a state space search
where states represent partial schedules. Minimin per-
forms a fixed depth look-ahead search from the initial
state, and applies a heuristic evaluation function to the
partial schedules at the leaves of the search tree to esti-
mate the cost of the schedule. This value is backed up
to the root of the tree and the system takes the most
promising scheduling action, i.e., it assigns a job-step
to a machine which leads to a schedule with the best
estimated cost.

Since RTS relies on heuristic estimates, the schedules
the system produces are not guaranteed to be optimal.
However, our experimental results show that the sched-
ule quality initially improves with the amount of look-
ahead search and tapers off quickly. So it appears that
reasonably good schedules can be produced with a rela-
tively shallow search. We conclude that our approach to
real-time scheduling based on Minimin is promising and
can be extended in several directions, including learn-
ing better evaluation functions, and doing variable depth
search.

2 Previous Work

One approach to scheduling is based on expert systems
[Fox and Smith, 1984]. However, expert systems ap-
proach to scheduling seems inadequate because of the
dynamic nature of the scheduling problem, which is due
to changes to job loads, availability of machines and la-
bor, introduction of new machines and manufacturing
processes, changes in the inventory space, etc. For this
reason, there are no experts in this domain, and even if
there were, they would be quickly outdated [Kempf et
al., 1991).

Many Al-approaches to scheduling are constraint-
based [Fox, 1987, Sadeh, 1991, Smith et al., 1986,
Zweben and Eskey, 1989). Here scheduling is viewed
as finding a schedule (assignment of machines to various
job-steps) which satisfies a set of constraints, including
precedence relationships between job-steps and global re-
source constraints. However, most of these approaches



assume a static scheduling problem, and are not easily
adaptable to real-time scheduling.

Traditionally, the “dynamics” of the manufacturing
process is handled by local greedy dispatch rules [Voll-
mann et al., 1988]. One dispatch rule, for example, rec-
ommends to schedule the job with Least Processing Time
(LPT) first, while another rule uses Earliest Due Date
(EDD) to prioritize jobs. While computationally cheap,
such local dispatch rules are too short-sighted, and do
not guarantee efficient schedules except in very special
cases [Kempf et al., 1991].

In summary, static optimal scheduling is computa-
tionally prohibitive and is not sufficiently responsive to
change. On the other hand, local dispatch rules are too
short-sighted to be generally effective. The expert sys-
tems approach is plagued by the dynamics of the schedul-
ing problem and paucity of experts. In this paper, we
propose an approach based on real-time search which
attempts to address each of the above problems.

3 Problem Description

The problem we address can be characterized as schedul-
ing the job-steps in a set of jobs on various machines in
real time. We make the following assumptions.

1. Each job consists of a sequence of job-steps that
must be performed serially.

_.2. There may be several machines of each machine
type.
3. Each job-step requires a machine of a particular
type to perform it.

4. Each machine can only process one operation at a
time.

5. Each job may require the same machine (or machine
type) more than once. In other words, we have a

“job shop” situation rather than a “ﬂow shop” sit-
uation [Vollmann et al., 1988).

6. The machine type required for each job-step and the
time for each job-step is known in advance.

7. The real-time constraint means that the time for
deciding which job-step to schedule next is “small,”
and should not depend on the number of jobs and
Job—steps

For example, each Job in Flgure 1 consists of a se-
quence of job-steps. The task of the scheduler is to in-
crementally add new job-steps to the current machine
queues. As the machine queues are filled from the back
by the scheduler, they are emptied from the front by the
machines executing the job-steps. In addition, the job-
step must wait until its predecessor job-step in its job
is executed. For example, in Figure 1, job-steps 5-11,
S-22, and 5-42 are in the queue for machine M1 in that
order. In addition, S-11, §-12, S-13, and S-14 must also
be processed sequentlally, because they are all part of a
single job.

Since scheduling is done while the jobs are getting ex-
ecuted, the scheduler has only a limited time to decide
what job-step to schedule next, and on what machine.
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Figure 1: Scheduler assigns job-steps to machine queues.

Machine Queues

4 Scheduling as State Space Search

We formulate the scheduling problem as a state space
search problem. States in the scheduling task correspond
to partial schedules represented as queues of job-steps for
the machines. The search problem is characterized by an
initial state, where there are no jobs scheduled, and a fi-
nal state, where all the jobs are scheduled. In any state,
there are several alternative assignments of the job-steps
to machine queues. A job-step is “ready” when all its
precedent job-steps have completed. Scheduling opera-
tors or “moves” assign job-steps to one of the machines
of the required machine type. In other words, they can
be placed on any one of the possible queues of the ap-
propriate machine type. Each such placement creates
a new state. The scheduling problem is to find a best
assignment of job-steps to machine queues according to
some measure of goodness (objective function). For ex-
ample, we may use the total time for the schedule or the
sum of the inventory and shortage costs as an objective
function.

The static scheduling problem corresponds to finding
the best path in the state space from the initial state
to a final state. However, static scheduling suffers from
the combinatorial explosion due to deep searches and is
not sufficiently responsive to the dynamics of the man-
ufacturing domain. In the following, we describe Gur
approach to scheduling that addresses these problems.

4.1 Minimin search T

Our a.pproach to scheduling consists of a real time search
method called “Minimin search” [Korf, 1990]. Minimin
is similar to minimax search in two-person games, ex-

cept that instead of alternating Min and Max nodes, the
search tree only contains Min nodes.

Minimin works by a fixed depth look-ahead search fol-
lowed by a real-time action. The sqarch terminates after
a small depth called “search onzon, after which the
leaves of the tree are evaluated using a heuristic evalu-
ation function. The evaluation function applied at the
leaves estimates the minimum total cost of any solution
that begins with a partial path ending with that leaf,
It is backed up to the root using the Min function. In
other words, the value of any node is the minimum of all
the values of its children, and the move that results in
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that value is the “best move.” After searching for a fixed
look-ahead depth, Minimin chooses the first best move,
executes it, updates the state and once again starts look-
ahead search from that point.

The “knowledge” of the Minimin algorithm lies in its
heuristic evaluation function f. The more closely it fol-
lows the real cost of the solution, the more optimal the
algorithm’s current decision is going to be. An evalua-
tion function is “admissible” if it never overestimates the
real cost of a solution. An evaluation function is mono-
tonic, if its value is monotonically non-decreasing along
any single path of the search tree.

When the evaluation function of the Minimin search
is monotonic, it is amenable to an effective branch and
bound technique called a-pruning. a-pruning works by
pruning the branches whose estimated cost is more than
the current best estimated cost. Like a-8 pruning, a-
pruning is guaranteed to preserve the outcome of the
look-ahead search.

Each time the Minimin algorithm is called it returns
the best next state and its estimated evaluation. The
main program then takes the corresponding action in
the “real world” and updates its current state to this new
state. After this, the program repeats its cycle again by
calling the Minimin algorithm.

4.2 Real-time Scheduling

We noted that in Scheduling the states correspond to
partial schedules and operators correspond to scheduling
actions. In order to complete the mapping of the real-
time scheduling problem to Minimin search, we need to
specify how a schedule is evaluated.

Several optimality criteria might be used to evaluate
the schedules. One of the criteria is the sum of the short-
age and the inventory costs. Another criterion is the to-
tal length of the schedule from the beginning to the end,
also called “make-span.” In our system, we currently
use the make-span criterion to evaluate schedules. The
smaller the make-span, the better the schedule. In Min-
imin search, the cost of the schedule must be estimated
after only a small number of steps are scheduled, i.e.,
much before the full schedule is known. To do this effec-
tively, we should necessarily rely on heuristic estimates
of the schedule cost. A good heuristic evaluation func-
tion must approximate the optimality criterion as closely
as possible.

As discussed earlier, there is an implicit precedence
relationship between the job-steps in the same machine
queue, and between the job-steps that belong to the same
job. For any job-step s, let PRE(s) be the set of job-
steps which are immediate predecwsors of 8, in that they
need to be performed before s is done. In Figure 1,
PRE(S-12) = {$-11, S-21}.

Our estimate of the make-span is done as follows: first,
we compute the time 7; by which each machine M; fin-
ishes its current queue. Assuming that the expected time
ET(s) for each job-step s is known in advance, this can
be calculated exactly. Let the expected start time and
the expected finish time of a job-step s be denoted by
ES(s) and EF(s) respectively. The expected start and
finish times of any job-step can then be calculated using
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Minimin(CurrentState, depth, )
If depth = SearchHorizon return (f(CurrentState))
%Alpha Pruning
If f(CurrentState) > o return (a + 1)
S := job-steps which are “ready”;
M = {m | 3s € S that needs a machine of m's type };
Pick m € M s.t. its current queue finishes earliest.
For each job-step s € S which matches m's type, Do
Begin
NewState := Assign(s,m);
Val := Minimin(NewState, depth + 1, a);
IfVal<a
Begin
a:=Val,;
BestNexztState := NewState;
End;
~_ End;
Return(a, BestNeztState);
End Minimin;

Table 1: Minimin Applied to Scheduling

the following recurrence relations.

ES(s) = Maz,¢prE %){EF (r)}-
EF(s) = ES(s) + ET(

Let 7} be the time by which machine M; finishes the last
job-step in its current queue. The goal of the Minimin
search is to find the best next job-step to add to the cur-
rent queues by doing a look-ahead search of fixed depth
in the space of partial schedules (machine queues).

A job-step is considered “ready” if all its predecessors
are either already executed or present in one or the other
of the machine queues. At any given state, RTS first
filters its machines by discarding those machines which
do not have any ready job-steps waiting for their machine
type. It then chooses the machine M; which is expected
to finish its queue the earliest, i.e., with a minimum T;,
and considers scheduling various job-steps on it. Each
“ready” job-step s whose type matches that of machine
M; is a possible choice. For each such possible choice,
Minimin creates a new state by assigning s to M;, and
updates the expected finish time of M;’s current queue
using the above recurrence relations. RTS proceeds in
depth first search in this manner until it reaches the
search horizon.

At the leaves of the look-ahead search tree, the total
time required to complete the remaining schedule must
be estimated. Since none of the job-steps in the remain-
ing schedule is assigned to a machine yet, their expected
finish time cannot be exactly estimated. It is here that
we rely on a heuristic lower bound.

"Let Tx be the maximum of T; of all machines M;
of type K. Let Wx be the total work remaining on
machines of type K, i.e., the total expected time of all
job-steps that need a machme of type K. Assume also
that there are Nx machines of type K. Ignoring all the
precedence constraints between the job-steps, the work
remaining on machines of type K can be distributed as



follows. First fill each machine of type K until they
reach the level Tx. This does not increase the make-
span because it anyway takes that long to wait for the
current queue to finish. This reduces the remaining work
on machine of type K to Wi — Z;{Tx — T;}, which may
be distributed evenly among all the machines of type
K in the best possible case. Hence, we observe that the
time for completing the schedule must at least be as high
as the following two bounds.

1. MazkeMachine-Types (Tie + W_K-%?f_-'—"l)
2. Mazje soss(Toes ET(8) + Min(T}))

The second lower bound above is obtained by noting
that the job-steps in a single job should be executed
sequentially. To the total time needed to execute any job,
the minimum expected finish time of all machine queues
is added. The finish time of the schedule is estimated to
be the maximum of the above two bounds.

The above evaluation function is both admissible
(never overestimates the true cost) and monotonic
(monotonically non-decreasing along any path). - This
follows because, adding job-steps to the machine queues
can only increase but never decrease the delays, by intro-
ducing more constraints. Since each step in the search
adds a new job-step to the queues, the expected comple-
tion time is monotonically non-decreasing. The mono-
tonicity is exploited by RTS by maintaining the current
estimate o of the best schedule and evaluating f at inter-
nal nodes even before the search horizon is reached. Be-
cause f is monotonically non-decreasing, any path whose
current estimate of the schedule cost exceeds the current
value of « is guaranteed to yield only a worse solution
and hence need not be pursued further. In other words,
a-pruning would not sacrifice solution quality.

The estimated time for completion is backed up to the
internal nodes from the leaves and finally to the root of
the look-ahead search tree. The path that promises the
lowest make-span is considered the best. An assignment
of the first job-step in this path is made as suggested by
this path. After this assignment, which corresponds to
an action in the “real world,” RTS takes a fresh look at
its environment and starts a new cycle all over again.

4.3 Experimental Results

The problem specification is a 5-tuple. It consists of the
number of jobs, the number of machines, the number of
types of machines (this has to be less than the number
of machines) and two numbers which specify the upper
bounds on the number of steps for any job and the pro-
cessing time for any step. Number of steps for each job
is generated randomly, bound by the upper bound given
in the problem specification. Each job-step is randomly
assigned a machine type. Each job-step is also assigned
some processing time randomly, bound from above as
given in the problem specification.

We tested RTS on a sample of 39 randomly generated
problems. Each problem had about 4-6 machines divided
into 3-4 types, and 4-6 jobs each of which had about 5
steps, each step taking up to 6 units of time. We then
ran the system with different look-ahead depths, and
measured the total time to execute the whole schedule

Make-42 ¢
span 41

1 23 45 6 7 8 9 1011 12 13 14 15
Se&chHorizon

Figure 2: Solution quality improves with search horizon.

(make-span). We plotted the search horizon on the X-
axis and the average make-span on the Y-axis.

The results show that the solution quality generally
improves with search horizon, as expected. This tradeoff
of search for solution quality was very favorable in the
beginning, and tapered off toward the end. Although
deeper searches resulted in better solutions on the whole,
they also required exponentially larger number of nodes,
taking exponentially longer time. In our context, the
results indicate that a search horizen of 7 to 10 would
achieve reasonably good schedules without extravagant
search. :

In general, it appears that a shallow look-ahead search
would suffice to improve solution quality in this domain,
which means that deep expensive searches may not be
needed.

5 Future Work
The work reported here is preliminary and a lot remains
to be done to make the ideas more practical and appli-

cable in a real-world setting. A few of the promising
directions to pursue are listed below.

Reactivity: One of the major reasons for building
“real-time” systems is that they are more responsive
to changes in their environment. This is especially
crucial in the manufacturing domain, where unex-
pected events such as machine break-downs and
tool failures are common. We believe that our sys-
tem would respond better to such changes than a
static scheduler. Indeed, it is possible to completely
change the machine and job configuration before ev-
ery cycle of the Minimin algorithm. The system
should still be able to make locally optimal decisions
with respect to its changed configuration. However,
we expect that the system’s behavior degrades grad-
ually as the dynamics in the system configuration
increases. It might also be expected that the use-
fulness of the look-ahead search decreases with in-
creased dynamism. These hypotheses need to be
experimentally verified.

Variable Depth Search: We assumed that the search
horizon is fixed. However, this need not be the
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case, and it is possible to change the search horizon
across problems and even within the same problem.
For example, a method called “Singular Extensions”
proved very effective in game domains by focusing
the search along narrow paths which appear signif-
icantly more promising than their nearest competi-
tors [Anantharaman et al., 1990]. It seems possi-
ble to adapt this technique to real-time scheduling

- and search deeper at places in the search tree which
appear promising. We can also add the iterative-
deepening capability to Minimin, so that more time
can be spent searching for a better schedule if time
is available [Korf, 1985]. This also makes it an any-
time_algorithm in the sense of [Dean and Boddy,
1988), in that it can be interrupted at any time dur-
ing its computation and asked to schedule the next
Job-step. The utility of the system’s decisions is ex-
pected to increase with the time available to make
the decision.

Learning: The performance of the system at a given
search horizon depends mostly on the goodness of
the evaluation function used to estimate the opti-
mality of the schedule. Although our current eval-
uation function performed fairly well on the prob-
lems that we tested it on, it does not take into ac-
count factors such as bottleneck resources, which are

_crucial for a _good scheduler. However, it is time-
consuming and laborious to encode sophisticated
evaluation functions. Besides, good evaluation func-
tions are sensitive to the scheduler’s environment,
and hence may not be generally effective. Hence
we plan to apply machine learning to learn effec-
tive evaluation functions [Lee and Mahajan, 1988).
There have already been some machine learning
methods applied to scheduling domains [Kim, 1990,
Shaw et al., 1990]. We think that significant im-
provements beyond current scheduling techniques
can be achieved using machine learning.

6 Summary

In this paper we described a real-time scheduling sys-
tem based on the Minimin algorithm and showed that
it is effective and capable of producing good schedules
with reasonably small effort. In particular, we showed
that the schedule quality improves with increased look-
ahead, confirming some of the results of Korf on Real-
time Search in_the scheduling domain. The future work
includes evaluation function learning, variable depth
searches, and demonstration of the reactivity of the sys-
tem. Although much remains to be done, the prelimi-
nary results reported in this paper appear promising.
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