REAL-TIME CONTINGENCY HANDLING IN MAESTRO

Daniel L. Britt and Amy L. Geoffroy
Martin Marietta Astronautics Group

~ Abstract
A scheduling and resource management
system named MAESTRO has been
interfaced with a Space Station Module
Power Management and Distribution
(SSMPMAD) breadboard at Marshall Space
Flight Center (MSFC). The combined
system serves to illustrate the integration
of planning, scheduling and control in a
realistic, complex domain. This paper
briefly describes the functional eclements
of the combined system, including normal
and contingency operational scenarios,
then focusses on the method used by the
scheduler to handle real-time
contingencies.

I. Introduction

For the past six years a team at Martin
Marietta has been developing an
integrated approach to scheduling,
resulting in the implementation of a
robust prototype scheduling system called
MAESTRO [Geoffroy, Gohring & Britt, 1991).
During the same time frame another
group at Martin Marietta has been
building a hardware/software testbed to
study various concepts in the automation
of eclectrical power management, the
Space Station Module Power Management
and Distribution (SSMPMAD) system. In
1988 an initial version of the SSMPMAD
system integrated with MAESTRO was
delivered to Marshall Space Flight Center.
Since then both the SSMPMAD system and
the scheduler have gone through several
revisions, and a major delivery of new
software occurred in June of 1991. This
paper describes that combined system,
highlighting those aspects of it that
illustrate concepts in integrated planning,
scheduling and control. We focus on the
replanning and rescheduling processes
used in MAESTRO to respond to real-time
contingencies, unexpected changes in the
statc of the power system that cause a
schedule currently being executed to
become invalid.

P.O. Box 179, ms X1.4370
Denver, CO 80201

Section II defines some terms used in the
rest of the paper. Section III describes the
functional architecture of the system. In
section IV are presented two operational
scenarios, one for normal operations and
one which describes a possible
contingency. Section V provides a
description of the processes carried out by
the scheduler to effect real-time
replanning and rescheduling, including
timing issues. In section VI we conclude
with indications of possible future
directions for this research.

II. Definitions

For the purposes of this discussion we will
make use of the following restricted
definitions. Planning is defined to be the
process of specifying goals to be achieved
onboard a spacecraft, and further, of
specifying the activities which will
achieve those goals. This involves
determining these activities' structure as
well as constraints on the execution of
them. Activities, in turn, are defined to be
sequences of subtasks which accomplish
the desired goal. Scheduling is defined to
be the process of selecting some subset of
these activities and specifying exact
start/end times and resource assignments
for their component subtasks. A valid
schedule is a specification of start/end

_times and resource assignments for a set

of activities such that the activities may be
executed as scheduled. A contingency
arises when a previously valid schedule
becomes invalid as a result of a change in
the assumptions upon which that schedule
was based. The term real-time is used here
to mean "during execution of the activities
on a schedule”. This does not have the
connotation from control theory that a
real-time event must be responded to
within microseconds, but rather is used to
differentiate between actions that are
occurring at the moment as opposed to
those that will occur at some point in the
future. A load is the use of electrical
power by a piece of equipment.

The authors would like to acknowledge John Gohring of Martin Marietta Western Internal Systems and Joel Riedesel of Martin
Marietta Astronautics Group for their significant contributions to this report and to the work described herein.

A A R

1§

o

t ‘

1

QT I)

¥

L

el

i

III. Functional Architecture

Figure 1 depicts the functional elements of
the combined SSMPMAD/MAESTRO system
and relationships among these eclements.
Briefly, the Activity Editor is used to create
definitions for activities which
accomplish goals desired by the user.
MAESTRO is used to select and schedule a
subset of these activities, and to save the
resultant schedule(s) out to files. The
Transaction Manager (TM) serves as a
communications port, facilitating specific
types of communications between
MAESTRO and the rest of the system during

breadboard operation. The Front End Load
Enable

Scheduler (FELES) creates
schedules of power system events (such as
closing switches) from saved schedule
files. The Communications and

Algorithmic Controller (CAC) distributes

schedules among Load Centers (LCs), into
which are incorporated Lowest Level
Processors (LLPs). These LLPs actually
control hardware switches on the power
system breadboard, as well as monitoring
the states of various sensors distributed
throughout the system. The Fault
Recovery And Management Expert System

(FRAMES) performs fault isolation,
diagnosis and recovery for the power
system, and communicates with the

scheduler during real-time contingencies.
The Load Priority List Management System
(LPLMS) maintains a list of active loads in
a prioritized order such that if there is a
need to quickly reduce power
consumption in a portion of the
breadboard, loads can be shed (turmed off)
in an order that minimizes the impact of
this load shedding.

Fault Recovery and
Management Expert System

MAESTRO Transaction
Scheduling | Manager
System
*ﬁ Front
End
CScheduIe lerary)—b Load
Enable
Scheduler
CActIvlty Library)
I Load Priority
Activity ——>1 List Mgmt
Editor System

!

Communications and
Algorithmic Control

T

I

LLP

LLP LLP

'

Power System Hardware

Figure 1. Functional architecture of the MAESTRO/SSMPMAD combined sysiem;

A portion of the actual power circuits on
the breadboard is depicted in figure 2.
Note that several 1-kilowatt Remote Power
Controllers (RPCs) can be attached to a
single 3-kilowatt RPC. Thus it is possible to
overload an intermediate RPC without

113

overloading any of the lower-level RPCs
connected to it. For this reason it is
necessary to represent the entire power
path for each power-using resource to the
scheduling system, rather than just
representing total power consumed by
each activity.

Power Star Bus A ——

|
PDCU A P
= = = = — AD
SIC
= to other load centers
< from Bus BPDCU
PDCU: power distribution
control unit
LLP up LLP: lowest level processor
- 5_ A/D: Analog-to-digital
5 5 converter
AD AD - SIC: switchgear interface
sic I SIC I - controller
Remote Power
Sic T sic I I T = Controller (RPC)
Load Center Load Center 1or3kW

Figure 2. Representative schematic of a portion of the SSMPMAD breadboard.

IV. Operational Scenarios ,

Normally, a wuser will interact with the
activity editor to create a set of activities to
be scheduled, saving these activities'
definitions in an activity library. In that
or another session, the user will run the
scheduler to create one or more initial
schedules of these activities. These
schedules will be saved into a schedule
library. When a user wishes to operate
the power system breadboard, s/he uses
the SSMPMAD interface to select a saved
schedule, initialize the system and execute
that schedule. The FELES first obtains a
saved schedule and translates a portion of
it (roughly one-half hour of activity) into
a series of power system events,
specifying at what times and power levels
each RPC is to be turned on. The LPLMS
takes this schedule of power system events
and creates a list of loads to shed in an
emergency power reduction. The event
schedule and priority list are transmitted
to the CAC, which distributes them among
the LLPs as appropriate. The CAC also
maintains a system clock, coordinating
timing for the various elements.

114

Execution of the distributed schedule
proceeds with the LLPs directing the RPCs
to close and open switches at the times

specified by their respective event
schedules. The RPCs monitor voltage,
current, temperature and other
parameters of their operations.

Prior to the expiration of the timeline

increment being executed, the FELES will
acquire another increment from the saved
schedule, translate it into power system
events, and transfer it to the CAC, which
distributes it to the LLPs. At a specified
time, the LLPs stop executing the old
increment event list and begin executing
the new one.

When an anomalous condition (such as
over-current or under-voltage at a
switch) is detected by one of the RPCs, it
automatically takes a safing action, if
possible. The LLP controling it reports
this event to FRAMES, which gathers
together all available information about
the fault, isolates it, and compiles a list of
system configuration status changes
resulting from the fault. These changes
can include a load being switched to a

[T

L (
LI | R

Lo

Lot
lml ik

i
i

Cﬂw

{IE

[l

S I

{

Il

1

I
i

redundant power source (redundancy
switching), an RPC going out of service,
the deliberate shutdown of a load to reduce
power consumption (load shedding), or a
reduction in power available at an RPC
and the expected duration of
reduction. This list of changes is then
communicated to the scheduler, which
revises the activity schedule to reflect the
changes and makes the new schedule
available to the FELES. It crecates a new
event list, which is distributed to the LLPs

“along with a time tag indicating when to

begin executing the new schedule.

V. The Real-Time Rescheduling Process

When a power system anomaly occurs,
MAESTRO will get a set of information
from FRAMES throught the TM. This
information will include the current time
in addition to redundancy switch, load
shed, power availability change, and RPC
out-of-service messages. These messages
will include the time the event occurred,
and if applicable the duration of the
change. = MAESTRO follows a three-step
process to handle these messages and
revise the schedule. It 1) modifies the
schedule to reflect changes made to it by
the power system and to remove resource
and temporal constraint violations for
activities not yet begun, 2) tries to find
ways to create and schedule continuations
for interrupted activities, and 3) tries to
schedule any activities that can take
advantage of the resources released by the
interruption of others. The first step
results in a valid but possibly not very
efficient schedule. It is carried out as
quickly as possible to ensure that a
workable schedule can be in place soon,

. reducing the likelihood that adherence by
‘the power system to

the old (invalid)
schedule will result in a cascade of faults
registered by that system. The second and
third steps will only be attempted if there
is sufficient time to get something useful
done. Management of its own computation
time is a difficult issue for a real-time
rescheduler. It must project a time when
it will have a valid schedule available,
including the time it takes to transmit that
schedule to the entities responsible for
carrying it out, then not make changes to
the schedule (other than those already
made by the power system) that would
need to be acted upon before they are

that -

115

_unexecuted portion of an

received by the power system. For
example, if at 10:00 a contingency occurs,
and the scheduler determines that an
interrupted activity can be continued at

10:05, but this information cannot be
transmitted to the power system until
10:08, then the schedule is invalid the

moment the system begins to execute it.
In this example the scheduler could
specify that the activity be continued at
10:08, but not before.

The actual structure used to control the
three-step process mentioned above is a
prioritized list of command queues. As
information comes in from FRAMES, it is
routed to one of several command queues,
for action as soon as MAESTRO has nothing
more important to take care of. Resource
availability changes appear in one queue,
while redundancy switches are in another
and load sheds in a third, for example.
MAESTRO will be in a wait state until
something appears on one of its command
queues, at which time it will process a
command from the highest priority queue
that has an item, then check all the
queues again for new items, returning to
the wait statc when no items remain.

MAESTRO will add items to its command
queues as a result of its own processing.
Handling a resource availability change,
for example, will cause MAESTRO to add a
command to check for resource constraint
violations. If a violation is found and an
activity interrupted, MAESTRO will add a
command to try to plan and schedule a
continuation of that activity.

single
within

continuation is the
planning function
MAESTRO. When initially creating
activities, the wuser specifies ways and
conditions under which each subtask may

Activity
automated

be continued if it is temporarily
interrupted. Three continuations are
currently represented for each subtask.

These are effectively operators that can be
selectively applied to achieve the goal of a
completed activity performance. First, the
interrupted
subtask may be skipped, with a parameter

~stating how much time the subtask must

execute prior to the interruption. A data
collection subtask could be terminated
carly and data analysis begun, for

example. Second, a subtask may be
continued after a sufficiently brief
interruption. Finally, the interrupted

subtask may be started over again, making
use of states sct by previous subtasks but
not using the progress gained in the
interrupted subtask.

The scheduler will create a new activity
model appropriate for a particular type of
continuation using information from the
interrupted activity and possible
continuations specified by the user for
that activity. Each of the above
continuations has different implications
for the rescheduling of the subtasks
following the interrupted one, so MAESTRO
must try various options in order to find a
viable placement for the new activity.
MAESTRO can represent temporal
constraints between activities, sometimes
necessitating the consideration of more
than one continuation model at once. This
complexity combines with the time
limitations on rescheduling to prohibit
MAESTRO from finding the "best" way to
continue an activity - it simply accepts the

first viable continuation found. Attempts
are heuristically ordered such that
higher-value continuations are tried

carlier, however. Note that in many cases
no continuation will be possible, in which
case the work done to represent the
current state of the system is all that can
be accomplished for a particular activity.

Note also that safing actions are not
scheduled but rather are carried out
immediately and automatically by the
subsystems involved.

As ecach continuation attempt is made, the
system consults the system clock,
abandoning further attempts at the point
where they would cause changes made to
the schedule to be unimplementable.
When all continuation attempts have been
tried (and there may be none tried), if
there is still time, the scheduler will
attempt to add new performances of
activities to the schedule. System time is
checked after each schedule addition, and
this process ends when time runs out or
no more activities can be added to the

schedule. At that point the schedule is
made available to the FELES, and schedule
cxecution proceeds as previously
described.

116

VI. Future Directions and Related Work

Work is continuing on MAESTRO, as it is on
SSMPMAD. The scheduler needs to be
enhanced to manage the timing and

‘consistency issues that arise when a user

wishes to alter a schedule that is currently
exccuting. We also intend to enhance the
representational as well as computational
power of the system. The current methods
for finding a way to continue an
interrupted activity are cumbersome and
depend too much on initial user input into
the representation of the subtasks. A
more appropriate method would be to have
an intelligent system monitoring each
experiment or other major activity, with
the capability to plan continuations based
on an accurate assessment of the state of
the activity.

to the
for

We have begun a task similar
MAESTRO/SSMPMAD integration
Kennedy Space Center under the
Advanced Launch Processing (ALP)
contract. In that effort we will build a
system executive capable of coordinating
the actions of multiple Knowledge-Based
Autonomous Test Engineer (KATE) systems
[Parrish & Brown, 1991]. These systems
arc used to monitor and control individual
launch vehicle subsystems during testing
and launch, but are independent of one
another. The system _ executive will
interface with the Kate systems as well as

with higher-level launch flow
management functions, enhancing
integrated vehicle systems tests and
reducing launch costs.

VII. References

Geoffroy, A.L. Gohring, J.R. & Britt, D.L.
(1991) Sharing intelligence: Decision-making

interactions between users and software in
MAESTRO. Telematics and Informatics. 8
(3/4).

Parrish, C.L. & Brown, B.L. (1991)
Knowledge-Based Autonomous Test
Engineer (KATE). Technology 2001

Conference. NASA. December, 1991, San
Jose, CA.

e

I

