
N98- 188'..79 '

Rescheduling with Iterative Repair

i

/

(
Abstract

This paper presents a new approach to rescheduling
called constrainS-based iterative repair. This approach
gives our system the ability to satisfy domain con-
straints, address optimization concerns, minimize per-
turbation to the original schedule, and produce modi-
fied schedules quickly. The system begins with an ini-
tiai, flawed schedule and then iteratively repairs con-
straint violations until a conflict-free schedule is pro-
duced. In an empirical demonstration, we vary the im-
portance of minimizing perturbation and report how
fast the system is able to resolve conflicts in a given
time bound. These experiments were performed within

the domain of Space Shuttle ground processing.

Introduction

Space Shuttle ground processing encompasses the in-
spection, repair, and refurbishment of space shut-
tles in preparation for launch. During processing the
Kennedy Space Center (KSC) flow management team
frequently modifies the schedule in order to accommo-

date unanticipated events, such as lack of personnel
availability, unexpected delays, and the need to re-
pair newly discovered problems. If the Space Shut-
tle ground processing turnaround time could be short'

ened, even by a small percentage, millions of dollars
would be saved. This paper presents GERRY, a gen-
eral scheduling system being applied to the Space Shut-
tle ground processing problem.

As originally put forth in [Srni85], rescheduling sys-
tems should satisfy domain constraints, address opti-
rnisation concerns, minimize perturbation to the orig-
inal schedule, and produce modified schedules quickly.
GERRY [Zweg0] is a novel approach to rescheduling
that addresses these concerns and gives the user the
ability to individually modify each criteria's relative
importance. In an empirical demonstration of the sys-
tem, we vary the importance of minimizing perturba-
tion and report how fast the system is able to converge

"Recom Technologies
#Lockheed Artificial Intelligence Center
lLockheed Space Operations Company

Monte Zweben

Eugene Davis*
Brian Daun t

Michael Deale_

NASA Ames Research Center

M.S. 269-2

Moffett Field, California 94035

to a conflict-free schedule (or a near-conflict-free sched-
ule) in a given time bound.

Problem Class: Fixed Preemptive

Scheduling

Scheduling is the process of assigning times and re-

sources to the tasks of a plan. Scheduling assign-
ments must satisfy a set of domain constraints. Gener-
ally, these include temporal constraints, milestone con-
straints, and resource requirements. The Space Shut-
tle domain also requires the modeling of state vari-
ables. State variables are conditions that can change
over time; examples include the positions of switches,
the configuration of mechanical parts, and the status
of systems. Tasks might be constrained by the state
conditions (a s_ate requirement) and they might cause
a change in state condition (a state e_eet).

Preemption is an additional complicating factor in-
troduced by the Space Shuttle problem. In preemptive
scheduling, each task is associated with a calendar of
legal work periods that determine when the task must
be performed.

Preemption effectively splits a task into a set of sub-
tasks. I_esource and state constraints are annotated

as to whether they should be enforced for each indi-

vidual subtask (and not during the suspended peri-
ods between subtasks) or during the entire time span-
ning from the first subtask until the last (including
suspended periods). Preemptive scheduling requires
additional computational overhead since for each task

the preemption times must be computed and appropri-
ate constraint manipulation for each time assignment
must be performed.

Rescheduling

Rescheduling is necessitated by changes that occur in
the environment. Systems can respond in three ways:
schedule again from scratch, remove some tasks from
the schedule and restart from an intermediate state, or
repair the schedule where the changes occurred.

Scheduling from scratch reconsiders the scheduling
problem in light of exogenous events. In [Ham$6],
[Sim88] and [Kam90], the authors argue that it is

92

F_

D

N

m

more efficient to modify flawed plans than to plan from
scratch. Moreover, since scheduling from scratch wiU
generate a new schedule without considering any values
from the previous solution, a high amount of pertur-
bation is likely to occur.

To schedule from an intermediate state, all tasks af-
fected by the exogenous events are first removed from

the schedule; scheduling then is resumed considering
the exogenous events. For example, suppose TI, Tz, 2"3,
and T4 are tasks in a schedule that are constrained to

be sequential in the order shown. If T3 is delayed, then
only T3 and T4 would be removed from the schedule be-
fore restarting, because the other tasks are unaffected
by the delay. This approach is complex, because a de-
pendency analysis is required to determine whether a
schedule modification could affect any particular task.
Further, even though a task is unaffected by an ex-
ogenous event, it may be possible to provide a better

schedule by reconsidering its assignments.
GERRY adopts the third approach, which is to re-

pair the constraints that are violated in the schedule.

Constraint-Based Iterative Repair

Constraint-based iterative repair begins with a com-
plete schedule of unacceptable quality and iteratively
modifies it until its quality is found satisfactory. The
quality of a schedule is measured by the cost function:

Cos_(s) = _'_-c,.Co...ai.t.Penaltyc,(s) * Weightc,,
which is a weighted sum of constraint violations. The
penalty function of a constraint returns an integer re-
flecting its degree of violation. The weight function of
a constraint returns an integer representing the impor-
tance or utility of a constraint.

In GERRY, repairs are associated with constraints.
Local repair heuristics that are likely to satisfy the vi-
olated constraint can then be encoded without con-

cern for how these repairs would interact with other
constraints. Of course local repairs do occasionally
yield globally undesirable states, but these states, if
accepted (see below), are generally improved upon af-
ter multiple iterations.

Repairing any violation typically involves moving a
set of tasks to different times: at least one task partici-
pating in the constraint violation is moved, along with
any other tasks whose temporal constraints would be
violated by the move. In other words, all temporal
constraints are preserved after the repair. We use the
Waltz constraint propagation algorithm over time in-
tervals [WalT5, Day87] to carry this out (thus enforcing
a form of arc-consistency [Mac77, Fre82]). The algo-
rithm recursively enforces temporal constraints until
there are no outstanding temporal violations. 1 This
scheme can be computationaily expensive, since mov-
ing tasks involves checking resource constraints, calcu-
lating preemption intervals, etc.

1Note that all temporal constraints are also preserved
(using the same Waltz algorithm) whenever the user man-
ually moves tasks.

At the end of each iteration, the system re-evaluates
the cost function "to determine whether the new sched-

ule resulting from the repairs is better than the current
solution. If the new schedule is an improvement, it be-
comes the current schedule for the next iteration; if it
is also better than any previous solution, it is stored as
the best solution so far. If it is not an improvement,
with some probability it is either accepted anyway, or
it is rejected and the changes are not kept. When the
changes are not kept, it is hoped that repairs in the
next iteration will select a different set of tasks to move

and the cost function will improve.

The system sometimes accepts a new solution that
is worse than the current solution in order to es-

cape local minima and cycles. This stochastic tech-

nique is referred to as simulated annealing [Kir83].
The escape function for accepting inferior solutions

is: Escape(s, s', T) = e-lCo, t(,)-Co, t(/)l/T where T is
a "temperature _ parameter that is gradually reduced
during the search process. When a random number be-
tween 0 and 1 exceeds the value of the escape function,
the system accepts the worse solution. Note that es-

cape becomes less probable as the temperature is low-
ered.

In GEtLI_Y the types of constraints that can con-
tribute to the cost function include the resource, state,
and perturbation constraints.

Resource Constraints The penalty of a resource
capacity constraint is i if the resource is overallocated.
If K simultaneous tasks overallocate the resource, then
all K tasks are considered violated. One of these tasks

will be selected in an attempt to repair as many of the
K violations as possible. The heuristic used to select
this task considers the following information:

Fitness: Move the task whose resource requirement
most closely matches the amount of overallocation.
A task using a significantly smaller amount is not
likely to have a large enough impact on the current
violation being repaired. A task using a far greater
amount is more likely to be in violation wherever it
is moved.

Temporal Dependents: Move the task with the
fewest number of temporal dependents. A task with
many dependents, if moved, is likely to cause tem-
poral constraint violations and result in many task
moves.

Distance of Move: Move the task that does not

need to be shifted significantly from its current time.
A task that is moved a greater distance is more likely
to cause other tasks to move as well, increasing per-
turbation and potentially causing more constraint
violations.

For each of the tasks contributing to the violation,
the system considers moving the task to its nezt ear-
lier and nezt later times such that the resource is avail-

able, rather than exploring many or all possible times.

93

Thisreducesthecomputationalcomplexityof there-
pairand,likethe "distance to move" criterion above,
tends to minimize perturbation.

Each candidate move is scored using a linear combi-
nation of the fitness, temporal dependents, and distance
4o more heuristicvalues.The repairthen chooses the

move stochasticallywith respectto the scorescalcu-
lated. After the repairisperformed, the Waltz algo-

rithm moves other tasksin order to preservetemporal
constraints.

State Constra|nts The penaltyofa stateconstraint

is1 ifthe required stateisnot set. To repaira state
constraint,the task with the violatedstaterequirement

isreassignedtoa differenttime when the statevariable
takes on the desiredvalue.Similarto the resourceca-

pacityconstraints,the system considersonly the next

earlierand next lateracceptable times and selectsbe-

tween these randomly. We are currentlyinvestigating

improvements to thisrepairand expect toextractmore
usefulheuristicsfrom our experts. One effortunder-

way isthe development of a repairthat can introduce

new tasks into the schedule,thus yieldinga behavior

generallyassociatedwith AI planning systems.

Perturbation Constraint The penalty function of

the perturbation constraint returns the number of

tasks that differfrom their originaltemporal assign-

ments. Since the weighted penalty of this constraint
contributesto the cost of a solution,schedules with

significantperturbationtend to be rejectedat the close
ofan iteration.We are in the processofexperimenting

with repairsfor this constraintthat augment the in-

formation provided by itspenalty and weight. Below

we show how varying the weight of thisconstraintcan

affectconvergence speed and solutionquality.

Experiment s

The problem domain for the experiments consisted
of the tasks, resources, temporal constraints, and
resource constraints from the STS-43 Space Shuttle
ground processing flow. A rescheduling problem was
generated by taking the original conflict-free schedule
and randomly moving ten tasks. Five such problems
were generated for the results reported below. The first
and last tasks of the original schedule were anchored
in time so repairs could not extend the duration of the
entire flow.

In the experiments, we maintained the resource con-

straint weight at ten, and varied the perturbation con-
straint weight from zero (perturbation was of no con-
cern) to 50 (perturbation was extremely important).
The system terminated its search when all resource
constraints were satisfied or when its run time exceeded

ten minutes. Upon termination, the system returned
the best solution found. Each rescheduling run was
performed with the same settings 20 times in order to
minimize stochastic variance.

Figure 1 presents the results of our experiments on

the five problems from three differentperspectives.

The firstgraph plotsthe number of perturbations for

the returned solutionagainstthe weight of the pertur-

bation constraint.As expected, with a higher pertur-

bation weight, the best solution has fewer perturba-
tions.

The second plotshows the qualityof a returned so-

lution (measured as the number of violatedresource

constraints),as a function of the perturbationweight.

As the graph shows, GERRY has more difficultysat-

isfyingresource constraintsas perturbation becomes

more important.
Finally,the third plot shows the convergence time

(in cpu seconds) as a function of the perturbation

weight. Average time to solutiongenerallyincreased
as the perturbation weight increased.

It is interesting to note that for smaller weights on
the perturbation constraint (< 20), the increase in re-
source violations is small while the drop in number
of perturbations is fairly large. As the perturbation
weight increasesbeyond 20, resource violations rise
quickly,and the drop in perturbations slows.

In summary, our algorithm is interruptible,

restartable,and outputs a solutionwhen terminated.

As demonstrated in Figure 2, the solutionqualityin-

creasesas a step-functionoftime. These runs axe rep-

resentativeof the system's generalperformance.

Related Work

Our work was heavily influenced by previous
constraint-based scheduling [Fox87, Fox84, Sad$9] and
rescheduling efforts [Ow,88].

ISIS [Fox87] and GERRY both have metrics of con-
straint violation (the penalOt function in GERRY)
and constraint importance (the weight function in
GERRY). In contrast with our repair-based method,
ISIS uses an incremental, beam search through a space
of partial schedules and reschedules by restarting the
beam search from an intermediate state.

OPIS [Fox84, Ow,88], which is the successor of ISIS,
opportunistically selects a rescheduling method. It
chooses between the ISIS beam search, a resource-
based dispatch method, or a repair-based approach.
The dispatch method concentrates on a bottleneck re-
source and assigns tasks to it according to the dis-
patch rule. The repair method shifts tasks until they
are conflict-free. These "greedy" assignments could
yield globally poor schedules if used incorrectly. Con-
sequently, OPIS only uses the dispatch rule when there
is strong evidence of a bottleneck and only uses the re-
pair method if the duration of the conflict is short. In

contrast, GERRY uses the simulated annealing search
to perform multiple iterations of repairs, possibly re-
tracting "greedy _ repairs when they yield prohibitive
costs.

Our use of simulated annealing was influenced by

the experiments performed in [Johg0a, Joh90b]. In

contrast with our constraint-basedrepair, their re-

_mm

=

94

i 7

L _

r_

m

Perturb-
Itlone

Resource
Violations

Average Perlurb_lons lot Best 8olutlon

140

120

I00

80

60

40

2O

0

0 5 10 15 20 g5 30 35 40 45 50

Perturbation Constrl/nt Weight

Average Numl_er of Resource Violations for Best
Solution

so

70

So

50

40

30

20

lO

5 lO IS 20 25 30 35 40 45 50

Perturbation Constraint Weight

2 :-

$o0

500

400

Tlmelsec) 300 i

200

100

0

0

Average Time to Solution

i

5 10 15 20 25 30 35 40 45 50

Perturt)ation Constraint Weight

41- Problem 1

O- Problem 2

-*" Problem 3

-o- Problem 4

Problem 5

Figure h Experimental Results: number of pertur-
bations versus perturbation constraint weight; num-
ber of resource violations versus perturbation con-

straiut weight; average run time versus perturbation
constraint weight

Best Solutlon's
Cost

3500

3000

2500

2000

1500

1000

500

0

..... Iklllem 2

........ Ilrtl Itm 3

...... I_llelem 4

0 60 120 t80 240 300 360 420 480 540 SO0

CPU Time (sic)

Figure 2: Best Cost versus Run Time

pairs were generally uninformed. In [Zwe92b] we show
that constraint repair knowledge improves convergence
speed.

The repair-based scheduling methods considered
here are related to the repair-based methods that have
been previously used in AI planning systems such as
the 'Tuces" used in Hacker [Sus73] and, more recently,
the repair strategies used in the GORDIUS[Sim88]
generate-test-debug system, and the CHEF cased-
based planner [Ham$6].

In [Min90], it is shown that the min-coa_ic_ heuris-
tic is an extremely powerful repair-based method. For
any violated constraint, the min-coa_ict8 heuristic
chooses the repair that minimizes the number of re-
maining conflicts resulting from a one-step lookahead.
However, in certain circumstances this lookahead could
be computationally prohibitive. In [Zwe91], the au-
thors investigate the tradeoff between the informed-
ness of a repair and its computationally complexity.
There itisshown that the resource repair described

above outperformed a lookahead heuristicon the STS-

43 Space Shuttleproblem. However, on smallerprob-
lems the lookahead heuristicwas superior.

Our technique is also closelyrelated to the Jet

Propulsion Laboratory's OMP scheduling system

[Bie91]. OMP uses procedurally encoded patches in
an iterativeimprovement framework. It storessmall

snapshots of the scheduling process (calledchronolo-
gies)which allow itto escape cyclesand localminima.

[Mi188], [Be185], and [Drug0] describe other efforts
that deal with resource and deadline constraints.

Conclusions and Future Work

Our experiments suggest that our constraint frame-
work and the knowledge encoded in this framework is
an effectivesearch tool that allows one to adjust the

importance of schedule perturbationand other objec-
tivecriteria.The framework ismodular and extensible

E

mmr

95

in that one can declare new constraints as long as their
weight, penalty, and repair functions are provided.

In future experiments, we hope to better character-
ize the components of repair informedness and compu-
tational complexity. We are currently evaluating can-
didate metrics of problem difficulty that could be used
to guide the selection ofrepaix heuristics. Additionally,
we are developing machine learning techniques that al-
low systems to learn when to dynamically switch be-
tween heuristics [Zwe92a].

With respect to the Space Shuttle application, the
system is expected to be in daily use sometime this
year. Our most significant barrier is gathering accurate
models of tasks in an electronic form. We also plan to
develop constraints that minimize weekend labor.

[Be185]

[BieYl]

[DayS7]

[DruY0]

[Fox84]

[Fox87]

[Fre82]

[Ham86]

[Joh90a]

[Joh90b]

[Kam90]

References

Bell, C.,Currie, K., and 'rate, A. Time Win-

dow and Resource Usage in O-Plan. Tech-
nical report, AIAI, Edinburgh University,
1985.

Biefeld, E. and Cooper, L. Bottleneck Iden-
tification Using Process Chronologies. In
Proceedings of lJCAI-91, Sydney, Austrailia,
1991.

Davis, E. Constraint Propagation with In-

terval Labels. Artificial Intelligence, 32(3),
1987.

Drummond, M. and Bresina J. Anytime
Synthetic Projection: Maximizing the Prob-
ability of Goal Satisfaction . In Proceedings
of AAAI-90, 1990.

Fox, M. and Smith, S. A Knowledge Based
System for Factory Scheduling. Ezpert Sys-
tem, 1(1), 1984.

Fox, M. Constraint-Directed Search: A Case

Study of Job Shop Scheduling. Morgan Kauf-
mann Publishers, Inc., Los Altos, CA, 1987.

Freuder, E. C. A Sufficient Condition for

Backtrack-Free Search. J. ACM, 29(1), 1982.

Hammond, K. J. CHEF: A Model of Case-

Based Planning. In Proceedings of AAAI-86,
1986.

Johnson, D.S., Aragon, C.R., McGeoch,
L.A., Schevon, C. Optimization By Sim-
ulated Annealing:An Experimental Evalua-
tion, Part I (Graph Partioning). Operations
Research, 1990.

Johnson, D.S., Aragon, C.tL, McGeoch,
L.A., Schevon, C. Optimization By Sim-
ulated Annealing:An Experimental Evalua-
tion, Part II (Graph Coloring and Number
Partioning). Operations Research, 1990.

Kambhampati, S. A Theory of Plan Modifi-

cation. In Proceedings of AAAI-90, 1990.

[Kir83]

[Mac77]

[Mi188]

[Min90]

[Ow,88]

[S dS9]

[SimSS]

[Sr 8]

[Sus73]

[wal75]

[Zwe90]

[ZweYl]

[Zwe92a]

[Zwe92b]

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.
Optimization by Simulated Annealing. Sci-
ence, 220(4598), 1983.

Mackworth, A.K. Consistency in Networks

of Relations. Artificial Intelligence, 8(1),
1977.

Miller, D., Firby, It. J., Dean, T. Deadlines,

Travel Time, and Robot Problem Solving.
In Proceedings of AAAI-88, St. Paul, Min-
nesota, 1988.

Minton, S., Phillips, A., Johnston, M.,
Laird., P. Solving Large Scale CSP and
Scheduling Problems with a Heuristic Repair
Method. In Proceedings of AAAI-90, 1990.

Ow, P., Smith S., Thiriez, A. Iteactive Plan
Itevision. In Proceedings AAAI-88, 1988.

Sadeh, N. and Fox, M. S. Preference Prop-
agation in Temporal/Capacity Constraint
Graphs. Technical report, The Robotics In-
stitute, Carnegie Mellon University, 1989.

Simmons, P_.G. Combining Associational
and Causal Iteasoning to Solve Interpreta-
tion and Planning Problems. Technical re-
port, MIT Artificial Intelligence Laboratory,
1988.

Smith, S. and Ow, P. The Use of Multi-
ple Problem Decompositions in Time Con-
strained Planning Tasks. In IJCAI-85 Pro-
ceedings, 1985.

Sussman, G.J. A Computational Model of
Skill Acquisition . PhD thesis, AI Labora-
tory, MIT, 1973.

Waltz, D. Understanding Line Drawings of
Scenes with Shadows. In P. Winston, ed-
itor, The Psychology of Computer Vision.
McGraw-Hill, 1975.

Zweben, M., Deals, M., Gargan, It. Any-
time Itescheduling. In Proceedings of
_he DARPA Workshop on Innovative Ap-
proaches to Planning and Scheduling, 1990.

Zweben, M.,Minton, S. Itepair-Based
Scheduling: Informedness versus Computa-
tional Cost. In The First International Con-

ference on AI Planning Systema, volume
Submitted, 1991.

Zweben, M., Davis, E., Daun, B., Drascher,
E., Deals, M., Eskey, M. Learning To Im-
prove Constraint-Based Scheduling. Artifi-
cial Intelligence, To Appear, 1992.

Zweben, M., Davis, E., Deals, M. Itera-
tire Repair for Scheduling and R_schedul-
ing. IEEE Systems, Man, and Cybernetics,
To Appear, 1992.

96

