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Abstract

A scheduling and resource management
system named MAESTRO has been

interfaced with a Space Station Module
Power Management and Distribution

(SSMPMAD) breadboard at Marshall Space
Plight Center (MSPC). The combined

system serves to illustrate the integration
of planning, scheduling and control in a
realistic, complex domain. This paper
briefly describes the functional elements

of the combined system, including normal
and contingency operational scenarios,
then focusses on the method used by the
scheduler to handle real -time
contingencies.

I. Introduction

For the past six years a team at Martin

Marietta has been developing an
integrated approach to scheduling,
resulting in the implementation of a

robust prototype scheduling system called
MAESTRO [Ocoffroy, Gohring & Britt, 1991].
During the same time frame another
group at Martin Marietta has been
building a hardware/software testbcd to

study various concepts in the automation
of electrical power management, the
Space Station Module Power Management
and Distribution (SSMPMAD) system. In
1988 an initial version of the SSMPMAD
system integrated with MAESTRO was

delivered to Marshall Space Plight Center.
Since then both the SSMPMAD system and
the scheduler have gone through several
revisions, and a major delivery of new
software occurred in June of 1991. This

paper describes that combined system,
highlighting those aspects of it that

illustrate concepts in integrated planning,
scheduling and control. We focus on the

replanning and rescheduling processes
used in MAESTRO to respond to real-time
contingencies, unexpected changes in the
state of the power system that cause a
schedule currently being executed to
become invalid.
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Section II defines some terms used in the

rest of the paper. Section HI describes the
functional architecture of the system. In
section IV are presented two operational
scenarios, one for normal operations and

one which describes a possible
contingency. Section V provides a
description of the processes carried out by
the scheduler to effect real-time

replanning and rescheduling, including
timing issues. In section VI we conclude
with indications of possible future
directions for this research.

II. Definitions

For the purposes of this discussion we will
make use of the following restricted
definitions. Planning is defined to be the
process of specifying goals to be achieved

onboard a spacecraft, and further, of
specifying the activities which will
achieve those goals. This involves
determining these activities' structure as
well as constraints on the execution of
them. Activities, in turn, are defined to be

sequences of subtasks which accomplish
the desired goal. Scheduling is defined to
be the process of selecting some subset of
these activities and specifying exact
start/end times and resource assignments
for their component subtasks. A valid
schedule is a specification of start/end

times and resource assignments for a set
of activities such that the activities may be
executed as scheduled. A contingency
arises when a previously valid schedule

becomes invalid as a result of a change in
the assumptions upon which that schedule
was based. The term real-time is used here

to mean "during execution of the activities
on a schedule'. This does not have the

connotation from control theory that a
real-time event must be responded to
within microseconds, but rather is used to
differentiate between actions that are

occurring at the moment as opposed to
those that will occur at some point in the
future. A load is the use of electrical

power by a piece of equipment.
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lII. Functional Architecture

Figure 1 depicts the functional elements of
the combined SSMPMAD/MAESTRO system
and relationships among these elements.
Briefly, the Activity Editor is used to create
definitions for activities which

accomplish goals desired by the user.
MAESTRO is used to select and schedule a

subset of these activities, and to save the
resultant schedule(s) out to files. The
Transaction Manager (TM) serves as a
communications port, facilitating specific
types of communications between

MAESTRO and the rest of the system during
breadboard operation. The Front End Load
Enable Scheduler (FELES) creates
schedules of power system events (such as
closing switches) from saved schedule
files. The Communications and

Algorithmic Controller (CAC) distributes

schedules among Load Centers (LCs), into
which are incorporated Lowest Level
Processors (LLPs). These LLPs actually
control hardware switches on the power

system breadboard, as well as monitoring
the states of various sensors distributed

throughout the system. The Fault
Recovery And Management Expert System
(FRAMES) performs fault isolation,
diagnosis and recovery for the power
system, and communicates with the
scheduler during real-time contingencies.
The Load Priority List Management System
(LPLMS) maintains a list of active loads in

a prioritized order such that if there is a
need to quickly reduce power
consumption in a portion of the
breadboard, loads can be shed (turned off)

in an order that minimizes the impact of

this load shedding.

MAESTRO

Scheduling
System

TransactionManager Fault Recovery and [Management Expert System

Communications and

Algorithmic Control

Power System Hardware

Figure 1. Functional architecture of the MAESTRO/SSMPMAD combined system.

A portion of the actual power circuits on
the breadboard is depicted in figure 2.
Note that several 1-kilowatt Remote Power

Controllers (RPCs) can be attached to a
single 3-kilowatt RPC. Thus it is possible to
overload an intermediate RPC without

overloading any of the lower-level RPCs
connected to it. For this reason it is

necessary to represent the entire power
path for each power-using resource to the
scheduling system, rather than just
representing total power consumed by
each activity.
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Figure 2. Representative schematic of a portion of the SSMPMAD breadboard.

IV. Operational Scenarios
Normally, a user will interact with the
activity editor to create a set of activities to
be scheduled, saving these activities'

definitions in an activity library. In that
or another session, the user will run the
scheduler to create one or more initial
schedules of these activities. These
schedules will be saved into a schedule

library. When a user wishes to operate
the power system breadboard, s/he uses
the SSMPMAD interface to select a saved
schedule, initialize the system and execute
that schedule. The FELES first obtains a

saved schedule and translates a portion of
it (roughly one-half hour of activity) into
a series of power system events,
specifying at what times and power levels
each RPC is to be turned on. The LPLMS

takes this schedule of power system events
and creates a list of loads to shed in an

emergency power reduction. The event
schedule and priority list are transmitted

to the CAC, which distributes them among
the LLPs as appropriate. The CAC also

maintains a system clock, coordinating
timing for the various elements.

Execution of the distributed schedule

proceeds with the LLPs directing the RPCs
to close and open switches at the times
specified by their respective event
schedules. The RPCs monitor voltage,
current, temperature and other
parameters of their operat.ions.

Prior to the expiration of the timeline
increment being executed, the FELES will
acquire another increment from the saved

schedule, translate it into power system
events, and transfer it to the CAC, which
distributes it to the LLPs. At a specified
time, the LLPs stop executing the old
increment event list and begin executing
the new one.

When an anomalous condition (such as
over-current or under-voltage at a
switch) is detected by one of the RPCs, it
automatically takes a sating action, if
possible. The LLP controling it reports
this event to FRAMES, which gathers
together all available information about

the fault, isolates it, and compiles a list of
system configuration status changes
resulting from the fault. These changes
can include a load being switched to a
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redundant power source (redundancy
switching), an RPC going out of service,
the deliberate shutdown of a load to reduce

power consumption (load shedding), or a
reduction in power available at an RPC
and the expected duration of that
reduction. This list of changes is then
communicated to the scheduler, which

revises the activity schedule to reflect the
changes and makes the new schedule
available to the FELES. It creates a new
event list, which is distributed to the LLPs

along with a time tag indicating when to
begin executing the new schedule.

V. The Real-Time Rescheduling Process
When a power system anomaly occurs,
MAESTRO will get a set of information
from FRAMES throught the TM. This
information will include the current time

in addition to redundancy switch, load
shed, power availability change, and RPC
out-of-service messages. These messages
will include the time the event occurred,

and if applicable the duration of the

change. MAESTRO follows a three-step
process to handle these messages and
revise the schedule. It 1) modifies the

schedule to reflect changes made to it by
the power system and to remove resource
and temporal constraint violations for
activities not yet begun, 2) tries to find
ways to "_Create and schedule continu_ations

for interrupted activities, and 3) tries to
schedule any activities that can take
advantage of the resources released by the
interrupt|on of others. The first step
results in a valid but possibly not very
efficient schedule ..... It Js carried out as

quickly as possible to ensure that a
workable schedule can be in place soon,
reducing the likelihood that adherence by

=the power system to the old (invalid)
schedule will result in a cascade of faults

registered by that system. The second and
third steps will only be attempted if there
is sufficient time to get something useful
done. Management of its own computation
time is a difficult issue for a real-time

rescheduler. It must project a time when
it will have a valid schedule available,

including the time it takes to transmit that
schedule to the entities responsible for

carrying it out, then not make changes to
the schedule (other than those already

made by the power system) that would
need to be acted upon before they are

received by the power system. For
example, if at I0:00 a contingency occurs,
and the scheduler determines that an

interrupted activity can be continued at
10:05, but this information cannot be

transmitted to the power system until
10:08, then the schedule is invalid the
moment the system begins to execute it.
In this example the scheduler could

specify that the activity be continued at
10:08, but not before.

The actual structure used to control the

three-step process mentioned above is a

prioritized list of command queues. As
information comes in from FRAMES, it is
routed to one of several command queues,
for action as soon as MAESTRO has nothing

more important to take care of. Resource
availability changes appear in one queue,
while redundancy switches are in another
and load sheds in a third, for example.
MAESTRO will be in a wait state until

something appears on one of its command
queues, at which time it will process a
command from the highest priority queue
that has an item, then check all the

queues again for new items, returning to
the wait state when no items remain.

MAESTRO will add items to its command

queues as a result of its own processing.
Handling a resource availability change,
for example, will cause MAESTRO to add a
command to check for resource constraint
violations. If a violation is found and an

activity interrupted, MAESTRO will add a
command to try to plan and schedule a
continuation of that activity.

Activity continuation is the single
automated planning function within
MAESTRO. When initially creating
activities, the user specifies ways and
conditions under which each subtask may
be continued if it is temporarily

interrupted. Three continuations are
currently represented for each subtask.
These are effectively operators that can be
selectively applied to achieve the goal of a
completed activity performance. First, the

unexecuted portion of an interrupted
subtask may be skipped, with a parameter
stating how much time the subtask must
execute prior to the interruption. A data
collection subtask could be terminated

early and data analysis begun, for
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example. Second, a subtask may be
continued after a sufficiently brief

interruption. Finally, the interrupted
subtask may be _started over again, making
use of states set by previous subtasks but
not using the progress gained in the
interrupted subtask.

The scheduler will create a new activity
model appropriate for a particular type of
continuation using information from the

interrupted activity and possible
continuations specified by the user for
that activity. Each of the above

continuations has different implications
for the reschcduling of the subtasks
following the interrupted one, so MAESTRO
must try various options in order to find a
viable placement for the new activity.
MAESTRO can represent temporal
constraints between activities, sometimes
necessitating the consideration of more
than one continuation model at once. This
complexity combines with the time

limitations on rescheduling to prohibit

MAESTRO from finding the "best" way to
continue an activity - it simply accepts the
first viable continuation found. Attempts
are heuristically ordered such that
higher-value continuations are tried

earlier, however. Note that in many cases
no continuation will be possible, in which
case the work done to represent the
current state of the system is all that can

be accomplished for a particular activity.
Note also that safing actions are not
scheduled but rather are carried out

immediately and automatically by the
subsystems involved.

As each continuation attempt is made, the
system consults the system clock,
abandoning funher attempts at the point
where they would cause changes made to
the schedule to be unimplementable.
When all continuation attempts have been
tried (and there may be none tried), if
there is still time, the scheduler will

attempt to add new performances of
activities to the schedule. System time is
checked after each schedule addition, and
this process ends when time runs out or
no more activities can be added to the

schedule. At that point the schedule is
made available to the FELES, and schedule

execution proceeds as previously
described.

VI. Future Directions and Related Work

Work is continuing on MAESTRO, as it is on
SSMPMAD. The scheduler needs to be

enhanced to manage the timing and
consistency issues that arise when a user
wishes to alter a schedule that is currently
executing. We also intend to enhance the
representational as well as computational
power of the system. The current methods
for finding a way to continue an
interrupted activity are cumbersome and

depend too much on initial user input into
the representation of the subtasks. A

more appropriate method would be to have
an intelligent system monitoring each
experiment or other major activity, with
the capability to plan continuations based
on an accurate assessment of the state of

the activity.

We have begun a task similar to the

MAESTRO/SSMPMAD integration for
Kennedy Space Center under the

Advanced Launch Processing (ALP)
contract. In that effort we will build a

system executive capable of coordinating
the actions of multiple Knowledge-Based
Autonomous Test Engineer (KATE) systems
[Parrish & Brown, 1991]. These systems
are used to monitor and control individual

launch vehicle subsystems during testing
and launch, but are independent of one
another. The system ..executive will
interface with the Kate systems as well as
with higher-level launch flow

management functions, enhancing
integrated vehicle systems tests and
reducing launch costs.
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